双极结型晶体管(BJT)的基极电流和集电极电流之间有什么关系?

通常,从发射极流向集电极的电流或从集电极流向发射极的电流为基极电流乘以直流电流增益(hFE)。

表1:电气特性(2SC2712)
表1:电气特性(2SC2712)

例如:2SC2712的hFE规格如表1所示。
为了实现该规格,双极结型晶体管(BJT)使得发射极(E)的杂质浓度>>基极(B)的杂质浓度>集电极(C)的杂质浓度,并且使基极的宽度更小。因此,在有源区的电压条件下(B与E之间正向偏置,B与C之间反向偏置),B与E之间的结被导通,高密度E的载流子流入B。载流子流入量由B与E之间的电压(基极电流)降低的势垒高度决定。此外,由于流入的载流子的基极厚度小,它们在没有与基极中的载流子复合的情况下流入集电极,从而实现高hFE

实际上,即使在上述有源区域内,hFE也不是恒定的,它随着B与C之间反向偏置的增加而增加。这是因为,随着B与C之间反向偏置的增加,B与B之间的耗尽层扩大,有效基极变窄。这被称为早期效应(基极宽度调制)。
此外,在饱和区域,当B和C都呈正向偏置时,hFE减小。在该区域,B和E以及B和C都处于正向偏置状态,所以它们表现得像电阻而不是上述晶体管行为。这时,过量的载流子停留在集电极中。这些过量的载流子降低了杂质浓度较低的集电极层的电阻,从而降低了C与E之间的饱和电压 VCE(sat)。这就是导电调制效应。然而,由于这些过量载流子的存在,在从导通状态转换到关断状态时需要一定的时间(积累时间)。
如图2所示,hFE受到环境温度的影响。

图1:IC – VCE曲线(2SC2712)
图1:IC–VCE曲线(2SC2712)
图2:hFE – IC曲线(2SC2712)
图2:hFE–IC曲线(2SC2712)

相关信息

以下文档也包含相关信息:

在新窗口打开