3-1正常工作状态(无ESD事件)主要特性(2)

3-1(2)ESD保护二极管总电容(CT)相对于受保护信号线的频率是否足够低

图3.3显示ESD保护二极管的等效电路。二极管在正常工作期间不导通。此时,pn结交界面形成耗尽层,如图3.3所示。耗尽层在电气上起电容的作用。因此,除非在考虑被保护信号线频率的基础上,正确选择ESD保护二极管,否则信号质量会下降。图3.4显示了总电容(CT)分别为5pF、0.3pF和0.1pF的ESD保护二极管插入损耗特性。电容大的二极管插入损耗高(如图所示,特性曲线负值变化较大),从而限制了可使用的频率范围。例如,在Thunderbolt(带宽为10Gbps,相当于5GHz的频率)的情况下,电容小(0.1pF至0.3pF)的ESD保护二极管插入损耗小,几乎不会影响二极管传输的信号,而5pF电容的ESD保护二极管插入损耗大,通过二极管的信号明显衰减。

图3.3 ESD保护二极管总电容
图3.3 ESD保护二极管总电容
图3.4 ESD保护二极管总电容与插入损耗      
图3.4 ESD保护二极管总电容与插入损耗     
图3.5 EAP电路配置
图3.5 EAP电路配置

降低总电容
(总电容由二极管结电容和封装中的寄生电容组成。其中很大一部分是结电容。)

反向偏置时,二极管因pn结(p:p型半导体,n:n型半导体)形成耗尽层产生电容。与电容相反,耗尽层起阻挡层的作用,只有少数载流子通过。降低半导体区掺杂浓度会增加耗尽层宽度。因此,为了减小二极管的电容,有必要减小pn结面积或提高反向击穿电压(VBR),但任何一种方式都会导致ESD抗扰度下降。当两个二极管串联时,它们的组合电容减小。此外,二极管反向ESD能量耐受性比正向差。东芝低电容(Ct)ESD保护二极管采用ESD二极管阵列工艺(EAP)制造,多个二极管组合在一起减小电容,不影响ESD抗扰度。
图3.5显示EAP配置中低电容ESD保护二极管电路图。它由三个二极管组成:低电容二极管1和二极管2(电容分别为C1和C2)和高电容二极管3(电容为C3)。二极管1和二极管2的pn结面积小,反向击穿电压(VBR)高,而二极管3的pn结面积大,并且有足够大的反向击穿电压(VBR)。加到阳极的ESD电流沿正向流过二极管1,加到阴极的ESD电流沿正向流过二极管2,然后反向流过二极管3,因为二极管3的VBR低于二极管1。通常,二极管反向ESD能量耐受性低于正向。由于二极管1和二极管2的pn结面积较小,因此它们的反向ESD能量耐受性更差。然而,ESD保护二极管配置如图3.5(a)所示时,ESD电流不会反向流过二极管1和二极管2。因此,这个电路整体上提高了ESD抗扰度。图3.5(b)显示这个ESD保护二极管的等效电容电路。低电容二极管2和高电容二极管3串联,可以减小组合电容。此外,由于该电路VBR由二极管3的VBR决定,因此可以根据被保护的信号线调整二极管3的VBR,从而提高ESD抗扰度。

图3.6粗略总电容与信号频率
图3.6粗略总电容与信号频率

粗略总电容与信号频率

根据信号频率选择ESD保护二极管时,可参考图3.6。

第Ⅲ章:TVS二极管(ESD保护二极管)的主要电气特性

3、TVS二极管(ESD保护二极管)的主要电气特性
3-1正常工作状态(无ESD事件)的主要特性(1)
3-1正常工作状态(无ESD事件)的主要特性(3)
3-2 ESD事件保护的主要特性(1)
3-2 ESD事件保护的主要特性(2)
3-2 ESD事件保护的主要特性(3)

相关信息

在新窗口打开