TCK321G, TCK322G, and TCK323 Load Switch ICs for 2-to-1 Power Multiplexing Application Note

Outline:

This application note describes the TCK321G, TCK322G, and TCK323 two-input, one-output load switch ICs incorporating a multiplexer for selecting between two input power lines.

The power multiplexing function of load switch ICs is ideal for the power management of battery chargers for mobile devices (e.g., smartphones and tablets) having two charging ports.

Table of Contents

Outline:	1
Table of Contents	2
1. Introduction	6
2. Application examples for the TCK32*G	6
3. Differences among the TCK321G, TCK322G, and TCK323G	7
4. Block diagram of the TCK32*G and descriptions of internal blocks	8
4.1. Overvoltage lockout (OVLO) circuit [Figure 4.1(1)]	8
4.2. Undervoltage lockout (UVLO) circuit [Figure 4.1(2)]	10
4.3. Inrush current limiting (slew rate control) circuit [Figure 4.1(3)]	11
4.4. Charge pump circuit [Figure 4.1(4)]	12
4.5. Reverse current blocking circuit [Figure 4.1(5)]	12
4.6. Thermal shutdown (TSD) circuit [Figure 4.1(6)]	13
4.7. FLAG output circuit [Figure 4.1(7)]	14
4.8. Other circuit in the TCK32*G	15
4.8.1. Break-before-make circuit	15
5. Internal circuits at the control input pins	15
5.1. Internal circuit at the CNT pin	15
5.2. Internal circuit at the V_{SEL} pin	15
6. Control modes of the TCK32*G	16
6.1. Off Mode	16
6.2. Auto Selection mode	16
6.2.1. Timing diagram of the TCK321G and TCK322G in Auto Selection mode	17
6.2.2. Timing chart of the TCK323G in Auto Selection mode	
6.3. Manual Selection mode	22
7. Definitions of the AC characteristics of the TCK32*G	26
7.1. Hold time (t _{HD})	26
7.2. V_{IN} selection delay time (t _{SEL})	26
7.3. Break-before-make time (t _{ввм})	26
7.4. V _{OUT} OVP off-time (t _{OVP})	27
7.5. V _{OUT} off-time (CNT) (t _{OFF})	
7.6. V_{OUT} rise time (t _r) and V_{OUT} fall time (t _f)	28
8. Calculating the power dissipation and junction temperature of an IC	28
9. Usage considerations	30
9.1. External capacitors	30
9.2. Board assembly	30
9.3. Protection circuits	30
9.4. Power dissipation	30
10. Conclusion	31

RESTRICTIONS ON PRODUCT USE

List of Figures

Figure 2.1 Example of a multiplexer circuit using the TCK321G, TCK322G and TCK323G	6
Figure 2.2 Example of a multiplexer circuit composed of discrete devices	7
Figure 2.3 Example of a multiplexer circuit composed of non-multiplexing load switch ICs	7
Figure 4.1 Block diagram of the TCK32*G	8
Figure 4.2 Overvoltage lockout operation	9
Figure 4.3 Example of operations when entering and exiting OVLO mode	9
Figure 4.4 Undervoltage lockout operation	11
Figure 4.5 Output current waveform when inrush current is limited	12
Figure 4.6 Reverse blocking current (I_{RB})-vs-output voltage (V_{OUT}) curve of the TCK32*G	12
Figure 4.7 Reverse current blocking operation during switching between two power supplies	13
Figure 4.8 Thermal shutdown operation	14
Figure 4.9 Equivalent circuit for the FLAG output	14
Figure 4.10 Break-before-make operation	15
Figure 5.1 Internal circuit at the CNT pin	15
Figure 5.2 Internal circuit at the V _{SEL} pin	16
Figure 6.1 Control modes of the TCK32*G	16
Figure 6.2 Timing diagram of the TCK321G and TCK322G in Auto Selection mode	18
Figure 6.3 Timing diagram of the TCK323G in Auto Selection mode	21
Figure 6.4 Timing diagram of the TCK321G, TCK322G, and TCK323G in Manual Selection mode	24
Figure 7.1 Example of a chattering waveform	26
Figure 7.2 Hold time	26
Figure 7.3 Definitions of V_{IN} selection time (t_{SEL}) and break-before-make time (t_{BBM})	27
Figure 7.4 Definition of V _{OUT} OVP off-time (t _{OVP})	27
Figure 7.5 Definition of V _{OUT} off-time (t _{OFF})	27
Figure 7.6 Definitions of V_{OUT} rise time (t _r) and V_{OUT} fall time (t _f)	28
Figure 8.1 Power dissipation (P_D) vs. ambient temperature (T_a)	29

List of Tables

Table 3.1 Functions available with and differences among the TCK321G, TCK322G, and TCK323G	7
Table 4.1 Comparison of overvoltage lockout thresholds among the TCK32*G	. 10
Table 4.2 Undervoltage lockout thresholds of the TCK32*G	. 11
Table 6.1 Operations of the TCK321G, TCK322G, and TCK323G in Off mode	. 16
Table 6.2 Operations of the TCK321G, TCK322G, and TCK323G in Auto Selection mode	. 17
Table 6.3 Operations of the TCK321G and TCK322G in Auto Selection mode	. 19
Table 6.4 Operations of the TCK323G in Auto Selection mode	. 22
Table 6.5 Operations of the TCK321G, TCK322G, and TCK323G in Manual Selection mode	. 23
Table 6.6 Operations of the TCK321G, TCK322G, and TCK323G in Manual Selection mode	. 25

1. Introduction

A load switch IC for 2-to-1 power multiplexing (power multiplexer IC) selects between two input power lines and forwards the selected input to the subsequent IC or circuitry. The TCK321G, TCK322G, and TCK323G (hereinafter collectively referred to as the TCK32*G) are ideal for the power management of high-current, high-voltage battery charging applications for smartphones, tablets, and other mobile devices having two charging ports. The TCK32*G series incorporates inrush current limiting (slew rate control), thermal shutdown, overvoltage lockout, undervoltage lockout, reverse current blocking, and flag output functions. Fabricated with a high-voltage CMOS process, the TCK32*G 2-to-1 power multiplexer ICs support an input voltage up to 36 V. In addition, the TCK32*G series provides not only Manual Selection mode in which an input power line is selected via an external control signal but also Auto Selection mode in which an input power line is automatically selected according to input voltages. The Auto Selection mode eliminates the need for an external control signal, enabling the TCK32*G series to operate on its own.

This application note describes the functions and operations of the TCK32*G. For details of the protection functions and other features available with the TCK32*G, see their datasheets.

2. Application examples for the TCK32*G

Figure 2.1 shows an example of a multiplexer circuit using the TCK32*G, which selects between two input power lines and forwards the selected input to the output. This circuit supplies either V_{INA} from a USB connector or V_{INB} from a wireless charger to a mobile device.

Figure 2.1 Example of a multiplexer circuit using the TCK321G, TCK322G and TCK323G

Figure 2.2 and Figure 2.3 show equivalent multiplexer circuits using discrete devices and non-multiplexing load switch ICs, respectively. The use of the TCK32*G, a dedicated power multiplexer IC, helps reduce parts counts and therefore the system size.

Figure 2.2 Example of a multiplexer circuit composed of discrete devices

Figure 2.3 Example of a multiplexer circuit composed of non-multiplexing load switch ICs

3. Differences among the TCK321G, TCK322G, and TCK323G

The TCK321G, TCK322G, and TCK323G differ in the input power line whose state is indicated by the FLAG output in <u>Auto Selection mode</u> (V_{INA} state in the case of the TCK321G and TCK322G and V_{INB} state in the case of the TCK323G) as well as in overvoltage lockout threshold.

Part number		oltage cout LO) V _{INB}	Underv lockout V _{INA}	voltage (UVLO) V _{INB}	Inrush current limiting	Thermal shutdow n (TSD)	Overcurrent protection	fore-ma	Reverse current blocking (at switch-off)	FLAG output (in Auto Selection mode)
TCK321G	✓ 12.0 V (typ.)	✓ 12.0 V (typ.)	✓ 2.6 V (typ.)	✓ 2.6 V (typ.)	~	~	_	~	✓	\checkmark Q ₁ (V _{INA}) state
TCK322G	✓ 15.0 V (typ.)	✓ 15.0 V (typ.)	✓ 2.6 V (typ.)	✓ 2.6 V (typ.)	~	~	_	~	✓	\checkmark Q ₁ (V _{INA}) state
TCK323G	✓ 15.0 V (typ.)	✓ 15.0 V (typ.)	✓ 2.6 V (typ.)	✓ 2.6 V (typ.)	~	~	_	~	✓	\checkmark Q2 (VINB) state

Table 3.1 Functions available with and differences among the TCK321G, TCK322G, and TCK323G

4. Block diagram of the TCK32*G and descriptions of internal blocks

Figure 4.1 Block diagram of the TCK32*G

4.1. Overvoltage lockout (OVLO) circuit [Figure 4.1(1)]

When either V_{INA} or V_{INB} exceeds a threshold, the overvoltage lockout (OVLO) circuit turns off the V_{OUT} outputs to protect the ICs and circuits connected to them. The OVLO circuit is tripped when V_{INA} or V_{INB} exceeds the overvoltage lockout rising threshold (V_{OVL_RI}). Then, when V_{INA} or V_{INB} drops below the overvoltage lockout falling threshold (V_{OLV_FA}), the V_{OUT} output turns back on automatically. The OVLO circuit compares V_{INA} or V_{INB} with a voltage derived by dividing the reference voltage (V_{REF}) as shown in Figure 4.2. When V_{INA} or V_{INB} exceeds the divided reference voltage (V_{OVDET}), the comparator output is toggled, then turning off the V_{OUT} outputs. At the same time, the N-channel MOSFET for reference voltage (comparator input) selection turns on, then the reference voltage switches to V_{OVDET_r}. When V_{INA} or V_{INB} drops below V_{OVDET_r} again, the comparator output is toggled again, turning the V_{OUT} outputs back on.

Reference voltage, V_{OVDET}

Reference voltage, V_{OVDET_r}

Hysteresis: 0.5 V (typ.)

 $V_{INA} (V_{INB}) \times \frac{R_2}{R_1 + R_2}$

Overvoltage

Output voltage

 $\begin{array}{ll} \mbox{lockout rising} & \mbox{lockout falling} \\ \mbox{threshold}, \mbox{V}_{\mbox{OVL}_\mbox{RI}} & \mbox{threshold}, \mbox{V}_{\mbox{OVL}_\mbox{FA}} \end{array}$

Overvoltage

Figure 4.2 Overvoltage lockout operation

Output voltage (V)

Input voltage (V)

Overvoltage lockout rising threshold Overvoltage lockout falling threshold

Figure 4.3 Example of operations when entering and exiting OVLO mode

Midpoint voltage between R_1 and $R_2\left(V\right)$ Output voltage $\left(V\right)$

i	1									
Part	Characteristics	Symbol	Test Condition		$T_a = 25^{\circ}C$			$T_a = 40 \text{ to } 85^{\circ}\text{C}$		
number	Characteristics	Symbol	Test Condition	Min	Тур.	Max	Min	Max	Unit	
TCK321G	Overvoltage lockout (OVLO) rising threshold	V _{OVL_RI}	_	_	12.0	_	10.5	13.5	V	
	Overvoltage lockout (OVLO) falling threshold	V _{OVL_FA}	-	-	V _{OVL_RI} - 0.5	-	-	-	V	
TCK322G	Overvoltage lockout (OVLO) rising threshold	V _{OVL_RI}	-	-	15.0	_	13.4	16.6	V	
	Overvoltage lockout (OVLO) falling threshold	V _{OVL_FA}	-	-	V _{OVL_RI} - 0.5	-	-	-	V	
TCK323G	Overvoltage lockout (OVLO) rising threshold	V _{OVL_RI}	_	-	15.0	-	13.4	16.6	V	
	Overvoltage lockout (OVLO) falling threshold	V _{OVL_FA}	-	-	V _{OVL_RI} - 0.5	-	-	-	V	

Table 4.1 Comparison of overvoltage lockout thresholds among the TC	K32*G
---	-------

4.2. Undervoltage lockout (UVLO) circuit [Figure 4.1(2)]

When either V_{INA} or V_{INB} drops below the minimum operating voltage of the ICs or circuits connected to the V_{OUT} outputs, the undervoltage lockout (UVLO) circuit turns off the V_{OUT} outputs to prevent system malfunction. The UVLO circuit is tripped when either V_{INA} or V_{INB} drops below the undervoltage lockout falling threshold voltage ($V_{UVL}FA$). The UVLO circuit has hysteresis. When V_{INA} or V_{INB} rises back above $V_{UVL}RI$, the V_{OUT} outputs turn back on automatically. The UVLO circuit compares V_{INA} or V_{INB} with a voltage derived by dividing the reference voltage (V_{REF}) as shown in Figure 4.4. When V_{INA} or V_{INB} drops below the divided reference voltage (V_{UVDET}), the comparator output is toggled, then the V_{OUT} outputs turn off. At the same time, the N-channel MOSFET for reference voltage selection turns off, then the reference voltage switches to $V_{UVDET}r$. When V_{INA} or V_{INB} rises back above $V_{UVDET}r$, the comparator is toggled again, turning the V_{OUT} outputs back on.

Figure 4.4 Undervoltage lockout operation

Table 4.2 Undervoltage lockout thresholds of the TCK32*G

Part	Characteristics	Cumphal	Test Condition		T _a = 25°C		T _a = -40	Unit	
number	Characteristics	Symbol		Min	Тур.	Max	Min	Max	Unit
TCK322G TCK323G	Undervoltage lockout (UVLO) rising threshold	$V_{\text{UVL}_{RI}}$	_	-	2.9	-	2.3	3.5	v
	Undervoltage lockout (UVLO) falling threshold	$V_{\text{UVL}_{FA}}$	-	-	V _{UVL_RI} - 0.3	-	-	-	v

4.3. Inrush current limiting (slew rate control) circuit [Figure 4.1(3)]

Inrush current is limited by a slew rate control circuit. When a large capacitive load is connected to the output MOSFET, its turning on at high speed causes a large current to flow to charge the load. At this time, V_{IN} drops instantaneously because of the impedance of board traces on the V_{DD} side of a load switch IC, it may cause system instability or malfunction. To prevent this situation, the inrush current limiting circuit turns on the output MOSFET at a low slew rate, and charging slowly the capacitive load. Thereby it ensures a stable system start-up.

Figure 4.5 Output current waveform when inrush current is limited

4.4. Charge pump circuit [Figure 4.1(4)]

The charge pump circuit is a voltage booster that generates a voltage for driving the gate of the N-channel MOSFET.

4.5. Reverse current blocking circuit [Figure 4.1(5)]

While the internal MOSFET switch is off, the reverse current blocking circuit prevents current from flowing in the reverse direction from V_{OUT} to V_{INA} or V_{INB} when V_{INA} or $V_{INB} < V_{OUT}$. This circuit is disabled while the MOSFET is on.

Figure 4.6 Reverse blocking current (I_{RB})-vs-output voltage (V_{OUT}) curve of the TCK32*G

Figure 4.7 Reverse current blocking operation during switching between two power supplies

4.6. Thermal shutdown (TSD) circuit [Figure 4.1(6)]

The thermal shutdown (TSD) circuit monitors the junction temperature to protect the TCK32*G. When the junction temperature exceeds a threshold, the TSD circuit turns off the V_{OUT} outputs to prevent the TCK32*G from degrading or being damaged permanently. The TSD circuit detects the junction temperature by comparing a diode's forward voltage (V_F) with a reference voltage (V_{TSD}) that is hardly affected by temperature as shown in Figure 4.8(a). When the TCK32*G is operating properly, V_F is higher than V_{TSD}. The diode's forward voltage has a temperature coefficient of roughly -2 mV/°C. When the junction temperature reaches 158°C typical, V_F drops below V_{TSD}. This causes the comparator output to toggle, and the IC turned off. At this point, the TSD circuit switches the reference voltage from V_{TSD} to V_{TSD_r} via the comparator's output signal. Once the TCK32*G turns off, its power consumption decreases considerably, it causes the junction temperature to decrease. When a decrease of junction temperature causes V_F to rise above V_{TSD_r}, the V_{OUT} outputs turn back on automatically. The TSD circuit has a hysteresis of 15°C typical, i.e., there is a temperature difference of 15°C between the junction temperature at which TSD is recovered.

Figure 4.8 Thermal shutdown operation

4.7. FLAG output circuit [Figure 4.1(7)]

When the overvoltage or undervoltage lockout circuit is tripped, the FLAG output pin transitions from Low to High to warn a power management IC (PMIC) and other external IC of a system fault. Since the FLAG output has an open drain configuration, an external pull up resistor should be connected to the FLAG output. Select a pull up resistor, the resistance value should be determined in consideration of the sink current of the FLAG output and fully evaluate it with an actual board. (In the datasheet, V_{OL} is specified as 0.4 V maximum when $I_{SINK} = 1$ mA.)

Figure 4.9 Equivalent circuit for the FLAG output

4.8. Other circuit in the TCK32*G

4.8.1. Break-before-make circuit

The TCK32*G incorporates two switches. After the TCK32*G "breaks" one switch, the break-before-make circuit keeps two switches off until it "makes" the other switch. This prevents two voltage domains from being short-circuited during the changeover between two switches.

5. Internal circuits at the control input pins

5.1. Internal circuit at the CNT pin

A pull-down resistor with a typical value of 500 $k\Omega$ is internally connected between the CNT and GND pins.

Figure 5.1 Internal circuit at the CNT pin

5.2. Internal circuit at the V_{SEL} pin

A resistor with a typical value of 500 k Ω and a MOSFET for voltage conversion are internally connected to the V_{SEL} pin. This resistor is pulled up to an internal 3-V power supply(VOP).

Figure 5.2 Internal circuit at the V_{SEL} pin

6. Control modes of the TCK32*G

The TCK32*G can be configured into Off, Auto Selection or Manual Selection mode via the Mode Control (CNT) and Input Selector (V_{SEL}) inputs while taking advantage of the break-before-make characteristics. The following subsections describe the operation in each mode.

Figure 6.1 Control modes of the TCK32*G

6.1. Off Mode

Table 6.1 Operations of the TCK321G, TCK322G, and TCK323G in Off mode

Input voltage	Independent of the voltages at $$V_{INA}$$ and $$V_{INB}$$						
Output voltage	Off (Disabled)						
FLAG output	Off (High-Z)						
Reverse current blocking	V _{INA} : Valid V _{INB} : Valid						

When V_{CNT} = Low and V_{SEI} = Low

6.2. Auto Selection mode

The TCK32*G is configured into Auto Selection mode when V_{CNT} is Low and V_{SEL} is High. In this mode, the TCK32*G transfers the voltage at the V_{INA} inputs to the V_{OUT} outputs if both V_{INA} and V_{INB} are within the normal voltage range. However, the TCK32*G transfers the voltage at the V_{INB} inputs to the V_{OUT} outputs if V_{INA} is in the overvoltage or undervoltage lockout range. The FLAG output differs among the TCK321G, TCK322G, and TCK323G as shown below.

Table 6.2 Operations of the TCK321G, TCK322G, and TCK323G in Auto Selection mode

Inpu	ut voltage	V _{INA} : In the operating voltage range V _{INB} : In the operating voltage range	V _{INA} : In the operating voltage range V _{INB} : Outside the operating voltage range	V _{INA} : Outside the operating voltage range V _{INB} : In the operating voltage range	V _{INA} : Outside the operating voltage range V _{INB} : Outside the operating voltage range
Output voltage		On	On	On	Off
		(V _{OUT} =V _{INA})	(V _{OUT} =V _{INA})	(V _{OUT} =V _{INB})	(Disabled)
out	TCK321G: Indicates	On	On	Off	Off
	the V _{INA} state	(Low)	(Low)	(High-Z)	(High-Z)
G output	TCK322G: Indicates the V _{INA} state	On (Low)	On (Low)	Off (High-Z)	Off (High-Z)
the V _{INA} state TCK323G: Indicates the V _{INB} state		Off (High-Z)	Off (High-Z)	On (Low)	Off (High-Z)
Reverse current blocking		V _{INA} : Invalid	V _{INA} : Invalid	V _{INA} : Valid	V _{INA} : Valid
		V _{INB} : Valid	V _{INB} : Valid	V _{INB} : Invalid	V _{INB} : Valid

When V_{CNT} = Low and V_{SEL} is High

In the operating voltage range: V_{ULV RI}<V_{IN*}<V_{OVL RI}

Outside the operating voltage range: $V_{UVL_FA} > V_{IN*}$ or $V_{IN*} > V_{OVL_RI}$

6.2.1. Timing diagram of the TCK321G and TCK322G in Auto Selection mode

In the case of the TCK312G and TCK322G, the FLAG output indicates the V_{INA} state in Auto Selection mode regardless of the VINB state. The FLAG output remains Low while VINA is in the normal voltage range, and is driven High when the overvoltage or undervoltage lockout circuit is tripped. See Section 7.1 for a description of its <u>hold time (t_{HD})</u>.

Figure 6.2 Timing diagram of the TCK321G and TCK322G in Auto Selection mode

Table 6.3 Operations of the TCK321G and TCK322G in Auto Selection mode

* V_{OUT} turns on after hold time (t_{HD}).

** V_{OUT} turns on after break-before-make time (t_{BBM}).

					١	OUT		FLAG
Period	V _{CNT}	V_{SEL}	V_{INA}	V_{INB}	V _{OUT} output	Input voltage selected	FLAG output	Input state indicated
(a)	L	Н	L	Н	Off	-	Hz	-
(b)	L	Н	L	L	Off	-	Hz	-
(c)	L	Н	L	М	On ^(*)	V _{INB}	Hz	_
(d)	L	Н	L	Н	Off	-	Hz	-
(e)	L	Н	L	Μ	On ^(*)	V _{INB}	Hz	-
(f)	L	Н	L	L	Off	-	Hz	-
(g)	L	Н	Н	L	Off	-	Hz	-
(h)	L	Н	L	L	Off	-	Hz	-
(i)	L	Н	Μ	L	On ^(*)	V _{INA}	$Hz \rightarrow Low$	V _{INA}
(j)	L	Н	Н	L	Off	-	$Low \to Hz$	V _{INA}
(k)	L	Н	М	L	On ^(*)	V _{INA}	$Hz \rightarrow Low$	V _{INA}
(I)	L	Н	L	L	Off	-	$Low\toHz$	V _{INA}
(m)	L	Н	L	М	Off	-	Hz	-
(n)	L	Н	Μ	Μ	On ^(*)	V _{INA}	$Hz \rightarrow Low$	V _{INA}
(o)	L	Н	L	Μ	On ^(**)	V _{INB}	$Low\toHz$	V _{INA}
(p)	L	Н	Μ	Μ	On ^(**)	V _{INA}	$Hz \rightarrow Low$	V _{INA}
(q)	L	Н	Н	М	On ^(**)	V_{INB}	$Low \to Hz$	V _{INA}
(r)	L	Н	Μ	Μ	On ^(**)	V _{INA}	$Hz \rightarrow Low$	V _{INA}
(s)	L	Н	М	Н	On	V _{INA}	Low	V _{INA}
(t)	L	Н	М	М	On	V _{INA}	Low	V _{INA}
(u)	L	Н	М	L	On	V _{INA}	Low	V _{INA}
(v)	L	$H\toL$	L	L	Off	-	$Low \to Hz$	V _{INA}

M: In the normal voltage range

Hz: High impedance

H: In the overvoltage lockout range

L: In the undervoltage lockout range

6.2.2. Timing chart of the TCK323G in Auto Selection mode

In the case of the TCK323G, the FLAG output indicates the V_{INB} state in Auto Selection mode regardless of the V_{INA} state. The FLAG output remains Low while V_{INB} is in the normal voltage range, and is driven High when the overvoltage or undervoltage lockout circuit is tripped. See Section 7.1 for a description of its hold time (t_{HD}).

Figure 6.3 Timing diagram of the TCK323G in Auto Selection mode

Table 6.4 Operations of the TCK323G in Auto Selection mode

* V_{OUT} turns on after hold time (t_{HD}).

** VOUT turns on after break-before-make time (tBBM).

					١	/ _{OUT}		FLAG
Period	V _{CNT}	V _{SEL}	V_{INA}	V_{INB}	V _{OUT} output	Input voltage selected	FLAG output	Input state indicated
(a)	L	Н	L	Н	Off	-	Hz	-
(b)	L	Н	L	L	Off	-	Hz	-
(c)	L	Н	L	М	On ^(*)	V _{INB}	$Hz \rightarrow Low$	V _{INB}
(d)	L	Н	L	Н	Off	-	Hz	-
(e)	L	Н	L	М	On ^(*)	V _{INB}	$Hz \rightarrow Low$	V _{INB}
(f)	L	Н	L	L	Off	-	Hz	-
(g)	L	Н	Н	L	Off	-	Hz	-
(h)	L	Н	L	L	Off	-	Hz	-
(i)	L	Н	Μ	L	On ^(*)	V _{INA}	Hz	-
(j)	L	Н	Н	L	Off	-	Hz	-
(k)	L	Н	Μ	L	On ^(*)	V _{INA}	Hz	-
(I)	L	Н	L	L	Off	-	Hz	-
(m)	L	Н	L	М	Off	-	Hz	-
(n)	L	Н	Μ	М	On ^(*)	V _{INA}	Hz	-
(o)	L	Н	L	Μ	On ^(**)	V _{INB}	$Hz \rightarrow Low$	V _{INB}
(p)	L	Н	Μ	М	On ^(**)	V _{INA}	Hz	-
(q)	L	Н	Н	М	On ^(**)	V _{INB}	$Hz \rightarrow Low$	
(r)	L	Н	М	М	On ^(**)	V _{INA}	$Low \to Hz$	V _{INB}
(s)	L	Н	М	Н	On	V _{INA}	Hz	-
(t)	L	Н	М	М	On	V _{INA}	Hz	-
(u)	L	Н	М	L	On	V _{INA}	Hz	-
(v)	L	$H\toL$	L	L	Off	-	Hz	-

M: In the normal voltage range Hz: High impedance H: In the overvoltage lockout range L: In the undervoltage lockout range

6.3. Manual Selection mode

The TCK321G, TCK322G, and TCK323G operate identically in Manual Selection mode. In this mode, either V_{INA} or V_{INB} can be selectively forwarded to the V_{OUT} outputs via a control signal applied to the V_{SEL} pin. V_{INA} is selected when the Mode Control signal (V_{CNT}) is High, the Input Selector signal (V_{SEL}) is High, and both V_{INA} and V_{INB} are in the normal range. V_{INB} is selected when the Mode Control signal (V_{CNT}) is High and the Input Selector signal (V_{SEL}) is Low. When both V_{CNT} and V_{SEL} are Low, the TCK321G, TCK322G, and TCK323G are disabled, turning off the V_{OUT} outputs. When overvoltage or undervoltage lockout protection is tripped because of an abnormal VINA or VINB condition, the FLAG output is driven Low to indicate it externally. See Section 7.1 for a description of its hold time (t_{HD}) .

Table 6.5 Operations of the TCK321G, TCK322G, and TCK323G in Manual Selection mode

Input voltage		V _{INA} : In the	V _{INA} : In the	V _{INA} : Outside the	V _{INA} : Outside the
		operating voltage	operating voltage	operating voltage	operating voltage
		range	range	range	range
		V _{INB} : In the	V _{INB} : Outside the	V _{INB} : In the	V _{INB} : Outside the
		operating voltage	operating voltage	operating voltage	operating voltage
		range	range	range	range
Output voltage		On	On	Off	Off
		(V _{OUT} =V _{INA})	(V _{OUT} =V _{INA})	(Disabled)	(Disabled)
put	TCK321G	Off (High-Z)	On (Low)	On (Low)	On (Low)
FLAG output	TCK322G	Off (High-Z)	On (Low)	On (Low)	On (Low)
	ТСК323G	Off (High-Z)	On (Low)	On (Low)	On (Low)
Reverse current blocking		V _{INA} : Invalid	V _{INA} : Invalid	V _{INA} : Valid	V _{INA} : Valid
		V _{INB} : Valid	V _{INB} : Valid	V _{INB} : Valid	V _{INB} : Valid

When V_{CNT} is High, V_{SEL} is High, and V_{INA} is active

In the operating voltage range: $V_{ULV RI} < V_{IN*} < V_{OVL RI}$

Outside the operating voltage range: $V_{UVL_FA} > V_{IN*}$ or $V_{IN*} > V_{OVL_RI}$

When V_{CNT} is High, V_{SEL} is Low, and V_{INB} is active

Input voltage		V _{INA} : In the	V _{INA} : In the	V_{INA} : Outside the	V _{INA} : Outside the	
		operating voltage	operating voltage	operating voltage	operating voltage	
		range	range	range	range	
		V _{INB} : In the	V _{INB} : Outside the	V_{INB} : In the	V _{INB} : Outside the	
		operating voltage	operating voltage	operating voltage	operating voltage	
		range	range	range	range	
Output voltage		On	Off	On	Off	
		(V _{OUT} =V _{INB})	(Disabled)	(V _{OUT} =V _{INB})	(Disabled)	
put	TCK321G	Off (High-Z)	On (Low)	On (Low)	On (Low)	
-AG	TCK322G	Off (High-Z)	On (Low)	On (Low)	On (Low)	
	TCK323G	Off (High-Z)	On (Low)	On (Low)	On (Low)	
Reverse current blocking		V _{INA} : Valid	V _{INA} : Valid	V _{INA} : Valid	V _{INA} : Valid	
		V _{INB} : Invalid	V _{INB} : Valid	V _{INB} : Invalid	V _{INB} : Valid	

In the operating voltage range: $V_{ULV_RI} < V_{IN*} < V_{OVL_RI}$

Outside the operating voltage range: V_{UVL_FA} > V_{IN*} or V_{IN*} > V_{OVL_RI}

Figure 6.4 Timing diagram of the TCK321G, TCK322G, and TCK323G in Manual Selection mode

Table 6.6 Operations of the TCK321G, TCK322G, and TCK323G in Manual Selection mode

*** V	out tur	ns on a	after b	reak-b	efore-make t	ime (t _{ввм}).		
					١	оит		FLAG
Period	V _{CNT}	V_{SEL}	V_{INA}	V_{INB}	V _{OUT} output	Input voltage selected	FLAG output	Input state indicated
(a)	L	L	L	Н	Off	-	Hz	_
(b)	L	L	L	Μ	Off	-	Hz	-
(c)	L	L	L	L	Off	-	Hz	-
(d)	L	L	L	Μ	Off	-	Hz	-
(e)	L	L	Μ	Μ	Off	-	Hz	-
(f)	L	L	Н	М	Off	-	Hz	-
(g)	L	L	М	М	Off	-	Hz	-
(h)	L	L	L	Μ	Off	-	Hz	-
(i)	L	L	Μ	Μ	Off	-	Hz	-
(j)	Н	Н	М	М	On ^(*)	V _{INA}	Hz	-
(k)	Н	Н	Н	М	Off	-	$Hz \rightarrow Low$	-
(I)	Н	Н	М	М	On ^(*)	V _{INA}	$Low \to Hz$	-
(m)	Н	Н	L	М	Off	-	$Hz \rightarrow Low$	-
(n)	Н	Н	М	М	On ^(*)	V _{INA}	$Low \to Hz$	-
(0)	Н	Н	Μ	Н	On	V _{INA}	Low	-
(p)	Н	Н	Μ	Μ	On	V _{INA}	Hz	-
(q)	Н	Н	Μ	L	On	V _{INA}	Low	-
(r)	Н	Н	М	М	On	V _{INA}	Hz	-
(s)	Н	L	Μ	Μ	Off ^(**)	-	Hz	-
(t)	Н	L	Μ	Μ	On ^(***)	V _{INB}	Hz	-
(u)	Н	L	Н	М	On	V _{INB}	Low	_
(v)	Н	L	М	М	On	V _{INB}	Hz	_
(w)	Н	L	L	М	On	V _{INB}	Low	-
(x)	Н	L	М	М	On	V _{INB}	Hz	-
(y)	Н	L	М	Н	Off	-	Low	-
(z)	Н	L	М	М	On ^(*)	V _{INB}	$Low \to Hz$	-
(aa)	Н	L	М	L	Off	_	$Hz \rightarrow Low$	-
(ab)	Н	L	М	М	On ^(*)	V _{INB}	$Low \to Hz$	-

* V_{OUT} turns on after hold time (t_{HD}).

** V_{OUT} turns of after V_{IN} selection delay time (t_{SEL}). *** V_{OUT} turns on after break-before-make time (t_{BBM})

M : In the normal voltage range

Hz: High impedance

H : In the overvoltage lockout range

L : In the undervoltage lockout range

7. Definitions of the AC characteristics of the TCK32*G

7.1. Hold time (t_{HD})

The hold time (t_{HD}) is a delay time that is inserted to prevent a malfunction due to chatter caused by the application of input voltage until the output is enabled. When the TCK32*G detects a voltage between the undervoltage and overvoltage lockout thresholds, the V_{OUT} outputs are enabled after a predefined delay time (15 ms typical). This function makes it possible to set the output rise time independent of the input voltage.

Figure 7.1 Example of a chattering waveform

Figure 7.2 Hold time

7.2. V_{IN} selection delay time (t_{SEL})

The V_{IN} selection delay time is defined between the time from a time V_{SEL} input pin toggles to a time the output voltage drops to 90% of V_{OUT} in Manual Selection mode as shown in Figure 7.3.

7.3. Break-before-make time (t_{BBM})

The break-before-make time is a period during the break-before-make function keeps off both the MOSFETs connected to the V_{INA} and V_{INB} inputs when the TCK32*G switches between these inputs. The break-before-make time is defined as the time from 10% of V_{OUT} of the falling output to 10% of V_{OUT} of the rising output.

Figure 7.3 Definitions of V_{IN} selection time (t_{SEL}) and break-before-make time (t_{BBM})

7.4. VOUT OVP off-time (tovP)

The V_{OUT} OVP off-time (t_{OVP}) is defined as a delay time from when the input voltage (V_{IN*}) exceeds the overvoltage lockout (V_{OVLO_RI}) rising threshold to when the output voltage drops to 80% of V_{OVLO_RI}.

Figure 7.4 Definition of V_{OUT} OVP off-time (t_{OVP})

7.5. V_{OUT} off-time (CNT) (t_{OFF})

The V_{OUT} off-time (t_{OFF}) is defined as the time required from when the control voltage is 50% of V_{CNT} to when the output voltage drops to 80% of V_{OUT} .

Figure 7.5 Definition of V_{OUT} off-time (t_{OFF})

7.6. V_{OUT} rise time (t_r) and V_{OUT} fall time (t_f)

The V_{OUT} rise time (t_r) is the time required for the output voltage to change from 10% to 90% of V_{OUT}. The V_{OUT} fall time (t_f) is the time required for the output voltage to change from 90% to 10% of V_{OUT}.

Figure 7.6 Definitions of V_{OUT} rise time (t_r) and V_{OUT} fall time (t_f)

8. Calculating the power dissipation and junction temperature of an IC

The power dissipation (P_D) of an IC can be calculated by Equation 8-1. The term $V_{IN} \times I_Q$ is negligible when it is much smaller than the term $I_{OUT}^2 \times R_{on}$.

1) When $V_{INA} = V_{INB}$ in Manual Selection mode:

$$P = I_{OUT}^{2} \times R_{ON} + (V_{INA} + V_{INB}) \times I_{Q(ON)} \quad (W)$$

$$I_{OUT}: \qquad Output current \qquad (A)$$

$$R_{ON}: \qquad On-resistance \qquad (\Omega)$$

$$V_{INA}, V_{INB}: \qquad Input voltage \qquad (V)$$

$$I_{ON:} \qquad On-state quiescent \\ current \qquad (A)$$

2) When $V_{INA} \neq V_{INB}$ in Auto Selection mode

$$P = I_{OUT}^{2} \times R_{ON} + I_{Q(ON_VINA)} \times V_{INA} + I_{Q(ON_VINB)} \times V_{INB}$$
(W) (8-2)

I _{OUT} :	Output current	(A)
R _{ON} :	On-resistance	(Ω)
V_{INA} , V_{INB} :	Input voltage	(V)
I _{Q(ON_VINA)} :	Quiescent current of V _{INA} in the on state	(A)
$I_{Q(ON_VINB)}$:	Quiescent current of V _{INB} in the on state	(A)

The junction temperature (T_j) can be calculated by Equation 8-3.

$$T_{j} = P \times R_{th(j-a)} + Ta$$

$$= P \times \frac{T_{j(\max)} - 25 \ ^{\circ}C}{P_{D}} + Ta$$

$$= P \times \frac{150 \ ^{\circ}C - 25 \ ^{\circ}C}{P_{D}} + Ta \quad (^{\circ}C) \quad (8-3)$$

$$P: \qquad \text{IC power dissipation} \qquad (W)$$

$$P_{D}: \qquad \text{Power dissipation of the TCK32*G when it is mounted} \qquad (W)$$

$$R_{th}: \qquad \text{Thermal resistance} \qquad (^{\circ}C/W)$$

T _j :	Junction temperature	(°C)
T _a :	Ambient temperature	(°C)

The permissible power dissipation of the TCK32*G is specified as an absolute maximum rating when it is mounted on a board. Design PCB traces in such a manner as to allow a sufficient margin relative to the expected maximum power dissipation during operation. The maximum power dissipation should be adequately derated according to the ambient temperature, input voltage, output current, and other conditions of an actual application.

Board conditions

Material:	Glass epoxy (FR4)
Size:	40 mm × 40 mm (four Cu layers)

9. Usage considerations

9.1. External capacitors

Connect external input and output capacitors to achieve the guaranteed performance and improve the stability of a power supply. Connect capacitors of at least 1.0 μ F as close as possible to the input and output pins. The withstand voltage of these capacitors should be sufficiently higher than their operating voltage.

9.2. Board assembly

In order to further stabilize output voltage, add an output capacitor as close as possible to the TCK32*G and provide V_{IN} and GND traces as large as possible to reduce trace impedance.

9.3. Protection circuits

The reverse current blocking, thermal shutdown, overvoltage lockout, and undervoltage lockout circuits incorporated in the TCK321G, TCK322G, and TCK323G are not intended to guarantee that they always remain below their absolute maximum ratings. Apply the above design considerations and derate the absolute maximum rated values as described in the Toshiba Semiconductor Reliability Handbook to ensure that none of the absolute maximum ratings will be exceeded under any circumstances. It is recommended to add fail-safe and other safety features to an application system.

9.4. Power dissipation

Design PCB traces in such a manner that the IC temperature remains well below the maximum rated temperature during operation even at the maximum power dissipation point. For PCB trace design, input voltage, output current, ambient temperature, and other environmental conditions should also be considered.

10. Conclusion

This application note has discussed the basics of 2-to-1 power multiplexer ICs such as electrical characteristics and protection features shown in the datasheet. The 2-to-1 power multiplexer ICs are very effective for the power management of smartphones, tablets, wearable devices, and other mobile devices having two charging ports. Toshiba provides a wide range of 2-to-1 power multiplexer ICs, including low-on-resistance power multiplexer ICs that help reduce power loss and incorporate various protection features. We hope that you have found this application note useful in considering the use of Toshiba's 2-to-1 power multiplexer ICs.

To perform a parametric search of 2-to-1 power multiplexer ICs \rightarrow Click Here					
To visit Toshiba's load switch IC v	web page \rightarrow C	lick Here			
To visit an FAQ web page of load switch ICs \rightarrow Click Here					
To purchase load switch ICs \rightarrow	Click Here				

■ Company names, product names, and service names may be trademarks of their respective companies.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices & Storage Corporation https://toshiba.semicon-storage.com/