TVS diode (ESD protection diode)

ESD (electrostatic discharge) refers to the instantaneous discharge current that occurs when two charged bodies (for instance, a person and an electronic device) come into contact. ESD can cause electronic components to malfunction or fail and may even cause irreparable damage to devices. TVS diodes, also known as ESD protection diodes, are used to suppress and/or eliminate ESD from electronic components as a way to prevent damage to a device or system.

ESD protection is required at locations that human or other living creature may come into contact with. This includes places that hands and fingers touch, such as USB ports on a phone or the USB or HDMI ports on a laptop computer. On a component production line, ESD protection is necessary for processes such as connecting substrates together with a cable.

This document describes ESD test specifications, outlines the basic principles of the TVS (ESD protection) diode.

1. ESD test standard

ESD test standard is required depend on usage or application etc., it can be roughly divided into “Device level test” and “System level test”. The types and outlines of the ESD tests are described below.

1－1 Device level test (MM, HBM and CDM)

① MM (Machine Model) test
This test replicates discharge from a conductive body such as a metal frame or jig. Electric charge starts building up in production equipment as soon as the power is switched on. This charge transferred to internal components such as ICs in the form of electrical discharge. The MM test is designed to reproduce this form of ESD.
② HBM (Human Body Model) test

The HBM test, the most commonly known ESD test, replicates discharge from the human body or a charged device into an electronic component.

![Test circuit](image1)

![Ex. Discharge current waveform](image2)

③ CDM (Charged Device Model) test

Modern ICs and electronic components are made via automated assembly processes and seldom come into contact with human operators. As a result, HBM failure rates are on the decline. The CDM test replicates the discharge phenomena that are more likely to occur on a modern production line. Production line ICs and electronic components are often maintained with floating and isolated electric potential. This is conducive to buildup of charge, which is then discharged if a device contacts a metal surface such as equipment or jigs. The CDM test is designed to reproduce this form of ESD.

![Test circuit](image3)

![Ex. Discharge current waveform](image4)

1 - 2 System level tests (IEC61000-4-2, 4-5 試験)

① IEC61000-4-2 test (ESD immunity test — human model)

The IEC61000-4-2 test is designed to replicate ESD from the human body, similar to the HBM test. Electric charge tends to build up in the body in low humidity conditions, and also in specific scenarios such as walking across carpet (a poor conductor) or wearing clothes made from synthetic fiber. This text is designed to reproduce the discharge of this kind of electric charge built...
up in the body. The test uses two scenarios for ESD discharge from the body to the device. Contact discharge is based on the scenario of direct contact with the device, and the contacts of the testing equipment are physically touching the device. Air discharge replicates discharge when the device is not in contact with the body, and the equipment contacts are positioned a short distance from the device to create an air gap. Generally, contact discharge is used for devices with a metal surface and air discharge for devices with plastic or other shielding. Most TVS diodes are tested for both scenarios.

IEC61000-4-5 test (Surge immunity test – lightning)

The IEC61000-4-5 surge immunity test, also known as the lightning test, replicates the transient phenomena associated with a direct lightning strike along with local impacts such as surge voltage and current. It also replicates transient switching phenomena in electrical systems, such as sudden load changes and even short circuiting that can occur when the power is switched on to a large piece of machinery, for instance. This is the strictest type of system level immunity test in terms of applied surge current level and period.

ESD testing may be performed at the device level or the system level. Manufacturers currently tend to attach more importance to system level ESD testing. To this end, the Toshiba TVS diode has been designed with system level testing in mind.
2. How the TVS diode works

2-1 Steady state (TVS diode : OFF)

The TVS diode is situated between the normal signal line and GND, so the diode has capacitance during steady-state operation. Particularly for high-speed signal such as USB 3.0 and USB 3.1, this capacitance provides impedance, resulting in signal loss (also known as insertion loss or IL) that affects signal quality.

The graph below shows capacitance versus insertion loss. The higher the capacitance, the larger the insertion loss (with significant fluctuation in the negative quadrant), to the extent that it cannot keep up with the signal. In the case of USB 2.0 (480 Mbps, frequency equivalent 240 MHz) and Thunderbolt (10 Gbps, frequency equivalent 5 GHz), at low capacitance (0.1–0.3 pF) there is low insertion loss, so the TVS diode is suitable for both. At high capacitance, the diode is suitable for USB 2.0 but not for the higher speeds of Thunderbolt. It is important therefore to allow sufficient capacity for the signal speed.
2 – 2 ESD (surge/disturbance noise) impressed mode

In the mode of ESD such as surge or disturbance noise, a TVS diode provides critical protection for post-stage components such as the IC by safely redirecting the surge current to ground. Without a TVS diode, the surge current impacts directly on these components, potentially causing malfunction or failure. The key parameters are the initial peak voltage of the ESD (the V-peak voltage) and the V-clamp voltage at 30 ns and at 60 ns. The lower the V-peak and V-clamp values, the better the protection provided by the TVS diode. Similarly, a smaller waveform area indicates less damage to post-stage components. The diagram below compares surge voltage waveforms (clamp waveforms) with and without the TVS diode, illustrating the importance of the TVS diode.

Ex. IEC61000-4-2 Clamp voltage waveform

Another key parameter in both the steady-state and ESD scenarios is the dynamic resistance (Rdyn) of the TVS diode. A lower dynamic resistance value means that more surge current can be absorbed into the ground. Lower dynamic resistance also reduces the voltage across the dynamic resistance interval at the ends (i.e. the clamp voltage) and minimizes the residual current (excess surge current not absorbed by the TVS diode), providing further protection for post-stage components.
Dynamic resistance \((R_{dyn}) = \frac{(TLP \ V2 - TLP \ V1)}{(TLP \ I2 - TLP \ I1)} \)

3 Conclusion

The TVS diode absorbs the ESD and the surge noise entering from the outside, it is used in various sets to prevent malfunction of the circuit and to protect the ICs. We have lined up TVS diodes that are suitable for variety of applications, including mobile devices, consumer devices and etc. Please refer to the ESD test standards and the operation of TVS diodes mentioned above for consideration.

製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。本資料に掲載されているハードウェア、ソフトウェアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。
- 本製品に関する最新の情報（本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど）および本製品が使用される機器の取扱説明書、使用する機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。むしろ、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損失を引き起こす恐れ、または社会に深刻な影響を及ぼす恐れのある機器（以下「特定用途」という）に使用される本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 本資料に掲載している技術情報等、本製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を含むものではありません。
- 本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、またはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用される輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本資料のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた损害に関して、当社は一切の責任を負いかねます。