
TOSHIBA

株式会社 東芝 セミコンダクター社

- 当社は品質、信頼性の向上に努めておりますが、一般に半導体製品は誤作動したり 故障することがあります。当社半導体製品をご使用いただく場合は、半導体製品の 誤作動や故障により、生命・身体・財産が侵害されることのないように、購入者側の責 任において、機器の安全設計を行うことをお願いします。 なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用い ただくと共に、考慮されるべき注意事項や条件について「東芝半導体製品の取り扱 い上のご注意とお願い」、「半導体信頼性ハンドブック」などでご確認ください。
- 本資料に掲載されている製品は、一般的電子機器 (コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、家電機器など) に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や誤作動が直接人命を脅かしたり人体に危害を及ぼす恐れのある機器 (原子力制御機器、航空宇宙機器、輸送機器、交通信号機器、燃焼制御、医療機器、各種安全装置など) にこれらの製品を使用すること (以下"特定用途"という) は意図もされていませんし、また保証もされていません。本資料に掲載されている製品を当該特定用途に使用することは、お客様の責任でなされることとなります。021023_B

- 本資料に掲載されている製品を、国内外の法令、規則及び命令により製造、使用、 販売を禁止されている応用製品に使用することはできません。060106 Q
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、 その使用に際して当社および第三者の知的財産権その他の権利に対する保証または 実施権の許諾を行うものではありません。021023 C
- 本資料に掲載されている製品のうち外国為替および外国貿易法により、輸出または 海外への提供が規制されているものがあります。021023 F
- 本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。021023_D
- マイコン製品の信頼性予測については、「品質保証と信頼性/取り扱い上のご注意とお願い」の 1.3 項に記載されておりますのでかならずお読みください。030519_S

021023 A

改訂履歴

日付	版	改訂理由
2003/6/23	1	First Release
2008/8/29	2	内容改訂(

UART ノイズ除去時間設定における注意事項

本製品に搭載されている UART を使用する場合、転送クロック選択 (BRG) により、ノイズ除去時間設定(RXDNC設定)には以下の制約があります。"〇"の箇所にて使用し、"一"の箇所は設定しないでください。

なお、転送クロックとしてタイマカウンタ割り込みを使用する場合、転送クロックはタイマカウンタソースクロック [Hz] ÷ TTREG 設定値で計算されます。

			<u> </u>	$\langle (/) \rangle$			
		RXDNC設定					
BRG 設定	転送クロック [Hz]	00 (ノイズ除去なし)	01 (31/fc[s] 未満の パルス除去)	10 (63/fc[s] 未満の パルス除去)	11 (127/fc[s] 未満の パルス除去)		
000	fc/13	0	000	O			
110	fc/8	0		> - \$2	-		
(タイマカウンタ割り込 みでの転送クロックが右	fc/16	0	(Ø/ Ś)	~- (C)) ~ -		
記となる場合)	fc/32	0	0	0	S())-		
上記以	.外	0	4(0)	0	0		

CMOS 8ビット マイクロコントローラ

TMP86PM72FG

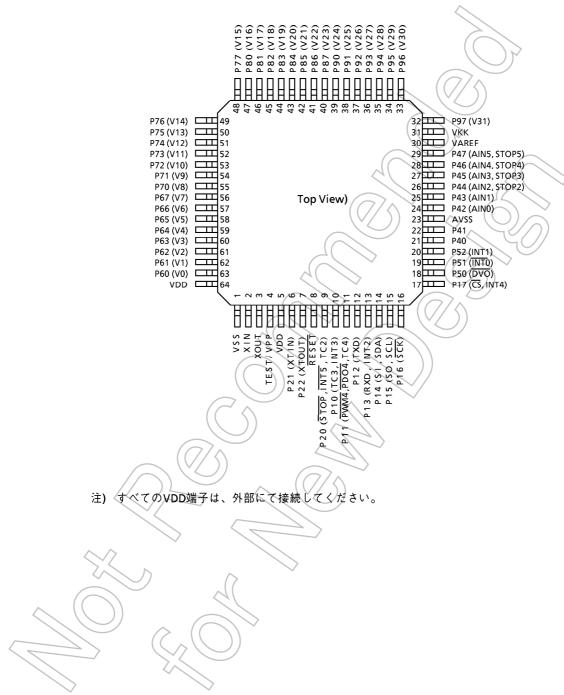
TMP86PM72は32KバイトのワンタイムPROMを内蔵した高速、高機能8ビットシングルチップマイクロコ ンピュータで、マスクROM品のTMP86CH72/CM72とピンコンパチブルです。内蔵のPROMにプログラム を書き込むことにより、TMP86CH72/CM72と同一の動作を行います。TMP86PM72は、アダプタソケット を用いることで、TC571000D/ADと同様に汎用PROMプログラマで書き込み/ベリファイを行うことができま す。

製品形名	ROM	RAM	パッケージ	アダプタソケット
TMP86PM72F0	32Kバイト	1Kバイト	P-QFP64-1414-0.80C	BM11707
				- パッケージ外観図 1414-0.80C

TMP86PM72FG

030519TBP1

- アイコン製品の信頼性予測については、 うかならずお読みください。 計社は品質、信頼性の向上にかっ では出口、 「品質保証と信頼性/取り扱い上のご注意とお願い」の1.3項に記載されておりますの
- でかならずお読みください。 当社は品質、信頼性の向上に努めておりますが、一般に半導体製品は誤作動したり故障することがあります。当社半導体製品 をご使用いただく場合は、半導体製品の誤作動や故障はより、生命・身体・財産が侵害されることのないように、購入者側の責 任において、機器の安全設計を行うことをお願いします。 なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用いただくと共に、考慮されるべき注意事項や 条件について「東芝半導体製品の取り扱い上のご注意とお願い」、「半導体信頼性ハンドブック」などでご確認ください。 本資料に掲載されている製品は、一般的電子機器(コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、 家電機器など)に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や誤作動が直接人命を脅機 家に機器など)に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や誤作動が直接人命を脅機 とたり人体に危害を及ぼす恐れのある機器(原子力制御機器、航空宇宙機器、輸送機器、交通信号機器、燃焼制御、医療機 器、各種安全装置など)にこれらの製品を使用すること(以下"特定用途"という)は意図もされていませんし、また保証も いません。本資料に掲載されている製品を当該特定用途に使用することは、お客様の責任でなされることとなります。 本資料に掲載されている製品は、外国為替および外国貿易法により、輸出または海外への提供が規制されているものです。 本資料に掲載されている製品は、外国為替および外国貿易法により、輸出または海外への提供が規制されているものです。 の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 資料に掲載されている技術情報は、製品の代表的動作が用を説明するためのもので、その使用に際して当社および第三者 知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。 資料に掲載されている製品を、国内外の法令、規則および命令により製造、販売を禁止されている応用製品に使用すること
- はできません。 本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。



Purchase of TOSHIBA I2 C components conveys a license under the Philips I2 C Patent Rights to use these components in an I2 C system, provided that the system conforms to the I2 C Standard Specification as defined by Philips.

> 86PM72-1 2003-06-23

ピン配置図 (上面図)

P-QFP64-1414-0.80C

86PM72-2 2003-06-23

端子機能

TMP86PM72には、MCUモードとPROMモードとがあります。

(1) MCUモード

TMP86CH72/CM72とピンコンパチブルです(必ずTEST端子は"L"レベルに固定してください)。

(2) PROMモード

端子名 (PROMモード時)	入出力	機能	端子名 (MCUモード時)
A16 ~ A12		(()>	PD4~PD0
A11 ~ A8	入力	プログラムメモリアドレス入力	P53~P50
A7 ~ A0		4(>>	P47~P40
$D7 \sim D0$	入出力	プログラムメモリデータ入出力	P17~P10
CE		チップイネーブル信号入力	P95
ŌĒ	入力	アウトプットイネーブル信号入力	P94//)
PGM		プログラムモード信号入力	P93
VPP		+12.75 V/5 V (プログラム電源)	TEST
VDD	電源	+6.25 V/5 V	VDD
GND		0 V	VSS
P51, P21		PROMモード設定用端子。"H"レベルに固定。	
P50, P20, P22, AVSS, VAREF	入出力	PROMモード設定用端子。"L"レベルに固定。	
RESET			
XIN	入力	発振子 (10 MHz) を取り付け自己発振させてください	,
XOUT	出力	元版 1 (10 MIIIZ) と纵り N 的自己光版させて、たさい	• 0

動作説明

TMP86PM72はTMP86CH72/CM72内蔵のマスクROMをワンタイムPROMとしたもので、そのほかの構成および機能はTMP86CH72/CM72と同一です。なお、TMP86PM72は、リセット解除時シングルクロックモードとなっています。デュアルクロックモードで使用する場合は、プログラムの先頭で命令 [SET (SYSCR2). XTEN] によって低周波クロックを発振させてください。

1. 動作モード

TMP86PM72には、MCUモードとPROMモードとがあります。

1.1 MCUモード

TEST/VPP端子を "L" レベルに固定することにより、MCUモードとなります。
MCUモードでの動作は、TMP86CH72/CM72と同一です (TEST/VPP端子は、プルダウン抵抗を内蔵していないため開放して使用することはできません)。

1.1.1 プログラムメモリ

TMP86PM72は32 Kバイト (MCUモード時、アドレス8000 $_{
m H}$ ~FFFF $_{
m H}$ 番地。PROMモード時、アドレス0000 $_{
m H}$ ~7FFF $_{
m H}$ 番地) のワンタイムPROMを内蔵しています。TMP86PM72をTMP86CH72/CM72 のシステム評価用として用いる場合は、図1-1に示したプログラム格納エリアにプログラムを書き込みます。

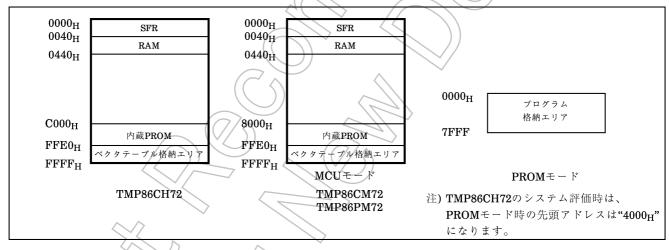


図1-1. プログラム格納エリア

注)汎用PROMプログラマの設定をプログラム格納エリアのみアクセスするように設定してください。

1.1.2 データメモリ

TMP86PM72は1Kバイトのデータメモリ (スタティックRAM) を内蔵しています。

1.1.3 端子の入出力回路

(1) 制御端子

TEST端子にプルダウン抵抗を内蔵していない以外は、TMP86CH72/CM72と同じです。

(2) 入出力ポート

TMP86PM72の入出力ポートの入出力回路は、TMP86CH72/CM72と同じです。

86PM72-4 2003-06-23

1.2 PROMモード

RESET端子, P51, P50ポート, P22~P20ポートおよびTEST端子を図1-2のように設定することにより PROMモードになります。PROMモードでは、汎用PROMプログラマを用いて、プログラムの書き込み/ベリファイを行うことができます。

注) 高速プログラムモードが使用できます (ご使用になるPROMプログラマによって設定が異なりますのでPROMプログラマの説明書をご参照ください)。TMP86PM72は、エレクトリックシグネチャー機能を持っていませんので、PROMプログラマのROMタイプをTC571000D/AD相当に設定してください。

なお、弊社のサポートしておりますアダプタソケットをご使用される場合、スイッチは"N"側に設定してください。

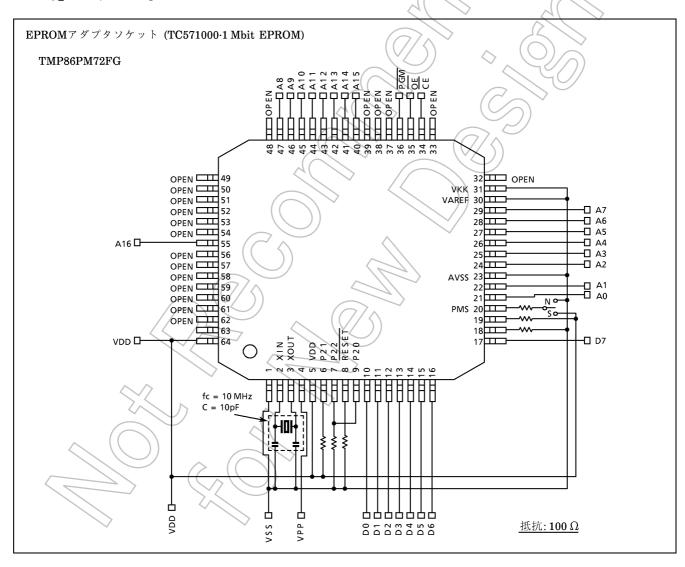


図1-2. PROMモードの設定

86PM72-5 2003-06-23

1.2.1 書き込みフローチャート(高速プログラムモード)

 V_{DD} =6.25 V の状態で、 V_{PP} =12.75 Vのプログラム電圧を印加することにより、高速プログラムモードとなります。アドレスおよび入力データを確定した後、 \overline{PGM} 入力に $0.1\,ms$ のプログラム (単一)パルスを加えることにより、データが書き込まれます。データが書き込まれているかベリファイを行い、正しく書き込まれていない場合は、再び $0.1\,ms$ のプログラムパルスを印加し正しく書き込まれるまで (最大25回) この操作を繰り返します。設定アドレスに正しくプログラムができたら、アドレス,入力データを次に進め同様に書き込みを行います。すべての書き込みが終了したら、 V_{DD} = V_{PP} =5 V_{DD} = V_{PP} =5 V_{DD} = V_{PP} =5 V_{DD} = V_{PD} =7 V_{DD}

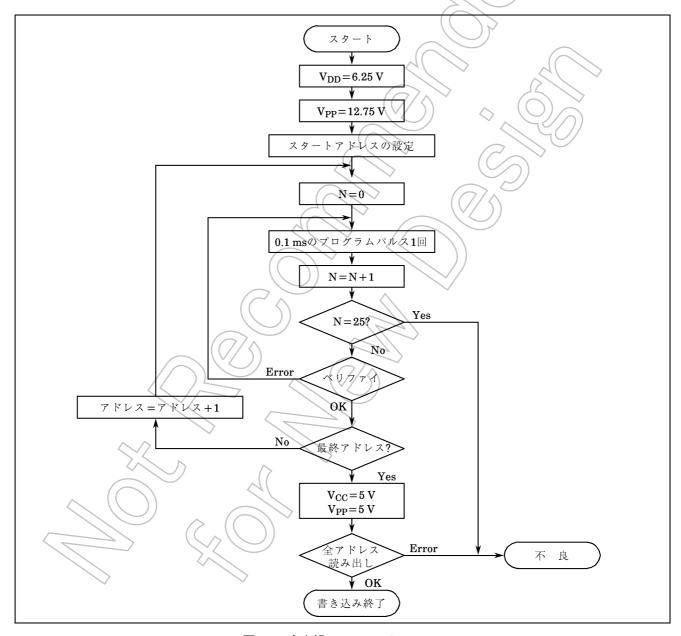


図1-3. 書き込みフローチャート

86PM72-6 2003-06-23

- 1.2.2 汎用PROMプログラマにて、弊社アダプタソケットを用いての書き込み方法
- (1) アダプタの準備

BM11707: TMP86PM72FG用

(2) アダプタの設定

スイッチ (SW1) をN側に設定してください。

- (3) PROMプログラマの設定
 - i) PROMタイプをTC571000D/ADに設定します。 書き込み電圧: 12.75 V (高速プログラムモード)
 - ii) データ転送(またはコピー)(注1)

TMP86PM72のPROMはアクセスするために設定するアドレスがMCUモード時とPROMモード時で異なります。従って、TMP86CH72/CM72に搭載するROMの内容をTMP86PM72のPROMに書き込む場合、あらかじめMCUモード時のアドレスからPROMモード時のアドレスにデータを転送(コピー)などする必要があります。MCUモードとPROMモードのプログラムエリアの対応は、図1-1プログラム格納エリアを参照してください。

例: ブロック転送(コピー) モードで、下記を実行 ROM容量が32 KBの場合: $08000_{
m H} \sim 07FFF_{
m H} \rightarrow 00000_{
m H} \sim 07FFF_{
m H}$

iii) 書き込みアドレスを設定してください。(注1)

開始アドレス: 00000_H 終了アドレス: 07FFF_H

(4) 書き込み

PROMプログラマの操作手順に従って書き込み/ベリファイを行ってください。

- 注1) 設定方法は、PROMプログラマの説明書を参照してください。また、アドレス不使用領域の データは必ずFF4に設定してください。
- 注2) MCUをアダプタにセットする場合、またはアダプタをPROMプログラマにセットする場合は1 ピンの位置を合わせてセットしてください。間違えて逆向きにセットするとMCU,アダプタおよびPROMプログラマにダメージを与えます。
- 注3) TMP86PM72はエレクトリックシグネチャーモード (以下シグネチャー) はサポートしていません。従って、PROMプログラマでシグネチャーを使用すると、アドレスの9番ピン (A9) に12 $V\pm0.5\,V$ の電圧が印加されるためデバイスにダメージを与えます。シグネチャーを使わないでください。

86PM72-7 2003-06-23

電気的特性

※MCUモードの電気的特性は、TEST端子にプルダウン抵抗を内蔵していないことを除き基本的に同等です。

絶 対 最 大 定 格		$(V_{SS}=0\ V)$				
項目		記号	端 子 (規格	単位	
電源電圧		V_{DD}		$-0.3 \sim 6.5$		
プログラム電圧		V_{PP}	TEST/V _{PP}	$-0.3 \sim 13.0$		
入 力 電 圧		V_{IN}		$) - 0.3 \sim V_{DD} + 0.3$	V	
出力電圧		V_{OUT1}		$-0.3 \sim V_{DD} + 0.3$		
		V_{OUT2}	ソースオープンドレインポート	$V_{DD} - 41 \sim V_{DD} + 0.3$		
		I_{OUT1}	P1, P2, P4 (P42~P47), P5 ports	5		
	IOL	I_{OUT2}	P4 (P40, P41) port	40		
出力電流 (1端子当りピーク)		$I_{ m OUT3}$	P1, P4, P5 ports	-3		
	ЮН	I_{OUT4}	P6, P7 ports	-30	mA	
		I_{OUT5}	P8, P9 ports	() –20		
┃ ┃出力電流 (全端子総計ピーク)		ΣI_{OUT1}	P1, P2, P4, P5 ports	120		
四分电机 (主細) 松市 こ ラ)		ΣI_{OUT2}	P6, P7, P8, P9 ports	-120		
消 費 電 力 [Topr=25°C	!]	PD		1200	mW	
はんだ付け温度 (時間)		Tsld		260 (10 s)		
保 存 温 度		Tstg	(\bigcirc) (\bigcirc)	−55 ~ 125	$^{\circ}\mathrm{C}$	
動 作 温 度		Topr		−30 ~ 70		

- 注1) 絶対最大定格とは、瞬時たりとも超えてはならない規格であり、どの1つの項目も超えることができない規格です。絶対最大定格を超えると、破壊や劣化の原因となり、破裂・燃焼による傷害を負うことがあります。従って、必ず絶対最大定格を超えないように、応用機器の設計を行ってください。
- 注2) すべてのVDD端子は、同じ電圧レベルを保つために外部にて接続してください。
- 注3) 消費電力(PD)は、Ta = 25°C以上では −11.5mW/°Cにて算出してください。

推奨動	作条件	#		\Rightarrow			
項目	記号	端/)子		件	Min	Max	単位
			fc=16 MHz	NORMAL1, 2モード IDLE1, 2モード	4.5		
電源電圧	$V_{ m DD}$		$f_c = 8 \text{ MHz}$	NORMAL1,2モード IDLE1,2モード		5.5	
4	\sim 7		fs =	SLOWモード	2.7		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		32.768 kHz	SLEEPモード			
				STOPモード			v
出力電圧人	$V_{\rm OUT3}$	ソースオープンドレイン端子			$V_{\rm DD}$ -38	$ m V_{DD}$	V
	V_{IH1}	ヒステリシス入力を除く			$V_{DD} \times 0.70$		
高レベル入力電圧	$V_{\mathrm{IH}2}$	ヒステリシス入力			$V_{DD} \times 0.75$	V_{DD}	
	$V_{\rm IH3}$	TTL入为	VDD≧4.5V		$V_{DD} \times 0.90$		
	V_{IL1}	ヒステリシス入力を除く			0	$V_{DD} \times 0.30$	
低レベル入力電圧	$V_{\rm IL2}$	ヒステリシス入力			0	$V_{DD}{\times}0.25$	
	$V_{\rm IL3}$	TTL入力	VDD≧4.5V		$V_{DD} \times 0.10$	V_{DD}	
		WINT WOLL	$V_{DD} = 2.7 \sim 5.5 \text{ V}$			8.0	3.677
クロック周波数	fc	XIN, XOUT	$VDD = 4.5 \sim 5.5V$		1.0	16.0	MHz
	fs	XTIN, XTOUT			30.0	34.0	kHz

注) 推奨動作条件とは、製品が一定の品質を保って正常に動作するために推奨する使用条件です。推奨動作条件 (電源電圧、動作温度範囲、AC/DC規定値) から外れる動作条件で使用した場合、誤動作が生じる恐れがあります。従ってご使用の条件に対して、必ず推奨動作条件の範囲を超えないように、応用機器の設計を行ってください。

86PM72-8 2003-06-23

DC 特性 (1)

 $(V_{DD}=5 V)$

【 条件 】 V_{DD} =5.0 V ± 10%、 V_{SS} = Av_{SS} =0 V、 T_{OP} = $-30\sim70$ °C (T_{YP} :: V_{DD} =5.0 V、 T_{OP} =25°C、 V_{II} =5.0 V/0 V)

項目	記号	端子	条	件 ((Min	Typ.	Max	単位
ヒステリシス電圧	V_{HS}	ヒステリシス入力))	0.9	-	V
	I_{IN1}	TEST		((//5))			
入力電圧	I_{IN2}	Sink open drain, Tri-st	$V_{\mathrm{DD}} = 5.5 \mathrm{V}, \mathrm{V_{\mathrm{IN}}}$	$_{\rm I} = 5.5 { m V/0 V}$	1 –	-	±2	μ A
	I_{IN3}	RESET, STOP						
入力抵抗	R_{IN}	RESET pull-up			100	220	450	kΩ
プルダウン抵抗 (注4)	R_{K}	Source open drain	$V_{\rm DD}$ = 5.5 V, $V_{\rm K}$	K = -30 V	50	80	120	H.Z.Z
出力リーク電流	I_{LO1}	Sink open drain, Tri-st	$V_{\rm DD}$ = 5.5 V, $V_{\rm OU}$	$_{ m UT} = 5.5 \ m V/0 \ m V$	A	 	±2	
山刀リーク电机	I_{LO2}	Source open drain	$V_{\rm DD} = 5.5 \mathrm{V}, \mathrm{V}_{\rm Kl}$	K = -32 V		7	±2	μ A
高レベル出力電圧	V_{OH}	Tri-st port	$V_{\rm DD}$ =4.5 V, $I_{\rm OH}$	= -0.7 mA	4,1	$\langle \uparrow \rangle$	_	v
低レベル出力電圧	V _{OL1}	XOUT, P40, P41 ポートを 除く	$V_{DD} = 4.5 \text{ V}, I_{OL}$	=1.6 mA		<u> </u>	0.4	ľ
高レベル出力電流	I _{OH1}	P6, P7	$V_{DD} = 4.5 \text{ V}, V_{OH} = 2.4 \text{ V}$) _ 18	-28	_	
局レベル四刀電弧	I _{OH2}	P8, P9	$V_{\rm DD}$ = 4.5 V, $V_{\rm OH}$	H=2.4V	-9	-14	_	
低レベル出力電流	I_{OL}	大電流 (P40, P41)	$V_{\rm DD}$ =4.5 V, $V_{\rm OL}$	=1.0 V	_	30	_	
NORMAL1, 2			fc = 16.0 MHz fs = 32.768 kHz		_	12	18	
モード時電源電流			fc = 8.0 MHz fs = 32.768 kHz	AD変換 ディセーブル	_	6	9	
IDLE0, 1, 2			fc = 16.0 MHz fs = 32.768 kHz	(IREFカット時)	_	6	9	mA
モード時電源電流	I _{DD}		fc = 8.0 MHz fs = 32.768 kHz		_	3	4.5	
NORMAL1, 2	190		fc = 16.0 MHz fs = 32.768 kHz	AD変換	_	13	19	
モード時電源電流			fc = 8.0 MHz fs = 32.768 kHz	イネーブル	_	7	10	
STOP			Topr= ~50°C	AD変換	_		5	
モード時電源電流			Topr= ~70°C	ディセーブル	_	0.5	10	μΑ

注1) Typ.値は、条件に指定なき場合Topr = 25℃, V_{DD} = 5 V時の値を示します。

86PM72-9 2003-06-23

注2) 入力電流 I_{IN1, IN3}: プルアップあるいはプルダウン抵抗による電流を除きます。

注3) I_{DD}は、Irefを含みません。

注4) Topr = - 10~70℃

DC 特性 (2)

 $(V_{DD}=3V)$

【 条件 】 V_{DD} =3.0 V ± 10%、 V_{SS} = Av_{SS} =0 V、 T_{OD} =-30~70°C (T_{YD} : V_{DD} =3.0 V、 T_{OD} =25°C、 V_{II} =3.0 V/0 V)

記号	端子	条	件 ((Min	Тур.	Max	単位
V_{HS}	ヒステリシス入力				0.4	_	V
I_{IN1}	TEST						
I_{IN2}	Sink open drain, Tri-st	$V_{\rm DD}$ = 3.3 V, $V_{\rm IN}$	1 = 3.3 V/0 V	_	_	±2	μ A
I_{IN3}	RESET, STOP						
R_{IN}	RESET pull-up			100	220	450	$\mathbf{k}\Omega$
$R_{\mathbf{K}}$	Source open drain	$V_{\rm DD}$ = 3.3 V, $V_{\rm Kl}$	K = -30 V	45	75	115	K32
I_{LO1}	Sink open drain, Tri-st	$V_{\rm DD}$ =3.3 V, $V_{\rm OU}$	$_{\rm UT} = 3.3 \ { m V/0 \ V}$	\rightarrow	\ - `	±2	μ A
I_{LO2}	Source open drain	$V_{DD} = 3.3 \text{ V}, V_{Kl}$	$\kappa = -32 \text{ V}$		71	±2	μ A
V_{OH}	Tri-st port	$V_{\mathrm{DD}} = 2.7 \mathrm{V, I_{\mathrm{OH}}}$	= -0.6 mA	2.3	$\langle \gamma \rangle$	_	v
V_{OL1}	XOUT, P40, P41ポートを 除く	V_{DD} =2.7 V, I_{OL}	=0.9 mA		<u> </u>	0.4	v
I_{OH1}	P6, P7	$V_{DD} = 2.7 \text{ V}, V_{OH} = 1.5 \text{ V}$) + 5.5	-8	_	
I_{OH2}	P8, P9, PD	$V_{\rm DD}$ =2.7 V, $V_{\rm OH}$	H = 1.5 V	-3	-4.5	_	
I_{OL}	大電流 (P40, P41)	$V_{DD} = 2.7 \text{ V,V}_{OL}$	=1.0 V	_	6	_	
		fc = 8.0 MHz $fs = 32.768 kHz$	AD変換 ディセーブル	_	3	4.5	mA
		fc = 8.0 MHz fs = 32.768 kHz	(IREFカット時)	_	2	2.5	
T	()	fc = 8.0 MHz fs = 32.768 kHz	AD変換 イネーブル	_	3.5	5	
1DD				_	30	60	
		rts=32,768 kHz	AD変換 ディセーブル	_	15	30	μ A
		$Topr = \sim 50^{\circ}C$ $Topr = \sim 70^{\circ}C$			0.5	5 10]
	V _{HS} I _{IN1} I _{IN2} I _{IN3} R _{IN} R _K I _{LO1} I _{LO2} V _{OH} V _{OL1} I _{OH1}	V _{HS} ヒステリシス入力 I _{IN1} TEST I _{IN2} Sink open drain, Tri-st I _{IN3} RESET, STOP R _{IN} RESET pull-up R _K Source open drain I _{LO1} Sink open drain, Tri-st I _{LO2} Source open drain V _{OH} Tri-st port V _{OL1} XOUT, P40, P41ポートを 除く I _{OH1} P6, P7 I _{OH2} P8, P9, PD I _{OL} 大電流 (P40, P41)	V _{HS}	V_{HS}	VHS ヒステリシス入力 IIN1 TEST TEST IIN2 Sink open drain, Tri-st VDD=3.3 V, VIN=3.3 V/OV - IIN3 RESET, STOP IIN3 RESET pull-up 100 RK Source open drain VDD=3.3 V, VKK=-30 V 45 VDD=3.3 V, VGUT=3.3 V/OV 7 VDD=2.7 V, VGH=-0.6 mA 2.3 VOL1 Rectangle VDD=2.7 V, VGH=-0.6 mA 2.3 VDD=2.7 V, VGH=1.5 V -5.5 VDD=2.7 V, VGH=1.5 V -5.5 VDD=2.7 V, VGH=1.5 V -3 VDD=2.7 V, VGH=1.5 V -3 VDD=2.7 V, VGH=1.5 V -3 VDD=2.7 V, VGH=1.6 V -4 VDD=	V_{HS} とステリシス入力	V_{HS} とステリシス入力

- 注1) Typ.値は、条件に指定なき場合Topr = 25℃, V_{DD} = 3 V時の値を示します。
- 注2)入力電流 I_{IN1}, I_{IN3}: ブルアップあるいはプルダウン抵抗による電流を除きます。
- 注3) I_{DD}は、Irefを含みません。
- 注4) SLOW2, SLEEP2モードの各電源電流は、IDLE0, 1, 2と同等です。
- 注5) Topr = -10~70℃

AD 変換特性	$(V_{SS} = 0 \text{ V}, 4.5 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Topr} = -30 \sim 70 ^{\circ}\text{C})$

項目	記号	条件	Min	Тур.	Max	単位
アナログ基準電源電圧	V_{AREF}		V _{DD} - 1.5	_	V_{DD}	
アナログ基準GND	A _{VSS}			V_{SS}		v
アナログ基準電源電圧範囲	$\triangle V_{AREF}$		3.0	<u></u>	ı] `
アナログ入力電圧範囲	V_{AIN}		(07)	_	V_{AREF}	
アナログ基準電圧電源電流	$I_{ m REF}$	$V_{DD} = V_{AREF} = 5.5 \text{ V},$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$		0.6	1.0	mA
非直線性誤差			()	_	±1	
ゼロ誤差		$V_{\rm DD} = V_{\rm AREF} = 4.5 \sim 5.5 \text{V},$		- (±1	LSB
フルスケール誤差		$V_{SS} = A_{VSS} = 0.0 \text{ V}$	\rightarrow -	-	±1	LOB
総合誤差			_	\ <u>\</u>	±2	

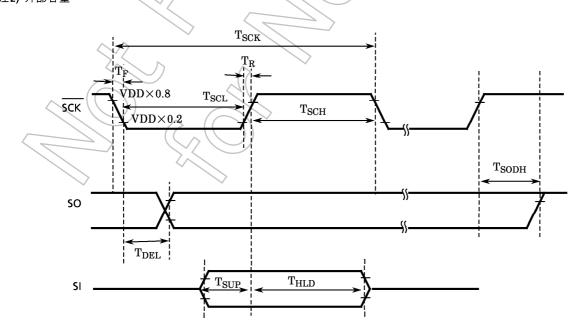
$(V_{SS} = 0 \text{ V}, 2.7 \text{ V} \le V_{DD} < 4.5 \text{ V}, \text{ Topr} = -30 \sim 70^{\circ}\text{C})$

項目	記号	条件	Min	Typ.	Max	単位
アナログ基準電源電圧	V_{AREF}		$V_{\rm DD}$ 1.5	/ -	V_{DD}	
アナログ基準GND	A _{VSS}		(V_{SS}		,,
アナログ基準電源電圧範囲	$\triangle V_{AREF}$		2.5	ı	ı	$\int V$
アナログ入力電圧範囲	V_{AIN}		0	1	V_{AREF}	
アナログ基準電圧電源電流	I_{REF}	$V_{DD} = V_{AREF} = 4.5 \text{ V}, V_{SS} = A_{VSS} = 0.0 \text{ V}$	/ -	0.5	0.8	mA
非直線性誤差			_	1	±1	
ゼロ誤差		$V_{DD} = V_{AREF} = 2.7 \sim 4.5 \text{ V},$	_	1	±1	LCD
フルスケール誤差		$V_{SS} = A_{VSS} = 0.0 \text{ V}$	_	_	±1	LSB
総合誤差			_	_	±2	

- 注1) 総合誤差は量子化誤差を除いたすべての誤差を含み、理想変換直線に対する最大の隔たりとして定義します。
- 注2) 変換時間は電源電圧範囲によって推奨値が異なります。変換時間については図2-58 ADコンバータ制御レジスタ2内の (注2)を参照ください。
- 注3) AIN入力端子への入力電圧はVAREF~VSS範囲内でご使用ください。範囲外の電圧が入力されると、変換値が不定となり、他のチャネルの変換値にも影響を与えます。
- 注4) アナログ基準電源電圧範囲: △V_{AREF} = V_{AREF} − V_{SS}

AC 特 性	$(V_{SS} = 0)$	$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \sim 5.5 \text{ V}, \text{ Topr} = -30 \sim 70^{\circ}\text{C})$					
項目	記号	条件	Min	Тур.	Max	単位	
マシンサイクルタイム		NORMAL1, 2モード時	0.25		4		
	l torr	IDLE0, 1, 2モード時	0.20		7		
	tcy	SLOW1,2モード時	117.6		133.3	μ S	
		SLEEP0, 1, 2モード時			100.0		
高レベルクロックパルス幅	${ m t_{WCH}}$	外部クロック動作(XIN入力)		31.25		ns	
低レベルクロックパルス幅	${ m t_{WCL}}$	fc=16MHz時		31.20		ns	
高レベルクロックパルス幅	${ m t_{WSH}}$	外部クロック動作(XTIN入力)	N P	15.26		a	
低レベルクロックパルス幅	${ m t_{WSL}}$	fs=32.768kHz時		15.26	ı	μ S	

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \sim 4.5 \text{ V}, \text{ Topr} = -30 \sim 70 \text{°C})$


項目	記号	条(件	Min	Typ	Max	単位
マシンサイクルタイム	4	NORMAL1, 2モード時 IDLE0, 1, 2モード時	0.5) -	8	
	tcy	SLOW1, 2モード時 SLEEP0, 1, 2モード時	117.6	_	133.3	μs
高レベルクロックパルス幅	$t_{ m WCH}$	外部クロック動作(XIN入力)		62.5	_	ns
低レベルクロックパルス幅	${ m t_{WCL}}$	fc=8MHz時))	02.0		11.5
高レベルクロックパルス幅	${ m t_{WSH}}$	外部クロック動作(XTIN入力)		15.26		
低レベルクロックパルス幅	twsL	fs=32.768kHz時	_	10.20	_	μ S

高速シリアルインタフェースAC特性

 $(V_{SS} = 0 \text{ V, } V_{DD} = 2.7 \sim 5.5 \text{ V, Topr} = -30 \sim 70^{\circ}\text{C})$

項目	記号	条件	Min	Тур.	Max	単位
SCK出力周期(内部クロック時)	T_{SCK1}		16/fc	_	-	
SCK 出力低レベルパルス幅 (内部クロック時)	${ m T_{SCL1}}$	$egin{array}{c} 8MHz < fc \leq 16MHz \\ V_{DD} = 4.5V \sim 5.5V \end{array}$	8/fc – 100 ns	\rightarrow \right	Ι	
SCK出力高レベルパルス幅 (内部クロック時)	$T_{\rm SCH1}$	C C C C C C C C C C C C C C C C C C C	8/fc - 100 ns		I	
SCK出力周期(内部クロック時)	T_{SCK2}		8/fc	_	_	
SCK 出力低レベルパルス幅 (内部クロック時)	$T_{ m SCL2}$	$\begin{vmatrix} 4MHz < fc \le 8MHz \\ V_{DD} = 2.7V \sim 5.5V \end{vmatrix}$	4/fc – 100 ns	_	ı	s
SCK出力高レベルパルス幅 (内部クロック時)	$T_{\rm SCH2}$	Thu and	4/fc – 100 ns	21		
SCK出力周期(内部クロック時)	T_{SCK3}		4/fc	<u> </u>	_	
SCK出力低レベルパルス幅 (内部クロック時)	T_{SCL3}	$\begin{cases} fc \le 4MHz \\ V_{DD} = 2.7V \sim 5.5V \end{cases}$	2/fc – 100 ns	9	-	
SCK出力高レベルパルス幅 (内部クロック時)	$T_{\rm SCH3}$	VDD 2.11 d.ov	2/fc – 100 ns		_	
ĪCK入力周期(外部クロック時)	T_{SCK4}		800)) –	I	
SCK 入力低レベルパルス幅 (外部クロック時)	T_{SCL4}	fc \leq 8MHz (V _{DD} =2.7V~5.5V) fc \leq 16MHz (V _{DD} =4.5V~5.5V)	300 (注1)	_	_	
SCK入力高レベルパルス幅 (外部クロック時)	$T_{\rm SCH4}$	10 = 1011111 () DD = 1.0 V 0.0 V	300 (注1)	-	_	
SI入力セットアップ時間	$T_{ m SUP}$		150	_	_	$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$
SI入力ホールド時間	$\mathrm{T_{HLD}}$		150	_	_	
SO出力遅延時間	$T_{ m DEL}$		_	_	200	
立ち上がり時間	T_{R}	V _{DD} =3.0V, CL≦50pF(注2)	_	_	100	
立ち下がり時間	$T_{\mathbf{F}}$	VDD - 5.0 V, CL = 50pr (±Z)	_	_	100	
SO最終ビット保持時間	T_{SODH}		16.5/fc	_	32.5/fc	

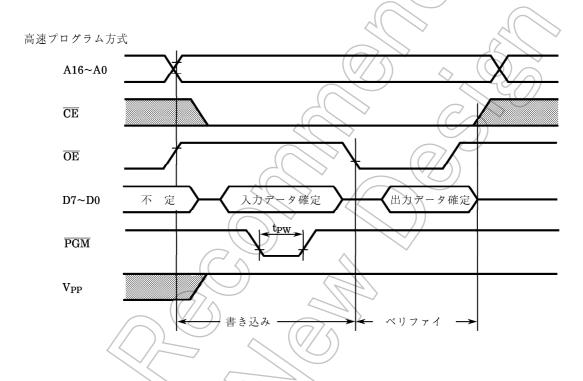
注1) T_{SCKL}, T_{SCKH} ≧ 2.5/fc (高周波動作時)、T_{SCKL}, T_{SCKH} ≥ 2.5/fs (低周波動作時) 注2) 外部容量

DC 特性, AC 特性 (PROMモード)

 $(V_{SS}=0\ V, Topr=25\pm5^{\circ}C)$

(1) リードオペレーション時

項目	記号	条件	Min	Тур.	Max	単位
高レベル入力電圧 (TTL)	V_{IH3}		2.2		$V_{ m DD}$	
低レベル入力電圧 (TTL)	V_{IL3}		0	<u>(()</u>	0.8	v
電源電圧	V_{DD}		4.75	5.0	5.25	•
プログラム電源電圧	V_{PP}		4.79	3.0	0.20	
アドレスアクセスタイム	t_{ACC}	$V_{\rm DD} = 5.0 \pm 0.25 \text{ V}$	2(->>	1.5 teye + 300		ns

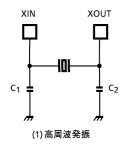

A16~A0
CE
OE
PGM
t_ACC
D7~D0
High-Z

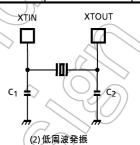
7 生 月 出力

86PM72-14 2003-06-23

(2) プログラム オペレーション (高速プログラム) 時 (Topr = $25 \pm 5^{\circ}$ C)

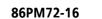
項目	記号	条件	Min	Typ.	Max	単位
高レベル入力電圧 (TTL)	V_{IH3}		2.2	_	V_{DD}	
低レベル入力電圧 (TTL)	V_{IL3}		0		0.8	\mathbf{v}
電源電圧	V_{DD}		6.0	6.25	6.5	'
プログラム電源電圧	V_{PP}		12.5	12.75	13.0	
初期プログラム パルス幅	t_{PW}	V _{DD} =6.0 V	0.095	0.1	0.105	ms




- 注1) V_{PP} (12.75 V) 電源は V_{DD} 電源と同時または遅く投入し、遮断時は同時または早く遮断してください。
- 注2) V_{PP}=12.75 V ± 0.25 Vの状態でのデバイスの抜き差しは、デバイスにダメージを与えますので、プログラム時の抜き差しはしないでください。
- 注3) 推奨アダプタと推奨モードを使用してください。これ以外の条件で使用すると書けない恐れがあります。

推奨発振条件

 $(V_{SS} = 0 \text{ V, } T_{opr} = -30 \sim 70^{\circ}\text{C})$


項目発振子		発振周波数	V	V _{DD} 推奨発振子		推奨定数		
		光弧角视频	V DD			C ₁	c_2	
高周波発振 セラミック発振子	16 MHz	4.5 ~ 5.5 V	MURATA	CSA16.00MXZ040	10 pF	10 pF		
	8 MHz	2.7 ~ 5.5 V	MURATA	CSA8.00MTZ	30 pF	30 pF		
				CST8.00MTW	30 pF (built-in)	30 pF (built-in)		
	4 10 MII	07 553	MURATA	CSA4.19MG	30 pF	30 pF		
		4.19 MHz	$2.7 \sim 5.5 \text{ V}$		CST4.19MGW	30 pF (built-in)	30 pF (built-in)	
低周波発振	水晶発振子	$32.768\mathrm{kHz}$	2.7 ~ 5.5 V	SII	VT-200	6 pF	6 pF	

- 注1) ブラウン管などの高電界のかかるところで使用する場合は、正常動作を保つためにパッケージを電気的にシールドすることを推奨します。
- 注2) 発振の安定には、発振子の位置、負荷容量などを適切にする必要があります。これらは、基板パターンにより大きな影響を受けます。よって安定した発振を得るために、ご使用される基板での評価をされるようお願いいたします。
- 注3) 村田製発振子は、型番・仕様の切り替えが随時行われております。詳細に付きましては、下記アドレス の同社ホームページをご参照ください。

http://www.murata.co.jp/search/index_j.html

