
TLCS-900/L1 CPU

2001-08-31CPU900L1-1

900, 900/L, 900/H, 900/L1, 900/H2 CPU Core Different Points

There are 5 type CPU core: 900, 900/L, 900/H, 900/L1, and 900/H2 in TLCS-900 series and they
are different from following points.

Table 1 Differences between CPUs

CPU

Content
of Difference

900 900/L 900/H, 900/L1 900H2

Maximum address bus width 24 bits ← ← ←
Maximum data bus width 16 bits ← ← 32 bits

Instruction queue buffer 4 bytes ← ← 12 bytes

Instruction set TLCS-900 Following instructions

deleted from TLCS-

900

 NORMAL

 MAX

Following instructions

added

 MIN

Following instructions

deleted from TLCS-

900

 NORMAL

 MAX

Following instructions

deleted from TLCS-

900

 NORMAL

 MAX

 LDX

Code fetch during branch

instruction execution

Jump addres code is

fetched only when

branch condition is true

← ← Jump address code is

always prefetched

irrespective of branch

condition

Micro DMA 4 channels ← ← 8 channels

CPU privilege mode System mode and

normal mode

System mode only ← ←

CPU register mode MIN mode and MAX

mode (MIN mode after

reset)

←
(MAX mode after

reset)

MAX mode only ←

Interrupt method Restart method Vector method ← ←
Normal stack pointer, XNSP Available N/A ← ←
Interrupt nesting counter,

INTNEST (used mainly for the

OS)

N/A Available ← ←

TLCS-900/L1 CPU

2001-08-31CPU900L1-2

1. Outline

The TLCS-900/L1 series has an original Toshiba high-performance 16-bit CPU. Combining the
CPU with various I/O function blocks (such as timers, serial I/Os, ADs) creates broad possibilities
in application fields.
The TLCS-900/L1 CPU, being 16-bit CPU, has a 32-bit/16-bit register bank configuration,
therefore it is suitable as an embedded controller.
The TLCS-900/L1 CPU features are as follows :

(1) TLCS-90 extended architecture

• Upward compatibility on mnemonic and register set levels

(2) General-purpose registers

• All 8 registers usable as accumulator

(3) Register bank system

• four 32-bit register banks

(4) 16M-byte linear address space ; 9 types addressing modes

(5) Dynamic bus sizing system

• Can consist 8-/16-bit external data bus together

(6) Orthogonal instruction sets

• 8-/16-/32-bit data transfer/arithmetic instructions

• 16-bit multiplication/division
16 × 16 to 32-bits (signed/unsigned)
32 ÷ 16 to 16-bits: remainder 16-bits (signed/unsigned)

• Bit processing including bit arithmetic

• Supporting instruction for C compiler

• Filter calculations: multiplication-addition arithmetic, modulo increment instruction

(7) High-speed processing

• Pipeline system with 4-byte instruction queue buffer

• 32-bit ALU

TLCS-900/L1 CPU

2001-08-31CPU900L1-3

2. CPU Operating Modes

The 900/L1 has only system mode.
In system mode, there are no restrictions on using instructions or registers.

The CPU resources effective in system mode are as follows:

(1) General-purpose registers

• Four 32-bit general-purpose registers × 4 banks

• Four 32-bit general-purpose registers (including system stack pointer: XSP)

(2) Status register (SR)

(3) Program counter (PC): 32 bits

(4) Control register: parameter register for micro DMA, etc.

(5) All CPU instructions

(6) All built-in I/O registers

(7) All built-in memories

TLCS-900/L1 CPU

2001-08-31CPU900L1-4

3. Registers

3.1 Register Structure • • • 16-Mbyte program area/16-Mbyte data area

Figure 3.1.1 illustrates the format of registers.

Four 32-bit general-purpose registers × 4 banks

+

Four 32-bit general-purpose registers

+

32-bit program counter

+

Status register

Register mode changing

The <MAX> bit in status register (SR) is initialized to 1 and set to Maximum mode by
resetting. The 900/L1 has only Maximum mode.

Stack Pointer

The stack pointer (SP) is provided for only System mode (XSP). The System stack pointer
(XSP) is set to 100H by resetting.

XWA W A

B C

D E

H L

XBC

XDE

XHL

XIX I X

I Y

I Z

S P

XIY

XIZ

XSP

SR F

P C

F’

32 bits

4 banks

General-
purpose
registers

Dedicated
registers

Figure 3.1.1 Register format (16-Mbyte program area)

TLCS-900/L1 CPU

2001-08-31CPU900L1-5

3.2 Register Details

3.2.1 General-purpose bank registers

In maximum mode, the following four 32-bit general-purpose registers consisting of 4
banks can be used. The register format in a bank is shown below.

Four 32-bit registers (XWA,
XBC, XDE, and XHL) are
general-purpose registers and
can be used as an accumulators
and index registers. They can
also be used as 16-bit registers
(WA, BC, DE, and HL), in which
case, the lower 16 bits of the 32-
bit registers are assigned.

16-bit registers can be used as accumulators, index registers in index addressing mode,
and displacement registers. They can also be used as two 8-bit general-purpose registers
(W, A, B, C, D, E, H, and L) to function for example as accumulators.

3.2.2 32-bit general-purpose registers

The TLCS-900 series has four 32-bit general-purpose registers (XIX, XIY, XIZ, and XSP).
The register format is shown below.

These registers can also be
used as accumulators, index
registers, and displacement
registers. They can be used
either as 16-bit, or 8-bit registers.
Names when registers are used
as 8-bit registers are listed later.

Stack Pointer

The XSP register is utilized for stack pointer. It is used when the interrupt is occured or
CALL, RET instruction are executed. The stack pointer (XSP) is set to 100H by resetting.

W A

B C

C E

H L

 Note: Round brackets () signify 16-bit registers.

(WA)

(BC)

(DE)

(HL)

32 bits
16 bits

8 bits 8 bits

XWA

XBC

XDE

XHL

IX

IY

IZ

SP

32 bits register
16 bit register

XIZ

XIY

XIX

XSP

TLCS-900/L1 CPU

2001-08-31CPU900L1-6

3.2.3 Status Register (SR)

The status register contains flags indicating the status (operating mode, register format, etc.) of
the CPU and operation results. This register consists of two parts. The upper byte of the status
register (bits 8 to 15) indicates the CPU status. The lower byte (bits 0 to 7) are referred to as the
flag register (F). This indicates the status of the operation result. The TLCS-900 series has two
flag registers (F and F’). They can be switched using the EX instruction.

(1) Upper Byte of Status Register

15 14 13 12 11 10 9 8

SYSM IFF2 IFF1 IFF0 MAX RFP2 RFP1 RFP0

1. SYSM (System Mode)

Indicates the CPU operating mode, system or normal. 900/L1 has only system mode.

0 Normal mode

1 System mode (900/L1 has only this mode.)

2. IFF2 to IFF0 (Interrupt mask Flip-Flop2 to 0)

Mask registers with interrupt levels from 1 to 7. Level 7 has the highest priority.

Initialized to 111 by reset.

000 Enables interrupts with level 1 or higher.

001 Enables interrupts with level 1 or higher.

010 Enables interrupts with level 2 or higher.

011 Enables interrupts with level 3 or higher.

100 Enables interrupts with level 4 or higher.

101 Enables interrupts with level 5 or higher.

110 Enables interrupts with level 6 or higher.

111 Enables interrupts with level 7 only (non-maskable interrupt).

Any value can be set using the EI instruction.

When an interrupt is received, the mask register sets a value higher by 1 than the
interrupt level received. When an interrupt with level 7 is received, 111 is set. Unlike with
the TLCS-90 series, the EI instruction becomes effective immediately after execution.

Same

TLCS-900/L1 CPU

2001-08-31CPU900L1-7

3. MAX (/ MAXimum)

Bit used to specify the register mode which determines the sizes of the register banks and
the program counter.

0 Minimum mode

1 Maximum mode (900/L1 has only this mode.)

Initialized to 1 (maximum mode) for 900/L1 by reset.

The minimum mode is not support for 900/L1. Therefore, do not write 0 to this bit.

4. RFP2 to RFP0 (Register File Pointer2 to 0)

Indicates the number of register file (register bank) currently being used. Initialized to
000 by reset.

The values in these registers can be operated on using the following three instructions.
RFP2 is fixed to 0 in maximum mode. It remains 0 even if an attempt to change it to 1
using following instructions.

• LDF imm ; RFP ← imm (0 to 3)

• INCF ; RFP ← RFP + 1

• DECF ; RFP ← RFP − 1

(2) Flag Register, F
7 6 5 4 3 2 1 0

S Z 0 H 0 V N C :R/W

1. S (Sign flag)

1 is set when the operation result is negative, 0 when positive.

(The value of the most significant bit of the operation result is copied.)

2. Z (Zero flag)

1 is set when the operation result is zero, otherwise 0.

3. H (Half carry flag)

1 is set when a carry or borrow from bit 3 to bit 4 occurs as a result of the operation,
otherwise 0. With a 32-bit operation instruction, an undefined value is set.

4. V (Parity/over-flow flag)

Indicates either parity or overflow, depending on the operation type.

Parity (P): 0 is set when the number of bits set to 1 is odd, 1 when even.
An undefined value is set with a 32-bit operation instruction.

Overflow (V): 0 is set if no overflow, if overflow 1.

MINimum

TLCS-900/L1 CPU

2001-08-31CPU900L1-8

5. N (Negative)

ADD/SUB flag

0 is set after an addition instruction such as ADD is executed, 1 after a subtraction
instruction such as SUB.

Used when executing the DAA (decimal addition adjust accumulator) instruction.

6. C (Carry flag)

1 is set when a carry or borrow occurs, otherwise 0.

Read and write process of status register

Read from bits 0 to 15 1. PUSH SR

POP dst

Write to bits 0 to 15 1. POP SR

Only bit 15

 <SYSM>

1 is always set, because

900/L1 CPU has only system mode.

Only bits 14 to 12

 <IFF2:0>

1. EInum

A value of num is written.

Only bit 11

 <MAX>

The minimum mode is not support for 900/L1.

Therefore, do not write 0 to this bit.

Only bits 10 to 8

 <RFP2:0>

1. LDF imm

2. INCF

3. DECF

Only bits 7 to 0 1. PUSH F / POP F

2. EX F, F’

3. A flag is set indirectly by executing

arithmetic instructions etc.

TLCS-900/L1 CPU

2001-08-31CPU900L1-9

3.2.4 Program Counter (PC)

The program counter is a pointer indicating the memory address to be executed next.

In maximum mode, the program counter consists of 32 bits. The size of the program area
depends on the number of the address pins that the product has. With 24 address pins (A0
to A23), a maximum program area of 16 Mbytes can be accessed as a linear address space.
In this case, the upper 8 bits of the program counter (bits 24 to 31) are ignored.

PC after reset

The 900/L1 reads a value of a reset vector from a vector base address by reset and sets
the value into a program counter. Then, program after the vector specified by the program
counter are executed.

The vector base address is depending on products. They are given below.

Vector Base Address PC setting after reset

0FFFF00H PC (7:0) ← 0FFFF00H

PC (15:8) ← 0FFFF01H value of address

PC (23:16) ← 0FFFF02H

3.2.5 Control registers (CR)

The control registers consist of registers used to control micro DMA operation and an
interrupt nesting counter. Control registers can be accessed by using the LDC instruction.

Control registers are illustrated below.

<DMA S0>

<DMA S1>

<DMA S2>

<DMA S3>

<DMA D0>

<DMA D1>

<DMA D2>

<DMA D3>

 DMAM0 (DMA C0)

 DMAM1 (DMA C1)

 DMAM2 (DMA C2)

 DMAM3 (DMA C3)

(INT NEST)

() : Word register name (16 bits)
< > : Long word register name (32 bits)

For micro DMA, refer to Chapter 4 TLCS-900/L1 LSI Devices.

micro DMA

source

register

micro DMA

 destination

 register

micro DMA

mode/counter

register

Interrupt Nesting

Counter

TLCS-900/L1 CPU

2001-08-31CPU900L1-10

3.3 Register Bank Switching

Register banks are classified into the following three types.

Current bank registers

Previous bank registers

Absolute bank registers

The current bank is indicated by the register file pointer, <RFP>, (status register bits 8 to 10).
The registers in the current bank are used as general-purpose registers, as described in the
previous section. By changing the contents of the <RFP>, another register bank becomes the
current register bank.

The previous bank is indicated by the value obtained by subtracting 1 from the <RFP>. For
example, if the current bank is bank 3, bank 2 is the previous bank. The names of registers in
the previous bank are indicated with a dash (WA’, BC’, DE’, HL’). The EX instruction (EX A,A’)
is used to switch between current and previous banks.

All bank registers, including the current and previous ones, have a numerical value (absolute
bank number) to indicate the bank. With a register name which includes a numerical value
such as RW0, RA0, etc., all bank registers can be used. These registers (that is, all registers)
are called absolute bank registers.

The TLCS-900 series CPU is designed to perform optimally when the current bank registers
are operated as the working registers. In other words, if the CPU uses other bank registers, its
performance degrades somewhat. In order to obtain maximum CPU efficiency, the TLCS-900
series has a function which easily switches register banks.

The bank switching function provides the following advantages:

• Optimum CPU operating efficiency

• Reduced programming size (Object codes)

• Higher response speed and reduced programming size when used as a context switch
for an interrupt service routine.

Bank switching is performed by the instructions listed below.

LDF imm : Sets the contents of the immediate value in <RFP>. imm: 0 to 3

INCF : Increments <RFP> by 1.

DECF : Decrements <RFP> by 1.

The immediate values used by the LDF instruction are from 0 to 3. If a carry or borrow occurs
when the INCF or DECF instruction is executed, it is ignored. The value of the <RFP> rotates.
For example, if the INCF instruction is executed with bank 3, the result is bank 0. If the DECF
instruction is executed with bank 0, the result is bank 3. Note that careless execution of the
INCF or DECF instruction may destroy the contents of the register bank.

TLCS-900/L1 CPU

2001-08-31CPU900L1-11

• Example of Register Bank Usage

The TLCS-900 series registers are formatted in banks. Banks can be used for processing
objectives or interrupt levels. Two examples are given below.

<Example 1> When assigning register banks to interrupt processing routines.

Register bank 0 = Used for the main program and interrupt processing other than
that shown below.

Register bank 1 = Used for processing INT0 .

Register bank 2 = Used for processing timer 0.

Register bank 3 = Used for processing timer 1.

For example, if a timer 1 interrupt occurs during main program execution, processing
jumps to a subroutine as follows. PUSH/POP processing for the register is unnecessary.

LDF 3 ; Sets register bank to 3.

 :

 :

RETI ; Returns to previous status including <RFP>.

<Example 2> When assigning register banks to their appropriate interrupt level nesting.

Main
Interrupt

1

RETI RETI RETI

INCF INCF INCF

Interrupt
2

Interrupt
3

Note 1: In the above example, when interrupt nesting exceeds the number of register banks (4),
the <RFP> becomes 000 and the contents of register bank 0 are destroyed.

Note 2: The INCF instruction is used to execute <RFP> ← <RFP> + 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-12

3.4 Accessing General-purpose Registers

The register access code is formatted in a varied code length on byte basis. The current bank
registers can be accessed by the shortest code length. All general-purpose registers can be
accessed by an instruction code which is 1 byte longer. General-purpose registers are as
follows.

1. General-purpose registers in current bank

QW (Q WA) QA <X WA > W (W A) A

QB (Q BC) QC <X BC > B (B C) C

QD (Q DE) QE <X DE > D (D E) E

QH (Q HL) QL <X HL > H (H L) L

() : Word register name (16 bits)
< > : Long word register name (32 bits)

2. General-purpose registers in previous bank

QW’ (Q WA’) QA’ <X WA’ > W’ (W A’) A’

QB’ (Q BC’) QC’ <X BC’ > B’ (B C’) C’

QD’ (Q DE’) QE’ <X DE’ > D’ (D E’) E’

QH’ (Q HL’) QL’ <X HL’ > H’ (H L’) L’

3. 32-bit general-purpose registers

QIXH (Q IX) QIXL <X IX > IXH (I X) IXL

QIYH (Q IY) QIYL <X IY > IYH (I Y) IYL

QIZH (Q IZ) QIZL <X IZ > IZH (I Z) IZL

QSPH (Q SP) QSPL <X SP > SPH (S P) SPL

TLCS-900/L1 CPU

2001-08-31CPU900L1-13

4. Absolute bank registers

QW0 (QWA 0) QA0 <XWA 0> RW0 (RWA 0) RA0

QB0 (QBC 0) QC0 <XBC 0> RB0 (RBC 0) RC0

QD0 (QDE 0) QE0 <XDE 0> RD0 (RDE 0) RE0

QH0 (QHL 0) QL0 <XHL 0> RH0 (RHL 0) RL0

QW1 (QWA 1) QA1 <XWA 1> RW1 (RWA 1) RA1

QB1 (QBC 1) QC1 <XBC 1> RB1 (RBC 1) RC1

QD1 (QDE 1) QE1 <XDE 1> RD1 (RDE 1) RE1

QH1 (QHL 1) QL1 <XHL 1> RH1 (RHL 1) RL1

QW2 (QWA 2) QA2 <XWA 2> RW2 (RWA 2) RA2

QB2 (QBC 2) QC2 <XBC 2> RB2 (RBC 2) RC2

QD2 (QDE 2) QE2 <XDE 2> RD2 (RDE 2) RE2

QH2 (QHL 2) QL2 <XHL 2> RH2 (RHL 2) RL2

QW3 (QWA 3) QA3 <XWA 3> RW3 (RWA 3) RA3

QB3 (QBC 3) QC3 <XBC 3> RB3 (RBC 3) RC3

QD3 (QDE 3) QE3 <XDE 3> RD3 (RDE 3) RE3

QH3 (QHL 3) QL3 <XHL 3> RH3 (RHL 3) RL3

() : Word register name (16 bits)
< > : Long word register name (32 bits)

Bank0

Bank1

Bank2

Bank3

TLCS-900/L1 CPU

2001-08-31CPU900L1-14

4. Addressing Modes

The TLCS-900/L1 series has nine addressing modes. These are combined with most instructions
to improve CPU processing capabilities.

TLCS-900/L1 series addressing modes are listed below. They cover the entire TLCS-90
addressing modes.

No. Addressing mode Description

1. Register reg8

reg16

reg32

2. Immediate n8

n16

n32

3. Register indirect (reg)

4. Register indirect

pre-decrement

(−reg)

5. Register indirect

post-increment

(reg+)

6. Index (reg + d8)

(reg + d16)

7. Register index (reg + reg8)

(reg + reg16)

8. Absolute

(Direct addressing mode)

(n8)

(n16)

(n24)

9. Relative (PC + d8)

(PC + d16)

reg 8: All 8-bit registers such as W, A, B, C, D, E, H, L, etc.

reg 16: All 16-bit registers such as WA, BC, DE, HL, IX, IY, IZ, SP, etc.

reg 32: All 32-bit registers such as XWA, WBC, XDE, XHL, XIX, XIY, XIZ, XSP, etc.

reg: All 32-bit registers such as XWA, WBC, XDE, XHL, XIX, XIY, XIZ, XSP, etc.

d8: 8-bit displacement (−80H to + 7FH)

d16: 16-bit displacement (−8000H to + 7FFFH)

n8: 8-bit constant (00H to FFH)

n16: 16-bit constant (0000H to FFFFH)

n32: 32-bit constant (00000000H to FFFFFFFFH)

Note 1: Relative addressing mode can only be used with the following instructions:
LDAR, JR, JRL, DJNZ, and CALR

TLCS-900/L1 CPU

2001-08-31CPU900L1-15

(1) Register Addressing Mode

In this mode, the operand is the specified register.

Example: LD HL, IX

HL 1 2 3 4

CPU

IX 1 2 3 4

The IX register contents, 1234H, are loaded to the HL register.

(2) Immediate Addressing Mode

In this mode, the operand is in the instruction code.

Example: LD HL, 5678H

HL 5 6 7 8

CPU

33

78

56

Program code

(OP code)

The immediate data, 5678H, is loaded to the HL register.

TLCS-900/L1 CPU

2001-08-31CPU900L1-16

(3) Register Indirect Addressing Mode

In this mode, the operand is the memory address specified by the contents of the register.

Example 1: LD, HL, (XIX)

HL 2 2 3 3

CPU

33

22

Memory

Address 345678H

XIX 1 2 3 4 5 6 7 8
Address 345679H

Memory data, 2233H, at address 345678H is loaded to the HL register.

Example 2: LD HL, (XBC)

HL 4 4 5 5

CPU

55

44

Memory

Address 345678H

XBC 1 2 3 4 5 6 7 8
Address 345679H

If a bank register (XWA, XBC, XDE, or XHL) is used for addressing, the values of bits 0 to 23
are output to the address bus.

TLCS-900/L1 CPU

2001-08-31CPU900L1-17

(4) Register Indirect Pre-decrement Addressing Mode

In this mode, the contents of the register is decremented by the pre-decrement values. In
this case, the operand is the memory address specified by the decremented register.

Example 1: LD HL, (−XIX)

HL 6 6 7 7

CPU

77

66

Memory

Address 345676H

Previous XIX 1 2 3 4 5 6 7 8
Address 345677H

Current XIX 1 2 3 4 5 6 7 6

2

The pre-decrement values are as follows:

When the size of the operand is one byte (8 bits): −1

When the size of the operand is one word (16 bits): −2

When the size of the operand is one long word (32 bits): −4

Example 2: LD XIX, (−XBC)

CPU

55

22

Memory

Address 33FFFEH

Previous XBC 1 2 3 4 0 0 0 2
Address 33FFFFH

Current XBC 1 2 3 3 F F F E

4

44

33

XIX 2 2 3 3 4 4 5 5

Address 340000H

Address 340001H

TLCS-900/L1 CPU

2001-08-31CPU900L1-18

(5) Register Indirect Post-increment Addressing Mode

In this mode, the operand is the memory address specified by the contents of the register.
After the operation, the contents of the register are incremented by the size of the operand.

Example 1: LD HL, (XIX+)

HL 8 8 9 9

CPU

99

88

Memory

Address 345678H

Previous XIX 1 2 3 4 5 6 7 8
Address 345679H

Current XIX 1 2 3 4 5 6 7 A

2

Example 2: LD A, (XBC+)

 A 5 5

CPU

55

Memory

Address 345678H

Previous XBC 1 2 3 4 5 6 7 8

Current XBC 1 2 3 4 5 6 7 9

1

TLCS-900/L1 CPU

2001-08-31CPU900L1-19

(6) Index Addressing Mode

In this mode, the operand is the memory address obtained by adding the contents of the
specified register to the 8- or 16-bit displacement value in the instruction code.

Example 1: LD HL, (XIX + 13H)

HL 5 5 6 6

CPU

66

55

Memory

Address 345683H

XIX 1 2 3 4 5 6 7 0
Address 345684H

1 3

Example 2: LD HL, (XBC − 1000H)

HL 5 5 6 6

CPU

66

55

Memory

Address 33F000H

XBC 1 2 3 4 0 0 0 0
Address 33F001H

1 0 0 0

The displacement values range from −8000H to +7FFFH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-20

(7) Register Index Addressing Mode

In this mode, the operand is the memory address obtained by adding the contents of the
register specified as the base to the register specified as the 8- or 16-bit displacement.

Example 1: LD HL, (XIX + A)

HL 2 2 3 3

CPU

33

22

Memory

Address 345683H

XIX 1 2 3 4 5 6 7 0
Address 345684H

1 3 A

Example 2: LD HL, (XBC + DE)

HL 2 2 3 3

CPU

33

22

Memory

Address 347678H

XBC 1 2 3 4 5 6 7 8
Address 347679H

2 0 0 0 DE

TLCS-900/L1 CPU

2001-08-31CPU900L1-21

(8) Absolute Addressing Mode

In this mode, the operand is the memory address specified by 1 to 3 bytes in the instruction
code. Addresses 000000H to 0000FFH can be specified by 1 byte. Addresses 000000H to
00FFFFH can be specified by 2 bytes. Addresses 000000H to FFFFFFH can be specified by 3
bytes.

In this mode, addressing to 256-byte area (0H to FFH) which can be specified by 1 byte is
called the direct addressing mode. In the direct addressing mode, a program memory area and
execution time can be cut down.

Example 1: LD HL, (80H)

HL 2 2 3 3

CPU

33

22

Memory

Address 000080H

Address 000081H

Example 2: LD HL, (1234H)

HL 4 4 5 5

CPU

55

44

Memory

Address 001234H

Address 001235H

Example 3: LD HL, (56789AH)

HL 6 6 7 7

CPU

77

66

Memory

Address 56789AH

Address 56789BH

TLCS-900/L1 CPU

2001-08-31CPU900L1-22

(9) Relative Addressing Mode

In this mode, the operand is the memory address obtained by adding the 8- or 16-bit
displacement value to the address where the instruction code being executed is located.

In this mode, only the following five instructions can be used.

LDAR R, $ + 4 + d16

JR cc, $ + 2 + d8

JRL cc, $ + 3 + d16

CALR $ + 3 + d16

DJNZ r, $ + 3 + d8 ($: start address of instruction code)

In calculating the displacement object code value, the adjustment value (+2 to +4) depends
on the instruction type.

Example 1: JR 2034H

68

32

Memory

Address 2000H

Address 2001H

JR instruction code

Displacement

In the above example, the displacement object code value is:

2034H − (2000H + 2) = 32H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-23

5. Instructions

In addition to its various addressing modes, the TLCS-900/L1 series also has a powerful
instruction set. The basic instructions are classified into the following nine groups:

• Load instructions (8/16/32 bits)

• Exchange instructions (8/16 bits)

• Block transfer & Block search instructions (8/16 bits)

• Arithmetic operation instructions (8/16/32 bits)

• Logical operation instructions (8/16/32 bits)

• Bit operation instructions (1 bit)

• Special operations, CPU control instructions

• Rotate and Shift instructions (8/16/32 bits)

• Jump, Call, and Return instructions

Table 5.1 lists the basic instructions of the TLCS-900/L1 series. For details of instructions, see
Appendix A; for the instruction list, Appendix B; for the instruction code map, Appendix C; and for
the differences between the TLCS-90 and TLCS-900/L1 series, Appendix D.

TLCS-900/L1 CPU

2001-08-31CPU900L1-24

Table 5.1 TLCS-900/L1 Series basic instructions
LD dst, src Load dst ← src

PUSH src Push src data to stack.

SP ← SP − size: (SP) ← src

POP dst Pop data from stack to dst.

dst ← (SP): SP ← SP + size

LDA dst, src Load address: set src effective address in dst.

LDAR dst, PC + dd Load address relative:

set program counter relative address value in dst. dst ← PC + dd

EX dst1, dst2 Exchange dst1 and dst2 data.

MIRR dst Mirror-invert dst bit pattern.

LDI Load increment

LDIR Load increment repeat

LDD Load decrement

LDDR Load decrement repeat

CPI Compare increment

CPIR Compare increment repeat

CPD Compare decrement

CPDR Compare decrement repeat

ADD dst, src Add dst ← dst + src

ADC dst, src Add with carry dst ← dst + src + CY

SUB dst, src Subtract dst ← dst − src

SBC dst, src Subtract with carry dst ← dst − src − CY

CP dst, src Compare dst − src

AND dst, src And dst ← dst AND src

OR dst, src Or dst ← dst OR src

XOR dst, src Exclusive-or dst ← dst XOR src

INC imm, dst Increment dst ← dst + imm

DEC imm, dst Decrement dst ← dst − imm

MUL dst, src Multiply unsigned dst ← dst (low) × src

MULS dst, src Multiply signed dst ← dst (low) × src

DIV dst, src Divide unsigned

dst (low) ← dst ÷ src

dst (high) ← remainder

V flag set due to division by 0 or overflow.

DIVS dst, src Divide signed

dst (low) ← dst ÷ src

dst (high) ← remainder: sign is same as that of dividend.

V flag set due to division by 0 or overflow.

TLCS-900/L1 CPU

2001-08-31CPU900L1-25

MULA dst Multiply and add dst ← dst + (XDE) × (XHL−)

32 bit 32 bit 16 bit 16 bit

MINC1 num, dst Modulo increment 1

MINC2 num, dst Modulo increment 2

MINC4 num, dst Modulo increment 4

MDEC1 num, dst Modulo decrement 1

MDEC2 num, dst Modulo decrement 2

MDEC4 num, dst Modulo decrement 4

NEG dst Negate dst ← 0 − dst (Twos complement)

CPL dst Complement dst ← not dst (Ones complement)

EXTZ dst Extend zero: set upper data of dst to 0.

EXTS dst Extend signed: copy the MSB of the lower data of dst to upper data.

DAA dst Decimal adjustment accumulator

PAA dst Pointer adjustment accumulator:

when dst is odd, increment dst by 1 to make it even.

if dst (0) = 1 then dst ← dst + 1.

LDCF bit, src Load carry flag: copy src<bit> value to C flag.

STCF bit, dst Store carry flag: copy C flag value to dst<bit>.

ANDCF bit, src And carry flag:

and src<bit> value and C flag, then load the result to C flag.

ORCF bit, src Or carry flag: or src<bit> and C flag, then load result to C flag.

XORCF bit, src Exclusive-or carry flag:

exclusive-or src<bit> value and C flag, then load result to C flag.

RCF Reset carry flag: reset C flag to 0.

SCF Set carry flag: set C flag to 1.

CCF Complement carry flag: invert C flag value.

ZCF Zero flag to carry flag: copy inverted value of Z flag to C flag.

BIT bit, src Bit test: Z flag ← not src<bit>

RES bit, dst Bit reset

SET bit, dst Bit set

CHG bit, dst Bit change dst<bit> ← not dst<bit>

TSET bit, dst Bit test and set:

Z flag ← not dst<bit>

dst<bit> ← 1

TLCS-900/L1 CPU

2001-08-31CPU900L1-26

BS1F A, dst Bit search 1 forward: search dst for the first bit set to 1 starting from

the LSB, then set the bit number in the A register.

BS1B A,dst Bit search 1 backward: search dst for the first bit set to 1 starting fom

 the MSB, then set the bit number in the A register.

NOP No operation

EI imm Enable interrupt. IFF ← imm

DI Disable maskable interrupt. IFF ← 7

PUSH SR Push status registers.

POP SR Pop status registers.

SWI imm Software interrupt

PUSH PC&SR: JP 8000H + 10H × imm

HALT Halt CPU.

LDC CTRL-REG, reg Load control: copy the register contents to control register of CPU.

LDC reg, CTRL-REG Load control: copy the control register contents to register.

LDX dst, src Load extract. dst ← src

LINK reg, dd Link: generate stack frame.

PUSH reg

LD reg, XSP

ADD XSP, dd

UNLK reg Unlink: delete stack frame.

LD XSP, reg

POP reg

LDF imm Load register file pointer:

specify register bank. RFP ← imm

INCF Increment register file pointer:

move to new register bank. RFP ← RFP + 1

DECF Decrement register file pointer:

return to previous register bank. RFP ← RFP − 1

SCC cc, dst Set dst with condition codes.

if cc then dst ←1

else dst ← 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-27

RLC num, dst Rotate left without carry

CY MSB ← LSB

RRC num, dst Rotate right without carry

CY MSB → LSB

RL num, dst Rotate left

CY MSB ← LSB

RR num, dst Rotate right

CY MSB → LSB

SLA num, dst Shift left arithmetic
0CY MSB ← LSB

SRA num, dst Shift right arithmetic

CY MSB → LSB

SLL num, dst Shift left logical
0CY MSB ← LSB

SRL num, dst Shift right logical

0CY MSB → LSB

RLD dst Rotate left digit

Areg
3 07 4 3 07 4

dst

RRD dst Rotate right digit

Areg
3 07 4 3 07 4

dst

JR cc, PC+d Jump relative (8-bit displacement)

if cc then PC ← PC + d.

JRL cc, PC + dd Jump relative long (16-bit displacement)

if cc then PC ← PC + dd.

JP cc, dst Jump

if cc then PC ← dst.

CALR RC + dd Relative call (16-bit displacement)

PUSH PC: PC ← PC + dd.

CALL cc, dst Call relative

if cc then PUSH PC: PC ← dst.

DJNZ dst, PC + d Decrement and jump if non-zero

dst ← dst − 1

if dst ≠ 0 then PC ← PC + d.

RET cc Return

if cc then POP PC.

RETD dd Return and deallocate

RET

XSP ← XSP + dd

RETI Return from interrupt

POP SR&PC

TLCS-900/L1 CPU

2001-08-31CPU900L1-28

Table 5.2 Instruction list

BWL

BWL

BWL

BWL

BW-

BW-

BW-

BWL

BW-

BW-

BWL

BW-

-WL

-WL

B--

BW-

BW-

-W-

BW-

BW-

BW-

BW-

BW-

BW-

BW-

BW-

BWL

 LD reg, reg

 LD reg, imm

 LD reg, mem

 LD mem, reg

 LD mem, imm

 LD (nn), mem

 LD mem, (nn)

 PUSH reg/F

 PUSH imm

 PUSH mem

 POP reg/F

 POP mem

 LDA reg, mem

 LDAR reg, PC+dd

 EX F, F’

 EX reg, reg

 EX mem, reg

*MIRR reg

 LDI

 LDIR

 LDD

 LDDR

 CPI

 CPIR

 CPD

 CPDR

 ADD reg, reg

 ADC reg, imm

 SUB reg, mem

 SBC mem, reg

 CP mem, imm.B/W

 AND

 OR

 XOR

BWL

BW-

-W-

-W-

-W-

-W-

-W-

-W-

-W-

BW-

BW-

-WL

-WL

B--

-WL

BW-

BW-

-W-

 INC imm3, reg

 DEC imm3, mem.B/W

 MUL reg, reg

*MULS reg, imm

 DIV reg, mem

*DIVS

*MULA reg

*MINC1 imm, reg

*MINC2 imm, reg

*MINC4 imm, reg

*MDEC1 imm, reg

*MDEC2 imm, reg

*MDEC4 imm, reg

 NEG reg

 CPL reg

*EXTZ reg

*EXTS reg

 DAA reg

*PAA reg

*LDCF imm, reg

*STCF A, reg

*ANDCF imm, mem.B

*ORCF A, mem.B

*XORCF

 RCF

 SCF

 CCF

*ZCF

 BIT imm, reg

 RES imm, mem.B

 SET

*CHG

 TSET

*BS1F A, reg

*BS1B

-W-

-W-

BWL

BWL

B--

--L

--L

BW-

BWL

B--

B--

BW-

 NOP

 EI [imm3]

 DI

*PUSH SR

*POP SR

 SWI [imm3]

 HALT

*LDC CTRL − R, reg

*LDC reg, CTRL − R

*LDX (n), n

*LINK reg, dd

*UNLK reg

*LDF imm3

*INCF

*DECF

*SCC cc, reg

 RLC imm, reg

 RRC A, reg

 RL mem. B/W

 RR

 SLA

 SRA

 SLL

 SRL

 RLD [A,] mem

 RRD [A,] mem

 JR [cc,] PC + d

 JRL [cc,] PC + dd

 JP [cc,] mem

 CALR PC + dd

 CALL [cc,] mem

 DJNZ [reg], PC + d

 RET [cc]

*RETD dd

 RETI

B = Byte (8 bit), W = Word (16 bit), L = Long − Word (32 bit).

* : Indicates instruction added to the TLCS-90 series.
[] : Indicates can be omitted.

TLCS-900/L1 CPU

2001-08-31CPU900L1-29

6. Data Formats

The TLCS-900/L1 series can handle 1/4/8/16/32-bit data.

(1) Register Data Format

<Data image>

1 bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BCD Upper Lower Upper Lower Upper Lower Upper Lower

Byte MSB LSB MSB LSB MSB LSB MSB LSB

Word MSB LSB MSB LSB

Long word MSB LSB

Note 1: To access the parts indicated by , the instruction code is one byte longer than when
 accessing the other parts.

(2) Memory Data Format

<Data image>

1 bite Address n 7 6 5 4 3 2 1 0

Byte Address n MSB LSB

Word Address n Lower LSB

n + 1 MSB Upper

Long word Address n Lower LSB

n + 1

n + 2

n + 3 MSB Upper

Note 2: There are no restrictions on the location of word or long word data in memory. They can be
located from even or odd numbered address.

Note 3: When the PUSH instruction is used to save data to the stack area, the stack pointer is
decremented, then the data is saved.

Example: PUSH HL; XSP ← XSP − 2

(XSP) ← L

(XSP + 1) ← H

This is the same in register indirect pre-decrement mode. The order is reversed in the TLCS-90
series: data is saved first, then the stack pointer is decremented.

Example: PUSH HL; (XSP − 1) ← H

(XSP − 2) ← L

XSP ← XSP − 2

TLCS-900/L1 CPU

2001-08-31CPU900L1-30

(3) Dynamic Bus Sizing

The TLCS-900/L1 series can switch between 8- and 16-bit data buses dynamically during
each bus cycle. This is called dynamic bus sizing. The function enables external memory
extension using both 8- and 16-bit data bus memories. Products with a built-in chip
select/wait controller can control external data bus size for each address area.

Table 6.1 Dynamic Bus Sizing

CPU dataOperand
data size

Operand start
 address

Data size at
memory side

CPU address
D15 to D8 D7 to D0

8 bits 2n + 0 xxxxx b7 to b02n + 0

(even) 16 bits 2n + 0 xxxxx b7 to b0

8 bits 2n + 1 xxxxx b7 to b0

8 bits

2n + 1

(odd) 16 bits 2n + 1 b7 to b0 xxxxx

8 bits 2n + 0

2n + 1

xxxxx

xxxxx

b7 to b0

b15 to b8

2n + 0

(even)

16 bits 2n + 0 b15 to b8 b7 to b0

8 bits 2n + 1

2n + 2

xxxxx

xxxxx

b7 to b0

b15 to b8

16 bits

2n + 1

(odd)

16 bits 2n + 1

2n + 2

b7 to b0

xxxxx

xxxx

b15 to b8

8 bits 2n + 0

2n + 1

2n + 2

2n + 3

xxxxx

xxxxx

xxxxx

xxxxx

b7 to b0

b15 to b8

b23 to b16

b31 to b24

2n + 0

(even)

16 bits 2n + 0

2n + 2

b15 to b8

b31 to b24

b7 to b0

b23 to b16

8 bits 2n + 1

2n + 2

2n + 3

2n + 4

xxxxx

xxxxx

xxxxx

xxxxx

b7 to b0

b15 to b8

b23 to b16

b31 to b24

32 bits

2n + 1

(odd)

16 bits 2n + 1

2n + 2

2n + 4

b7 to b0

b23 to b16

xxxx

xxxxx

b15 to b8

b31 to b24

xxxxx: During read, indicates the data input to the bus are ignored. During write, indicates the bus is at
high impedance and the write strobe signal is non-active.

TLCS-900/L1 CPU

2001-08-31CPU900L1-31

(4) Internal Data Bus Format

With the TLCS-900/L1 series, the CPU and the internal memory (built-in ROM or RAM) are
connected via a 16-bit internal data bus. The internal memory operates with 0 wait. The CPU
and the built-in I/Os are connected using an 8-bit internal data bus. This is because the
built-in I/O access speed has little influence on the overall system operation speed.

Overall system operation speed depends largely on the speed of program memory access.

TLCS-900/L1 CPU

2001-08-31CPU900L1-32

7. Basic Timings

The TLCS-900/L1 series runs the following basic timings.
• Read cycle
• Write cycle
• Dummy cycle
• Interrupt receive timing
• Reset

Figure 7.1 to Figure 7.8 show the basic timings.

(Note)

fFPH

62.5 ns

250 ns
(at 16 MHz)

T1 T2

A0 to 23

ALE

AD0 to 15

AD0 to 15

D0 to 15

D0 to 15

CSn

 W/R

RD

HWR , WR

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

Read

A0 to 15 Din

A0 to 15 Dout

Din

Dout

Write

Read

Write

 WAIT

 HWR , WR

RD

(Note)

Note: HWR and WR timing depends on product.

Figure 7.1 0 Wait Read/Write cycle

TLCS-900/L1 CPU

2001-08-31CPU900L1-33

fFPH

62.5 ns

375 ns (at 16 MHz)

T1 TW T2

A0 to 15

Dout

A0 to 23

ALE

AD0 to 15

AD0 to 15

D0 to 15

D0 to 15

CSn

W/R

 RD

 HWR , WR

 RD

 WAIT

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

Read

Write

Read

Write

Din

A0 to 15

Din

Dout

 HWR , WR

(Note)

(Note)

Note: HWR and WR timing depends on product.

Figure 7.2 1 Wait Read/Write cycle

TLCS-900/L1 CPU

2001-08-31CPU900L1-34

fFPH

62.5 ns

375 ns (at 16 MHz)

T1 TW T2

A0 to 15

Dout

A0 to 23

ALE

AD0 to 15

AD0 to 15

D0 to 15

D0 to 15

CSn

W/R

RD

HWR , WR

WAIT

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

Read

Write

Read

Write

Din

A0 to 15

Din

Dout

RD

HWR , WR

(Note)

(Note)

Note: HWR and WR timing depends on product.

Figure 7.3 1 Wait + n Read/Write cycle (n = 0)

TLCS-900/L1 CPU

2001-08-31CPU900L1-35

(Note)

fFPH

62.5 ns

500 ns (at 16 MHz)

T1 TW T2

A0 to 15

Dout

A0 to 23

ALE

AD0 to 15

AD0 to 15

D0 to 15

D0 to 15

CSn

 RD

HWR , WR

WAIT

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

Read

Write

Read

Write

TW

A0 to 15

Din

Din

Dout

 W/R

HWR , WR

 RD

(Note)

Note: HWR and WR timing depends on product.

Figure 7.4 1 Wait + n Read/Write cycle (n = 1)

TLCS-900/L1 CPU

2001-08-31CPU900L1-36

fFPH

62.5 ns

500 ns (at 16 MHz)

T1 TW T2

A0 to 15

Dout

A0 to 23

ALE

AD0 to 15

AD0 to 15

D0 to 15

D0 to 15

CSn

 W/R

RD

HWR , WR

WAIT

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

Read

Write

Read

Write

TW

A0 to 15

Din

Din

Dout

HWR , WR

RD

(Note)

Note: HWR and WR timing depends on product.

Figure 7.5 2 Wait Read/Write cycle

TLCS-900/L1 CPU

2001-08-31CPU900L1-37

fFPH

62.5 ns

125 ns
(at 16 MHz)

A0 to 23

ALE

AD0 to 15

D0 to 15

CSn

W/R

RD

HWR , WR

WAIT

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

indeterminate

RD

HWR , WR

Figure 7.6 1-state dummy cycle

TLCS-900/L1 CPU

2001-08-31CPU900L1-38

fFPH

A0 to 15

Dout

A0 to 23

ALE

AD0 to 15

AD0 to 15

D0 to 15

D0 to 15

CSn

W/R

RD

HWR , WR

M
ul

tip
le

x
B

us
S

ep
ar

at
e

 B
us

Read

Write

Read

Write

A0 to 15

Din

Din

A0 to 15Din

DoutA0 to 15

Din

Dout Dout

Final cycle of instruction Interrupt response sequence

Falling edge
interrupt

Rising edge
interrupt

Level
interrupt

HWR , WR

RD

(Note)

(Note)

(Note)

(Note)

Note : This timing chart is a theoretical example. In practice, due to the operation of the bus interface unit
in the CPU, external bus and internal interrupt receive timings do not correspond one to one.

HWR and WR timings depend on product.

Figure 7.7 Interrupt receive timing

TLCS-900/L1 CPU

2001-08-31CPU900L1-39

S
am

pl
in

g

S
am

pl
in

g

(P
40

 to
 4

1
in

pu
t m

od
e)

(P
20

 to
 2

7
in

pu
t m

od
e)

(P
36

 in
pu

t m
od

e)

w
rit

e

re
ad

(S
ta

rt
s

re
ad

 c
yc

le
 o

f 0
W

A
IT

 a
fte

r
re

se
t r

el
ea

se
e)

A
dd

re
ss

A
dd

re
ss

O
m

itt
ed

 4
5

tim
es

 o
f X

1
O

m
itt

ed
 2

20
 ti

m
es

 o
f X

1

f F
P

H

R
E

S
E

T

A
16

 to
 2

3

C
S

n

R
/W

A
LE

A
D

0
to

 1
5

R
D

D
at

a
ou

tp
ut

A
dd

re
ss

A
dd

re
ss

A
D

0
to

 1
5

(P
32

 in
pu

t m
od

e)

W
R

P
30

, P
31

P
32

 to
 3

7,
 P

40
 to

 4
3

P
00

 to
 0

7,
 P

10
 to

 1
7

P
20

 to
 2

7,
 P

60
 to

 6
6

P
70

 to
 7

5,
 P

80
 to

 8
7

P
90

 to
 9

7,
 P

A
0

to
 A

7

H
W

R

(I
np

ut
 m

od
e)

(O
ut

pu
t m

od
e)

N
ot

e)

H
ig

h
im

pe
da

nc
e

In
te

rn
al

 p
ul

l-u
p

or
 p

ul
l-d

ow
n

(P
00

 to
 P

07
, P

10
 to

 P
17

 in
pu

t m
od

e
)

(P
30

 o
ut

pu
t m

od
e)

(P
00

 to
 P

07
, P

10
 to

 P
17

 in
pu

t m
od

e)

(P
31

 o
ut

pu
t m

od
e)

(I
np

ut
 m

od
e)

Figure 7.8 Reset timings (internal ROM operation: e.g. TMP91CW12)

TLCS-900/L1 CPU

2001-08-31CPU900L1-40

Appendix A: Details of Instructions

• Instruction List

1. Load
LD PUSH POP LDA LDAR

2. Exchange
EX MIRR

3. Load Increment/Decrement & Compare Increment/Decrement
LDI LDIR LDD LDDR CPI CPIR CPD CPDR

4. Arithmetic operations
ADD ADC SUB SBC CP INC DE NEG
EXTZ EXTS DAA PAA MUL MULS DIV DIVS
MULA MINC MDEC

5. Logical operations
AND OR XOR CPL

6. Bit operations
LDCF STCF ANDCF ORCF XORCF RCF SCF CCF
ZCF BIT RES SET CHG TSET BS1

7. Special operations and CPU control
NOP EI DI PUSH−SR POP−SR SWI HALT LDC
LDX LINK UNLK LDF INCF DECF SCC

8. Rotate and shift
RLC RRC RL RR SLA SRA SLL SRL
RLD RRD

9. Jump, call, and return
JP JR JRL CALL CALR DJNZ RET RETD
RETI

TLCS-900/L1 CPU

2001-08-31CPU900L1-41

• Explanations of symbols used in this document

 dst

 src

 num

 condition

 R

 r

 r16

 r32

 cr

 A

 F

 F’

 SR

 PC

 (mem)

 mem

 <W>

 []

 #

 #3

 #4

 d8

 d16

 cc

 CY

 Z

 (#8)

 (#16)

 (−r32)

 (r32+)

 $

Destination: destination of data transfer or operation result load.

Source: source of data transfer or operation data read.

Number: numerical value.

Condition: based on flag status.

Eight general−purpose registers including 8/16/32-bit current bank registers.

 8-bit registers : W, A, B, C, D, E, H, L (only eight registers)

 16-bit registers : WA, BC, DE, HL, IX, IY, IZ, SP (only eight registers)

 32-bit registers : XWA, XBC, XDE, XHL, XIX, XIY, XIZ, XSP (only eight registers)

8/16/32-bit general-purpose registers

16-bit general-purpose registers

32-bit general-purpose registers

All 8/16/32-bit CPU control registers

DMAS0 to 3, DMAD0 to 3, DMAC0 to 3, DMAM0 to 3,

INTNEST

A register (8 bits)

Flag registers (8 bits)

Inverse flag registers (8 bits)

Status registers (16 bits)

Program counter (in minimum mode, 16 bits; in maximum mode, 32 bits)

8/16/32-bit memory data

Effective address value

When the operand size is a word, W must be specified.

Operands enclosed in square brackets can be omitted.

8/16/32-bit immediate data.

3-bit immediate data : 0 to 7 or 1 to 8 ... for abbreviated codes.

4-bit immediate data : 0 to 15 or 1 to 16

8-bit displacement : −80H to + 7FH

16-bit displacement : −8000H to + 7FFFH

Condition code

Carry flag

Zero flag

Direct addressing: (00H) to (0FFH) ... 256−byte area

64K−byte area addressing: (0000H) to (0FFFFH)

Pre−decrement addressing

Post−increment addressing

Start address of instruction

(Please refer to Register map

on page CPU900L1-45.)

TLCS-900/L1 CPU

2001-08-31CPU900L1-42

• Explanations of symbols in object codes

z

zz

zzz

s

R

r

Note: In addition to the above, all registers can be specified by r using extension codes. In this case,

the number of execution states increases by 1. The format is shown below.

Operand size specify code

Register specify code

Byte Word Long word

z 0 1 −
zz 00 01 10

zzz 010 011 100

s − 0 1

Code Byte Word Long word

000 W WA XWA

001 A BC XBC

010 B DE XDE

011 C HL XHL

100 D IX XIX

101 E IY XIY

110 H IZ XIZ

111 L SP XSP

First op code

Second op code

The code value in r must be:

Multiple of 2, if accessed as a word register.

Multiple of 4, if accessed as a long word.

For registers specified by 8 bits, see Register Maps.

Sets the lower 4 bits to 0111.

Inserts the register code specified by

8 bits between the first and second op

codes.

0 1 1 1

r

TLCS-900/L1 CPU

2001-08-31CPU900L1-43

mem Memory addressing mode specify code

Zz = Code used to specify the value of

increments or decrements.
r32: 32-bit register

r16: Signed 16-bit register

 r8: Signed 8-bit register

 (XWA) =

 (XBC) =

 (XDE) =

 (XHL) =

 (XIX) =

 (XIY) =

 (XIZ) =

 (XSP) =

 (XWA+d8) =

 (XBC+d8) =

 (XDE+d8) =

 (XHL+d8) =

 (XIX+d8) =

 (XIY+d8) =

 (XIZ+d8) =

 (XSP+d8) =

 (#8) =

 (#16) =

 (#24) =

 (r32) =

 (r32+d16) =

 (r32+r8) =

 (r32+r16) =

 (r32) =

 (r32+) =

− 0 − − 0000

r32’ = Upper 6 bits of register code

00: ±1

01: ±2

10: ±4
11: (Not defined)

<7:0> = Indicates the data bit range.

This example means 8-bit

data from bit 0 to bit 7.
− 0 − − 0001

− 0 − − 0010

− 0 − − 0011

− 0 − − 0100

− 0 − − 0101

− 0 − − 0110

− 0 − − 0111

− 0 − − 1000

− 0 − − 1001

− 0 − − 1010

− 0 − − 1011

− 0 − − 1100

− 0 − − 1101

− 0 − − 1110

− 0 − − 1111

− 1 − − 0000

− 1 − − 0001

− 1 − − 0010

− 1 − − 0011

− 1 − − 0011

− 1 − − 0011

− 1 − − 0011

− 1 − − 0100

d<7:0>

d<7:0>

d<7:0>

d<7:0>

d<7:0>

d<7:0>

d<7:0>

d<7:0>

#<7:0>

#<7:0>

#<7:0>

 r32’

 r32’

 000000

 000001

 r32’

00

− 1 − − 0101 r32’

01

11

11

zz

zz

#<15:8>

#<15:8> #<23:16>

d<7:0>

r32’

r32’

d<15:8>

r8

r16

TLCS-900/L1 CPU

2001-08-31CPU900L1-44

cc Condition codes

Code Symbol Description Conditional expression

0000

1000

F
(none)

always False
always True

 −
 −

0110

1110

Z

NZ

Zero

Not Zero

 Z = 1

 Z = 0

0111

1111

C

NC

Carry

Not Carry

 C = 1

 C = 0

1101

0101

PL or P

MI or M

PLus

MInus

 S = 0

 S = 1

1110

0110

NE

EQ

Not Equal

EQual

 Z = 0

 Z = 1

0100

1100

OV

NOV

OVerflow

No OVerflow

 P/V = 1

 P/V = 0

0100

1100

PE

PO

Parity is Even

Parity is Odd

 P/V = 1

 P/V = 0

1001

0001

GE

LT

Greater than or Equal (signed)

Less Than (signed)

 (S xor P/V) = 0

 (S xor P/V) = 1

1010

0010

GT

LE

Greater Than (signed)

Less than or Equal (signed)

 [Z or (S xor P/V)] = 0

 [Z or (S xor P/V)] = 1

1111

0111

UGE

ULT

Unsigned Greater than or Equal

Unsigned Less Than

 C = 0

 C = 1

1011

0011

UGT

ULE

Unsigned Greater Than

Unsigned Less than or Equal

 (C or Z) = 0

 (C or Z) = 1

TLCS-900/L1 CPU

2001-08-31CPU900L1-45

• Register map “r” (MAX mode)

+3 +2 +1 +0

00H QW0 (QWA 0) QA0 <XWA 0> RW0 (RWA 0) RA0

04H QB0 (QBC 0) QC0 <XBC 0> RB0 (RBC 0) RC0

08H QD0 (QDE 0) QE0 <XDE 0> RD0 (RDE 0) RE0

0CH QH0 (QHL 0) QL0 <XHL 0> RH0 (RHL 0) RL0

10H QW1 (QWA 1) QA1 <XWA 1> RW1 (RWA 1) RA1

14H QB1 (QBC 1) QC1 <XBC 1> RB1 (RBC 1) RC1

18H QD1 (QDE 1) QE1 <XDE 1> RD1 (RDE 1) RE1

1CH QH1 (QHL 1) QL1 <XHL 1> RH1 (RHL 1) RL1

20H QW2 (QWA 2) QA2 <XWA 2> RW2 (RWA 2) RA2

24H QB2 (QBC 2) QC2 <XBC 2> RB2 (RBC 2) RC2

28H QD2 (QDE 2) QE2 <XDE 2> RD2 (RDE 2) RE2

2CH QH2 (QHL 2) QL2 <XHL 2> RH2 (RHL 2) RL2

30H QW3 (QWA 3) QA3 <XWA 3> RW3 (RWA 3) RA3

34H QB3 (QBC 3) QC3 <XBC 3> RB3 (RBC 3) RC3

38H QD3 (QDE 3) QE3 <XDE 3> RD3 (RDE 3) RE3

3CH QH3 (QHL 3) QL3 <XHL 3> RH3 (RHL 3) RL3

D0H QW’ (Q WA’) QA’ <X WA’> W’ (W A’) A’

D4H QB’ (Q BC’) QC’ <X BC’> B’ (B C’) C’

D8H QD’ (Q DE’) QE’ <X DE’> D’ (D E’) E’

DCH QH’ (Q HL’) QL’ <X HL’> H’ (H L’) L’

E0H QW (Q WA) QA <X WA > W (W A) A

E4H QB (Q BC) QC <X BC > B (B C) C

E8H QD (Q DE) QE <X DE > D (D E) E

ECH QH (Q HL) QL <X HL > H (H L) L

F0H QIXH (Q IX) QIXL <X IX> IXH (I X) IXL

F4H QIYH (Q IY) QIYL <X IY> IYH (I Y) IYL

F8H QIZH (Q IZ) QIZL <X IZ> IZH (I Z) IZL

FCH QSPH (Q SP) QSPL <X SP> SPH (S P) SPL

(): Word register name (16 bits)

< >: Long word register name (32 bits)

Bank 3

Current bank

Bank 2

Bank 1

Bank 0

Previous bank

TLCS-900/L1 CPU

2001-08-31CPU900L1-46

• Control register map cr

+3 +2 +1 +0

00H <DMA SO>

04H <DMA S1>

08H <DMA S2>

0CH <DMA S3>

10H <DMA D0>

14H <DMA D1>

18H <DMA D2>

1CH <DMA D3>

20H DMAM0 (DMA C0)

24H DMAM1 (DMA C1)

28H DMAM2 (DMA C2)

2CH DMAM3 (DMA C3)

3CH (INT NEST)

(): Word register name (16 bits)

< >: Long word register name (32 bits)

Interrupt Nesting Counter

micro DMA

source

register

micro DMA

destination

register

micro DMA

mode/counter

 register

TLCS-900/L1 CPU

2001-08-31CPU900L1-47

ADC dst, src
<Add with Carry>

Operation: dst ← dst + src + CY

Description: Adds the contents of dst, src, and carry flag, and transfers the result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

ADC R, r 1 1 z z 1 r

1 0 0 1 0 R

ADC r, # 1 1 z z 1 r

1 1 0 0 1 0 0 1

#<7:0>

#<15:8>

#<23:16>

#<31:24>

ADC R, (mem) 1 m z z m m m m

1 0 0 1 0 R

ADC (mem), R 1 m z z m m m m

1 0 0 1 1 R

× ADC<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 0 0 1

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-48

Flags: S Z H V N C
* * * * 0 *

S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set if a carry from bit 3 to bit 4 occurs as a result of the operation;

otherwise, 0. If the operand is 32-bit, an undefined value is set.
V = 1 is set if an overflow occurs as a result of the operation; otherwise, 0.
N = Cleared to zero.
C = 1 is set if a carry occurs from the MSB, otherwise 0.

Execution example: ADC HL,IX
When the HL register = 2000H, the IX register = 3456H, and the carry flag
= 1, execution sets the HL register to 5457H.

2 0 0 0

3 4 5 6

1

5 4 5 7

HL register

IX register

Carry flag

HL register

TLCS-900/L1 CPU

2001-08-31CPU900L1-49

ADD dst, src
<Add>

Operation: dst ← dst + src

Description: Adds the contents of dst to those of src and transfers the result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

ADD R, r 1 1 z z 1 r

1 0 0 0 0 R

ADD r, # 1 1 z z 1 r

1 1 0 0 1 0 0 0

#<7:0>

#<15:8>

#<23:16>

#<31:24>

ADD R, (mem) 1 m z z m m m m

1 0 0 0 0 R

ADD (mem), R 1 m z z m m m m

1 0 0 0 1 R

× ADD<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 0 0 0

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-50

Flags: S Z H V N C
* * * * 0 *

S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set if a carry from bit 3 to bit 4 occurs as a result of the operation, otherwise 0.

If the operand is 32-bit, an undefined value is set.
V = 1 is set if an overflow occurs as a result of the operation, otherwise 0.
N = Cleared to zero.
C = 1 is set if a carry occurs from the MSB, otherwise 0.

Execution example: ADD HL,IX
When the HL register = 2000H and the IX register = 3456H, execution sets
the HL register to 5456H.

2 0 0 0

3 4 5 6

5 4 5 6

HL register

IX register

HL register

TLCS-900/L1 CPU

2001-08-31CPU900L1-51

AND dst, src
<And>

Operation: dst ← dst AND src

Description: Ands the contents of dst and src, then transfers the result to dst.

(Truth table)

A B A and B

0 0 0

0 1 0

1 0 0

1 1 1

Details:
Size Mnemonic Code

Byte Word Long word

AND R, r 1 1 z z 1 r

1 1 0 0 0 R

AND r, # 1 1 z z 1 r

1 1 0 0 1 1 0 0

#<7:0>

#<15:8>

#<23:16>

#<31:24>

AND R, (mem) 1 m z z m m m m

1 1 0 0 0 R

AND (mem), R 1 m z z m m m m

1 1 0 0 1 R

× AND<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 1 0 0

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-52

Flags: S Z H V N C
* * 1 * 0 0
S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set.
V = 1 is set if a parity of the result is even, 0 if odd. If the operand is 32 bits,

an undefined value is set.
N = Cleared to zero.
C = Cleared to zero.

Execution example: AND HL,IX
When the HL register = 7350H and the IX register = 3456H, execution sets
the HL register to 3050H.

0111 0011 0101 0000 ← HL register (before execution)

AND) 0011 0100 0101 0110 ← IX register (before execution)

0011 0000 0101 0000 ← HL register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-53

ANDCF num, src
<And Carry Flag>

Operation: CY ← CY AND src<num>

Description: Ands the contents of the carry flag and bit num of src, and transfers the result to
the carry flag.

Details:
Size Mnemonic Code

Byte Word Long word

× ANDCF #4, r 1 1 0 z 1 r

0 0 1 0 0 0 0 0

0 0 0 0 # 4

× ANDCF A, r 1 1 0 z 1 r

0 0 1 0 1 0 0 0

× × ANDCF #3, (mem) 1 m 1 1 m m m m

1 0 0 0 0 #3

× × ANDCF A, (mem) 1 m 1 1 m m m m

0 0 1 0 1 0 0 0

Notes: When bit num is specified by the A register, the value of the lower 4 bits of the A
register is used as bit num. When the operand is a byte and the value of the lower
4 bits of bit num is from 8 to 15, the result is undefined.

Flags: S Z H V N C
− − − − − *

S = No change
Z = No change
H = No change
V = No change
N = No change
C = The value obtained by anding the contents of the carry flag and the bit num of src

is set.

Execution example: ANDCF 6,(100H)
When the contents of memory address 100 = 01000000B (binary) and the
carry flag = 1, execution sets the carry flag to 1.

7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0 Address 100

AND 1

1

Carry flag (before execution)

Carry flag (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-54

BIT num, src
<Bit test>

Operation: Z flag ← inverted value of src<num>

Description: Transfers the inverted value of the bit num of src to the Z flag.

Details:
Size Mnemonic Code

Byte Word Long word

× BIT #4, r 1 1 0 z 1 r

0 0 1 1 0 0 1 1

0 0 0 0 # 4

× × BIT #3, (mem) 1 m 1 1 m m m m

1 1 0 0 1 #3

Flags: S Z H V N C
× * 1 × 0 −
S = An undefined value is set.
Z = The inverted value of src <num> is set.
H = 1 is set.
V = An undefined value is set.
N = Reset to 0.
C = No change

Execution example: BIT 5, (100H)
When the contents of memory address 100 = 00100000B (binary),
execution sets the Z flag to 0.

7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 0 Address 100

0 Z flag

Inverted

TLCS-900/L1 CPU

2001-08-31CPU900L1-55

BS1B dst, src
<Bit Search 1 Backward>

Operation: dst ← src backward searched value

Description: Searches the src bit pattern backward (from MSB to LSB) for the first bit set to 1
and transfers the bit number to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× × BS1B A, r 1 1 0 1 1 r

0 0 0 0 1 1 1 1

Note: dst in the operand must be the A register; src must be the register in words. If no
bit set to 1 is found in the searched bit pattern, sets the A register to an undefined
value and the V flag to 1.

Flags: S Z H V N C
− − − * − −
S = No change
Z = No change
H = No change
V = 1 is set if the contents of src are all 0s (no bit is set to 1), otherwise 0.
N = No change
C = No change

Execution example: BS1B A,IX
When the IX register = 1200H, execution sets the A register to 0CH.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Serch for 1.

IX register

TLCS-900/L1 CPU

2001-08-31CPU900L1-56

BS1F dst, src
<Bit Search 1 Forward>

Operation: dst ← src forward searched result

Description: Searches the src bit pattern forward (from LSB to MSB) for the first bit set to 1 and
transfers the bit number to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× × BS1F A, r 1 1 0 1 1 r

0 0 0 0 1 1 1 0

Note: dst in the operand must be the A register; src must be a register in words. If no bit
set to 1 is found in the searched bit pattern, sets the A register to an undefined
value and the V flag to 1.

Flags: S Z H V N C
− − − * − −
S = No change
Z = No change
H = No change
V = 1 is set if the contents of src are all 0s (no bit is set to 1), otherwise 0.
N = No change
C = No change

Execution example: BS1F A,IX
When the IX register = 1200H, execution sets the A register to 09H.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Serch for 1.

IX register

TLCS-900/L1 CPU

2001-08-31CPU900L1-57

CALL condition, dst
<Call subroutine>

Operation: If cc is true, then XSP ← XSP − 4, (XSP) ← 32-bit PC, PC ← dst.

Description: If the operand condition is true, saves the contents of the program counter to the
stack area and jumps to the program address specified by dst.

Details:
Mnemonic Code

CALL #16 0 0 0 1 1 1 0 0

#<7:0>

#<15:8>

CALL #24 0 0 0 1 1 1 0 1

#<7:0>

#<15:8>

#<23:16>

CALL [cc,] mem 1 m 1 1 m m m m

1 1 1 0 c c

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: CALL 9000H
When the stack pointer XSP is 100H, executing this instruction at memory
address 8000H writes the return address 8003H (long word data) to
memory address 0FCH, sets the stack pointer XSP to 0FCH, and jumps to
address 9000H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-58

CALR dst
<Call Relative>

Operation: XSP ← XSP − 4, (XSP) ← 32-bit PC,PC ← dst.

Description: Saves the contents of the program counter to the stack area and makes a relative
jump to the program address specified by dst.

Details:
Mnemonic Code

CALR $ + 3 + d16 0 0 0 1 1 1 1 0

d<7:0>

d<15:8>

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-59

CCF
<Complement Carry Flag>

Operation: CY ← inverted value of CY

Description: Inverts the contents of the carry flag.

Details:
Mnemonic Code

CCF 0 0 0 1 0 0 1 0

Flags: S Z H V N C
− − × − 0 *

S = No change
Z = No change
H = An undefined value is set.
V = No change
N = Reset to 0.
C = Inverted value of itself is set.

Execution example: When the carry flag = 0, executing CCF sets the carry flag to 1; executing
CCF again sets the carry flag to 0.

0

Inverted

1

Carry flag (before execution)

Carry flag (after execution)

1

Inverted

0

Carry flag (before execution)

Carry flag (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-60

CHG num, dst
<Change>

Operation: dst<num> ← Inverted value of dst<num>

Description: Inverts the value of bit num of dst.

Details:
Size Mnemonic Code

Byte Word Long word

× CHG #4, r 1 1 0 z 1 r

0 0 1 1 0 0 1 0

0 0 0 0 # 4

× × CHG #3, (mem) 1 m 1 1 m m m m

1 1 0 0 0 #3

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: CHG 5, (100H)
When the contents of memory address 100 = 00100111B (binary),
execution sets the contents to 00000111B (binary).

7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1

0 0 0 0 0 1 1 1

Address 100 (before execution)

Inverted

Address 100 (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-61

CP src1, src2
<Compare>

Operation: src1 − src2

Description: Compares the contents of src1 with those of src2 and indicates the results in flag
register F.

Details:
Size Mnemonic Code

Byte Word Long word

CP R, r 1 1 z z 1 r

1 1 1 1 0 R

× CP r, #3 1 1 0 z 1 r

1 1 0 1 1 #3

CP r, # 1 1 z z 1 r

1 1 0 0 1 1 1 1

#<7:0>

#<15:8>

#<23:16>

#<31:24>

CP R, (mem) 1 m z z m m m m

1 1 1 1 0 R

CP (mem), R 1 m z z m m m m

1 1 1 1 1 R

× CP <W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 1 1 1

#<7:0>

#<15:8>

Note: #3 in operands indicates from 0 to 7.

TLCS-900/L1 CPU

2001-08-31CPU900L1-62

Flags: S Z H V N C
* * * * 1 *

S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set if a borrow from bit 3 to bit 4 occurs as a result of the operation, otherwise 0.

If the operand is 32 bits, an undefined value is set.
V = 1 is set if an overflow occurs as a result of the operation, otherwise 0.
N = 1 is set.
C = 1 is set if a borrow occurs from the MSB bit as a result of the operation, otherwise 0.

Execution example: CP HL,IX
When the HL register = 1234H and the IX register = 1234H, execution sets
the Z and N flags to 1 and clears the S, H, V, and C flags to zero.

1 2 3 4

1 2 3 4

0 0 0 0

HL register

IX register

(Not loaded)

TLCS-900/L1 CPU

2001-08-31CPU900L1-63

CPD src1, src2
<Compare Decrement>

Operation: src1 − src2, BC ← BC − 1

Description: Compares the contents of src1 with those of src2, then decrements the contents of
the BC register by 1. src1 must be the A or WA register. src2 must be in
post−decrement register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× CPD [A/WA, (R−)] 1 0 0 z 0 R

0 0 0 1 0 1 1 0

Note: Omitting operands in square brackets [] specifies A,(XHL−).

Flags: S Z H V N C
* * * * 1 −

S = MSB value of the result of src1 − src2 is set.
Z = 1 is set if the result of src1 − src2 is 0, otherwise 0.
H = 1 is set if a borrow from bit 3 to bit 4 occurs as a result of src1 − src2, otherwise 0.
V = 0 is set if the BC register value is 0 after execution, otherwise 1.
N = 1 is set.
C = No change

Execution example: CPD A, (XIX−)
When the XIX register = 00123456H and the BC register = 0200H,
execution compares the contents of the A register with those of memory
address 123456H, then sets the XIX register to 00123455H, the BC
register to 01FFH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-64

CPDR src1, src2
<Compare Decrement Repeat>

Operation: src1 − src2, BC ← BC − 1, Repeat until src1 = src2 or BC = 0

Description: Compares the contents of src1 with those of src2. Then decrements the contents of
the BC register by 1. Repeats until src1 = src2 or BC = 0. src1 must be the A or WA
register. src2 must be in post-decrement register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× CPDR [A/WA, (R−)] 1 0 0 z 0 R

0 0 0 1 0 1 1 1

Note: Omitting operands in square brackets [] specifies A,(XHL−).

Flags: S Z H V N C
* * * * 1 −

S = MSB value of the result of src1 − src2 is set.
Z = 1 is set if the result of src1 − src2 is 0, otherwise 0.
H = 1 is set if a borrow from bit 3 to bit 4 occurs as a result of src1 − src2, otherwise 0.
V = 0 is set if the BC register value is 0 after execution, otherwise 1.
N = 1 is set.
C = No change

Execution example: CPDR A,(XIX−)
Under the following conditions, execution reads the contents of memory
addresses 123456H, 123455H, and 123454H. The instruction ends with
condition BC = 0 and sets the XIX register to 00123453H and the BC
register to 0000H.
Conditions: A register = 55H

XIX register = 00123456H
BC register = 0003H
Memory address 123456H = 11H
Memory address 123455H = 22H
Memory address 123454H = 33H

TLCS-900/L1 CPU

2001-08-31CPU900L1-65

CPI src1, src2
<Compare Increment>

Operation: src1 − src2, BC ← BC − 1

Description: Compares the contents of src1 with those of src2, then decrements the contents of
the BC register by 1. src1 must be the A or WA register. src2 must be in post-
increment register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× CPI [A/WA, (R+)] 1 0 0 z 0 R

0 0 0 1 0 1 0 0

Note: Omitting operands enclosed in square brackets [] specifies A,(XHL+).

Flags: S Z H V N C
* * * * 1 −

S = MSB value of the result of src1 − src2 is set.
Z = 1 is set if the result of src1 − src2 is 0, otherwise 0.
H = 1 is set if a borrow from bit 3 to bit 4 occurs as a result of src1 − src2, otherwise 0.
V = 0 is set if the BC register value is 0 after execution, otherwise 1.
N = 1 is set.
C = No change

Execution example: CPI A, (XIX+)
When the XIX register = 00123456H and the BC register = 0200H,
execution compares the contents of the A register with those of memory
address 123456H, and sets the XIX register to 00123457H and the BC
register to 01FFH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-66

CPIR src1, src2
<Compare Increment Repeat>

Operation: src1 − src2, BC ← BC − 1, repeat until src1 = src2 or BC = 0

Description: Compares the contents of src1 with those of src2. Then decrements the contents of
the BC register by 1. Repeats until src1 = src2 or BC = 0. src1 must be the A or WA
register. src2 must be in post-increment register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× CPIR [A/WA, (R+)] 1 0 0 z 0 R

0 0 0 1 0 1 0 1

Note: Omitting operands in square brackets [] specifies A,(XHL+).

Flags: S Z H V N C
* * * * 1 −

S = MSB value of the result of src1 − src2 is set.
Z = 1 is set if the result of src1 − src2 is 0, otherwise 0.
H = 1 is set if a borrow from bit 3 to bit 4 occurs as a result of src1 − src2, otherwise 0.
V = 0 is set if the BC register value is 0 after execution, otherwise 1.
N = 1 is set.
C = No change

Execution example: CPIR A, (XIX+)
Under the following conditions, execution reads memory addresses
123456H, 123457H, and 123458H. The instruction ends with condition
src1 = src2, sets the XIX register to 00123459H and the BC register to
01FDH.
Conditions: A register = 33H

XIX register = 00123456
HBC register = 0200H
Memory address 123456H = 11H
Memory address 123457H = 22H
Memory address 123458H = 33H

TLCS-900/L1 CPU

2001-08-31CPU900L1-67

CPL dst
<Complement>

Operation: dst ← Ones complement of dst

Description: Transfers the value of ones complement (inverted bit of 0/1) of dst to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× CPL r 1 1 0 z 1 r

0 0 0 0 0 1 1 0

Flags: S Z H V N C
− − 1 − 1 −

S = No change
Z = No change
H = 1 is set.
V = No change
N = 1 is set.
C = No change

Execution example: CPL WA
When the WA register = 1234H, execution sets the WA register to EDCBH.

0001 0010 0011 0100

1110 1101 1100 1011

Inverted

WA register (before execution)

WA register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-68

DAA dst
<Decimal Adjust Accumulator>

Operation: dst ← decimal adjustment of dst

Description: Decimal adjusts the contents of dst depending on the states of the C, H, and N
flags. Used to adjust the execution result of the add or subtract instruction as
binary-coded decimal (BCD).

Details:
Size Mnemonic Code

Byte Word Long word

× × DAA r 1 1 0 0 1 r

0 0 0 1 0 0 0 0

Operation

N flag before

DAA

instruction

execution

C flag before

DAA

instruction

execution

Upper 4 bits

of dst

H flag before

DAA

instruction

execution

Lower 4 bits

of dst
Added value

C flag after

DAA

instruction

execution

ADD

ADC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0 to 9

0 to 8

0 to 9

A to F

9 to F

A to F

0 to 2

0 to 2

0 to 3

0

0

1

0

0

1

0

0

1

0 to 9

A to F

0 to 3

0 to 9

A to F

0 to 3

0 to 9

A to F

0 to 3

00

06

06

60

66

66

60

66

66

0

0

0

1

1

1

1

1

1

SUB

SBC

NEG

1

1

1

1

0

0

1

1

0 to 9

0 to 8

7 to F

6 to F

0

1

0

1

0 to 9

6 to F

0 to 9

6 to F

00

FA

A0

9A

0

0

1

1

Note: Decimal adjustment cannot be performed for the INC or DEC instruction. This is because the
C flag does not change.

TLCS-900/L1 CPU

2001-08-31CPU900L1-69

Flags: S Z H V N C
* * * * − *

S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set if a carry from bit 3 to bit 4 occurs as a result of the operation, otherwise 0.
V = 1 is set if the parity (number of 1s) of the result is even, otherwise 0.
N = No change
C = 1 is set if a carry occurs from the MSB as a result of the operation or a carry was

1 before operation, otherwise 0.

Execution example: ADD A,B
DAA A
When the A register = 59H and the B register = 13H,
execution sets the A register to 72H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-70

DEC num, dst
<Decrement>

Operation: dst ← dst − num

Description: Decrements dst by the contents of num and transfers the result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

DEC #3, r 1 1 z z 1 r

0 1 1 0 1 #3

× DEC<W> #3, (mem) 1 m 0 z m m m m

0 1 1 0 1 #3

Note: #3 in operands indicates from 1 to 8; object codes correspond from 1 to 7,0.

Flags: S Z H V N C
* * * * 1 −

S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set if a borrow from bit 3 to bit 4 occurs as a result of the operation, otherwise 0.
V = 1 is set if an overflow occurs as a result of the operation, otherwise 0.
N = 1 is set.
C = No change

Note: With the DEC #3, r instruction, if the operand is a word or a long word, no flags
change.

Execution example: DEC 4, HL
When the HL register = 5678H, execution sets the HL register to 5674H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-71

DECF
<Decrement Register File Pointer>

Operation: RFP<2:0> ← RFP<2:0> − 1

Description: Decrements the contents of register file pointer RFP <2:0> in the status register by
1. RFP2 is fixed to 0.

Details:
Mnemonic Code

DECF 0 0 0 0 1 1 0 1

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: DECF
When the contents of RFP<2:0> = 2, execution sets the contents of
RFP<2:0> to 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-72

DI
<Disable Interrupt>

Operation: IFF<2:0> ← 7

Description: Sets the contents of the interrupt enable flag (IFF) <2:0> in status register to 7.
After execution, only non-maskable interrupts (interrupt level 7) can be received.

Details:
Mnemonic Code

DI 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-73

DIV dst, src
<Divide>

Operation: dst<lower half> ← dst ÷ src, dst<upper half> ← remainder (unsigned)

Description: Divides unsigned the contents of dst by those of src and transfers the quotient to
the lower half of dst, the remainder to the upper half of dst.

Details:
Size Mnemonic Code

Byte Word Long word

× DIV RR, r 1 1 0 z 1 r

0 1 0 1 0 R

× DIV rr, # 1 1 0 z 1 r

0 0 0 0 1 0 1 0

#<7:0>

#<15:8>

× DIV RR, (mem) 1 m 0 z m m m m

0 1 0 1 0 R

Note 1: For RR, see the following page.

Note 2: When the operation is in bytes, dst (lower byte) ← dst (word) ÷ src (byte),
 dst (upper byte) ← remainder.
 When the operation is in words, dst (lower word) ← dst (long word) ÷ src (word),
 dst (upper word) ← remainder. Match coding of the operand dst with the size of the
dividend.

Flags: S Z H V N C
− − − V − −

S = No change
Z = No change
H = No change
V = 1 is set when divided by 0 or the quotient exceeds the numerals which can be

expressed in bits of dst for load; otherwise, 0 is set.
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-74

Execution example: DIV XIX,IY
When the XIX register = 12345678H and the IY register = 89ABH,
execution results in a quotient of 21DAH and a remainder of 0FDAH, and
sets the XIX register to 0FDA21DAH.

Note 3: RR of the DIV RR,r and DIV RR,(mem) instruction is as listed below.

RR Code R RR Code R

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX XIX 100

IY XIY 101

IZ XIZ 110

SP XSP 111

rr of the DIV rr,# instruction is as listed below.

rr Code r rr Code r

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX C7H : F0H XIX 100

IY C7H : F4H XIY 101

IZ C7H : F8H XIZ 110

SP C7H : FCH XSP 111

1st byte 2nd byte

Operation size in bytes

(8 bits ← 16 bits ÷ 8 bits)

Operation size in words

(16 bits ← 32 bits ÷ 16 bits)

*1 When the CPU is in minimum mode, XWA, XBC,

XDE, and XHL cannot be used.

Operation size in bytes

(8 bits ← 16 bits ÷ 8 bits)

Operation size in words

(16 bits ← 32 bits ÷ 16 bits)

Specification

not possible!

*2 Any other word registers can be specified

in thesame extension coding as IX to SP.

*3 When the CPU is in minimum mode, XWA, XBC,

XDE, and XHL cannot be used.

*4 Any other long word registers can be specified

in the extension coding.

TLCS-900/L1 CPU

2001-08-31CPU900L1-75

DIVS dst, src
<Divide Signed>

Operation: dst<lower half> ← dst ÷ src,dst<upper half> ← remainder (signed)

Description: Divides signed the contents of dst by those of src and transfers the quotient to the
lower half of dst, the remainder to the upper half of dst.

Details:
Size Mnemonic Code

Byte Word Long word

× DIVS RR, r 1 1 0 z 1 r

0 1 0 1 1 R

× DIVS rr, # 1 1 0 z 1 r

0 0 0 0 1 0 1 1

#<7:0>

#<15:8>

× DIVS RR, (mem) 1 m 0 z m m m m

0 1 0 1 1 R

Note 1: For RR, see the following page.

Note 2: When the operation is in bytes, dst (lower byte) ← dst (word) ÷ src (byte), dst
(upper byte) ← remainder.
When the operation is in words, dst (lower word) ← dst (long word) ÷ src (word),
dst (upper word) ← remainder.
Match coding of the operand dst with the size of the dividend. The sign of the
remainder is the same as that of the dividend.

Flags: S Z H V N C
− − − * − −

S = No change
Z = No change
H = No change
V = 1 is set when divided by 0, or the quotient exceeds the value which can be expressed

in bits of the dst used for loading, otherwise 0.
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-76

Execution example: DIVS XIX,IY
When the XIX register = 12345678H and the IY register = 89ABH,
execution results in the quotient as 16EEH and the remainder as D89EH,
and sets the XIX register to 16EED89EH.

Note 3: RR of the DIVS RR,r and DIVS RR, (mem) instruction is as listed below.

RR Code R RR Code R

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX XIX 100

IY XIY 101

IZ XIZ 110

SP XSP 111

rr of the DIVS rr,# instruction is as listed below.

rr Code r rr Code r

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX C7H : F0H XIX 100

IY C7H : F4H XIY 101

IZ C7H : F8H XIZ 110

SP C7H : FCH XSP 111

1st byte 2nd byte

Operation size in bytes

(8 bits ← 16 bits ÷ 8 bits)

Operation size in words

(16 bits ← 32 bits ÷ 16 bits)

Operation size in bytes

(8 bits ← 16 bits ÷ 8 bits)

Operation size in words

(16 bits ← 32 bits ÷ 16 bits)

Specification

not possible!

*2 Any other word registers can be specified in the

same extension coding as those for IX to SP.

*1 When the CPU is in minimum mode, XWA,

XBC, XDE, or XHL cannot be used.

*3 When the CPU is in minimum mode, XWA, XBC,

XDE, or XHL cannot be used.

*4 Any other long word registers can be specified

in the extension coding.

TLCS-900/L1 CPU

2001-08-31CPU900L1-77

DJNZ dst1, dst2
<Decrement and Jump if Non Zero>

Operation: dst1 ← dst1 − 1. if dst1 ≠ 0, then PC ← dst2.

Description: Decrements the contents of dst1 by 1. Makes a relative jump to the program
address specified by dst2 if the result is other than 0.

Details:
Size Mnemonic Code

Byte Word Long word

× DJNZ [r,]$ + 3/4 + d8 1 1 0 z 1 r

0 0 0 1 1 1 0 0

d<7:0>

(Note) $ + 4 + d8 (r is specified using extension codes.)
$ + 3 + d8 (otherwise)

Note: Omitting r of the operand in square brackets [] is regarded as specifying the B
register.

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: LOOP: ADD A, A
DJNZ W, LOOP

When the A register = 12H and the W register = 03H, execution loops three
times and sets the A register to 24H → 48 → 90H and the W register to
02H → 01H → 00H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-78

EI num
<Enable Interrupt>

Operation: IFF <2:0> ← num

Description: Sets the contents of the IFF<2:0> in the status register to num. After execution,
the CPU interrupt receive level becomes num.

Details:
Mnemonic Code

EI [#3] 0 0 0 0 0 1 1 0

0 0 0 0 0 #3

Note: A value from 0 to 7 can be specified as the operand value. If the operand is omitted,
the default value is 0 (EI 0).

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-79

EX dst, src
<Exchange>

Operation: dst ↔ src

Description: Exchanges the contents of dst and src.

Details:
Size Mnemonic Code

Byte Word Long word

× × EX F, F’ 0 0 0 1 0 1 1 0

× EX R, r 1 1 z z 1 r

1 0 1 1 1 R

× EX (mem), r 1 m z z m m m m

0 0 1 1 0 R

Flags: S Z H V N C
− − − − − −

S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change
Note: Executing EX F,F’ changes all flags.

Execution example: EX A,B
When the A register = 12H and the B register = 34H, execution sets the A
register to 34H and the B register to 12H.

12

34

A register

A register

34

12

B register (before execution)

B register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-80

EXTS dst
<Extend Sign>

Operation: dst <upper half> ← signed bit of dst <lower half>

Description: Transfers (copies) the signed bit (bit 7 when the operand size is a word, bit 15 when
a long word) of the lower half of dst to all bits of the upper half of dst.

Details:
Size Mnemonic Code

Byte Word Long word

× EXTS r 1 1 z z 1 r

0 0 0 1 0 0 1 1

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: EXTS HL
When the HL register = 6789H, execution sets the HL register to FF89H.

15 8 7 0
0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

15 8 7 0

1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1

HL register (before execution)

HL register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-81

EXTZ dst
<Extend Zero>

Operation: dst<upper half> ← 0

Description: Clears the upper half of dst to zero. Used for making the operand sizes the same
when they are different.

Details:
Size Mnemonic Code

Byte Word Long word

× EXTZ r 1 1 z z 1 r

0 0 0 1 0 0 1 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: EXTZ HL
When the HL register = 6789H, execution sets the HL register to 0089H.

EXTZ XIX
When the XIX register = 12345678H, execution sets the XIX register to
00005678H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-82

HALT
<Halt CPU>

Operation: CPU halt

Description: Halts the instruction execution. To resume, an interrupt must de received.

Details:
Mnemonic Code

HALT 0 0 0 0 0 1 0 1

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-83

INC num, dst
<Increment>

Operation: dst ← dst + num

Description: Adds the contents of dst and num and transfers the result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

INC #3, r 1 1 z z 1 r

0 1 1 0 0 #3

× INC<W> #3, (mem) 1 m 0 z m m m m

0 1 1 0 0 #3

Note: #3 in operands indicates from 1 to 8 and object codes correspond from 1 to 7,0.

Flags: S Z H V N C
* * * * 0 −
S = MSB value of the result is set.
Z = 1 is set if the result is 0, otherwise 0.
H = 1 is set if a carry occurs from bit 3 to bit 4 as a result of the operation, otherwise 0.
V = 1 is set if an overflow occurs as a result of the operation, otherwise 0.
N = Cleared to zero.
C = No change

Note: With the INC #3,r instruction, if the operand is a word or a long word, no flags
change.

Execution example: INC 5,WA
When the WA register = 1234H, execution sets the WA register to 1239H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-84

INCF
<Increment Register File Pointer>

Operation: RFP<2:0> ← RFP<2:0> + 1

Description: Increments the contents of RFP<2:0> in the status register by 1. RFP2 is fixed to 0.

Details:
Mnemonic Code

INCF 0 0 0 0 1 1 0 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: INCF
When the contents of RFP<2:0> = 2, execution sets the contents of
RFP<2:0> to 3.

TLCS-900/L1 CPU

2001-08-31CPU900L1-85

JP condition, dst
<Jump>

Operation: If cc is true, then PC ← dst.

Description: If the operand condition is true, jumps to the program address specified by dst.

Details:
Size Mnemonic Code

JP #16 0 0 0 1 1 0 1 0

#<7:0>

#<15:8>

JP #24 0 0 0 1 1 0 1 1

#<7:0>

#<15:8>

#<23:16>

JP [cc,] mem 1 m 1 1 m m m m

1 1 0 1 c c

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: When JP 2000H is executed, jumps unconditionally to address 2000H.
When the XIX register = 00123456H, and carry flag’s value is 1, JP 2000H
jumps to address 123458H by the execution of JP C and XIX+2.

TLCS-900/L1 CPU

2001-08-31CPU900L1-86

JR condition, dst
<Jump Relative>

Operation: If cc is true, then PC ← dst.

Description: If the operand condition is true, makes a relative jump to the program address
specified by dst.

Details:
Mnemonic Code

JR [cc,] $ + 2 + d8 0 1 1 0 c c

d<7:0>

JRL [cc,] $ + 3 + d16 0 1 1 1 c c

#<7:0>

#<15:8>

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: JR 2078H
When this instruction is executed at memory address 2000H, execution
relative jumps unconditionally to address 2078H. The object code of the
instruction is 68H : 76H.

Memory

Address 2000H (Op code)

Address 2078H

6 8
7 6 Address 2001H (displacement)

JR

TLCS-900/L1 CPU

2001-08-31CPU900L1-87

LD dst, src
<Load>

Operation: dst ← src

Description: Loads the contents of src to dst.

Details:
Size Mnemonic Code

Byte Word Long word

LD R, r 1 1 z z 1 r

1 0 0 0 1 R

LD r, R 1 1 z z 1 r

1 0 0 1 1 R

LD r, #3 1 1 z z 1 r

1 0 1 0 1 #3

LD R, # 0 z z z 0 R

#<7:0>

#<15:8>

#<23:16>

#<31:24>

LD r, # 1 1 z z 1 r

0 0 0 0 0 0 1 1

#<7:0>

#<15:8>

#<23:16>

#<31:24>

LD R, (mem) 1 m z z m m m m

0 0 1 0 0 R

LD (mem), R 1 m 1 1 m m m m

0 1 z z 0 R

× LD<W> (#8), # 0 0 0 0 1 0 z 0

#8

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-88

Size Mnemonic Code

Byte Word Long word

× LD<W> (mem), # 1 m 1 1 m m m m

0 0 0 0 0 0 z 0

#<7:0>

#<15:8>

× LD<W> (#16), (mem) 1 m 0 z m m m m

0 0 0 1 1 0 0 1

#16<7:0>

#16<15:8>

× LD<W> (mem), (#16) 1 m 1 1 m m m m

0 0 0 1 0 1 z 0

#16<7:0>

#16<15:8>

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: LD IX, DE
When the DE register = 4567H, execution sets the IX register to 4567H.

Loads

DE register4 5 6 7

4 5 6 7 IX register

TLCS-900/L1 CPU

2001-08-31CPU900L1-89

LDA dst, src
<Load Address>

Operation: dst ← src effective address value

Description: Loads the src effective address value to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× LDA R, mem 1 m 1 1 m m m m

0 0 1 s 0 R

Note: This instruction operates much like the ADD instruction; the difference is that dst
is specified independently from src. Mainly used for handling the pointer with the
C compiler.

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: LDA XIX, XIY + 33H
When the XIY register = 00123456H, execution sets the XIX register to
00123489H.

0 0 1 2 3 4 5 6 XIY register

displacement

XIX register0 0 1 2 3 4 8 9

3 3

TLCS-900/L1 CPU

2001-08-31CPU900L1-90

LDAR dst, src
<Load Address Relative>

Operation: dst ← src relative address value

Description: Loads the relative address value specified in src to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× LDAR R, $ + 4 + d16 1 1 1 1 0 0 1 1

0 0 0 1 0 0 1 1

d<7:0>

d<15:8>

0 0 1 s 0 R

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: LDAR XIX, $ + 1345H
When this instruction is executed at memory address 1000H, execution
sets the XIX register to 00002345H. $ indicates the start address of the
instruction. The instruction's object codes are: F3H:13H:41H:13H:34H.

0 0 0 0 1 0 0 0 $

displacement

XIX register0 0 0 0 2 3 4 5

1 3 4 5

TLCS-900/L1 CPU

2001-08-31CPU900L1-91

LDC dst, src
<Load Control Register>

Operation: dst ← src

Description: Loads the contents of src to dst.

Details:
Size Mnemonic Code

Byte Word Long word

LDC cr, r 1 1 z z 1 r

0 0 1 0 1 1 1 0

cr

LDC r, cr 1 1 z z 1 r

0 0 1 0 1 1 1 1

cr

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: LDC DMAC0, WA
When the WA register = 1234H, execution sets control register DMAC0 to
1234H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-92

LDCF num, src
<Load Carry Flag>

Operation: CY ← src<num>

Description: Loads the contents of bit num of src to the carry flag.

Details:
Size Mnemonic Code

Byte Word Long word

× LDCF #4, r 1 1 0 z 1 r

0 0 1 0 0 0 1 1

0 0 0 0 # 4

× LDCF A, r 1 1 0 z 1 r

0 0 1 0 1 0 1 1

× × LDCF #3, (mem) 1 m 1 1 m m m m

1 0 0 1 1 #3

× × LDCF A, (mem) 1 m 1 1 m m m m

0 0 1 0 1 0 1 1

Notes: When bit num is specified by the A register, the value of the lower 4 bits of the A
register is used as bit num. When the operand is a byte and the value of the lower
4 bits of bit num is from 8 to 15, the value of the carry flag is undefined.

Flags: S Z H V N C
− − − − − ∗
S = No change
Z = No change
H = No change
V = No change
N = No change
C = Contents of bit num of src is set.

Execution example: LDCF 6, (100H)
When the contents of memoryad address 100 = 01000000B (binary),
execution sets the carry flag to 1.

7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0

1

Address 100

Carry flag

TLCS-900/L1 CPU

2001-08-31CPU900L1-93

LDD dst, src
<Load Decrement>

Operation: dst ← src, BC ← BC − 1

Description: Loads the contents of src to dst, then decrements the contents of the BC register by
1. src and dst must be in post-decrement register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× LDD<W>[(XDE−), (XHL−)] 1 0 0 z 0 0 1 1

0 0 0 1 0 0 1 0

LDD<W> (XIX−), (XIY−) 1 0 0 z 0 1 0 1

0 0 0 1 0 0 1 0

*Coding in square brackets [] can be omitted.

Flags: S Z H V N C
− − 0 * 0 −
S = No change
Z = No change
H = Cleared to 0.
V = 0 is set if the BC register value is 0 after execution, otherwise 1.
N = Cleared to zero.
C = No change

Execution example: LDD (XIX−), (XIY−)
When the XIX register = 00123456H, the XIY register = 00335577H, and
the BC register = 0700H, execution loads the contents at address 335577 to
address 123456H and sets the XIX register to 123455H, the XIY register to
00335576H, and the BC register to 06FFH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-94

LDDR dst, src
<Load Decrement Repeat>

Operation: dst ← src, BC ← BC − 1, Repeat until BC = 0

Description: Loads the contents of src to dst, then decrements the contents of the BC register by
1. If the result is other than 0, the operation is repeated. src and dst must be in
post-decrement register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× LDDR<W>[(XDE−), (XHL−)] 1 0 0 z 0 0 1 1

0 0 0 1 0 0 1 1

× LDDR<W> (XIX−), (XIY−) 1 0 0 z 0 1 0 1

0 0 0 1 0 0 1 1

* Coding in square brackets [] can be omitted.

Flags: S Z H V N C
− − 0 0 0 −
S = No change
Z = No change
H = Cleared to zero.
V = Cleared to zero.
N = Cleared to zero.
C = No change

Execution example: LDDR (XIX−), (XIY−)
When the XIX register = 00123456H, the XIY register = 00335577H, and
the BC register = 0003H, the results of the execution are as follows:

Loads the contents of address 335577H to 123456H.

Loads the contents of address 335576H to 123455H.

Loads the contents of address 335575H to 123454H.

Sets the XIX register to 00123453H.

Sets the XIY register to 00335574H.

Sets the BC register to 0000H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-95

LDF num
<Load Register File Pointer>

Operation: RFP<2:0> ← num

Description: Loads the num value to the register file pointer RFP<2:0> in status register. RFP2
is fixed to 0.

Details:
Mnemonic Code

LDF #3 0 0 0 1 0 1 1 1

0 0 0 0 0 #3

Note: In minimum mode, the operand value can be specified from 0 to 7; in maximum
mode, from 0 to 3.

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-96

LDI dst, src
<Load Increment>

Operation: dst ← src, BC ← BC − 1

Description: Loads the contents of src to dst, then decrements the contents of the BC register by
1. src and dst must be in post-increment register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× LDI<W>[(XDE+), (XHL+)] 1 0 0 z 0 0 1 1

0 0 0 1 0 0 0 0

× LDI<W> (XIX+), (XIY+) 1 0 0 z 0 1 0 1

0 0 0 1 0 0 0 0

Note: Coding in square brackets [] can be omitted.

Flags: S Z H V N C
− − 0 ∗ 0 −
S = No change
Z = No change
H = Cleared to zero.
V = 0 is set when the BC register value is 0 after execution, otherwise 1.
N = Cleared to zero.
C = No change

Execution example: LDI (XIX+), (XIY+)
When the XIX register = 00123456H, the XIY register = 00335577H, and
the BC register = 0700H, execution loads the contents of address 335577H
to 123456H and sets the XIX register to 00123457H, the XIY register to
00335578H, and the BC register to 06FFH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-97

LDIR dst, src
<Load Increment Repeat>

Operation: dst ← src, BC ← BC − 1, Repeat until BC = 0

Description: Loads the contents of src to dst, then decrements the contents of the BC register by
1. If the result is other than 0, the operation is repeated. src and dst must be in
post-increment register indirect addressing mode.

Details:
Size Mnemonic Code

Byte Word Long word

× LDIR<W>[(XDE+), (XHL+)] 1 0 0 z 0 0 1 1

0 0 0 1 0 0 0 1

× LDIR<W> (XIX+), (XIY+) 1 0 0 z 0 1 0 1

0 0 0 1 0 0 0 1

Note: Coding in square brackets [] can be omitted.

Note: Interrupt requests are sampled every time 1 item of data is loaded.

Flags: S Z H V N C
− − 0 0 0 −
S = No change
Z = No change
H = Cleared to zero.
V = Cleared to zero.
N = Cleared to zero.
C = No change

Execution example: LDIR (XIX+), (XIY+)
When the XIX register = 00123456H, the XIY register = 00335577H, and
the BC register = 0003H, execution results as follows:

Loads the contents of address 335577H to 123456H.

Loads the contents of address 335578H to 123457H.

Loads the contents of address 335579H to 123458H.

Sets the XIX register to 00123459H.

Sets the XIY register to 0033557AH.

Sets the BC register to 0000H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-98

LDX dst, src
<Load eXtract>

Operation: dst ← src

Description: Loads the contents of src to dst. The effective code is assigned to this instruction
every other byte. Used to fetch the code from 8-bit data bus memory in 16-bit data
bus mode.

Details:
Size Mnemonic Code

Byte Word Long word

× × LDX (#8), # 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0

#8

0 0 0 0 0 0 0 0

#

0 0 0 0 0 0 0 0

Note: Even if the second, fourth, or sixth instruction code value is not 00H, the
instruction operates correctly.

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-99

This instruction is used when the CPU fetches a program after reset in cases where the bus
width set in the 900/L1 is 16 bits wide and that of external program ROM is 8 bits wide.

The table below shows usage conditions.

Product Name AM0 Pin AM1 Pin
Program ROM

Bus Width

Other Memory

Bus Width
LDX Instruction

0 0 8-bit 8-bit Not used

8-bit 8/16-bit Used
1 0

16-bit 8/16-bit Not used
TMP91C815

1 1 Internal ROM – –

Execution example: Explanation here is given using the TMP91C815 as an example where
while AM0, 1 = 1, 0 and all memory but program ROM are 16 bits wide, the
instruction is executed from 8-bit wide program ROM. After reset, the
reset vector is read in 16-bit data bus mode. Therefore, when starting the
program from external memory with 8-bit data bus, the PC (15:8) value for
the reset vector must be entered by connecting pull-up/down resistors to
the upper-byte data bus D8 to D15 pins.

For example, if the reset vector is located at address 010000H, place
010000H in program ROM address FFFF00H and pull the D8 to D15 pins
low. This allows the value 00H to be entered for the PC (15:8). Then place
the LDX instruction in program ROM address 010000H.

Operation immediately after reset

TLCS-900/L1 Program ROM

pull down

pull down

00

00

01

00

00

00

01

00

address FFFF00H

address FFFF01H

address FFFF02H

address FFFF03H

address FFFF04H

address FFFF05H

PC (7:0)

PC (15:8)

PC (23:16)

XX

TLCS-900/L1 CPU

2001-08-31CPU900L1-100

LDX (0C2H), 88H

When the above instruction is executed, the CPU writes data 88H to the
control register at address 0C2H of the internal programmable chip
select/wait controller. As a result, the CS2 space is placed in 8-bit data bus
2WAIT mode, so that the program is fetched and executed via an 8-bit bus
beginning with the next instruction.

TLCS-900/L1
(TMP91C815)

Operation after reset

pull down

TLCS-900/L1 Program ROM

pull down

pull down

F7

00

C2

00

88

00

F7

00

C2

00

88

00

Address 10000H

Address 10001H

Address 10002H

Address 10003H

Address 10004H

Address 10005H

Program ROM

CS2

D8 to 15

pull down

RD OE

CS

A0 to 16 A0 to 16

D0 to 7 D0 to 7

AM0

AM1

Note: The pull-up/down added to the D8 to D15 pins to enter the reset vector PC (15:8)
results in colliding with data outputs from the D8 to D15 pins, causing the current
consumption to increase. Therefore, if this presents a problem, the pull-up/down
must be disconnected after the above processing is finished.

TLCS-900/L1 CPU

2001-08-31CPU900L1-101

LINK dst, num
<Link>

Operation: (−XSP) ← dst, dst ← XSP, XSP ← XSP + num

Description: Saves the contents of dst to the stack area. Loads the contents of stack pointer
XSP to dst. Adds the contents of XSP to those of num (signed) and loads the result
to XSP. Used for obtaining a local variable area in the stack area for -num bytes.

Details:
Size Mnemonic Code

Byte Word Long word

× × LINK r,d16 1 1 1 0 1 r

0 0 0 0 1 1 0 0

d<7:0>

d<15:8>

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: LINK XIZ, −40H
When stack pointer XSP = 280H and the XIZ register = 290H, execution
writes 00000290H (long data) at memory address 27CH and sets the XIZ
register to 27CH and the stack pointer to XSP 23CH.

←XSP

←XIZ

UNKL

←XSP

←XIZ

23CH:

27CH:

Previous XIZ value

280H:

290H:

LINK

Current
stack frame
(40H bytes)

TLCS-900/L1 CPU

2001-08-31CPU900L1-102

MDEC1 num, dst
<Modulo Decrement 1>

Operation: if (dst mod num) = 0 then dst ← dst + (num − 1) else dst ← dst − 1.

Description: When the modulo num of dst is 0, increments dst by num −1 .
Otherwise, decrements dst by 1. Used to operate pointers for cyclic memory table.

Details:
Size Mnemonic Code

Byte Word Long word

× × MDEC1 #, r 1 1 0 1 1 r

0 0 1 1 1 1 0 0

#<7:0> − 1
#<15:8>

Note: The operand # must be 2 to the nth power. (n = 1 to 15)

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: Decrements the IX register by cycling from 1230H to 1237H. MDEC1 8, IX
When the IX register = 1231H, execution sets the IX register to 1230H.
Further execution increments the IX register by 8 − 1 and sets the IX
register to 1237H, since the IX register modulo 8 = 0.

Address 1230H

Address 1237H

•
•
•
•

TLCS-900/L1 CPU

2001-08-31CPU900L1-103

MDEC2 num, dst
<Modulo Decrement 2>

Operation: if (dst mod num) = 0 then dst ← dst + (num − 2) else dst ← dst − 2.

Description: When the modulo num of dst is 0, increments dst by num −2.
Otherwise, decrements dst by 2. Used to operate pointers for cyclic memory table.

Details:
Size Mnemonic Code

Byte Word Long word

× × MDEC2 #, r 1 1 0 1 1 r

0 0 1 1 1 1 0 1

#<7:0> − 2
#<15:8>

Note: The operand # must be 2 to the nth power. (n = 2 to 15)

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: Decrements the IX register by cycling from 1238H to 123FH. MDEC2 8,IX
When the IX register = 123AH, execution sets the IX register to 1238H.
Further execution increments the IX register by 8 − 2 and sets the IX
register to 123EH, since the IX register modulo 8 = 0.

Address 1238H

Address 123FH

•
•
•
•

TLCS-900/L1 CPU

2001-08-31CPU900L1-104

MDEC4 num, dst
<Modulo Decrement 4>

Operation: if (dst mod num) = 0 then dst ← dst + (num − 4) else dst ← dst − 4.

Description: When the modulo num of dst is 0, increments dst by num −4. Otherwise,
decrements dst by 4. Used to operate pointers for cyclic memory table.

Details:
Size Mnemonic Code

Byte Word Long word

× × MDEC4 #, r 1 1 0 1 1 r

0 0 1 1 1 1 1 0

#<7:0> − 4
#<15:8>

Note: The operand # must be 2 to the nth power. (n = 3 to 15)

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: Decrements the IX register by cycling from 1280H to 12FFH. MDEC4
80H,IX
When the IX register = 1284H, execution sets the IX register to 1280H.
Further execution increments the IX register by 80H − 4 and sets the IX
register to 12FCH, since the IX register modulo 80H = 0.

Address 1280H

Address 12FFH

•
•
•
•

TLCS-900/L1 CPU

2001-08-31CPU900L1-105

MINC1 num, dst
<Modulo Increment 1>

Operation: if (dst mod num) = (num − 1) then dst ← dst − (num − 1) else dst ← dst + 1.

Description: When the modulo num of dst is num − 1, decrements dst by num − 1.
Otherwise, increments dst by 1. Used to operate pointers for cyclic memory table .

Details:
Size Mnemonic Code

Byte Word Long word

× × MINC1 #, r 1 1 0 1 1 r

0 0 1 1 1 0 0 0

#<7:0> − 1
#<15:8>

Note: The operand # must be 2 to the nth power. (n = 1 to 15)

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: Increments the IX register by cycling from 1200H to 1207H. MINC1 8, IX
When the IX register = 1206H, execution sets the IX register to 1207H.
Further execution decrements the IX register by 8 − 1 and sets the IX
register to 1200H, since the IX register modulo 8 = 8 − 1.

Address 1200H

Address 1207H

•
•
•
•

TLCS-900/L1 CPU

2001-08-31CPU900L1-106

MINC2 num, dst
<Modulo Increment 2>

Operation: if (dst mod num) = (num − 2) then dst ← dst − (num − 2) else dst ← dst + 2.

Description: When the modulo num of dst is num − 2, decrements dst by num − 2.
Otherwise, increments dst by 2. Used to operate pointers for cyclic memory table.

Details:
Size Mnemonic Code

Byte Word Long word

× × MINC2 #, r 1 1 0 1 1 r

0 0 1 1 1 0 0 1

#<7:0> − 2
#<15:8>

Note: The operand # must be 2 to the nth power. (n = 2 to 15)

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: Increments the IX register by cycling from 1230H to 1237H. MINC2 8,IX
When the IX register = 1234H, execution sets the IX register to 1236H.
Further execution decrements the IX register by 8 − 2 and sets the IX
Register to 1230H, since the IX register modulo 8 = 8 − 2.

Address 1230H

Address 1237H

•
•
•
•

TLCS-900/L1 CPU

2001-08-31CPU900L1-107

MINC4 num, dst
<Modulo Increment 4>

Operation: if (dst mod num) = (num − 4) then dst ← dst − (num − 4) else dst ← dst + 4.

Description: When the modulo num of dst is num − 4, decrements dst by num − 4.
Otherwise, increments dst by 4. Used to operate pointers for cyclic memory table.

Details:
Size Mnemonic Code

Byte Word Long word

× × MINC4 #, r 1 1 0 1 1 r

0 0 1 1 1 0 1 0

#<7:0> − 4

#<15:8>

Note: The operand # must be 2 to the nth power. (n = 3 to 15)

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change

Execution example: Increments the IX register by cycling from 1240H to 127FH. MINC4
40H,IX
When the IX register = 1278H, execution sets the IX register to 127CH.
Further execution decrements the IX register by 40H − 4 and sets the IX
register to 1240H, since the IX register modulo 40H = 40H − 4.

Address 1240H

Address 127FH

•
•
•
•

TLCS-900/L1 CPU

2001-08-31CPU900L1-108

MIRR dst
<Mirror>

Operation: dst<MSB:LSB> ← dst<LSB:MSB>

Description: Mirror-exchanges the contents of dst using the bit pattern image.

Details:
Size Mnemonic Code

Byte Word Long word

× × MIRR r 1 1 0 1 1 r

0 0 0 1 0 1 1 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change

Execution example: MIRR HL
When the HL register = 0001 0010 0011 0100B (binary), execution sets the
HL register to 0010 1100 0100 1000B (binary).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0

HL register (before execution)

HL register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-109

MUL dst, src
<Multiply>

Operation: dst ← dst<lower half> × src (unsigned)

Description: Multiplies unsigned the contents of lower half of dst by those of src and loads the
result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× MUL RR, r 1 1 0 z 1 r

0 1 0 0 0 R

× MUL rr, # 1 1 0 z 1 r

0 0 0 0 1 0 0 0

#<7:0>

#<15:8>

× MUL RR, (mem) 1 m 0 z m m m m

0 1 0 0 0 R

Note: When the operation is in bytes, dst (word) ← dst (byte) × src (byte).
When the operation is in words, dst (long word) ← dst (word) × src (word).
Match coding of the operand dst with the size of the result.

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change

Execution example: MUL XIX, IY
When the IX register = 1234H and the IY register = 89ABH, execution
multiplies unsigned the contents of the IX register by those of the IY
register and sets the XIX register to 09C9FCBCH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-110

Note: RR for the MUL RR,r and MUL RR, (mem) instructions is as listed below:

RR Code R RR Code R

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX XIX 100

IY XIY 101

IZ XIZ 110

SP XSP 111

rr of the MUL rr,# instruction is as listed below.

rr Code r rr Code r

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX C7H : F0H XIX 100

IY C7H : F4H XIY 101

IZ C7H : F8H XIZ 110

SP C7H : FCH XSP 111

1st byte 2nd byte

Operation size in bytes

(16 bits ← 8 bits × 8 bits)

Operation size in words

(32 bits ← 16 bits × 16 bits)

Operation size in bytes

(16 bits ← 8 bits × 8 bits)

Operation size in words

(32 bits ← 16 bits × 16 bits)

Specification

not possible!

*2 Any other word registers can be specified in the

same extension coding as those for IX to SP.

*1 When the CPU is in minimum mode, XWA,

XBC, XDE, or XHL cannot be used.

*3 When the CPU is in minimum mode, XWA, XBC,

XDE, or XHL cannot be used.

*4 Any other long word registers can be specified

in the extension coding.

TLCS-900/L1 CPU

2001-08-31CPU900L1-111

MULA dst
<Multiply and Add>

Operation: dst ← dst + (XDE) × (XHL), XHL ← XHL − 2

Description: Multiplies signed the memory data (16 bits) specified by the XDE register by the
memory data (16 bits) specified by the XHL register . Adds the result (32 bits) to
the contents of dst (32 bits) and loads the sum to dst (32 bits). Then, decrements
the contents of the XHL register by 2.

Details:
Size Mnemonic Code

Byte Word Long word

× × MULA rr 1 1 0 1 1 r

0 0 0 1 1 0 0 1

Note: Match coding of the operand dst with the operation size (long word).

Flags: S Z H V N C
∗ ∗ − ∗ − −
S = MSB value of the result is set.
Z = 1 is set when the result is 0, otherwise 0.
H = No change.
V = 1 is set when an overflow occurs as a result, otherwise 0.
N = No change.
C = No change.

Execution example: MULA XIX
Under the following conditions, execution sets the XIX register to
4795FCBCH and the XHL register to 1FEH.

Conditions: XIX register = 50000000H
XDE register = 100H
XHL register = 200H
Memory data (word) at address 100H = 1234H
Memory data (word) at address 200H = 89ABH

1 2 3 4 XHL

XIX register5 0 0 0 0 0 0 0

8 9 A B(XDE)

XIX register4 7 9 5 F C B C

TLCS-900/L1 CPU

2001-08-31CPU900L1-112

MULS dst, src
<Multiply Signed>

Operation: dst ← dst<lower half> × src (signed)

Description: Multiplies signed the contents of the lower half of dst by those of src and loads the
result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× MULS RR, r 1 1 0 z 1 r

0 1 0 0 1 R

× MULS rr, # 1 1 0 z 1 r

0 0 0 0 1 0 0 1

#<7:0>

#<15:8>

× MULS RR, (mem) 1 m 0 z m m m m

0 1 0 0 1 R

Note: When the operation is in bytes, dst(word) ← dst (byte) × src (byte).
When the operation is in words, dst (long word) ← dst (word) × src (word).
Match coding of the operand dst with the size of the result.

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change

Execution example: MULS XIX, IY
When the IX register = 1234H and the IY register = 89ABH, execution
multiplies signed the contents of the IX register by those of the IY register
and sets the XIX register to F795FCBCH.

TLCS-900/L1 CPU

2001-08-31CPU900L1-113

Note: RR for the MULS RR,r and MULS RR, (mem) instructions is as listed below:

RR Code R RR Code R

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX XIX 100

IY XIY 101

IZ XIZ 110

SP XSP 111

rr of the MULS rr,# instruction is as listed below.

rr Code r rr Code r

WA 001 XWA 000

BC 011 XBC 001

DE 101 XDE 010

HL 111 XHL 011

IX C7H : F0H XIX 100

IY C7H : F4H XIY 101

IZ C7H : F8H XIZ 110

SP C7H : FCH XSP 111

1st byte 2nd byte

Operation size in bytes

(16 bits ← 8 bits × 8 bits)

Operation size in words

(32 bits ← 16 bits × 16 bits)

Operation size in bytes

(16 bits ← 8 bits × 8 bits)

Operation size in words

(32 bits ← 16 bits × 16 bits)

Specification

not possible!

*1 Any other word registers can be specified in the

same extension coding as those for IX to SP.
*2 Any other long word registers can be specified

in the extension coding.

TLCS-900/L1 CPU

2001-08-31CPU900L1-114

NEG dst
<Negate>

Operation: dst ← 0 − dst

Description: Decrements 0 by the contents of dst and loads the result to dst.
(Twos complement)

Details:
Size Mnemonic Code

Byte Word Long word

× NEG r 1 1 0 z 1 r

0 0 0 0 0 1 1 1

Flags: S Z H V N C
∗ ∗ ∗ ∗ 1 ∗
S = MSB value of the result is set.
Z = 1 is set when the result is 0, otherwise 0.
H = 1 is set when a borrow from bit 3 to bit 4 occurs as a result, otherwise 0.
V = 1 is set when an overflow occurs as a result, otherwise 0.
N = 1 is set.
C = 1 is set when a borrow from the MSB occurs as a result, otherwise 0.

Execution example: NEG IX
When the IX register = 0002H, execution sets the IX register to FFFEH.

IX register0 0 0 2

IX registerF F F E

(Fixed)0 0 0 0

TLCS-900/L1 CPU

2001-08-31CPU900L1-115

NOP
<No Operation>

Operation: None.

Description: Does nothing but moves execution to the next instruction. The object code of this
instruction is 00H.

Details:
Mnemonic Code

NOP 0 0 0 0 0 0 0 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-116

OR dst, src
<Logical OR>

Operation: dst ← dst OR src

Description: Ors the contents of dst with those of src and loads the result to dst.

(Truth table)

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

Details:
Size Mnemonic Code

Byte Word Long word

OR R, r 1 1 z z 1 r

1 1 1 0 0 R

OR r, # 1 1 z z 1 r

1 1 0 0 1 1 1 0

#<7:0>

#<15:8>

#<23:16>

#<31:24>

OR R, (mem) 1 m z z m m m m

1 1 1 0 0 R

OR (mem), R 1 m z z m m m m

1 1 1 0 1 R

× OR<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 1 1 0

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-117

Flags: S Z H V N C
∗ ∗ 0 ∗ 0 0
S = MSB value of the result is set.
Z = 1 is set when the result is 0, otherwise 0.
H = 0 is set.
V = 1 is set when the parity (number of 1s) of the result is even, 0 when odd.

When the operand is 32-bit, an undefined value is set.
N = Cleared to 0.
C = Cleared to 0.

Execution example: OR HL, IX
When the HL register = 7350H and the IX register is 3456H, execution sets
the HL register to 7756H.

0111 0011 0101 0000 ← HL register (before execution)

OR) 0011 0100 0101 0110 ← IX register (before execution)

0111 0111 0101 0110 ← HL register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-118

ORCF num, src
<OR Carry Flag>

Operation: CY ← CY OR src<num>

Description: Ors the contents of the carry flag with those of bit num of src and loads the result
to the carry flag.

Details:
Size Mnemonic Code

Byte Word Long word

× ORCF #4, r 1 1 0 z 1 r

0 0 1 0 0 0 0 1

0 0 0 0 # 4

× ORCF A, r 1 1 0 z 1 r

0 0 1 0 1 0 0 1

× × ORCF #3, (mem) 1 m 1 1 m m m m

1 0 0 0 1 #3

× × ORCF A, (mem) 1 m 1 1 m m m m

0 0 1 0 1 0 0 1

Note: When bit num is specified by the A register, the value of the lower 4 bits of the A
register is used as bit num. When the operand is a byte and the value of the lower
bits of bit num is from 8 to 15, the result is undefined.

Flags: S Z H V N C
− − − − − ∗
S = No change
Z = No change
H = No change
V = No change
N = No change
C = The result of or-ing the contents of the carry flag with those of bit num of src is set.

Execution example: ORCF 6, (100H)
When the contents of memory at address 100H = 01000000B (binary) and
the carry flag = 0, execution sets the carry flag to 1.

7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0 Address 100H

OR 0

1

Carry flag (before execution)

Carry flag (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-119

PAA dst
<Pointer Adjust Accumulator>

Operation: if dst <LSB> = 1 then dst ← dst + 1

Description: Increments dst by 1 when the LSB of dst is 1. Does nothing when the LSB of dst is
0.
Used to make the contents of dst even. With the TLCS-900 series, when accessing
16- or 32-bit data in memory, if the data are loaded from an address starting with
an even number, the number of bus cycles is 1 less than that of the data loaded
from an address starting with an odd number.

Details:
Size Mnemonic Code

Byte Word Long word

× PAA r 1 1 z z 1 r

0 0 0 1 0 1 0 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change

Execution example: PAA XIZ
When the XIZ register = 00234567H, execution increments the XIZ
register by 1 so that it becomes 00234568H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-120

POP dst
<Pop>

Operation: dst ← (XSP+) In bytes : dst ← (XSP), XSP ← XSP + 1
In words : dst ← (XSP), XSP ← XSP + 2
In long words : dst ← (XSP), XSP ← XSP + 4

Description: First loads the contents of memory address specified by the stack pointer XSP to
dst. Then increments the stack pointer XSP by the number of bytes in the
operand.

Details:
Size Mnemonic Code

Byte Word Long word

× × POP F 0 0 0 1 1 0 0 1

× × POP A 0 0 0 1 0 1 0 1

× POP R 0 1 0 s 1 R

POP r 1 1 z z 1 r

0 0 0 0 0 1 0 1

× POP<W> (mem) 1 m 1 1 m m m m

0 0 0 0 0 1 z 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Note: Executing POP F changes all flags.

TLCS-900/L1 CPU

2001-08-31CPU900L1-121

Execution example: POP IX
When the stack pointer XSP = 0100H, the contents of address 100H = 56H,
and the contents of address 101H = 78H, execution sets the IX register to
7856H and the stack pointer XSP to 0102H.

Memory

Address 100H (stack pointer before execution)56

Address 101H
Address 102H (stack pointer after execution)

78 56

IX register

78

TLCS-900/L1 CPU

2001-08-31CPU900L1-122

POP SR
<Pop SR>

Operation: SR ← (XSP+)

Description: Loads the contents of the address specified by the stack pointer XSP to status
register. Then increments the contents of the stack pointer XSP by 2.

Details:
Size Mnemonic Code

Byte Word Long word

× × POP SR 0 0 0 0 0 0 1 1

Flags: S Z H V N C
* * * * * *

S =
Z =
H =
V =
N =
C =

Note1: Please execute this instruction during DI condition.
The timing for executing this instruction is delayed by several states than that for
fetching the instruction. This is because an instruction queue (4 bytes) and
pipeline processing method is used.

Note2: The minimum mode is not supported for 900/L1. Therefor, the SR<MAX> register
must be set to 1 by this instruction.

Contents of the memory address specified by the stack pointer XSP are set.

TLCS-900/L1 CPU

2001-08-31CPU900L1-123

PUSH SR
<Push SR>

Operation: (−XSP) ← SR

Description: Decrements the contents of the stack pointer XSP by 2. Then loads the contents of
status register to the memory address specified by the stack pointer XSP.

Details:
Size Mnemonic Code

Byte Word Long word

× × PUSH SR 0 0 0 0 0 0 1 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-124

PUSH src
<Push>

Operation: (−XSP) ← src In bytes : XSP ← XSP − 1, (XSP) ← src
In words : XSP ← XSP − 2, (XSP) ← src
In long words : XSP ← XSP − 4, (XSP) ← src

Description: Decrements the stack pointer XSP by the byte length of the operand.
Then loads the contents of src to the memory address specified by the stack pointer
XSP.

Details:
Size Mnemonic Code

Byte Word Long word

× × PUSH F 0 0 0 1 1 0 0 0

× × PUSH A 0 0 0 1 0 1 0 0

× PUSH R 0 0 1 s 1 R

PUSH r 1 1 z z 1 r

0 0 0 0 0 1 0 0

× PUSH<W> # 0 0 0 0 1 0 z 1

#<7:0>

#<15:8>

× PUSH<W> (mem) 1 m 0 z m m m m

0 0 0 0 0 1 0 0

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-125

Execution example: PUSH HL
When the stack pointer XSP = 0100H and the HL register = 1234H,
execution changes address 00FEH to 34H, address 00FFH to 12H, and
sets the stack pointer XSP to 00FEH.

Memory

Address 0FEH (stack pointer after execution)34

Address 0FFH
Address 100H (stack pointer before execution)

12 34

HL register

12

TLCS-900/L1 CPU

2001-08-31CPU900L1-126

RCF
<Reset Carry Flag>

Operation: CY ← 0

Description: Resets the carry flag to 0.

Details:
Mnemonic Code

RCF 0 0 0 1 0 0 0 0

Flags: S Z H V N C
− − 0 − 0 0
S = No change
Z = No change
H = Reset to 0.
V = Reset to 0.
N = No change
C = Reset to 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-127

RES num, dst
<Reset>

Operation: dst <num> ← 0

Description: Resets bit num of dst to 0.

Details:
Size Mnemonic Code

Byte Word Long word

× RES #4, r 1 1 0 z 1 r

0 0 1 1 0 0 0 0

0 0 0 0 # 4

× × RES #3, (mem) 1 m 1 1 m m m m

1 0 1 1 0 #3

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: RES 5, (100H)
When the contents of memory at address 100H = 00100111B (binary),
execution sets the contents to 00000111B (binary).

7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 Address 100H

0

Loads

TLCS-900/L1 CPU

2001-08-31CPU900L1-128

RET condition
<Return>

Operation: If cc is true, then the 32-bit PC ← (XSP), XSP ← XSP + 4.

Description: Pops the return address from the stack area to the program counter when the
operand condition is true.

Details:
Mnemonic Code

RET 0 0 0 0 1 1 1 0

RET cc 1 0 1 1 0 0 0 0

1 1 1 1 c c

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: RET
When the stack pointer XSP = 0FCH and the contents of memory at
address 0FCH = 9000H (long word data), execution sets the stack pointer
XSP to 100H and jumps (returns) to address 9000H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-129

RETD num
<Return and Deallocate>

Operation: 32-bit PC ← (XSP), XSP ← XSP + 4, XSP ← XSP + num

Description: Pops the return address from the stack area to the program counter. Then
increments the stack pointer XSP by signed num.

Details:
Mnemonic Code

RETD d16 0 0 0 0 1 1 1 1

d<7:0>

d<15:8>

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: RETD 8
When the stack pointer XSP = 0FCH and the contents of memory at
address 0FCH = 9000H (long word data) in minimum mode, execution sets
the stack pointer XSP to 0FCH + 4 + 8 → 108H and jumps (returns) to
address 9000H.
Usage of the RETD instruction is shown below. In this example, the 8-bit
parameter is pushed to the stack before the subroutine call. After the
subroutine processing complete, the used parameter area is deleted by the
RETD instruction.

PUSH WA
PUSH BC
PUSH XIX
CALL SAMPLE

•

•
•
•
•
•

SAMPLE : •

•
•
•
•

RETD 8

TLCS-900/L1 CPU

2001-08-31CPU900L1-130

RETI
<Return from Interrupt>

Operation: SR ← (XSP), 32-bit PC ← (XSP + 2), XSP ← XSP + 6

After the above operation is executed, the 900/L1 decrement a value of interrupt nesting
counter INTNEST by 1.

Description: Pops data from the stack area to status register and program counter.

After the above operation is executed, the 900/L1 decrement a value of interrupt nesting
counter INTNEST by 1.

Details:
Mnemonic Code

RETI 0 0 0 0 0 1 1 1

Flags: S Z H V N C
* * * * * *

S = The value popped from the stack area is set.
Z = The value popped from the stack area is set.
H = The value popped from the stack area is set.
V = The value popped from the stack area is set.
N = The value popped from the stack area is set.
C = The value popped from the stack area is set.

TLCS-900/L1 CPU

2001-08-31CPU900L1-131

RL num, dst
<Rotate Left>

Operation: {CY & dst ← left rotates the value of CY & dst} Repeat num

Description: Rotates left the contents of the linked carry flag and dst.
Repeats the number of times specified in num.

Description figure:

CY MSB ← LSB

dst

Details:
Size Mnemonic Code

Byte Word Long word

RL #4, r 1 1 z z 1 r

1 1 1 0 1 0 1 0

0 0 0 0 # 4

RL A, r 1 1 z z 1 r

1 1 1 1 1 0 1 0

× RL<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 0 1 0

Note: When the number of rotates is specified by the A register, the value of the lower 4
bits of the A register is used. Specifying 0 rotates 16 times.
When dst is memory, rotating is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after rotate is set.
Z = 1 is set when the contents of dst after rotate is 0, otherwise 0.

H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after rotate, otherwise 0.

If the perand is 32 bits, an undefined value is set.

N = Reset to 0.
C = The value after rotate is set.

Execution example: RL 4, HL
When the HL register = 6230H and the carry flag = 1, execution sets the
HL register to 230BH and the carry flag to 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-132

RLC num, dst
<Rotate Left without Carry>

Operation: {CY ← dst <MSB>, dst ← left rotate value of dst} Repeat num

Description: Loads the contents of the MSB of dst to the carry flag and rotates left the contents
of dst. Repeats the number of times specified in num.

Description figure:

CY MSB ← LSB

dst

Details:
Size Mnemonic Code

Byte Word Long word

RLC #4, r 1 1 z z 1 r

1 1 1 0 1 0 0 0

0 0 0 0 # 4

RLC A, r 1 1 z z 1 r

1 1 1 1 1 0 0 0

× RLC<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 0 0 0

Note: When the number of rotates is specified by the A register, the value of the lower 4
bits of the A register is used. Specifying 0 rotates 16 times.
When dst is memory, rotating is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after rotate is set.
Z = 1 is set when the contents of dst after rotate is 0, otherwise, 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after rotate.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = MSB value of dst before the last rotate is set.

Execution example: RLC 4, HL
When the HL register = 1230H, execution sets the HL register to 2301H
and the carry flag to 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-133

RLD dst1, dst2
<Rotate Left Digit>

Operation: dst1<3:0> ← dst2<7:4>, dst2<7:4> ← dst2<3:0>, dst2<3:0> ← dst1 <3:0>

Description: Rotates left the lower 4 bits of dst1 and the contents of dst2 in units of 4 bits.

Description figure:

7 4 3 0 7 4 3 0

dst1 dst2

Details:
Size Mnemonic Code

Byte Word Long word

× × RLD [A,] (mem) 1 m 0 0 m m m m

0 0 0 0 0 1 1 0

Flags: S Z H V N C
* * 0 * 0 −
S = MSB value of the A register after rotate is set.
Z = 1 is set when the contents of the A register after the rotate are 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of the A register is even after the rotate,

otherwise 0.
N = Reset to 0.
C = No change

Execution example: RLD A, (100H)
When the A register = 12H and the contents of memory at address 100H =
34H, execution sets the A register to 13H and the contents of memory at
address 100H to 42H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-134

RR num, dst
<Rotate Right>

Operation: {CY & dst ← right rotates the value of CY & dst} Repeat num

Description: Rotates right the linked contents of the carry flag and dst.
Repeats the number of times specified in num.

Description figure:

CYMSB → LSB

dst

Details:
Size Mnemonic Code

Byte Word Long word

RR #4, r 1 1 z z 1 r

1 1 1 0 1 0 1 1

0 0 0 0 # 4

RR A, r 1 1 z z 1 r

1 1 1 1 1 0 1 1

× RR<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 0 1 1

Note: When the number of rotates is specified by the A register, the value of the lower 4
bits of the A register is used. Specifying 0 rotates 16 times.
When dst is memory, rotating is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after rotate is set.
Z = 1 is set when the contents of dst after rotate is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after the rotate, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = The value after rotate is set.

Execution example: RR 4, HL
When the HL register = 6230H and the carry flag = 1, execution sets the
HL register to 1623H and the carry flag to 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-135

RRC num, dst
<Rotate Right without Carry>

Operation: {CY ← dst <LSB>, dst ← right rotate value of dst} Repeat num

Description: Loads the contents of the LSB of dst to the carry flag and rotates the contents of
dst to the right. Repeats the number of times specified in num.

Description figure:

CYMSB → LSB

dst

Details:
Size Mnemonic Code

Byte Word Long word

RRC #4, r 1 1 z z 1 r

1 1 1 0 1 0 0 1

0 0 0 0 # 4

RRC A, r 1 1 z z 1 r

1 1 1 1 1 0 0 1

× RRC<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 0 0 1

Note: When the number of rotates num is specified by the A register, the value of the
lower 4 bits of the A register is used as the number of rotates.
Specifying 0 rotates 16 times. When dst is memory, rotating is only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after rotate is set.
Z = 1 is set when the contents of dst after rotate is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after rotate, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = MSB value of dst before the last rotate is set.

Execution example: RRC 4, HL
When the HL register = 1230H, execution sets the HL register to 0123H
and the carry flag to 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-136

RRD dst1, dst2
<Rotate Right Digit>

Operation: dst1<3:0> ← dst2<3:0>, dst2<7:4> ← dst1<3:0>, dst2<3:0> ← dst2<7:4>

Description: Rotates right the lower 4 bits of dst1 and the contents of dst2 in units of 4 bits.

Description figure:

7 4 3 0 7 4 3 0

dst1 dst2

Details:
Size Mnemonic Code

Byte Word Long word

× × RRD [A,](mem) 1 m 0 0 m m m m

0 0 0 0 0 1 1 1

Flags: S Z H V N C
* * 0 * 0 −
S = MSB value of the A register after rotate is set.
Z = 1 is set when the contents of the A register after rotate is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of the A register is even after rotate,

otherwise 0.
N = Reset to 0.
C = No change

Execution example: RRD A, (100H)
When the A register = 12H and the contents of memory at address 100H =
34H, execution sets the A register to 14H and the contents of memory at
address 100H to 23H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-137

SBC dst, src
<Subtract with Carry>

Operation: dst ← dst − src − CY

Description: Subtracts the contents of src and the carry flag from those of dst, and loads the
result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

SBC R, r 1 1 z z 1 r

1 0 1 1 0 R

SBC r, # 1 1 z z 1 r

1 1 0 0 1 0 1 1

#<7:0>

#<15:8>

#<23:16>

#<31:24>

SBC R, (mem) 1 m z z m m m m

1 0 1 1 0 R

SBC (mem), R 1 m z z m m m m

1 0 1 1 1 R

× SBC<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 0 1 1

#<7:0>

#<15:8>

Flags: S Z H V N C
* * * * 1 *

S = MSB value of the result is set.
Z = 1 is set when the result is 0, otherwise 0.
H = 1 is set when a borrow from bit 3 to bit 4 occurs as a result, otherwise 0.

When the operand is 32 bits, an undefined value is set.
V = 1 is set when an overflow occurs as a result, otherwise 0.
N = 1 is set.
C = 1 is set when a borrow from the MSB occurs as a result, otherwise 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-138

Execution example: SBC HL, IX
When the HL register is 7654H, the IX register = 5000H, and the carry flag
= 1, execution sets the HL register to 2653H.

IX register5 0 0 0

Carry flag1

HL register7 6 5 4

2 6 5 3 HL register

TLCS-900/L1 CPU

2001-08-31CPU900L1-139

SCC condition, dst
<Set Condition Code>

Operation: If cc is true, then dst ← 1 else dst ← 0.

Description: Loads 1 to dst when the operand condition is true; when false, 0 is loaded to dst.

Details:
Size Mnemonic Code

Byte Word Long word

× SCC cc, r 1 1 0 z 1 r

0 1 1 1 c c

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: SCC OV, HL
When the contents of the V flag = 1, execution sets the HL register to
0001H.

TLCS-900/L1 CPU

2001-08-31CPU900L1-140

SCF
<Set Carry Flag>

Operation: CY ← 1

Description: Sets the carry flag to 1.

Details:
Mnemonic Code

SCF 0 0 0 1 0 0 0 1

Flags: S Z H V N C
− − 0 − 0 1
S = No change
Z = No change
H = Reset to 0.
V = No change
N = Reset to 0.
C = Set to 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-141

SET num, dst
<Set>

Operation: dst <num> ← 1

Description: Sets bit num of dst to 1.

Details:
Size Mnemonic Code

Byte Word Long word

× SET #4, r 1 1 0 z 1 r

0 0 1 1 0 0 0 1

0 0 0 0 # 4

× × SET #3, (mem) 1 m 1 1 m m m m

1 0 1 1 1 #3

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: SET 5, (100H)
When the contents of memory at address 100H = 00000000B (binary),
execution sets the contents of memory at address 100H to 00100000B
(binary).

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 Address 100H

1

Loads

TLCS-900/L1 CPU

2001-08-31CPU900L1-142

SLA num, dst
<Shift Left Arithmetic>

Operation: {CY ← dst<MSB>, dst ← left shift value of dst, dst<LSB> ← 0} Repeat num

Description: Loads the contents of the MSB of dst to the carry flag, shifts left the contents of dst,
and loads 0 to the LSB of dst. Repeats the number of times specified in num.

Description chart:

CY MSB ← LSB

dst

“0”

Details:
Size Mnemonic Code

Byte Word Long word

SLA #4, r 1 1 z z 1 r

1 1 1 0 1 1 0 0

0 0 0 0 # 4

SLA A, r 1 1 z z 1 r

1 1 1 1 1 1 0 0

× SLA<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 1 0 0

Note: When the number of shifts, num, is specified by the A register, the value of the
lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is
memory, shifting is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after shift is set.
Z = 1 is set when the contents of dst after shift is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after shifting, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = MSB value of dst before the last shift is set.

Execution example: SLA 4, HL
When the HL register = 1234H, execution sets the HL register to 2340H
and the carry flag to 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-143

SLL num, dst
<Shift Left Logical>

Operation: {CY ← dst<MSB>, dst ← left shift value of dst, dst<LSB> ← 0} Repeat num

Description: Loads the contents of the MSB of dst to the carry flag, shifts left the contents of dst,
and loads 0 to the MSB of dst. Repeats the number of times specified in num.

Description chart:

CY MSB ← LSB

dst

“0”

Details:
Size Mnemonic Code

Byte Word Long word

SLL #4, r 1 1 z z 1 r

1 1 1 0 1 1 1 0

0 0 0 0 # 4

SLL A, r 1 1 z z 1 r

1 1 1 1 1 1 1 0

× SLL<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 1 1 0

Note: When the number of shifts, num, is specified by the A register, the value of the
lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is
memory, shifting is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after shift is set.
Z = 1 is set when the contents of dst after shift is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after shifting, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = MSB value of dst before the last shift is set.

Execution example: SLL 4, HL
When the HL register = 1234H, execution sets the HL register to 2340H
and the carry flag to 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-144

SRA num, dst
<Shift Right Arithmetic>

Operation: {CY ← dst<MSB>, dst ← right shift value of dst, dst <MSB> is fixed} Repeatnum

Description: Loads the contents of the LSB of dst to the carry flag and shifts right the contents
of dst (MSB is fixed). Repeats the number of times specified in num.

Description chart:

CY→ LSB

dst

MSB

Details:
Size Mnemonic Code

Byte Word Long word

SRA #4, r 1 1 z z 1 r

1 1 1 0 1 1 0 0

0 0 0 0 # 4

SRA A, r 1 1 z z 1 r

1 1 1 1 1 1 0 1

× SRA<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 1 0 1

Note: When the number of shifts, num, is specified by the A register, the value of the
lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is
memory, shifting is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after shift is set.
Z = 1 is set when the contents of dst after shift is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after shift, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = LSB value of dst before the last shift is set.

Execution example: SRA 4, HL
When the HL register = 8230H, execution sets the HL register to F823H
and the carry flag to 0.

TLCS-900/L1 CPU

2001-08-31CPU900L1-145

SRL num, dst
<Shift Right Logical>

Operation: {CY ← dst<LSB>, dst ← right shift value of dst, dst <MSB> ← 0} Repeat num

Description: Loads the contents of the LSB of dst to the carry flag, shifts right the contents of
dst, and loads 0 to the MSB of dst. Repeats the number of times specified in num.

Description chart:

CYMSB → LSB

dst

“0”

Details:
Size Mnemonic Code

Byte Word Long word

SRL #4, r 1 1 z z 1 r

1 1 1 0 1 1 1 1

0 0 0 0 # 4

SRL A, r 1 1 z z 1 r

1 1 1 1 1 1 1 1

× SRL<W> (mem) 1 m 0 z m m m m

0 1 1 1 1 1 1 1

Note: When the number of shifts, num, is specified by the A register, the value of the
lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is
memory, shifting is performed only once.

Flags: S Z H V N C
* * 0 * 0 *

S = MSB value of dst after shift is set.
Z = 1 is set when the contents of dst after shift is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even after shift, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Reset to 0.
C = LSB value of dst before the last shift is set.

Execution example: SRL 4, HL
When the HL register = 1238H, execution sets the HL register to 0123H
and the carry flag to 1.

TLCS-900/L1 CPU

2001-08-31CPU900L1-146

STCF num, dst
<Store Carry Flag>

Operation: dst<num> ← CY

Description: Loads the contents of the carry flag to bit num of dst.

Details:
Size Mnemonic Code

Byte Word Long word

× STCF #4, r 1 1 0 z 1 r

0 0 1 0 0 1 0 0

0 0 0 0 # 4

× STCF A, r 1 1 0 z 1 r

0 0 1 0 1 1 0 0

× × STCF #3, (mem) 1 m 1 1 m m m m

1 0 1 0 0 #3

× × STCF A, (mem) 1 m 1 1 m m m m

0 0 1 0 1 1 0 0

Note: When bit num is specified by the A register, the value of the lower 4 bits of the A
register is used. When the operand is a byte and the value of the lower 4 bits of bit
num is from 8 to 15, the operand value does not change.

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: STCF 5, (100H)
When the contents of memory at address 100H = 00H and the carry flag =
1, execution sets the contents of memory at address 100H to 00100000B
(binary).

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 Address 100H

1 Carry flag

TLCS-900/L1 CPU

2001-08-31CPU900L1-147

SUB dst, src
<Subtract>

Operation: dst ← dst − src

Description: Subtracts the contents of src from those of dst and loads the result to dst.

Details:
Size Mnemonic Code

Byte Word Long word

SUB R, r 1 1 z z 1 r

1 0 1 0 0 R

SUB r, # 1 1 z z 1 r

1 1 0 0 1 0 1 0

#<7:0>

#<15:8>

#<23:16>

#<31:24>

SUB R, (mem) 1 m z z m m m m

1 0 1 0 0 R

SUB (mem), R 1 m z z m m m m

1 0 1 0 1 R

× SUB<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 0 1 0

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-148

Flags: S Z H V N C
* * * * 1 *

S = MSB value of the result is set.
Z = 1 is set when the result is 0, otherwise 0.
H = 1 is set when a borrow from bit 3 to bit 4 occurs as a result, otherwise 0.

When the operand is 32 bits, an undefined value is set.
V = 1 is set when an overflow occurs as a result, otherwise 0.
N = 1 is set.
C = 1 is set when a borrow from MSB occurs as a result, otherwise 0.

Execution example: SUB HL, IX
When the HL register = 7654H and the IX register = 5000H, execution sets
the HL register to 2654H.

IX register5 0 0 0

HL register7 6 5 4

2 6 5 4 HL register

TLCS-900/L1 CPU

2001-08-31CPU900L1-149

SWI num
<Software Interrupt>

Operation: 1) XSP ← XSP − 6
2) (XSP) ← SR
3) (XSP + 2) ← 32 bit PC
4) PC ← (Address refer to vector + num × 4)
Note: Address refer to vector is defined for each product.

Description: Saves to the stack area the contents of the status register and contents of the
program counter which indicate the address next to the SWI instruction. Finally,
jumps to vector is indicated address refer to vector.

Details:
Size Mnemonic Code

SWI [#3] 1 1 1 1 1 #3

Note 1: A value from 0 to 7 can be specified as the operand value. When the
operand coding is omitted, SWI 7 is assumed.

Note 2: The status register structure is as shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SYSM IFF2 IFF1 IFF0 MAX RFP2 RFP1 RFP0 S Z 0 H 0 V N C

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

TLCS-900/L1 CPU

2001-08-31CPU900L1-150

Execution example: SWI 5
When the stack pointer XSP = 100H, the status register = 8800H,
executing the above instruction at memory address 8400H writes the
contents of the previous status register 8800H in memory address 00FAH,
and the contents of the program counter 00008401H in memory address
00FCH, then jumps to address FFFF20H.

memory
88 00

00

88

01

84

00

00

00 00 84 01
(next address)
PC

(value before
 execution)

SR

0FAH(XSP after execution)

0FBH

0FCH

0FDH

0FEH

0FFH

100H(XSP before execution)

F F F F 0 0 (Fixed)

(num × 4H)

PC(after execution)F F F F 2 0

5 × 4 H

TLCS-900/L1 CPU

2001-08-31CPU900L1-151

TSET num, dst
<Test and Set>

Operation: Z flag ← inverted value of dst <num>
dst <num> ← 1

Description: Loads the inverted value of the bit num of dst to the Z flag.
Then the bit num of dst is set to 1.

Details:
Size Mnemonic Code

Byte Word Long word

× TSET #4, r 1 1 z z 1 r

0 0 1 1 0 1 0 0

0 0 0 0 # 4

× × TSET #3, (mem) 1 m 1 1 m m m m

1 0 1 0 1 #3

Flags: S Z H V N C
× * 1 × 0 −
S = An undefined value is set.
Z = The inverted value of the src <num> is set.
H = Set to 1
V = An undefined value is set.
N = Set to 0
C = No change

Execution example: When the contents of memory at address 100H = 00100000B (binary),
TSET 3, (100H) execution sets the Z flag to 1, the contents of memory at
address 100H = 00101000B (binary).

7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0

address 100H(before execution)

1 Z flag

address 100H(after execution)

Inverted

TLCS-900/L1 CPU

2001-08-31CPU900L1-152

UNLK dst
<Unlink>

Operation: XSP ← dst, dst ← (XSP+)

Description: Loads the contents of dst to the stack pointer XSP, then pops long word data from
the stack area to dst. Used paired with the Link instruction.

Details:
Size Mnemonic Code

Byte Word Long word

× × UNLK r 1 1 1 0 1 r

0 0 0 0 1 1 0 1

Flags: S Z H V N C
− − − − − −
S = No change
Z = No change
H = No change
V = No change
N = No change
C = No change

Execution example: UNLK XIZ
As a result of executing this instruction after executing the Link
instruction, the stack pointer XSP and the XIZ register revert to the same
values they had before the Link instruction was executed. (For details of
the Link instruction, see page 101)

TLCS-900/L1 CPU

2001-08-31CPU900L1-153

XOR dst, src
<Exclusive OR>

Operation: dst ← dst XOR src

Description: Exclusive ors the contents of dst with those of src and loads the result to dst.

(Truth table)

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Details:
Size Mnemonic Code

Byte Word Long word

XOR R, r 1 1 z z 1 r

1 1 0 1 0 R

XOR r, # 1 1 z z 1 r

1 1 0 0 1 1 0 1

#<7:0>

#<15:8>

#<23:16>

#<31:24>

XOR R, (mem) 1 m z z m m m m

1 1 0 1 0 R

XOR (mem), R 1 m z z m m m m

1 1 0 1 1 R

× XOR<W> (mem), # 1 m 0 z m m m m

0 0 1 1 1 1 0 1

#<7:0>

#<15:8>

TLCS-900/L1 CPU

2001-08-31CPU900L1-154

Flags: S Z H V N C
* * 0 * 0 0
S = MSB value of the result is set.
Z = 1 is set when the result is 0, otherwise 0.
H = Reset to 0.
V = 1 is set when the parity (number of 1s) of dst is even as a result, otherwise 0.

If the operand is 32 bits, an undefined value is set.
N = Cleared to 0.
C = Cleared to 0.

Execution example: XOR HL, IX
When the HL register = 7350H and the IX register = 3456H, execution sets
the HL register to 4706H.

0111 0011 0101 0000 ← HL register (before execution)

XOR) 0011 0100 0101 0110 ← IX register (before execution)

0100 0111 0000 0110 ← HL register (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-155

XORCF num, src
<Exclusive OR Carry Flag>

Operation: CY ← CY XOR src<num>

Description: Exclusive ors the contents of the carry flag and bit num of src, and loads the result
to the carry flag.

Details:
Size Mnemonic Code

Byte Word Long word

× XORCF #4, r 1 1 0 z 1 r

0 0 1 0 0 0 1 0

0 0 0 0 # 4

× XORCF A, r 1 1 0 z 1 r

0 0 1 0 1 0 1 0

× × XORCF #3, (mem) 1 m 1 1 m m m m

1 0 0 1 0 #3

× × XORCF A, (mem) 1 m 1 1 m m m m

0 0 1 0 1 0 1 0

Note: When bit num is specified by the A register, the value of the lower 4 bits of the A
register is used. When the operand is a byte and the value of the lower 4 bits of bit
num is from 8 to 15, the result is undefined.

Flags: S Z H V N C
− − − − − *

S = No change
Z = No change
H = No change
V = No change
N = No change
C = The value obtained by exclusive or-ing the contents of the carry flag with

those of bit num of src is set.

Execution example: XORCF 6, (100H)
When the contents of memory at address 100H = 01000000B (binary) and
the carry flag = 1, execution sets the carry flag to 0.

7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0 Address 100H

XOR 1

0

Carry flag (before execution)

Carry flag (after execution)

TLCS-900/L1 CPU

2001-08-31CPU900L1-156

ZCF
<Zero flag to Carry Flag>

Operation: CY ← inverted value of Z flag

Description: Loads the inverted value of the Z flag to the carry flag.

Details:
Mnemonic Code

ZCF 0 0 0 1 0 0 1 1

Flags: S Z H V N C
− − × − 0 *

S = No change
Z = No change
H = An undefined value is set.
V = No change
N = Reset to 0.
C = The inverted value of the Z flag is set.

Execution example: ZCF
When the Z flag = 0, execution sets the carry flag to 1.

1

0 Z flag

Inverted

Carry flag

TLCS-900/L1 CPU

2001-08-31CPU900L1-157

Appendix B Instruction Lists

• Explanation of symbols used in this document

1. Size

B

W

L

The operand size is in bytes (8 bits)

The operand size is in word (16 bits)

The operand size is in long word (32 bits)

2. Mnemonic

R

r

cr

A

F

F’

SR

PC

(mem)

mem

<W>

[]

#

#3

#4

d8

d16

cc

(#8)

(#16)

$

Eight general-purpose registers including 8/16/32-bit current bank registers.

8 bit register: W, A, B, C, D, E, H, L

16 bit register: WA, BC, DE, HL, IX, IY, IZ, SP

32 bit register: XWA, XBC, XDE, XHL, XIX, XIY, XIZ, XSP

8/16/32-bit registers

All 8/16/32-bit CPU control registers

DMAS0 to 3, DMAD0 to 3, DMAC0 to 3, DMAM0 to 3, INTNEST

A register (8 bits)

Flag registers (8 bits)

Inverse flag registers (8 bits)

Status registers (16 bits)

Program Counter (in minimum mode,16 bits; in maximum mode, 32 bits)

8/16/32-bit memory data

Effective address value

When the operand size is a word, W must be specified.

Operands enclosed in square brackets can be omitted.

8/16/32-bit immediate data.

3-bit immediate data: 0 to 7 or 1 to 8 • • • • • • for abbreviated codes.

4-bit immediate data: 0 to 15 or 1 to 16

8-bit displacement: −80H to + 7FH

16-bit displacement: −8000H to + 7FFFH

Condition code

Direct addressing : (00H) to (0FFH) • • • 256-byte area

64K-byte area addressing : (0000H) to (0FFFFH)

A start address of the instruction is located

TLCS-900/L1 CPU

2001-08-31CPU900L1-158

3. Code

Z

ZZ

The code crepresent the operand sizes.

byte (8 bit) = 0

word (16 bit) = 2

long word (32 bit) = 4

The code represent the operand sizes.

byte (8 bit) = 00H

word (16 bit) = 10H

long word (32 bit) = 20H

4. Flag (SZHVNC)


*

0

1

P

V

X

Flag doesn’t change.

Flag changes by executing instruction.

Flag is cleared to 0.

Flag is set to 1.

Flag changes by executing instruction (It works as parity flag).

Flag changes by executing instruction (It works as overflow flag).

An undefined value is set in flag.

5. Instruction length

Instruction length is represented in byte unit.

+#

+M

+#M

adds immediate data length.

adds addressing code length.

adds immediate data length and addressing code length.

6. State

Execution processing time of instruction are shown in order of 8 bit, 16 bit, 32 bit processing
in status unit.

1 state = 2 × 1/fFPH

TLCS-900/L1 CPU

2001-08-31CPU900L1-159

• 900/L1 Instruction Lists (1/10)

(1) Load

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

BWL

BWL

BWL

BWL

BWL

BWL

BWL

LD R, r

LD r, R

LD r, #3

LD R, #

LD r, #

LD R, (mem)

LD (mem), R

C8 + zz + r : 88 + R

C8 + zz + r : 98 + R

C8 + zz + r : A8 + #3

20 + zz + R : #

C8 + zz + r : 03 : #

80 + zz + mem : 20 + R

B0 + mem : 40 + zz + R

R ← r

r ← R

r ← #3

R ← #

r ← #

R ← (mem)

(mem) ← R

− − − − −−
− − − − −−
− − − − −−
− − − − −−
− − − − −−
− − − − −−
− − − − −−

2

2

2

1 + #

2 + #

2 + M

2 + M

2. 2. 2

2. 2. 2

2. 2. 2

2. 3. 5

3. 4. 6

4. 4. 6

4. 4. 6

LD

BW−
BW−
BW−
BW−

LD<W> (#8) , #

LD<W> (mem), #

LD<W> (#16), (mem)

LD<W> (mem), (#16)

08 + z : #8 : #

B0 + mem : 00 + z : #

80 + zz + mem : 19 : #16

B0 + mem : 14 + z : #16

(#8) ← #

(mem) ← #

(#16) ← (mem)

(mem) ← (#16)

− − − − −−
− − − − −−
− − − − −−
− − − − −−

2 + #

2 + M#

4 + M

4 + M

5. 6. −
5. 6. −
8. 8. −
8. 8. −

 PUSH B−−
B−−
−WL

BWL

BW−
BW−

PUSH F

PUSH A

PUSH R

PUSH r

PUSH<W> #

PUSH<W> (mem)

18

14

18 + zz + R

C8 + zz + r : 04

09 + z : #

80 + zz + mem : 04

(−XSP) ← F

(−XSP) ← A

(−XSP) ← R

(−XSP) ← r

(−XSP) ← #

(−XSP) ← (mem)

− − − − −−
− − − − −−
− − − − −−
− − − − −−
− − − − −−
− − − − −−

1

1

1

2

1 + #

2 + M

3. −. −
3. −. −
−. 3. 5

4. 4. 6

4. 5. −
6. 6. −

 POP B−−
B−−
−WL

BWL

BW−

POP F

POP A

POP R

POP r

POP<W>(mem)

19

15

38 + zz + R

C8 + zz + r : 05

B0 + em : 04 + z

F ← (XSP+)

A ← (XSP+)

R ← (XSP+)

r ← (XSP+)

(mem) ← (XSP+)

* * * * * *

− − − − −−
− − − − −−
− − − − −−
− − − − −−

1

1

1

2

2 + M

4. −. −
4. −. −
−. 4. 6

5. 5. 7

7. 7. −
 LDA −WL LDA R, mem B0 + mem : 10 + zz + R R ← mem − − − − −− 2 + M −. 4. 4

 LDAR −WL LDAR R, $ + 4 + d16 F3:13:d16 : 20 + zz + R R ← PC + d16 − − − − −− 5 −. 7. 7

(2) Exchange

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

 EX B−−
BW−
BW−

EX F, F’

EX R, r

EX (mem), R

16

C8 + zz + r : B8 + R

80 + zz + mem : 30 + R

F ↔ F’

R ↔ r

(mem) ↔ R

* * * * * *

− − − − −−
− − − − −−

1

2

2 + M

2. −. −
3. 3. −
6. 6. −

 MIRR −W− MIRR r D8 + r : 16 r<0:MSB> ← r<MSB : 0> − − − − −− 2 −. 3. −

TLCS-900/L1 CPU

2001-08-31CPU900L1-160

• 900/L1 Instruction Lists (2/10)

(3) Load/Increment/Decrement & Compare Increment/Decrement Size

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

BW− LDI<W>

 [(XDE+), (XHL+)]

83 + zz : 10 (XDE+) ← (XHL+)

 BC ← BC − 1

−−0 0− 2 8. 8. −

BW− LDI<W>

 (XIX+), (XIY+)

85 + zz : 10 (XIX+) ← (XIY+)

 BC ← BC − 1

−−0 0− 2 8. 8. −

BW− LDIR<W>

 [(XDE+), (XHL+)]

83 + zz : 11 repeat

 (XDE+) ← (XHL+)

 BC ← BC − 1

until BC = 0

− − 0 0 0 − 2 7n + 1

BW− LDIR<W>

 (XIX+), (XIY+)

85 + zz : 11 repeat

 (XIX+) ← (XIY+)

 BC ← BC − 1

until BC = 0

− − 0 0 0 − 2 7n + 1

BW− LDD<W>

 [(XDE−), (XHL−)]

83 + zz : 12 (XDE−) ← (XHL−)

 BC ← BC − 1

−−0 0− 2 8. 8. −

BW− LDD<W>

 (XIX−), (XIY-)

85 + zz : 12 (XIX−) ← (XIY−)

 BC ← BC − 1

−−0 0− 2 8. 8. −

BW− LDDR<W>

 [(XDE-), (XHL-)]

83 + zz : 13 repeat

 (XDE−) ← (XHL−)

 BC ← BC − 1

until BC = 0

− − 0 0 0 − 2 7n + 1

LDxx

BW− LDDR<W>

 (XIX−), (XIY−)

85 + zz : 13 repeat

 (XIX−) ← (XIY−)

 BC ← BC − 1

until BC = 0

− − 0 0 0 − 2 7n + 1

BW− CPI [A/WA, (R+)] 80 + zz + R : 14 A/WA − (R+)

BC ← BC − 1

* * 1− 2 6. 6. −

BW− CPIR [A/WA, (R+)] 80 + zz + R : 15 repeat

 A/WA − (R+)

 BC ← BC − 1

until A/WA = (R)

 or BC=0

* * 1− 2 6n + 1

BW− CPD [A/WA, (R−)] 80 + zz + R : 16 A/WA − (R−)

BC ← BC − 1

* * 1− 2 6. 6. −
CPxx

BW− CPDR [A/WA, (R−)] 80 + zz + R : 17 repeat

 A/WA − (R−)

 BC ← BC − 1

until A/WA = (R)

 or BC = 0

* * 1− 2 6n + 1

Note 1: ➀; If BC = 0 after execution, the P/V flag is set to 0, otherwise 1.

➁; If A/WA = (R), the Z flag is set to 1, otherwise, 0 is set.

Note 2: When the operand is omitted in the CPI, CPIR, CPD, or CPDR instruction, A, (XHL+/−) is used as
the default value.

TLCS-900/L1 CPU

2001-08-31CPU900L1-161

• 900/L1 Instruction Lists (3/10)

(4) Arithmetic Operations

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

ADD

BWL

BWL

BWL

BWL

BW−

ADD R, r

ADD r, #

ADD R, (mem)

ADD (mem), R

ADD<W> (mem), #

C8 + zz + r : 80 + R

C8 + zz + r : C8 : #

80 + zz + mem : 80 + R

80 + zz + mem : 88 + R

80 + zz + mem : 38 : #

R ← R + r

r ← r + #

R ← R + (mem)

(mem) ← (mem) + R

(mem) ← (mem) + #

* * *V0*

* * *V0*

* * *V0*

* * *V0*

* * *V0*

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −

ADC

BWL

BWL

BWL

BWL

BW−

ADC R, r

ADC r, #

ADC R, (mem)

ADC (mem), R

ADC<W> (mem), #

C8 + zz + r : 90 + R

C8 + zz + r : C9 : #

80 + zz + mem : 90 + R

80 + zz + mem : 98 + R

80 + zz + mem : 39 : #

R ← R + r + CY

r ← r + # + CY

R ← R + (mem) + CY

(mem) ← (mem) + R + CY

(mem) ← (mem) + # + CY

* * *V0*

* * *V0*

* * *V0*

* * *V0*

* * *V0*

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −

SUB

BWL

BWL

BWL

BWL

BW−

SUB R, r

SUB r, #

SUB R, (mem)

SUB (mem), R

SUB<W> (mem), #

C8 + zz + r : A0 + R

C8 + zz +r : CA : #

80 + zz + mem : A0 + R

80 + zz + mem : A8 + R

80 + zz + mem : 3A : #

R ← R − r

r ← r − #

R ← R − (mem)

(mem) ← (mem) − R

(mem) ← (mem) − #

* * *V1*

* * *V1*

* * *V1*

* * *V1*

* * *V1*

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −

SBC

BWL

BWL

BWL

BWL

BW−

SBC R, r

SBC r, #

SBC R, (mem)

SBC (mem), R

SBC<W> (mem), #

C8 + zz + r : B0 + R

C8 + zz + r : CB : #

80 + zz + mem : B0 + R

80 + zz + mem : B8 + R

80 + zz + mem : 3B : #

R ← R − r − CY

r ← r − # − CY

R ← R − (mem) − CY

(mem) ← (mem) − R − CY

(mem) ← (mem) − # − CY

* * *V1*

* * *V1*

* * *V1*

* * *V1*

* * *V1*

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −

CP

BWL

BW−
BWL

BWL

BWL

BW−

CP R, r

CP r, #3

CP r, #

CP R, (mem)

CP (mem), R

CP<W> (mem), #

C8 + zz + r : F0 + R

C8 + zz + r : D8 + #3

C8 + zz + r : CF : #

80 + zz + mem : F0 + R

80 + zz + mem : F8 + R

80 + zz + mem : 3F : #

R − r

r − #3

r − #

R − (mem)

(mem) − R

(mem) − #

* * *V1*

* * *V1*

* * *V1*

* * *V1*

* * *V1*

* * *V1*

2

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 2. 2. −
 3. 4. 6

 4. 4. 6

 4. 4. 6

 5. 6. −

INC

B−−
−WL

BW−

INC #3, r

INC #3, r

INC<W> #3, (mem)

C8 + r : 60 + #3

C8 + zz + r : 60 + #3

80 + zz + mem : 60 + #3

r ← r + #3

r ← r + #3

(mem) ← (mem) + #3

** *V0−
− − − − −−
** *V0−

2

2

2 + M

 2. −. −
 −. 2. 2

 6. 6. −

DEC

B−−
−WL

BW−

DEC #3, r

DEC #3, r

DEC<W> #3, (mem)

C8 + r : 68 + #3

C8 + zz + r : 68 + #3

80 + zz + mem : 68 + #3

r ← r − #3

r ← r − #3

(mem) ← (mem) − #3

** *V1−
− − − − −−
** *V1−

2

2

2 + M

 2. −. −
 −. 2. 2

 6. 6. −
NEG BW− NEG r C8 + zz + r : 07 r ← 0 − r * * *V1* 2 2. 2. −
EXTZ −WL EXTZ r C8 + zz + r : 12 r<high> ← 0 − − − − −− 2 −. 3. 3

EXTS −WL EXTS r C8 + zz + r : 13 r<high> ← r<low. MSB> − − − − −− 2 −. 3. 3

DAA
B−− DAA r C8 + r : 10 Decimal adjustment after

addition or subtraction

* * *P − * 2 4. −. −

PAA −WL PAA r C8 + zz + r : 14 if r<0> = 1 then INC r − − − − −− 2 −. 4. 4

Note 1: With the INC/DEC instruction, when the code value of #3 = 0, functions as +8/−8.

Note 2: When the ADD R, r (word type) instruction is used in the TLCS-90, the S, Z, and V flags do
not change. In the TLCS-900, these flags change.

TLCS-900/L1 CPU

2001-08-31CPU900L1-162

• 900/L1 Instruction Lists (4/10)

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

MUL

BW−
BW−
BW−

MUL RR, r

MUL rr, #

MUL RR, (mem)

C8 + zz + r : 40 + R

C8 + zz + r : 08 : #

80 + zz + mem: 40 + R

RR ← R × r

rr ← r × #

RR ← R × (mem)

− − − − −−
− − − − −−
− − − − −−

2

2 + #

2 + M

11.14. −
12.15. −
13.16. −

MULS

BW−
BW−
BW−

MULS RR, r

MULS rr, #

MULS RR, (mem)

C8 + zz + r : 48 + R

C8 + zz + r : 09 : #

80 + zz + mem : 48 + R

RR ← R × r ;signed

rr ← r × # ;signed

RR ←R × (mem);signed

− − − − −−
− − − − −−
− − − − −−

2

2 + #

2 + M

 9.12. −
10.13. −
11.14. −

DIV
BW−
BW−
BW−

DIV RR, r

DIV rr, #

DIV RR, (mem)

C8 + zz + r : 50 + R

C8 + zz + r : 0A : #

80 + zz + mem : 50 + R

R ← RR ÷ r

r ← rr ÷ #

R ← RR ÷ (mem)

−−−V−−
−−−V−−
−−−V−−

2

2 + #

2 + M

15.23. −
15.23. −
16.24. −

DIVS

BW−
BW−
BW−

DIVS RR, r

DIVS rr, #

DIVS RR, (mem)

C8 + zz + r : 58 + R

C8 + zz + r : 0B : #

80 + zz + mem : 58 + R

R ← RR ÷ r ;signed

r ← rr ÷ # ;signed

R ← RR ÷ (mem);signed

−−−V−−
−−−V−−
−−−V−−

2

2 + #

2 + M

18.26. −
18.26. −
19.27. −

MULA

−W− MULA rr D8 + r : 19 Multiply and add signed

rr ← rr + (XDE) × (XHL)

32 bit 32 bit 16 bit 16 bit

XHL ← XHL−2

* * − V − − 2 −.19. −

−W− MINC1 #, r

(# = 2**n)

(1< = n< = 15)

D8 + r : 38 : # − 1 modulo increment ;+1

 if (r mod #) = (# − 1)

 then r ← r − (# − 1)

 else r ← r + 1

− − − − −− 4 −. 5. −

−W− MINC2 #, r

(# = 2**n)

(2< = n< = 15)

D8 + r : 39 : # − 2 modulo increment ;+2

 if (r mod #) = (# − 2)

 then r ← r − (# − 2)

 else r ← r + 2

− − − − −− 4 −. 5. −

MINC

−W− MINC4 #, r

(# = 2**n)

(3< = n< = 15)

D8 + r : 3A : # − 4 modulo increment ;+4

 if (r mod #) = (# − 4)

 then r ← r − (# − 4)

 else r ← r + 4

− − − − −− 4 −. 5. −

−W− MDEC1 #, r

(# = 2**n)

(1< = n< = 15)

D8 + r : 3C : # − 1 modulo decrement ;−1

 if (r mod #) = 0

 then r ← r + (# − 1)

 else r ← r − 1

− − − − −− 4 −. 4. −

−W− MDEC2 #, r

(# = 2**n)

(2< = n< = 15)

D8 + r : 3D : # − 2 modulo decrement ;−2

 if (r mod #) = 0

 then r ← r + (# − 2)

 else r ← r − 2

− − − − −− 4 −. 4. −

MDEC

−W− MDEC4 #, r

(# = 2**n)

(3< = n< = 15)

D8 + r : 3E : # − 4 modulo decrement ;−4

 if (r mod #) = 0

 then r ← r + (# − 4)

 else r ← r − 4

− − − − −− 4 −. 4. −

Note: Operand RR of the MUL, MULS, DIV, and DIVS instructions indicates that a register twice the size
of the operation is specified. When the operation is in bytes (8 bits × 8 bits, 16/8 bits), word register
(16 bits) is specified; when the operation is in words (16 bits × 16 bits, 32/16 bits), long word register
(32 bits) is specified.

TLCS-900/L1 CPU

2001-08-31CPU900L1-163

• 900/L1 Instruction Lists (5/10)

(5) Logical operations

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

AND

BWL

BWL

BWL

BWL

BW−

AND R, r

AND r, #

AND R, (mem)

AND (mem), R

AND<w> (mem), #

C8 + zz + r : C0 + R

C8 + zz + r : CC : #

80 + zz + mem : C0 + R

80 + zz + mem : C8 + R

80 + zz + mem : 3C : #

R ← R and r

r ← r and #

R ← R and (mem)

(mem) ← (mem) and R

(mem) ← (mem) and #

* *1P00

* *1P00

* *1P00

* *1P00

* *1P00

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −

OR

BWL

BWL

BWL

BWL

BW−

OR R, r

OR r, #

OR R, (mem)

OR (mem), R

OR<W> (mem), #

C8 + zz + r : E0 + R

C8 + zz + r : CE : #

80 + zz + mem : E0 + R

80 + zz + mem : E8 + R

80 + zz + mem : 3E : #

R ← R or r

r ← r or #

R ← R or (mem)

(mem) ← (mem) or R

(mem) ← (mem) or #

* *0P00

* *0P00

* *0P00

* *0P00

* *0P00

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −

XOR

BWL

BWL

BWL

BWL

BW−

XOR R, r

XOR r, #

XOR R, (mem)

XOR (mem), R

XOR<W> (mem), #

C8 + zz + r : D0 + R

C8 + zz + r : CD : #

80 + zz + mem : D0 + R

80 + zz + mem : D8 + R

80 + zz + mem : 3D : #

R ← R xor r

r ← r xor #

R ← R xor (mem)

(mem) ← (mem) xor R

(mem) ← (mem) xor #

* *0P00

* *0P00

* *0P00

* *0P00

* *0P00

2

2 + #

2 + M

2 + M

2 + M#

 2. 2. 2

 3. 4. 6

 4. 4. 6

 6. 6. 10

 7. 8. −
CPL BW− CPL r C8 + zz + r : 06 r ← not r −−1−1− 2 2. 2. −

TLCS-900/L1 CPU

2001-08-31CPU900L1-164

• 900/L1 Instruction Lists (6/10)

(6) Bit operations

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

LDCF

BW−
BW−
B−−
B−−

LDCF #4, r

LDCF A , r

LDCF #3, (mem)

LDCF A , (mem)

C8 + zz + r : 23 : #4

C8 + zz + r : 2B

B0 + men : 98 + #3

B0 + men : 2B

CY ← r<#4>

CY ← r<A>

CY ← (mem)<#3>

CY ← (mem)<A>

−−−−−*

−−−−−*

−−−−−*

−−−−−*

3

2

2 + M

2 + M

 3.3.−
 3.3.−
 6.−.−
 6.−.−

STCF

BW−
BW−
B−−
B−−

STCF #4, r

STCF A , r

STCF #3, (mem)

STCF A , (mem)

C8 + zz + r : 24 : #4

C8 + zz + r : 2C

B0 + mem : A0 + #3

B0 + mem : 2C

r<#4> ← CY

r<A> ← CY

(mem)<#3> ← CY

(mem)<A> ← CY

−−−−−−
−−−−−−
−−−−−−
−−−−−−

3

2

2 + M

2 + M

 3.3.−
 3.3.−
 7.−.−
 7.−.−

ANDCF

BW−
BW−
B−−
B−−

ANDCF #4, r

ANDCF A , r

ANDCF #3, (mem)

ANDCF A , (mem)

C8 + zz + r : 20 : #4

C8 + zz + r : 28

B0 + mem : 80 + #3

B0 + mem : 28

CY ← CY and r<#4>

CY ← CY and r<A>

CY ← CY and (mem)<#3>

CY ← CY and (mem)<A>

−−−−−*

−−−−−*

−−−−−*

−−−−−*

3

2

2 + M

2 + M

 3.3.−
 3.3.−
 6.−.−
 6.−.−

ORCF

BW−
BW−
B−−
B−−

ORCF #4, r

ORCF A , r

ORCF #3, (mem)

ORCF A , (mem)

C8 + zz + r : 21 : #4

C8 + zz + r : 29

B0 + mem : 88 + #3

B0 + mem : 29

CY ← CY or r<#4>

CY ← CY or r<A>

CY ← CY or (mem)<#3>

CY ← CY or (mem)<A>

−−−−−*

−−−−−*

−−−−−*

−−−−−*

3

2

2 + M

2 + M

 3.3.−
 3.3.−
 6.−.−
 6.−.−

XORCF

BW−
BW−
B−−
B−−

XORCF #4, r

XORCF A , r

XORCF #3, (mem)

XORCF A , (mem)

C8 + zz + r : 22 : #4

C8 + zz + r : 2A

B0 + mem : 90 + #3

B0 + mem : 2A

CY ← CY xor r<#4>

CY ← CY xor r<A>

CY ← CY xor (mem)<#3>

CY ← CY xor (mem)<A>

−−−−−*

−−−−−*

−−−−−*

−−−−−*

3

2

2 + M

2 + M

 3.3.−
 3.3.−
 6.−.−
 6.−.−

RCF

SCF

CCF

ZCF

−−−
−−−
−−−
−−−

RCF

SCF

CCF

ZCF

10

11

12

13

CY ← 0

CY ← 1

CY ← not CY

CY ← not Z flag

−−0−00

−−0−01

−− X−0*

−− X−0*

1

1

1

1

 2

 2

 2

 2

BIT
BW−
B−−

BIT #4, r

BIT #3, (mem)

C8 + zz + r : 33 : #4

B0 + mem : C8 + #3

Z ← not r<#4>

Z ← not (mem)<#3>

X*1X0−
X*1X0−

3

2 + M

 3.3.−
 6.−.−

RES
BW−
B−−

RES #4, r

RES #3, (mem)

C8 + zz + r : 30 : #4

B0 + mem : B0 + #3

r<#4> ← 0

(mem)<#3> ← 0

−−−−−−
−−−−−−

3

2 + M

 3.3.−
 7.−.−

SET
BW−
B−−

SET #4, r

SET #3, (mem)

C8 + zz + r : 31 : #4

B0 + mem : B8 + #3

r<#4> ← 1

(mem)<#3> ← 1

−−−−−−
−−−−−−

3

2 + M

 3.3.−
 7.−.−

CHG
BW−
B−−

CHG #4, r

CHG #3, (mem)

C8 + zz + r : 32 : #4

B0 + mem : C0 + #3

r<#4> ← not r<#4>

(mem)<#3> ← not (mem)<#3>

−−−−−−
−−−−−−

3

2 + M

 3.3.−
 7.−.−

TSET

BW−
B−−

TSET #4, r

TSET #3, (mem)

C8 + zz + r : 34 : #4

B0 + mem : A8 + #3

Z ← not r<#4> : r<#4> ← 1

Z ← not (mem)<#3>

(mem)<#3> ← 1

X*1 X0−
X*1 X0−

3

2 + M

 4.4.−
 7.−.−

BS1
−W−
−W−

BS1F A, r

BS1B A, r

D8 + r : 0E

D8 + r : 0F

A ← 1 search r ; Forward

A ← 1 search r ; Backward

−−− −−
−−− −−

2

2

 −.3.−
 −.3.−

Note: ➀; 0 is set when the bit searched for is found, otherwise 1 is set and an undefined value is set in the
A register.

TLCS-900/L1 CPU

2001-08-31CPU900L1-165

• 900/L1 Instruction Lists (7/10)

(7) Special operations and CPU control

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

NOP −−− NOP 00 no operation −−−−−− 1 2

EI −−− EI [#3] 06 : #3
Sets interrupt enable flag.

IFF ← #3

−−−−−− 2 3

DI −−− DI 06 : 07
Disables interrupt.

IFF ← 7

−−−−−− 2 4

PUSH −W− PUSH SR 02 (−XSP) ← SR −−−−−− 1 −.3.−
POP −W− POP SR 03 SR ← (XSP+) * * * * * * 1 −.4.−

SWI −−− SWI [#3] F8 + #3

Software interrupt

 PUSH PC&SR

 JP (FFFF00H + 4 × #3)

−−−−−− 1 19

HALT −−− HALT 05 CPU halt −−−−−− 1 6

LDC BWL

BWL

LDC cr, r

LDC r, cr

C8 + zz + r : 2E : cr

C8 + zz + r : 2F : cr

cr ← r

r ← cr

−−−−−−
−−−−−−

3

3

3.3.3

3.3.3

LDX B−− LDX (#8), # F7:00 : #8 : 00 : # : 00 (#8) ← # −−−−−− 6 8.−.−

LINK

−−L LINK r, d16 E8 + r : 0C : d16 PUSH r

LD r, XSP

ADD XSP, d16

−−−−−− 4 −.−.8

UNLK −−L UNLK r E8 + r : 0D LD XSP, r

POP r

−−−−−− 2 −.−.7

LDF −−− LDF #3
17 : #3 Seta register bank.

RFP ← #3 (0 at reset)

−−−−−− 2 2

INCF −−− INCF 0C
Switches register banks.

RFP ← RFP + 1

−−−−−− 1 2

DECF −−− DECF 0D
Switches register banks.

RFP ← RFP − 1

−−−−−− 1 2

SCC BW− SCC cc, r C8 + zz + r : 70 + cc
if cc then r ← 1

 else r ← 0

−−−−−− 2 2.2.−

Note 1: When operand #3 coding in the EI instruction is omitted, 0 is used as the default value.

Note 2: When operand #3 coding in the SWI instruction is omitted, 7 is used as the default value.

TLCS-900/L1 CPU

2001-08-31CPU900L1-166

• 900/L1 Instruction Lists (8/10)

(8) Rotate and Shift

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

RLC

BWL

BWL

BW−

RLC #4, r

RLC A, r

RLC<W> (mem)

C8 + zz + r : E8 : #4

C8 + zz + r : F8

80 + zz + mem : 78
CY MSB ← 0

* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

RRC

BWL

BWL

BW−

RRC #4, r

RRC A, r

RRC<W> (mem)

C8 + zz + r : E9 : #4

C8 + zz + r : F9

80 + zz + mem : 79
CYMSB → 0

* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

RL

BWL

BWL

BW−

RL #4, r

RL A, r

RL<W> (mem)

C8 + zz + r : EA : #4

C8 + zz + r : FA

80 + zz + mem : 7A
CY MSB ← 0

* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

RR

BWL

BWL

BW−

RR #4, r

RR A, r

RR<W> (mem)

C8 + zz + r : EB : #4

C8 + zz + r : FB

80 + zz + mem : 7B
CYMSB → 0

* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

SLA

BWL

BWL

BW−

SLA #4, r

SLA A, r

SLA<W> (mem)

C8 + zz + r : EC : #4

C8 + zz + r : FC

80 + zz + mem : 7C

CY MSB ← 0 0
* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

SRA

BWL

BWL

BW−

SRA #4, r

SRA A, r

SRA<W> (mem)

C8 + zz + r : ED : #4

C8 + zz + r : FD

80 + zz + mem : 7D

CYMSB → 0
* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

SLL

BWL

BWL

BW−

SLL #4, r

SLL A, r

SLL<W> (mem)

C8 + zz + r : EE : #4

C8 + zz + r : FE

80 + zz + mem : 7E

CY MSB ← 0 0
* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

SRL

BWL

BWL

BW−

SRL #4, r

SRL A, r

SRL<W> (mem)

C8 + zz + r : EF : #4

C8 + zz + r : FF

80 + zz + mem : 7F

CYMSB → 00
* * 0 P 0 *

* * 0 P 0 *

* * 0 P 0 *

3

2

2 + M

3 + n/4

3 + n/4

6.6

RLD

B−− RLD [A,](mem) 80 + mem : 06
7-4 3-0 7-4 3-0

Areg mem * * 0 P 0 − 2 + M 14.−.−

RRD
B−− RRD [A,](mem) 80 + mem : 07

7-4 3-0 7-4 3-0
Areg mem * * 0 P 0 − 2 + M 14.−.−

Note 1: When #4/A is used to specify the number of shifts, module 16 (0 to 15) is used. Code 0 means 16
shifts.

Note 2: When the following instructions are used in the TLCS-90, the S, Z and V flags do not change.

RLCA, RRCA, RLA, RRA, SLAA, SRAA, SLLA, and SRLA
In the TLCS-900, these flags change.

TLCS-900/L1 CPU

2001-08-31CPU900L1-167

• 900/L1 Instruction Lists (9/10)

(9) Jump, Call and Return

Group Size Mnemonic Codes (16 hex) Function SZHVNC
Length

(byte)
State

JP

−−−
−−−
−−−
−−−
−−−

JP #16

JP #24

JR [cc,]$ + 2 + d8

JRL [cc,]$ + 3 + d16

JP [cc,]mem

1A : #16

1B : #24

60 + cc : d8

70 + cc : d16

B0 + mem : D0 + cc

PC ← #16

PC ← #24

if cc then PC ← PC + d8

if cc then PC ← PC + d16

if cc then PC ← mem

−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−

3

4

2

3

2 + M

 5

 6

 5/2 (T/F)

 5/2 (T/F)

 7/4 (T/F)

CALL

−−−
−−−
−−−
−−−

CALL #16

CALL #24

CALR $ + 3 + d16

CALL [cc,]mem

1C : #16

1D : #24

1E : d16

B0 + mem : E0 + cc

PUSH PC : JP #16

PUSH PC : JP #24

PUSH PC : JR $ + 3 + d16

if cc then

 PUSH PC : JP mem

−−−−−−
−−−−−−
−−−−−−
−−−−−−

3

4

3

2 + M

 9

10

10

12/4 (T/F)

DJNZ
BW− DJNZ

[r,]$ + 3/4 + d8

C8 + zz + r : 1C : d8 r ← r − 1

if r ≠ 0 then JR $ + 3 + d8

−−−−−− 3 6 (r ≠ 0)

 4 (r = 0)

RET

−−−
−−−
−−−
−−−

RET

RET cc

RETD d16

RETI

0E

B0 : F0 + cc

0F : d16

07

POP PC

if cc then POP PC

RET : ADD XSP, d16

POP SR&PC

−−−−−−
−−−−−−
−−−−−−
* * * * * *

1

2

3

1

 9

12/4 (T/F)

11

12

Note 1: (T/F) represents the number of states at true / false.

TLCS-900/L1 CPU

2001-08-31CPU900L1-168

• Instruction Lists of 900/L1 (10/10)

(10) Addressing mode

Classification mode state

R R +0

r r +1

(mem)

(R)

(R + d8)

(#8)

(#16)

(#24)

(r)

(r + d16)

(r + r8)

(r + r16)

(−r)

(r+)

+0

+1

+1

+2

+3

+1

+3

+3

+3

+1

+1

(11) Interrupt

mode operation state

General-purpose

interrupt processing

PUSH PC

PUSH SR

IFF ← accepted level + 1

INTNEST ← INTNEST + 1

JP (FFFF00H + vector)

18

I/O to MEM (DMADn+) ← (DMASn) 8. 8. 12

I/O to MEM (DMADn−) ← (DMASn) 8. 8. 12

MEM to I/O (DMADn) ← (DMASn+) 8. 8. 12

MEM to I/O (DMADn) ← (DMASn−) 8. 8. 12

I/O to I/O (DMADn) ← (DMASn) 8. 8. 12

micro

DMA

Counter DMASn ← DMASn + 1 −. −. 5

Note: For details of interrupt processing, refer to the “Interrupts” section.

TLCS-900/L1 CPU

2001-08-31CPU900L1-169

Appendix C Instruction Code Maps (1/4)

1-byte op code instructions

H/L 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NOP PUSH

SR

POP

SR

HALT EI

n

RETI LD

(n) , n

PUSH

n

LDW

(n) , nn

PUSHW

nn

INCF DECF RET RETD

dd

1 RCF SCF CCF ZCF PUSH

A

POP

A

EX

F, F’

LDF

n

PUSH

F

POP

F

JP

nn

JP

nnn

CALL

nn

CALL

nnn

CALR

PC + dd

2 LD R, n PUSH RR

3 LD RR, nn PUSH XRR

4 LD XRR, nnnn POP RR

5 POP XRR

6

F LT LE ULE PE/OV M/MI Z

JR

C (T) GE GT UGT P/PL NZ NC

7

F LT LE ULE PE/OV M/MI Z

JRL

C (T) GE GT UGT P/PL NZ NC

8

(XWA) (XBC) (XDE) (XHL) (XIX) (XIY) (XIZ) (XSP) (XWA

+d)

(XBC

+d)

(XDE

+d)

(XHL

+d)

(XIX

+d)

(XIY

+d)

(XIZ

+d)

(XSP

+d)

9

(XWA) (XBC) (XDE) (XHL) (XIX) (XIY) (XIZ) (XSP) (XWA

+d)

(XBC

+d)

(XDE

+d)

(XHL

+d)

(XIX

+d)

(XIY

+d)

(XIZ

+d)

(XSP

+d)

A

(XWA) (XBC) (XDE) (XHL) (XIX) (XIY) (XIZ) (XSP) (XWA

+d)

(XBC

+d)

(XDE

+d)

(XHL

+d)

(XIX

+d)

(XIY

+d)

(XIZ

+d)

(XSP

+d)

B

(XWA) (XBC) (XDE) (XHL) (XIX) (XIY) (XIZ) (XSP) (XWA

+d)

(XBC

+d)

(XDE

+d)

(XHL

+d)

(XIX

+d)

(XIY

+d)

(XIZ

+d)

(XSP

+d)

C

(n) (nn) (nnn) (mem) (−xrr) (xrr+)

reg. B

r W A B C D E H L

D

(n) (nn) (nnn) (mem) (−xrr) (xrr+)

reg. W

rr WA BC DE HL IX IY IZ SP

E

(n) (nn) (nnn) (mem) (−xrr) (xrr+)

reg. L

xrr XWA XBC XDE XHL XIX XIY XIZ XSP

F

(n) (nn) (nnn) (mem) (−xrr) (xrr+)

LDX

(n), n 0 1 2 3 4 5 6 7

Note 1: Codes in blank parts are undefined instructions (i.e., illegal instructions).

Note 2: Dummy instructions are assigned to codes 01H and 04H. Do not use them.

cc,PC + d

PO/NOV

cc,PC + dd

PO/NOV

scr. B scr. B

scr. W scr. W

scr. L scr. L

dst dst

scr. B

scr. W

scr. L

dst

reg. B

reg. W

reg. L

SWI n

TLCS-900/L1 CPU

2001-08-31CPU900L1-170

Appendix C Instruction Code Maps (2/4)

1st byte: reg

H/L 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 LD

r,#

PUSH

r

POP

r

CPL

BW

r

NEG

BW

r

MUL

rr,#

MULS

rr,#

DIV

rr,#

DIVS

BW

rr,#

LINK L

r, dd r

BS1F

A, r

BS1B

W

A, r

1 DAA B

r

EXTZ

WL

r

EXTS

WL

r

PAA

WL

r

MIRR

W

r

MULA

W

r

DJNZ

BW

r, d

2

#, r

ORCF

#, r #, r

LDCF

#, r

STCF

BW

#, r A, r

ORCF

A, r A, r

LDCF

A, r

STCF

BW

A, r

LDC

cr, r

LDC

r, cr

3 RES

#, r

SET

#, r

CHG

#, r

BIT

#, r

TSET

BW

#, r

MINC1 MINC2

#, r

MINC4

W #, r W

4 MUL R, r BW MULS R, r BW

5 DIV R, r BW DIVS R, r BW

6

8 1 2

INC

3

#3, r

4 5 6 7 8 1 2

DEC

3

#3, r

4 5 6 7

7

F LT LE ULE PE/OV M/MI Z

SCC

C

cc, r

(T) GE GT UGT P/PL NZ

BW

NC

8 ADD R, r LD R, r

9 ADC R, r LD r, R

A SUB R, r

0 1 2

LD

3

r, #3

4 5 6 7

B SBC R, r EX R, r BW

C AND R, r ADD

r, #

ADC

r, #

SUB

r, #

SBC

r, #

AND

r, #

XOR

r, #

OR

r, #

CP

r, #

D XOR R, r

0 1 2

CP

3

r, #3

4 5 6

BW

7

E OR R, r RLC

#, r

RRC

#, r

RL

#, r

RR

#, r

SLA

#, r

SRA

#, r

SLL

#, r

SRL

#, r

F CP R, r RLC

A, r

RRC

A, r

RL

A, r

RR

A, r

SLA

A, r

SRA

A, r

SLL

A, r

SRL

A, r

r: Register specified by the 1st byte code. (Any CPU registers can be specified.)

R: Register specified by the 2nd byte code. (Only eight current registers can be specified.)

B: Operand size is a byte.

W: Operand size is a word.

L: Operand size is a long word.

Note: Dummy instructions are assigned to codes 1AH, 1BH, 3BH, and 3FH. Do not use them.

UNLK L

XORCF XORCF

MDEC1 MDEC2 MDEC4

ANDCFANDCF

PO/NOV

TLCS-900/L1 CPU

2001-08-31CPU900L1-171

Appendix C Instruction Code Maps (3/4)

1st byte: src (mem)

H/L 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

PUSH

BW

(mem)

RLD

A,

RLD B

(mem)

1 LDI LDIR LDD LDDR

BW

CPI CPIR CPD CPDR

BW

LD BW

(n n), (m)

2 LD R,(mem)

3 EX (mem),R BW ADD ADC SUB SBC AND XOR OR CP BW

4 MUL R,(mem) BW MULS R,(mem) BW

5 DIV R,(mem) BW DIVS R,(mem) BW

6

8 1 2

INC

3 4 5 6

BW

7 8 1 2

DEC

3 4 5 6

BW

7

7 RLC RRC RL RR SLA SRA SLL

8 ADD R,(mem) ADD (mem),R

9 ADC R,(mem) ADC (mem),R

A SUB R,(mem) SUB (mem),R

B SBC R,(mem) SBC (mem),R

C AND R,(mem) AND (mem),R

D XOR R,(mem) XOR (mem),R

E OR R,(mem) OR (mem),R

F CP R,(mem) CP (mem),R

B: Operand size is a byte.

W: Operand size is a word.

#3, (mem) #3, (mem)

(mem)

(mem), #

SRL BW

TLCS-900/L1 CPU

2001-08-31CPU900L1-172

Appendix C Instruction Code Maps (4/4)

1st byte: dst (mem)

H/L 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 LD B

(m), #

LD W

(m), #

POP B

(mem)

POP W

(mem)

1 LD B

(m), (n n)

LD W

(m), (n n)

2 LDA R,(mem) W ANDC

F

ORCF LDCF STCF B

3 LDA R,(mem) L

4 LD (mem),R B

5 LD (mem),R W

6 LD (mem),R L

7

8

0 1 2 3 4 5 6

B

7 0 1 2

ORCF

3 4 5 6

B

7

9

0 1 2 3 4 5 6

B

7 0 1 2

LDCF

3 4 5 6

B

7

A

0 1 2

STCF

3 4 5 6

B

7 0 1 2

TSET

3 4 5 6

B

7

B

0 1 2

RES

3 4 5 6

B

7 0 1 2

SET

3 4 5 6

B

7

C

0 1 2

CHG

3 4 5 6

B

7 0 1 2

BIT

3 4 5 6

B

7

D

F LT LE ULE PE/OV M/MI Z

JP

C (T) GE GT UGT P/PL NZ NC

E

F LT LE ULE PE/OV M/MI Z

CALL

C (T) GE GT UGT P/PL NZ NC

F

F LT LE ULE PE/OV M/MI Z

RET

C

cc

(T) GE GT UGT P/PL NZ NC

B: Operand size is a byte.

W: Operand size is a word.

L: Operand size is a long word.

A, (mem)

#3, (mem) #3, (mem)

#3, (mem)

#3, (mem)

#3, (mem)

#3, (mem)

#3, (mem)

#3, (mem)

#3, (mem)

#3, (mem)

cc, mem

cc, mem

(1st byte code is B0H.)

XORCF

PO/NOV

PO/NOV

PO/NOV

XORCF

ANDCF

TLCS-900/L1 CPU

2001-08-31CPU900L1-173

Appendix D Differences between TLCS-90 and TLCS-900/L1 Series

Series

Item
TLCS-90 TLCS-900/L1

CPU architecture 8-bit CPU 16-bit CPU

Built-in ROM/built-in RAM 8-bit data bus 16-bit data bus

Built-in I/O 8-bit data bus 8-bit data bus

External data bus 8-bit data bus 8-bit/16-bit data bus

(can be mixed)

Program space

(except devices with MMU)

64 KB 16 MB (linear)

Data space 16 MB (bank) 16 MB (linear)

Instruction set/instruction mnemonic TLCS-90 TLCS-90 + α
α = enhancement of 16-bit multiply /

divide instructions and bit operation

instruction,

32-bit load/operation instructions,

C compiler instructions,

register bank operation instructions,

etc.

Instruction code

(object code)

Unique to TLCS-90 Unique to TLCS-900

(Different from TLCS-90.)

Addressing mode TLCS-90 TLCS-90 + α
α = (-Reg), (Reg+),

(Reg + disp16),

(Reg + Reg16),

(nnn)

General-purpose register TLCS-90 TLCS-90 + α
α = Uses as 32 bits and register bank,

and adds a system stack pointer.

Flag (F)

I flag is extended to IFF2 to 0 of

status register.X flag is deleted.

Reset PC ← 0000H

(SP does not change.)

PC ← (Vector base address)

XSP ← 100H

Built-in ROM address

Built-in RAM address

Built-in I/O address

Direct addressing area (n)

0000H to

to FFxxH

FFxxH to FFFFH

FF00H to FFFFH

Undefined

Undefined

000000H to 000FFFH

000000H to 0000FFH

Interrupt

Interrupt start address

Register to be saved

Mask register

Mask level

0000H + (8 × V)

PC & AF

IFF

0, 1

Vector base address + 4 × V

PC & SR

IFF2 to 0

0 to 7

S Z I H X V N C S Z 0 H 0 V N C

TLCS-900/L1 CPU

2001-08-31CPU900L1-174

Series

Item
TLCS-90 TLCS-900/L1

Instruction

1. ADD R, r (word type) S/Z/V flags don’t change.

S/Z/V flag changes expect add

16 bit register.

S/Z/V flag changes.

2. Shift of A register  RLCA

RRCA

RLA

RRA

SLAA

SRAA

SLLA

SRLA 
S/Z/V flags don’t change in these

instruction.

 RLC A

RRC A

RL A

RR A

SLA A

SRA A

SLL A

SRL A 
S/Z/V flag changes in these

instruction.

S/Z/V flag changes.

TLCS-900/L1 CPU

2001-08-31CPU900L1-175

Note: The TLCS-900/L1 series is essentially the same as the TLCS-90 series but with a 16-bit CPU.
Built-in I/Os are completely compatible with those of the TLCS-90.
However, six types of instructions used in the TLCS-90 series do not directly correspond with those
used in the TLCS-900/L1 series. Thus, when transfering programs designed for the TLCS-90 to the
TLCS-900/L1, replace them with equivalents as follows:

Instructions in TLCS-90
but not in TLCS-900/L1

Equivalent instructions in
TLCS-900/L1

EXX EX BC, BC’

EX DE, DE’

EX HL, HL’

EX AF, AF’ EX A, A’

EX F, F’

PUSH AF PUSH A

PUSH F

POP AF POP F

POP A

INCX (32-bit INC instruction)

DECX (32-bit DEC instruction)

Some TLCS-900/L1 series instructions, though basically the same as TLCS-90 instructions,
have more functions and more specification items in their operands. They are listed below.

TLCS-90 TLCS-900/L1

INC reg

INC mem

INC imm3, reg

INC imm3, mem

DEC reg

DEC mem

DEC imm3, reg

DEC imm3, mem

RLC reg

RRC reg

RL reg

RR reg

SLA reg

SRA reg

SLL reg

SRL reg

RLC imm, reg

RRC imm, reg

RL imm, reg

RR imm, reg

SLA imm, reg

SRA imm, reg

SLL imm, reg

SRL imm, reg

	900, 900/L, 900/H, 900/L1, 900/H2 CPU Core Different Points
	1. Outline
	2. CPU Operating Modes
	3. Registers
	3.1 Register Structure
	3.2 Register Details
	3.2.1 General-purpose bank registers
	3.2.2 32-bit general-purpose registers
	3.2.3 Status Register (SR)
	3.2.4 Program Counter (PC)
	3.2.5 Control registers (CR)

	3.3 Register Bank Switching
	3.4 Accessing General-purpose Registers

	4. Addressing Modes
	5. Instructions
	6. Data Formats
	7. Basic Timings
	Appendix A: Details of Instructions
	ADC
	ADD
	AND
	ANDCF
	BIT
	BS1B
	BS1F
	CALL
	CALR
	CCF
	CHG
	CP
	CPD
	CPDR
	CPI
	CPIR
	CPL
	DAA
	DEC
	DECF
	DI
	DIV
	DIVS
	DJNZ
	EI
	EX
	EXTS
	EXTZ
	HALT
	INC
	INCF
	JP
	JR
	LD
	LDA
	LDAR
	LDC
	LDCF
	LDD
	LDDR
	LDF
	LDI
	LDIR
	LDX
	LINK
	MDEC1
	MDEC2
	MDEC4
	MINC1
	MINC2
	MINC4
	MIRR
	MUL
	MULA
	MULS
	NEG
	NOP
	OR
	ORCF
	PAA
	POP
	POP SR
	PUSH SR
	PUSH
	RCF
	RES
	RET
	RETD
	RETI
	RL
	RLC
	RLD
	RR
	RRC
	RRD
	SBC
	SCC
	SCF
	SET
	SLA
	SLL
	SRA
	SRL
	STCF
	SUB
	SWI
	TSET
	UNLK
	XOR
	XORCF
	ZCF

	Appendix B Instruction Lists
	Explanation of symbols used in this document
	900/L1 Instruction Lists

	Appendix C Instruction Code Maps
	Appendix D Differences between TLCS-90 and TLCS-900/L1 Series

