TOSHIBA Intelligent Power Device Silicon Power MOS Integrated Circuit

TPD7106F

1 channel High-Side N channel Power MOSFET Gate Driver

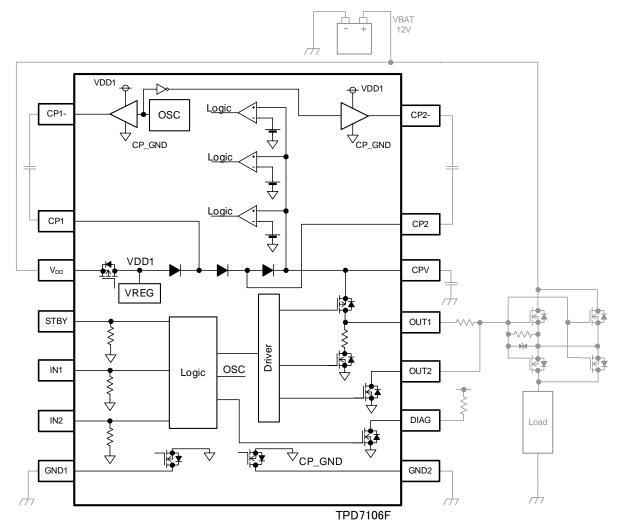
1. Description

TPD7106F is a 1channel high-side N channel power MOSFET gate driver. This IC contains a charge pump circuit, allowing easy configuration of a high-side switch for large-current applications.

2. Applications

- Junction Boxes for Automotive.
- Power distribution modules for Automotive.
- Semiconductor relays.

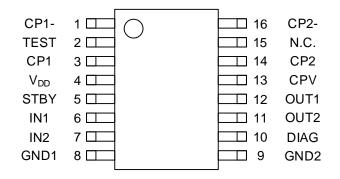
3. Features


- AEC-Q100 qualified.
- Built in the charge pump circuit (Charge pump capacitor is external).
- Output current is -10mA / +400mA, and the drive by parallel use of N channel power MOSFET is possible.
- Built in the protection for reverse connection of power supply.
- Built in the diagnosis output for under voltage of Charge pump circuit.
- SSOP16 package for surface mounting.

Note: Due to its MOS structure. This product is sensitive to static electricity.

Start of commercial production 2020-03

1


4. Block Diagram

Note: Some of the functional blocks, circuits or constants labels in the block diagram may have been omitted or simplified for clarity.

5. Pin Assignments (top view)

6. Pin Description

Pin No	Symbol	Description
1	CP1-	The terminal for charge pump capacitor connection.
2	TEST	The terminal for and internal circuit test. Normal operation = connect to Ground.
3	CP1	The terminal for charge pump capacitor connection.
4	V _{DD}	Power supply pin.
5	STBY	Standby mode control pin.
6	IN1	Input pin. Built in pull down resistor.(for Normal operation)
7	IN2	Input pin. Built in pull down resistor.(for rapid off)
8	GND1	Ground pin.
9	GND2	Ground pin.
10	DIAG	Diagnostic output (Open drain).
11	OUT2	Output pin for an external N channel power MOSFET drive(for rapid off)
12	OUT1	Output pin for an external N channel power MOSFET drive(for Normal switching)
13	CPV	Output of charge pump voltage.
14	CP2	The terminal for charge pump capacitor connection.
15	N.C	No-Connect pin.
16	CP2-	The terminal for charge pump capacitor connection.

Table 6.1 Pin Description

7. Operational Description

7.1. Gate drive of Power MOSFET

7.1.1. On driver

In response to FET turn-on instructions ($V_{IN1}=V_{IH}$), a charge pump circuit and the drive circuit operate from input terminal IN1, and it drives N channel power MOSFET of a high side with sufficient gate voltage. ($V_{OUT1}=V_{DD}+12V$ (typ.))

- V_{IN1}: IN1 pin input voltage
- V_{IH}: High level input voltage
- V_{OUT1}: OUT1 pin output voltage

7.1.2. Off driver (Normal Off)

The OFF operation in normal turns off external FET by M2 in Figure 7.1 in response to FET drive instructions ($V_{IN1}=V_{IL}$) from input terminal IN1 (drive on resistance = 630 Ω (typ.)).

• VIL: Low level input voltage

7.1.3. Off driver (Rapid Off)

Abnormalities, such as external FET and short circuits which occurred around load, are detected, and when it is required to make external FET turn off for a short time, in response to FET rapid OFF instructions $(V_{IN2}=V_{IH})$, the following figure M3 operates from input terminal IN2, and it turns off external FET quickly (Driver on resistance = 5 Ω (typ.)). In addition, although rapid off-driver operating time (t_{O2ON}) is a maximum of 200µs.

• V_{IN2}: IN2 pin input voltage

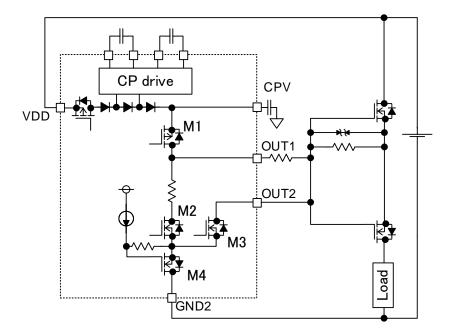


Figure 7.1 Output driver part.

IN1	IN2	STBY	OUT1	OUT2	state
Х	Х	L	Hiz	Hiz	Stand-by mode
L	L	н	L	Hiz	Normal operation
Н	L	н	Н	Hiz	Normal operation
L	Н	н	L	L	Papid off mode
Н	Н	н	L	L	Rapid off mode

Table 7.2Truth table (1)

7.2. Protection for reverse connection of power supply

When a power supply is connected by reverse polarity, the current from a GND terminal is intercepted by M4 and M5, and external FET is turned off.

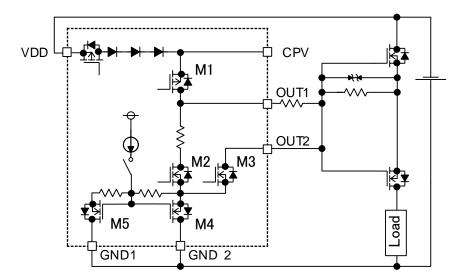


Figure 7.3 Protection for reverse connection.

7.3. Detection for under voltage of charge pump

CPV terminal voltage is supervised and a charge pump voltage fall is detected. If it becomes below the charge pump fall judging voltage VCPL, a DIAG terminal will serve as L State. Output terminal OUT1 and OUT2 maintain operation. In addition, when STBY is L State, a charge pump circuit stops.

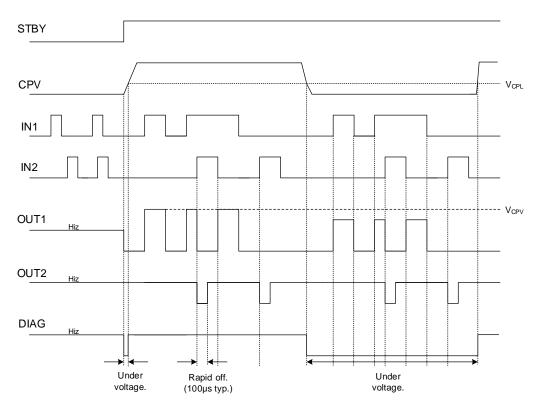


Figure 7.4 Timing chart.

Note: When STBY is momentarily made into L State from H State and it returns to H State again, even if CPV terminal voltage holds more than VCPL, a DIAG terminal may serve as L State.

7.4. Truth Table (protect function and diagnosis output)

			Charge	pump	Rapd off		OUT1			OUT2	DI	AG
IN1	IN2	STBY	V _{CPV}	Boost operation	drive		M1 Note3	M2 Note3		M3 ^{Note3}		M6 Note3
х	х	L	$V_{CPV} = L$	stop	Disable	Hiz	OFF	OFF	Hiz	OFF	H (pull up)	OFF
L	L	Н	$V_{CPV} \leq V_{CPL}$	Operation	Disable	L	OFF	ON	Hiz	OFF	L	ON
Н	L				Disable	Н	ON	OFF	Hiz	OFF		
L	H ^{Note1}				Enable	L	OFF	ON	L	ON		
	H ^{Note2}				Disable	L	OFF	ON	Hiz	OFF		
Н	H ^{Note1}				Enable	L	OFF	ON	L	ON		
	H ^{Note2}				Disable	L	OFF	ON	Hiz	OFF		
L	L		V _{CPV} >V _{CPL}		Disable	L	OFF	ON	Hiz	OFF	Н	OFF
Н	L				Disable	Н	ON	OFF	Hiz	OFF	(pull up)	
L	H ^{Note1}				Enable	L	OFF	ON	L	ON		
	H ^{Note2}				Disable	L	OFF	ON	Hiz	OFF		
Н	H ^{Note1}				Enable	L	OFF	ON	L	ON		
	H ^{Note2}				Disable	L	OFF	ON	Hiz	OFF		

Table 7.5Truth table (2)

Note1: Rapid off drive operation time (100µs typ.) Note2: After Rapid off drive.

Note3: Refer to the following figure of the device name.

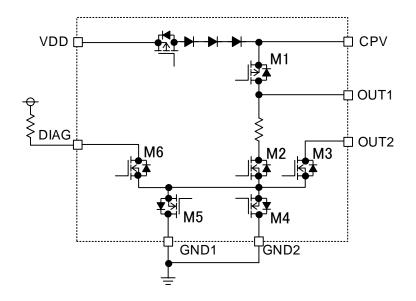


Figure 7.6 TPD7106F Output part.

8. Absolute Maximum Ratings

(T _a = 25°C unless otherwise speci								
Characteristics	Symbol	Rating	Unit	Note				
Supply voltage	DC	V _{DD (1)}	-18 to 27	V	-			
Supply voltage	Pulse	V _{DD (2)}	40	V	t≤500ms			
Input voltage(1)		VSTBY	-0.3 to 40.0	V	-			
Input voltage(2)		VIN1,VIN2	-0.3 to 6.0	V	-			
CPV voltage		Vcpv	40	V	-			
TEST pin voltage		V _{TEST}	40	V	-			
Output source current		I _{OUT1 (1)}	-10	mA	-			
Output sink current		IOUT1 (2)	+10	mA	-			
Output sink current		IOUT2	+400	mA	-			
DIAG Output voltage		V _{DIAG}	-0.3 to 40.0	V	-			
DIAG Output current		I _{DIAG}	5	mA	-			
Power dissipation		PD	1.16	W	-			
Operating temperature		T _{opr}	-40 to 150	°C	-			
Junction temperature	Tj	150	°C	-				
Strage temperature		T _{stg}	-55 to 150	°C	-			

Table 8.1 Absolute Maximum Ratings

Note1: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc.)

8.1. Thermal Resistance

Table 8.2 Thermal resistance

Charateristics	Symbol	Rating	unit
Thermal resistance(junction-to- ambient)	R _{th} (j–a)	108	°C / W

Note2: Glass epoxy board

Material: FR-4(4 layer) Board size: 76.2mmx114.3mmx1.6mm

9. Operating Ranges

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
Operating supply voltage	V _{DD}	$T_j = -40$ to $150^{\circ}C$	4.5	12.0	27.0	V

Table 9.1Operating Ranges

10. Electrical Characteristics

Table 10.1 Electrical Characteristics

(Unless otherwise specified, $T_j = -40$ to 150° C, $V_{DD} = 4.5$ to 27.0V)

		,	= -40 to T	1			,	
Characteristics	Symbol	Pin	Test Condition	Min	Тур.	Мах	Unit	
	I _{DD(1)}	V _{DD}	$V_{\text{DD}} = 12V, V_{\text{STBY}} = V_{\text{IL}}, T_j = 25^{\circ}C$	-	-	5.0	μA	
Supply current	I _{DD(2)}	Vdd	$V_{\text{IN1,2}} \!=\! V_{\text{IL}}, V_{\text{STBY}} \!=\! V_{\text{IH}}, C1, C2 \!=\! 0.01 \mu F$	-	3.2	6.0	mA	
cappi, carent	IDD(3)	V _{DD}	$V_{IN1} = V_{IH}, V_{STBY} = V_{IH}, C1, C2 = 0.01 \mu F,$ OUT1,OUT2 = open.	-	-	6.0	mA	
High level input voltage	VIH	IN1,IN2,	-	2.0	-	-	v	
Low level input voltage	VIL	STBY	-	-	-	0.8		
Input current	IIH	IN1,IN2,	V _{IN} =5V, Note1	-	50	100	μA	
	I⊫	STBY	$V_{IN} = 0V$	-1	-	1	μΑ	
High level output voltage	V _{OH1}	OUT1	$V_{DD} = 18 \text{ to } 27V, C1, C2 = 0.01 \mu F,$ $V_{IN1} = V_{IH}, V_{STBY} = V_{IH}, I_{OUT1} = -0.1 mA$	V _{DD} +7.0	-	40.0		
	V _{OH2}	OUT1	$V_{DD} = 8 \text{ to } 18V, C1, C2 = 0.01 \mu F,$ $V_{IN1} = V_{IH}, V_{STBY} = V_{IH}, I_{OUT1} = -0.1 \text{mA}$	V _{DD} +10.0	V _{DD} +12.0	V _{DD} +14.0	V	
	V _{OH3}	OUT1	$V_{DD} = 4.5 \text{ to } 8V, V_{IN1} = V_{IH},$ $V_{STBY} = V_{IH}, I_{OUT1} = -0.1 \text{mA}$	V _{DD} +5.4	V _{DD} +7.0	V _{DD} +14.0		
Output clamp voltage	Vocl	OUT1	V _{IN1} = V _{IH} , V _{STBY} = V _{IH} , C1,C2 = 0.01µF, I _{OUT1} = +0.1mA	34	37	40	V	
	V _{OL1}	OUT1	$V_{IN1} = V_{IL}, V_{STBY} = V_{IH},$ C1,C2 = 0.01µF, I _{OUT1} = +0.1mA	-	-	0.1	v	
Low level output voltage	V _{OL2}	OUT2	$V_{IN2} = V_{IH,} V_{STBY} = V_{IH,}$ C1,C2 = 0.01µF, I _{OUT2} = +0.1A	-	0.5	1.3	v	
Diagnosis output leakage current	Idiagh	DIAG	VIN1=VIL, VDIAG=5V	-	-	1	μA	
Diagnosis output voltage	Vdiagl	DIAG	VSTBY = VIH, IDIAG = 500µA	-	0.22	0.40	V	
Charge pump frequency	fosc	CP1, CP2	V _{STBY} = V _{IH}	30	55	80	kHz	
Charge pump under voltage detection voltage	Vcpl	CPV		V _{DD} +4.0	V _{DD} +4.7	V _{DD} +5.4	V	
Charge pump under voltage Hysteresis		CPV	Vin1 = Vih, Vstby = Vih	0.25	0.50	1.00	V	
	Ronh	OUT1	VIN1 = VIH, VSTBY = VIH, IOUT1 = -5mA	-	16	40		
Output driver on resistance	R _{ONL1}	OUT1	$V_{IN1} = V_{IL}, V_{STBY} = V_{IH}, I_{OUT1} = +5mA$	-	630	800	Ω	
	Ronl2	OUT2	$V_{IN2} = V_{IH}$, $V_{STBY} = V_{IH}$, $I_{OUT2} = +0.1A$	-	5	13]	

(Continued on next page)

(Continued from previous page)

Characteristics	Symbol	Pin	Test Condition	Min	Тур.	Max	Unit
Switching time	t _{ON}	IN1,	Defer to test sizewit 1 T. 25°C	-	0.1	0.5	ms
	t _{OFF1}	OUT1	Refer to test circuit 1, T _j =25°C	-	0.4	0.5	
	toff2	IN2, OUT2	Refer to test circuit 2, Tj=25°C	-	10	15	μs
Rapid off drive operation time	t _{O2ON}	IN2, OUT2	T _j =25°C	50	100	200	μs
Output current in reverse	I _{REV1}	OUT1	Refer to test circuit 3	-10	-	-	μA
connection	I _{REV2}	OUT2	V _{DD} =-4.5 to -18V	-10	-	-	μA

Note1: Built in pull down resistance $100k\Omega(typ.)$.

Note2: Typical value is V_{DD} =12V and T_j =25°C condition.

11. Test Circuit

11.1. Test circuit 1

11.2. Test circuit 2

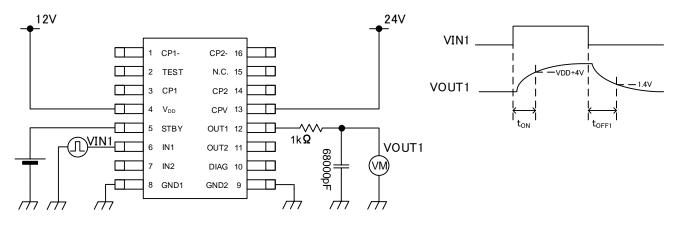
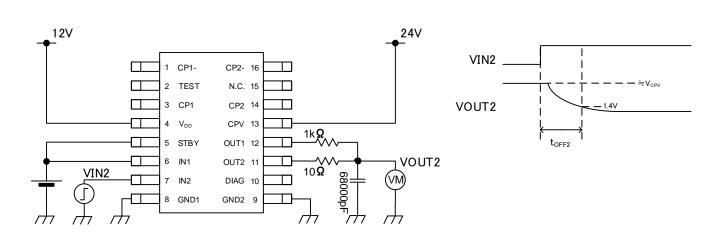



Figure 11.1 Switching time measurement circuit (1)

Figure 11.2 Switching time measurement circuit (2)

11.3. Test circuit 3

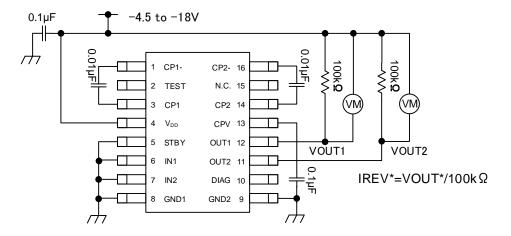


Figure 11.3 Output current in reverse connection measurement circuit

12. Characteristic curves

The below characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

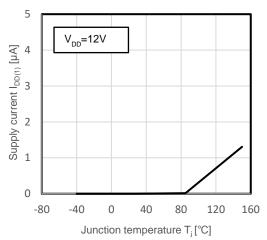


Figure 12.1 I_{DD(1)} - T_j

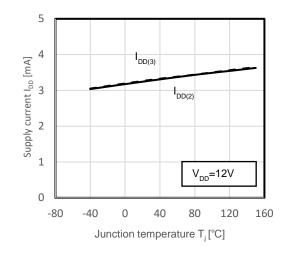


Figure 12.3 I_{DD} - T_j

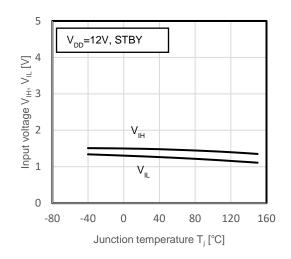


Figure 12.5 VIH, VIL - Ti

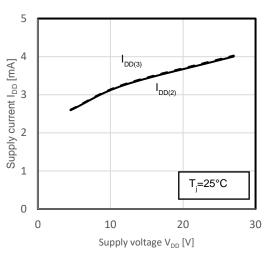
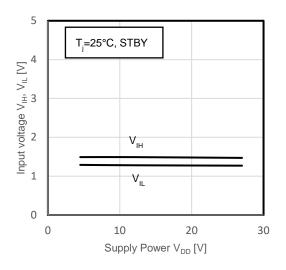
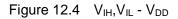




Figure 12.2 IDD - VDD

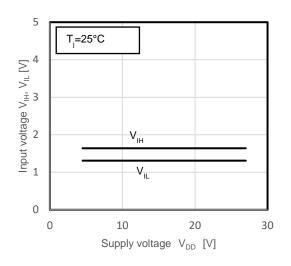


Figure 12.6 VIH, VIL - VDD

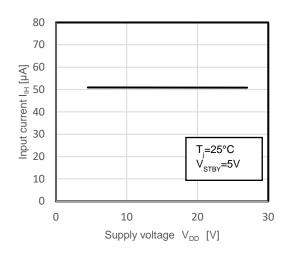


Figure 12.8 IIH - VDD

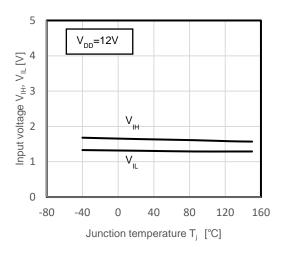


Figure 12.7 VIH,VIL - Tj

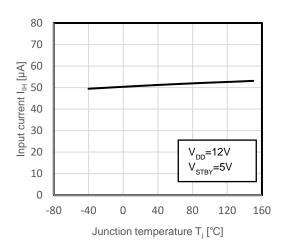


Figure 12.9 IIH - Tj

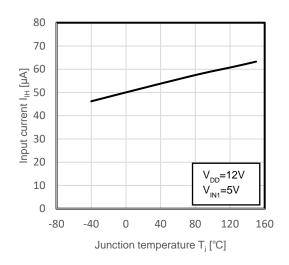


Figure 12.11 I_{IH} - T_j

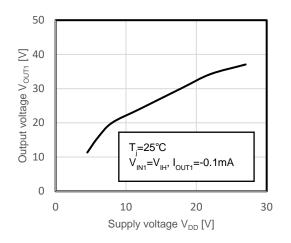


Figure 12.12 VOUT1 - VDD

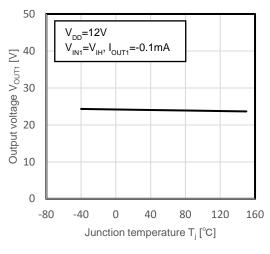


Figure 12.13 VOUT1 - Tj

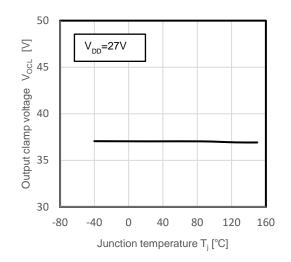


Figure 12.14 V_{OCL} - T_j

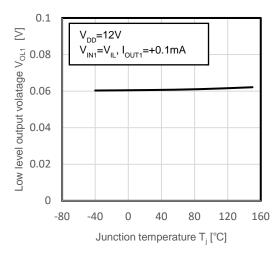


Figure 12.16 VoL1 - Tj

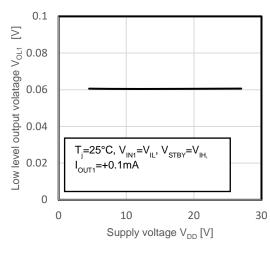
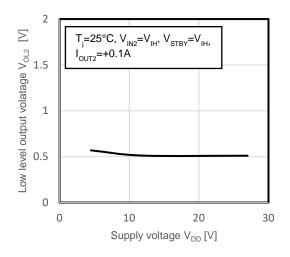
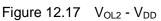




Figure 12.15 Vol1 - VDD

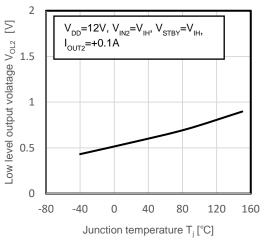


Figure 12.18 V_{OL2} - T_j

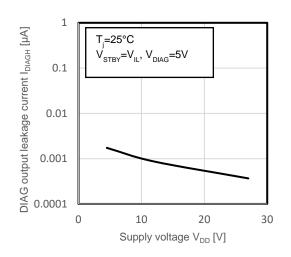


Figure 12.19 IDIAGH - VDD

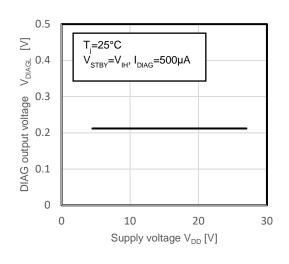


Figure 12.21 IDIAGL - VDD

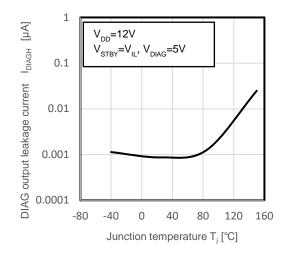


Figure 12.20 IDIAGH - Tj

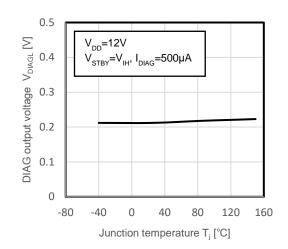
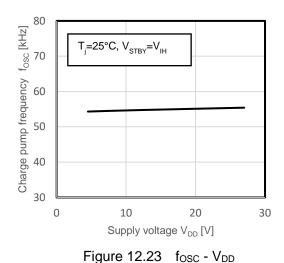
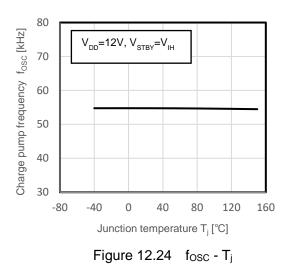




Figure 12.22 I_{DIAGL} - T_j

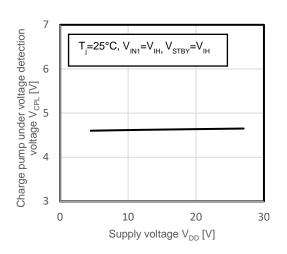


Figure 12.25 V_{CPL} - V_{DD}



Figure 12.27 ΔV_{CPL} - V_{DD}

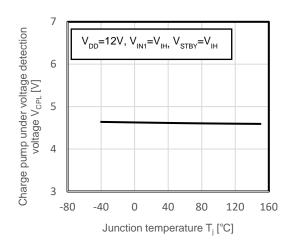
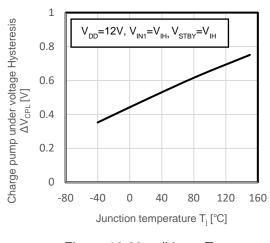
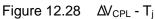




Figure 12.26 V_{CPL} - T_j

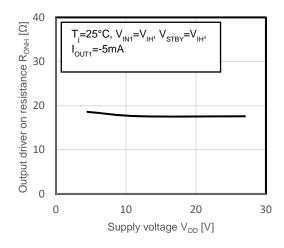


Figure 12.29 R_{ONH} - V_{DD}

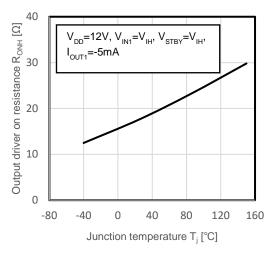


Figure 12.30 RONH - Tj

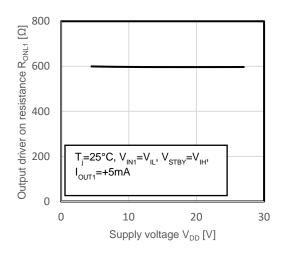
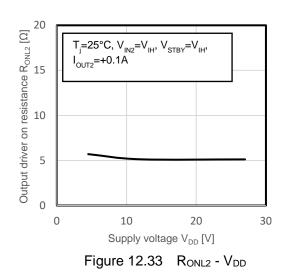



Figure 12.31 R_{ONL1} - V_{DD}

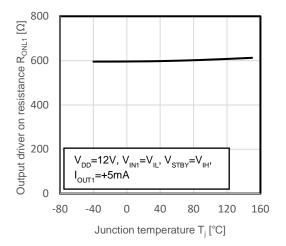
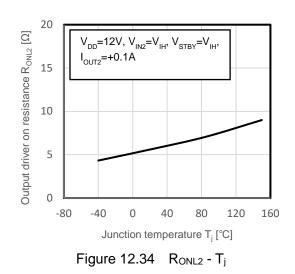



Figure 12.32 R_{ONL1} - T_j

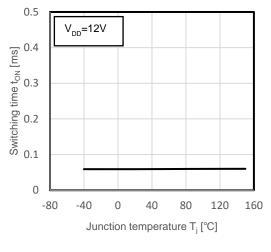


Figure 12.35 ton - Tj

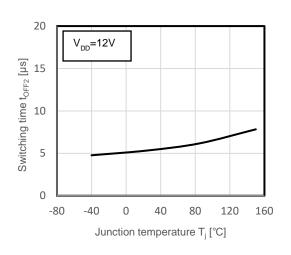


Figure 12.37 t_{OFF2} - T_j

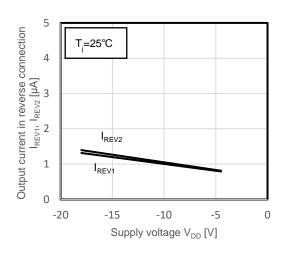


Figure 12.39 IREV1, IREV2 - VDD

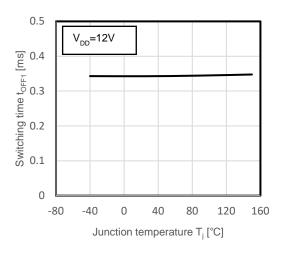


Figure 12.36 t_{OFF1} - T_j

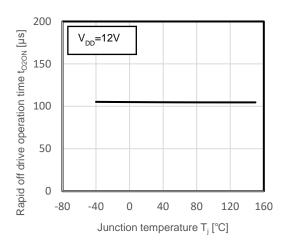


Figure 12.38 to20N - Tj

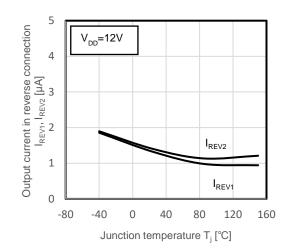
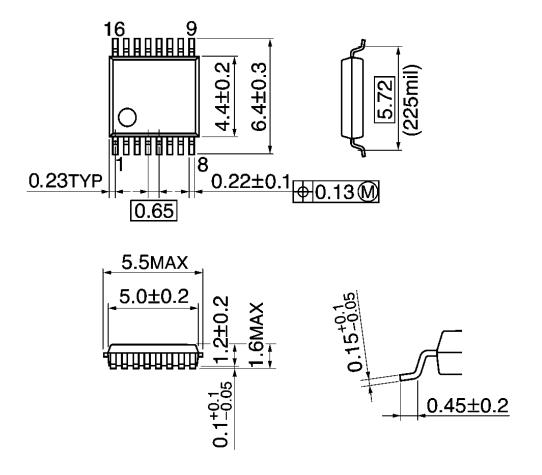



Figure 12.40 IREV1, IREV2 - Tj

13. Package Information

13.1. Package Dimensions

Unit: mm

Weight: 0.074 g (typ.)

13.2. Marking

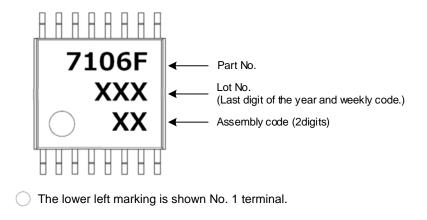
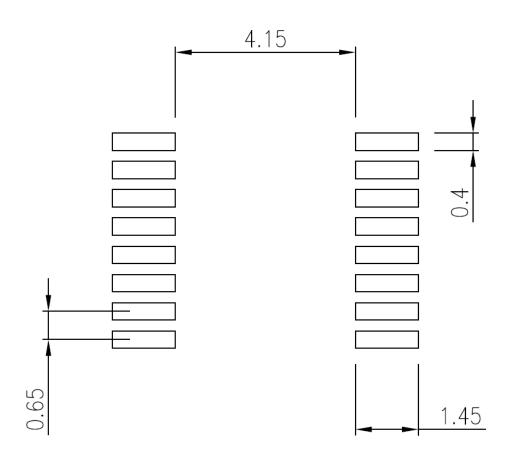
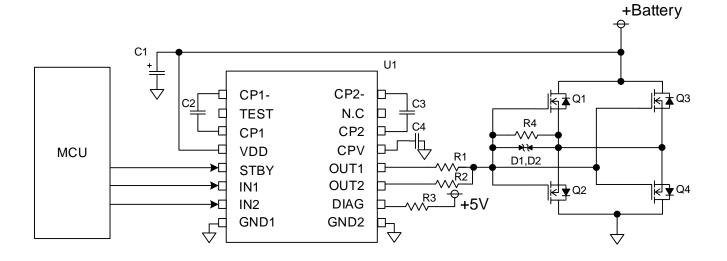


Figure 13.2 Marking

13.3. Land Pattern Dimensions for Reference only

Unit: mm




Figure 13.3 Land Pattern Dimensions for Reference only

14. IC Usage Considerations

14.1. Notes on Handling of ICs

- (1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment.
- (2) Immediately after power activation, by the constant of external elements, since a pulse may occur in a DIAG output signal, please do not use the DIAG output signal immediately after power activation for diagnosis of operation of a product.

15. Application Circuit Example

- U1: TPD7106F
- Q1,Q2,Q3,Q4: N channel power MOSFET/40V
- D1,D2: CRZ16
- R1: 1kΩ
- R2: 10Ω
- R3: 10kΩ
- R4: 200kΩ
- C1: 10µF/50V
- C2,C3: 0.1µF/50V
- C4: 1µF/50V

Figure 15.1 Application Circuit Example

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including
 without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT
 OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/