Toshiba CMOS Integrated Circuit Silicon Monolithic

TC7717FTG

Residential & Commercial Renewable Energy System (up to 1000 V AC or 1500 V DC)

DC-AC control interface IC

General outline

The TC7717FTG is a DC-AC control interface IC. It is used for photovoltaic system power conditioner. This device incorporates input and output pins of controller signal, 12-bit ADC, differential circuit for detection, S/P interface, and Boost-IC^{Note1} interface.

Features

- Process: C-MOS
- Internal reference power supply: 1.5 V (typ.) and 3.0 V (typ.)
- Input voltage
 AVDD and DVDD: 3.3 V±0.3 V
 ADVREF: 3.0 V (typ.)
- UVLO function by AVDD pin: Malfunction prevention in under voltage Release: 2.7 V (max) Stop: 2.2 V (min)
- Built-in 12-bit SAR AD converter (ADC core0 and core1)
 Operation of 3.3 V single power supply, conversion time 1 μs
 Main CLK: 40 MHz (typ.), External CLK of PLL reference: 10 MHz (typ.)
- Sampling function AC current (AIN0 core0), DC voltage (AIN0 core1) System voltage VU-VO (AIN1 core0), VW-VO (AIN1 core1)
- Detection function AC/DC current component detection (IDCERR), system voltage detection (VUO_OUT) System zero cross detection (L_HZO) DC current detection (I_INV)
- Analog (comparator detection threshold) monitor function
- S/P interface input (slave side)
 - Comparator threshold correction (±10 %) DC over current (DC_OC_REF), DC over voltage (DC_OV_REF) AC over current (AC_OC_REF), AC limit current (AC_CL_REF) Analog (comparator detection threshold) monitor selection DC over current (DC_OC), DC over voltage (DC_OV)
 - AC over current (AC_OC), AC limit current (AC_CL)
- Boost-IC interface (target device T5DK1FG, master side) ADC start signal (ADST), data transfer clock (ADCLK) ADC sampling data signal (DOUT0 and DOUT1)
- External reset input pin: C-MOS input
- Package QFN40 (6.0 mm × 6.0 mm, 0.5 mm Pitch)
- Note 1: "Boost-IC": Dedicated controller (T5DK1FG)

P-VQFN40-0606-0.50-001

Weight 97.6 mg (typ.)

This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive mat and an ionizer. Ensure also that the ambient temperature and relative humidity are maintained at reasonable levels.

Pin assignment (Top View)

*: Corner PAD and back-surface of heat dissipating PAD of OFN package should be connected to GND of the board.

*: Do not insert devices in the wrong orientation or incorrectly. Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion. In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

TC7717FTG

Pin functions (1)

Table-1 (1)

				Pull-Up/Pull-Down
Pin No. Pin name		I/O	Descriptions	External resistor
No.		-, -		(≥10kΩ)
			Non-Inverting input pin of DC current detection amplifier	(=10101)
1	SH_LG	A/I	GND side of the board of the shunt resistance (GND of DC voltage) is connected.	_
-	511_20	7.91	SH_LG, DGND, DC_LG, and AGND should be short-circuited externally as a GND of the board.	
			Inverting input pin of DC current detection amplifier	
2	SH_IN	A/I	Inverter bridge side of the shunt resistance is connected.	_
-	511_114	7.91	Protection diode should be connected between SH_IN (cathode) and SH_LG (anode).	
			Output (inverting amplifier signal) pin of DC current detection amplifier	
3	I_INV	L/O	PLL lock flag is outputted in startup and reset (RSTN=Low).	_
0		A/O	Analog internal signal can be monitored by S/P interface setting.	
			Inverting input pin of DC voltage detection amplifier	
4	DC_IN	A/I	Resistive-divided DC voltage (about 0.4212 %) is connected.	_
	DC_III	7.91	Protection diode should be connected between DC_IN (cathode) and DC_LG (anode).	
			Non-Inverting input pin of DC voltage detection amplifier	
5	DC_LG	A/I	GND side of DC voltage is connected.	_
5	00_20	7.91	SH_LG, DGND, DC_LG, and AGND should be short-circuited externally as a GND of the board.	
			Output pin for reference voltage of system (AC) voltage detection	
6	AC_REF	A/O	Lower-side voltage of resistive-divided voltage (VU, VO, and VW) is connected	_
Ū		.,.	to this pin. (1.5 V)	
_			Input pin for 3.3 V-power supply of logic circuit	
7	DVDD	P/I	DVDD and AVDD should be short-circuited externally.	—
	_		Input pin for external reference clock of PLL	
8	M_CLK	L/I	3.3 V-reference clock signal (10 MHz) is input from MCU.	Pull-Down
			Input pin for serial data of S/P interface	
9	DIN	L/I	3.3 V-data signal is input from MCU. It is only for slave side.	Pull-Up
10			Input pin for transmitting clock of S/P interface	
10	SCLK	L/I	3.3 V-data transmitting clock signal is input from MCU.	Pull-Down
			Input pin for start signal of S/P interface	5
11	CSN	L/I	3.3 V-signal is input from MCU. Low=setting data input	Pull-Up
			Input pin for IC reset	
12	RSTN	L/I	It input the result of external power supply monitoring. High=normal	Pull-Down
		_, _	operation, Low=initialization (same as UVLO in startup)	
			Input pin in starting ADC sampling trigger of Boost IC interface	
13	ADST	L/I	ADC starts sampling by triggering this High pulse. ADC output is activated by S/P interface	Pull-Down
		_, _	setting.	
			Output pin for ADC sampling data transmitting clock of Boost IC interface	
14	ADCLK	L/O	It outputs ADC sampling data from DOUT0 or DOUT1 in synchronizing	Pull-Down
- ·		_, _	with this clock.	
			Output pin for ADC sampling data of Boost IC interface	
15	DOUT0	L/O	(ADC-0, AIN0: AC current, AIN1: system AC voltage U-0)	Pull-Down
			Output pin for ADC sampling data of Boost IC interface	
16	DOUT1	L/O	(ADC-1, AIN0: DC voltage, AIN1: system AC voltage W-O)	Pull-Down
			Output pin for the result of over voltage (OV) detection comparator of DC voltage.	
17	DC_OV	L/O	High=normal operation, Low=detection	Pull-Up
		_	Output pin for the result of over current (OC) detection comparator of DC voltage.	
18	DC_OC	L/O	High=normal operation, Low=detection	Pull-Up
		_	Output pin for the result of over current (OC) detection comparator of AC current.	
19	AC_OC	L/O	High=normal operation, Low=detection	Pull-Up
			Output pin for the result of limit current (CL) detection comparator of AC current.	
20	AC_CL	L/O		Pull-Up
20	AC_CL	L/O	High=normal operation, Low=detection	Pull-Up

I/O: A/I=Input analog circuit, A/O=Output analog circuit, L/I=Input logic circuit, L/O=Output logic circuit, P/I=Input operation power supply, P/O=Output operation power supply
 Remarks: Logic circuit output (L/O) is indefinite in startup. It becomes initial value after the reset signal (RSTN) is input low. The logic

Remarks: Logic circuit output (L/O) is indefinite in startup. It becomes initial value after the reset signal (RSTN) is input low. The logic output is as same logic level as Pull-Up/Pull-Down resistance in the normal operation. (Ex: Pull-Up="High", Pull-Down="Low")

TC7717FTG

Pin function (2)

Table-1 (2)

TC7717FTG

Pin No.	Pin name	I/O	Descriptions	Pull-Up/Pull_Down External resistor (≥10kΩ)
21	DGND	P/I	Ground pin for digital circuit SH_LG, DGND, DC_LG, and AGND should be short-circuited externally as a GND of the board.	_
22	VDIG	P/O	Pin for monitor and for connecting decoupling capacitor of 1.5 V-internal power supply for digital circuit Connect decoupling capacitor of 0.1 μF between this pin and GND of the board.	_
23	TEST1	L/I	Vendor usage pin	Built-in
24	TEST2	L/I	Normal mode: Low input. Connect to GND.	Pull-down of 100kΩ
25	L_HZO	L/O	Output pin of zero cross detection comparator (Note)	Pull-Down
26	ADVREF	P/I	Input pin of reference power supply for ADC (3.0 V) (Note)	_
27	ADVREFO	P/O	Internal generation pin of reference power supply for ADC (3.0 V) When external power supply is used, it is set open.	—
28	L_HZD_HYS	A/I	Hysteresis set pin of zero cross detection comparator (Note)	
29	VUO_FIN	A/I	Prefilter input pin of zero cross detection comparator (Note)	
30	VUO_FO	A/O	Prefilter output pin of zero cross detection comparator (Note)	<u> </u>
31	VUO_OUT	A/O	Output pin for system AC voltage detection amplifier (phase U-O) (Note)	
32	VU	A/I	Input pin for system AC voltage (phase U) Resistive divided voltage (about 0.37 %) between system AC voltage (phase U) and the pin number 6 is input. Connect protection diode between VU (cathode) and GND of the board (anode).	_
33	VO	A/I	Input pin of system AC voltage (phase O) Resistive divided voltage (about 0.37 %) between system AC voltage (phase O) and the pin number 6 is input. Connect protection diode between VO (cathode) and GND of the board (anode).	_
34	VW	A/I	Input pin of system AC voltage (phase W) Resistive divided voltage (about 0.37 %) between system AC voltage (phase W) and the pin number 6 is input. Connect protection diode between VW (cathode) and GND of the board (anode).	_
35	AVDD	P/I	Input pin for analog circuit of 3.3 V-main power supply DVDD and AVDD should be short-circuited externally.	_
36	HCT_VOUT	A/I	Non-inverting input pin of AC current detection amplifier Connect output pin of the current transducer.	_
37	HCT_VREF	A/I	Inverting input pin of AC current detection amplifier Connect reference voltage output pin of the current transducer.	_
38	IDCERR_C	A/O	Filter set pin of AC/DC current component detection amplifier The capacitor (0.68 μ F) for low pass filter that decreases the frequency of 50Hz to 2.6/100 is connected between this pin and GND of the board.	
39	IDCERR	A/0	Output pin of AC/DC current component detection amplifier. It outputs the DC current component (IDCERR_C voltage) of AC by amplifying to 26 times. It is recommended to apply the notch filter to derive DC component after this output.	_
40 Note:	AGND	P/I	Ground pin for analog circuit SH_LG, DGND, DC_LG, and AGND should be short-circuited externally as a GND of the board. to each pin, refer to page 11, 20 or 21 because there are two or more parts.	

INOTE:As for the connection to each pin, refer to page 11, 20 or 21 because there are two or more parts.I/O:A/I=Input analog circuit, A/O=Output analog circuit, L/I=Input logic circuit, L/O=Output logic circuit, P/I=Input operation
power supply, P/O=Output operation power supply

Remarks: Logic circuit output (L/O) is indefinite in startup. It becomes initial value after the reset signal (RSTN) is input low. The logic output is as same logic level as Pull-Up/Pull-Down resistance in the normal operation (Ex: Pull-Up="High", Pull-Down="Low").

I/O equivalent circuit (1)

Table-2 (1)

I/O equivalent circuit (2)

TC7717FTG

Table-2 (3)

I/O equivalent circuit (4)

Table-2 (4)

I/O equivalent circuit (5)

Table-2 (5)

Block diagram of the entire solar power conditioner system

Figure-2

Figure-3

*: The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage. Providing these application circuit examples does not grant a license for industrial property rights.

TC7717FTG

zero

pin

Setting

cross detection secondary LPF of

prevention capacity pin

Chattering

Тο Boost IC

Inverter / system block:

Figure-4

*: System block diagram may be omitted or simplified for explanatory purposes.

From shunt resistor of high From HCT From system AC voltage voltage DC side AVDD (3.3 V) γ SH_LG SH_IN HCT_VOUT HCT_VREF vw vo νu AGND () \cap Ο VUO_OUT JVLO VUO_FO Inverter current I_GRID System AC current VUO_FIN MO 9 Over current detection LPF& differential DC current Zero detectior > > L_HZD_HYS 2nd orde DC_OC_REF LPF circui DC voltage L HZO DC_IN Ċ Internal ADVREFO(3.0 V) AINO AIN1 AIN0 AIN1 VREF 3.0 V DAC for eference voltage ADC1 ADC0 DC LG AC_REF(1.5 V) 1.5 V ADVREF DC OV RF _imit curren detection 3.0 V Over voltage detection Control logic 40MHz detectio Amp PLL -ifier Boost I/F SPI I/O AC OC REF Ċ Ο С О Ο С Ο \oslash \bigcirc С DC_OV DC_OC <u>}</u> + + − 1 VDIG(1.5 V) INV a_Mon) **IDCERR** TEST2 (DOUT0 M_CLK 8 TEST1 Ц RSTN DOUT1 ADCLK ADST SCLK DVDD(3.3 V) DIN CSN IDCERR_C AC Q A (Ana_ To Boost-To Boost-From MCU IC To Boost-IC IC To ADC input To ADC input of MCU From Boost-IC of MCU

Figure-5

*: Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

Block diagram:

From voltage dividing resistor of high voltage DC side

Absolute maximum ratings (Unless otherwise specified, Ta=25 °C)

Table-3

Characteristics	Symbol	Rating	Unit
Power supply voltage	AVDD,DVDD	3.7	V
Power supply voltage	V_ADVREF	3.7	V
Apply voltage of analog and logic	Vih	(*1) Refer to the following table	V
input pins	Vil	AGND,DGND-0.3 (*2)	V
Power dissipation (*3)	P _D	3716	mW
Operating temperature	T _{opr}	-40 to 85	°C
Storage temperature	T _{stg}	-55 to 125	°C
Junction temperature	Tj	125	°C

*1: Maximum applied voltage for each pin (Do not exceed over 3.7 V.)

Pin No.	Symbol	Rating	Unit		Pin No.	Symbol	Rating	Unit
1	SH_LG	AVDD+0.3		-	21	DGND		
2	SH_IN	AVDD+0.3		Ē	22	VDIG	(*4)	
3	I_INV	(*5)		Ē	23	TEST1	—	
4	DC_IN	AVDD+0.3			24	TEST2	—	
5	DC_LG	AVDD+0.3			25	L_HZO	DVDD+0.3	
6	AC_REF	VDIG+0.3			26	ADVREF	3.7	
7	DVDD	3.7			27	ADVREFO	(*4)	
8	M_CLK	DVDD+0.3			28	L_HZD_HYS	AVDD+0.3	
9	DIN	DVDD+0.3			29	VUO_FIN	AVDD+0.3	
10	SCLK	DVDD+0.3			30	VUO_FO	(*5)	
11	CSN	DVDD+0.3	V		31	VUO_OUT	AVDD+0.3	V
12	RSTN	DVDD+0.3			32	VU	AVDD+0.3	
13	ADST	DVDD+0.3			33	VO	AVDD+0.3	
14	ADCLK	DVDD+0.3			34	VW	AVDD+0.3	
15	DOUT0	DVDD+0.3			35	AVDD	3.7	
16	DOUT1	DVDD+0.3			36	HCT_VOUT	AVDD+0.3	
17	DC_OV	DVDD+0.3			37	HCT_VREF	AVDD+0.3	
18	DC_OC	DVDD+0.3		ſ	38	IDCERR_C	(*5)	
19	AC_OC	DVDD+0.3]		39	IDCERR	(*5)	
20	AC_CL	DVDD+0.3		Γ	40	AGND	—	

*2: Each pin commonness, AGND and DGND should be connected on the board.

*3: Board conditions: D76-1.6t-4 layer FR-4 board, internal layer 100 %, external layer 3.5 % (only pin assignment) When Ta is 25 °C or more, 29.7 mW decreases from absolute maximum rating per 1 °C rise.

*4: Do not apply voltage externally.

*5: Only for output pin

*6: "—": Connecting to GND

* The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings. Exceeding the rating (s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion. Please use the IC within the specified operating ranges.

Table-4

Package power dissipation

Power consumption [mW]

Figure-6

Operating condition (Ta = 25 °C)

		Table-5				
Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
	AVDD	—	2.0	3.3	2.6	
Power supply voltage	DVDD	—	3.0	3.3	3.6	V
	V_ADVREF	Input external power supply	2.7	3.0	3.3	
Rising time of power supply	tr_AVDD tr_DVDD	Normal operation: Input external power supply 0 V to 0.8 V *AVDD and DVDD	100	_	_	μs
Falling time of power supply	tf_AVDD tf_DVDD	Normal operation: Input external power supply 3.3 V to 0.2 V *AVDD and DVDD	100	_	_	μs

Reference power supply and UVLO characteristics (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Reference power supply and UVLO (Malfunction prevention in under voltage)

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
Reference power supply for AC voltage detection	V_acref	Only for resistive-divided voltage for AC detection	1.48	1.5	1.52	V
Commention	Idd_ana	M_CLK=10 MHz, ADC active	—	10	25	
Consumption current	Idd_advref	—	—	2	5	mA
Startup voltage (UVLO release voltage)	Vstr	Only for AVDD	—	_	2.7	
UVLO operation voltage	Vuvlo	Only for AVDD	2.2	—	—	V
Operation power supply pin for logic circuit (built-in)	Vdig	For external decoupling	1.35	1.5	1.65	
Changeable reference power sup	ply for internal ADC					
Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
Output voltage	V_advrefo	ADREFTMP[2:0]=011 ADREFT[4:0]=10010	2.9	3.0	3.1	V

Table-6

<Operation description>

UVLO function: Malfunction is prevented when the voltage of AVDD pin is low.

When AVDD voltage is 2.2 V (min) or less, internal circuit is initialized (reset) to prevent malfunction.

When it is 2.7 V (max) or more, reset of the internal circuit is released to resume the operation.

Operation of internal 3 V power supply (ADVREFO pin)

It incorporates 3 V reference power supply and it outputs from ADVREFO pin. The voltage can be configured by S/P interface input and register set.

Digital I/O characteristics (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Table-7

		Table-7				
IC reset pin						
Characteristics	Symbol	Test conditions	Min	Тур.	Max	Uni
Release reset (high level) input voltage	Vporoff	Input from external power supply monitor IC, Schmitt trigger input	0.7*DVDD	_	_	V
Reset (low level) input voltage	Vporon	—	—	—	0.3*DVDD	V
High level input current	Iihrstn	RSTN	—	_	1.0	μA
Low level input current	Iilrstn	RSTN	—	—	1.0	μA
S/P interface block input						
Characteristics	Symbol	Test conditions	Min	Тур.	Max	Uni
High level input voltage	Vihspi	DIN, SCLK, CSN, M_CLK Schmitt trigger input	0.7*DVDD	—	_	V
Low level input voltage	Vilspi	DIN, SCLK, CSN, M_CLK Schmitt trigger input	_	—	0.3*DVDD	V
High level input current	Iihspi	DIN, SCLK, CSN, M_CLK	—		1.0	μA
Low level input current	Iilspi	DIN, SCLK, CSN, M_CLK	—		1.0	μA
Boost-IC interface block I/O	•		-			
Characteristics	Symbol	Test conditions	Min	Тур.	Max	Uni
High level input voltage	Vihbst	ADST, Schmitt trigger input	0.7*DVDD	—	_	V
Low level input voltage	Vilbst	ADST, Schmitt trigger input	—	—	0.3*DVDD	V
High level input current	Iihbst	ADST	—	_	1.0	μA
Low level input current	Iilbst	ADST	_		1.0	μA
High level output voltage	Vhobst	ADCLK, DOUT0, DOUT1, Isource=-0.33 mA	0.7*DVDD	_	_	V
Low level output voltage	Vlobst	ADCLK, DOUT0, DOUT1, Isink =+0.33 mA	_	_	0.3*DVDD	V
Comparator output			-			
Characteristics	Symbol	Test conditions	Min	Тур.	Max	Uni
High level output voltage	Vho_comp	DC_OC, DC_OV, AC_OC, AC_CL Isource=-0.33 mA	0.7*DVDD	_		V
Low level output voltage	Vlo_comp	DC_OC, DC_OV, AC_OC, AC_CL Isink =+0.33 mA	_	_	0.3*DVDD	v

DC current detection (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Table-8

DC current detection amplifier block (Shunt resistance (56 m Ω (typ.)) between SH_IN and SH_LG pins))

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
Output valtage of detection		Level shift voltage when V_sh-in=0 V.	0.14	0.200	0.26	V
Output voltage of detection signal Detection circuit gain Input offset voltage Flow current of input pin	V_i-inv	V_sh-in=99.8 mV	1.257	1.367	1.477	V
signal		V_sh-in=229.5 mV	29.8 mV 1.257 1.367 1.477 229.5 mV 2.765 2.875 2.985 $k\Omega/7.5 k\Omega$ 11.42 11.66 11.90 SH_IN and SH_LG pins -5 $$ $+5$ r age V_sh-in=0 V -50 -20 $$ μ of the comparator is V_i-inv written above Test conditions Min Typ. Max U	V		
Detection circuit gain	Av_sh-in	Ex.)130.3 kΩ/7.5 kΩ	11.42	11.66	11.90	—
Input offset voltage	ΔV_i-inv	Between SH_IN and SH_LG pins	-5	_	+5	mV
Flow current of input pin	I_shin	Input voltage V_sh-in=0 V	-50	-20	-	μΑ
Comparator block of DC current d	etection: Detect	ion target of the comparator is V_i-inv writt	en above			
Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
DC_OC operating input voltage	V_dcocref	SH_IN voltage -> V_dcoc=High to Low	190	200	210	mV
Detection time	t_dcoc	Threshold is default of DAC Input voltage: Changeable from Rating to			5	μs
		FS				1

<Operation description>DC current detection

DC current detection circuit is shown in Figure-8. It monitors the DC current of the inverter bridge as voltage.

It constructs the low pass filter by the external parts (C×1 and R×1) to I_INV pin.

The difference voltage (0 to 229.5 mV) of shunt resistance between SH_IN and SH_LG pins is amplified (11.66 times) and the amplified voltage is outputted from I_INV pin.

When this voltage of I_INV pin is compared to the reference voltage (DC_OC_REF) by the comparator circuit and detected, the output voltage of DC_OC pin changes from High to Low.

Initial reference voltage of the comparator (DC_OC_REF) is 2.531 V (typ.@default). In this time, cutoff frequency of the amplifier is 482 kHz (typ.) and input offset voltage of the comparator is ±10 mV (max).

Equivalent circuit>

Figure-8

Table-9

Level of	DC over	current	detection	(typ)
Level OI	DC Over	current	uelection	(U p)

	Det	ection	Input voltage	Output voltage				
Level	cu	rrent	V_sh-in	V_i-inv				
	%	А	mV	V				
Zero	0 0		0	0.20				
Rating	100 1.782		99.8	1.3637				
OC	200	3.564	199.6	2.5273				
FS	FS 230 4.098		229.5	2.8759				

Approximate equation is as follows; Ex.) FS(230 %): Input voltage V_sh-in =Detection current (A)× shunt resistance $56(m\Omega)=4.098(A)\times56(m\Omega)\approx229.5(mV)$ Output voltage V_i-inv =V_sh-in(V)× amplifier circuit gain 11.66+ level shift $0.2(V)\approx229.5(mV)\times11.66+0.2=2.8759(V)$ Output offset voltage VIs=ADVREF×R1/(R1+R2)=0.20 V Amplifier circuit gain=R2/(R1+R2)+R3/R1≈11.66 In this time, R1:R2:R3=1:14:10.73

DC voltage detection (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3V, ADVREF=3.0V, AGND=DGND=DC LG=SH LG=0V)

Table-10

DC voltage detection amplifier block - Supply to internal ADC data -

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
		V_dcin=0.125 V	0.115	0.125	0.135	V
Detection signal output voltage	V_ain0_core1	V_dcin=1.403 V	1.393	1.403	1.413	V
		V_dcin=2.875 V	2.865	2.875	2.885	V
Detection circuit gain	Av_dcov	V_dcin=0.125 to 1.519 V	0.99	1	1.01	
Input pin leakage current	I_dcin	—			±1	μA
Comparator block of DC voltage detection						
Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
Voltage of DC_OV pin	V_dcov_on	When internal DC_OV_REF voltage is default	2.264	2.297	2.330	V
Input pin leakage current	I_dcin	—	—		±1	μA
		Threshold: Default of DAC				

<Operation description > DC voltage detection

DC voltage detection circuit is shown in Figure-9. It monitors the DC voltage of the inverter bridge as a value of voltage. The input voltage (0.125 to 2.875 V) which is divided to 0.4212 % from high voltage (PAC) for the resistance ($10k\Omega$) between DC_IN and DC_LG, is input to the internal ADC (AIN0 core1) through the buffer circuit (×1).

Input offset voltage of this amplifier is ± 15 mV which is 1 % of input voltage (rating: 333 V).

When this internal voltage is compared to the reference voltage (DC_OV_REF) and detected by the comparator circuit, the output voltage of DC_OV pin changes from High to Low.

Initial reference voltage of the comparator (DC_OC_REF) is 2.297 V (typ.).

In this time, cutoff frequency of the amplifier is 2.97 kHz (typ.), cutoff frequency of the comparator is 482kHz(typ.), and input offset voltage of the comparator is ±10 mV (max).

Equivalent circuit>

Values of internal resistance and capacitor are typical.

1.1

Figure-9

Partial resistances of 1.3 M Ω , 620 k Ω , 470 k Ω (upper side) are reference data. The recommended resistance between DC_IN and DC_LG is 10 kΩ. Ratio of this divided voltage is 0.418 % in this combination. Values of internal resistance and capacitor are typical. Table-11

Level of	t DC ov	er voltag	ge detection (typ	.)	
	Dete	ection	Input voltage	Output voltage	Approximate equation is as follows;
Level	vo	ltage	V_dcin	V_ain0_core1	Ex.) FS (150 %):
	%	V	V	V	Input voltage V_dcin
0 -		—	Out of ope	erating range	=Detection voltage (V)× Resistive-divided voltage
Min	—	—	0.125	0.125	0.4212 %=682.5(V)×0.4212/100
UV	—	50	0.211	0.211	≈2.875(V)
Dating	—	333	1.403	1.403	Output voltage V_ain0_core1= V_dcin(V)×Detection circuit gain 1
Rating	100	455	1.917	1.917	≈2.875×1.0=2.875(V)
OV	120	546	2.300	2.300	In this time, voltage of less than 0.125 V is out of operation
FS	150	682.5	2.875	2.875	guarantee range.

5

us

AC current detection (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Table-12

AC current detection amplifier block - Supply to internal ADC data -

t accl

t_acoc

Characteristics	Symbol	1	est conditions	Min	Тур.	Max	Unit
			HCT_VOUT=0.285 V	0.096	0.116	0.136	V
Output voltage of detection	V_ain0_core0	HCT_VREF =0.934 V	HCT_VOUT=0.934 V	1.480	1.500	1.520	V
signal		=0.934 V	HCT_VOUT=1.583 V	2.860	2.879	2.900	V
Detection circuit gain	Av_hctin	HCT_VOUT=0).285 to 1.583 V	2.110	2.133	2.150	_
Input offset voltage	ΔV_hctin	HCT_VOUT=H	HCT_VREF=0.934 V	-10		+10	mV
Flow current of input pin	I_hctin	Input voltage	=1.5 V	_		±5	μA
Comparator block of AC current de	etection	•					
Characteristics	Symbol	Te	est conditions	Min	Тур.	Max	Unit
Input voltage of AC CL exercises	V_acclref_h	Fault releast to	current 1000 A	1.31	1.346	1.38	V
Input voltage of AC_CL operation	V_acclref_l	Equivalent to	current ±1.960 A	0.485	0.522	0.56	V
Input voltage of AC OC exercise	V_acocref_h		aurrant 12216 A	1.38	1.417	1.455	V
Input voltage of AC_OC operation	V_acocref_l	Equivalent to	current ±2.316 A	0.415	0.451	0.495	V
	t accl	Threshold: De	efault of DAC				

<Operation description>AC current detection

AC current detection circuit is shown in Figure-10. It monitors the output current of the inverter bridge as a value of voltage. Input voltage (0.285 to 1.583 V) of HCT_VOUT pin is amplified to 2.13 times and input to the internal ADC (AIN0 core0). To match the input range of ADC, it treats level shift of 1.5 V.

amplifier block

In this time, cutoff frequency of the amplifier circuit is 300 kHz (typ., carrier frequency to 100 kHz), and input offset voltage of the comparator is ±10 mV (max).

Input voltage: Rating -> FS, Including

Figure-11 shows the monitoring behavior of the logic signal that is output from AC_OC and AC_CL pins.

Equivalent circuit>

Detection time

Values of internal resistance and capacitor are typical.

Level of AC current detection (typ.)>

Level	Detecti	ion current	Input voltage V_hctin	Output voltage V_ain0_core0	Approximate equation is as follows;
	%	A_peak	V	V	I/V conversion constant of HCT: 208(mV/A)
-FS	-175	-3.118	0.285	0.1157	Ex.) FS (+175 %):
-OC	-130	-2.316	0.452	0.4719	Input rating 1.26(Arms) -> 100 %: √2 times 1.782(A_peak)
-CL	-110	-1.960	0.526	0.6297	Input voltage V_hctin
-Rating	-100	-1.782	0.563	0.7087	=Detection current (A_peak)×208(mV/A)+Level shift voltage (V)
Zero	0	0	0.934	1.5000	$= 3.118(A_peak) \times 208(mV/A) + 0.934(V) \approx 1.583(V_peak)$ Output voltage V_ain0_core0
Rating	100	+1.782	1.305	2.2913	= (V_hctin(V_peak)-Input level shift (V))×Detection circuit gain
CL	110	+1.960	1.342	2.3703	2.133+Output level shift (V)
OC	130	+2.316	1.416	2.5281	=(1.583-0.934)×2.133+1.5≈2.8843(V)
FS	175	+3.118	1.583	2.8843	

Table-13

AC/DC currrent component detection (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Table-14

Amplifier block of AC/DC	current component detection	(to IDCERR pin)

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
Detection circuit gain	Av_idcerr		25.3	26	26.7	—

<Operation description> AC/DC current component detection

AC/DC current component detection circuit is shown in Figure-12. It monitors DC component (± 2 %) of the output current of the inverter bridge as a value of voltage.

AC current detection voltage (V_ain0_core0) described above is decreased to 2.6/100(-31.7 dB) and reduced by IDCERR_C pin (0.68 μ F) and the low pass filter of the internal resistance (180 k Ω (typ.)).

The rest DC component is amplified to 26 times, the rest AC component is cut off by twin T notch filter again, and it is input to the external ADC. In this time, cutoff frequency of amplifier is 1.30Hz (typ., 0.68 μ F) and input offset voltage of the amplifier is ±4 mV (max).

Equivalent circuit>

Detection level (typ.) of AC/DC current components

				I	able 15			
	Detec	tion current	Detection circuit gain	CR(LPF)	Detection circuit gain	Output voltage	Twin-T n	otch filter
Level	%	A post	of the prior	Decay rate	of DC	V_idcerr		
	70	A_peak	step		component	v_lucen	Decay rate	Output voltage
-FS	-2	-0.0356				0.1535		1.0798
Rating-1 %	-1	-0.0178				0.3589		1.2852
Zero	0	0	2.13	2.6/100	26	0.5644	1/100	1.4906
Rating+1 %	1	0.0178				2.6411		1.7148
+FS	2	0.0356				2.8465		1.9202

Tabla 1E

Definition of AC/DC current component and approximate equation are as follows;

Input AC rating ± 1.26 Arms -> Detecting 2 % of ± 1.7819 (A_peak) $\approx \pm 0.0356$ (A_peak)

HCT conversion constant: 208(mV/A), First detection circuit gain of G1:2.13 times, decaying AC component by IDCERR_C pin:2.6/100(-31.7 dB)

Detection circuit gain of DC component G2: 26 times

+FS side)

Output voltage V_idcerr= (DC component)+(AC component FS)+Level shift voltage

=Detection current (A_peak)×HCT conversion constant×First detection circuit gain×DC component circuit gain

+AC amplitude×First detection circuit gain×CR decay rate×Latter detection circuit gain+Level shift voltage

=0.0356(A_peak)×208.4(mV/A)×2.13×26+3.118(A_peak)×208.4(mV/A)×2.13×(2.6/100)×26+1.5

=2.8465(V)

-FS side)

Output voltage V_idcerr= (DC component)+(AC component)+Level shift voltage

 $=(-1)\times 0.0356(A)\times 208.4(mV/A)\times 2.13\times 26+(-1)\times 3.118(A_peak)\times 208.4(mV/A)\times 2.13\times (2.6/100)\times 26+1.5$

=0.1535(V)

Output voltage after passing twin T notch filter is as follows;

Decay rate: When 1/100(-40 dB), "AC component" of second term is 1/100,

+FS side) Output voltage=(DC component)+(AC component)*(1/100)+Level shift voltage=1.9202(V).

-FS side) Output voltage=1.0798(V)

System (AC) voltage detection (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC LG=SH LG=0V)

Table-16

Amplifier block of system (AC) voltage detection

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
Output valtage of	V	V_vuoin=V_vwoin=0.813 V, VO=1.5 V		0.125		V
Output voltage of detection signal	V_vuout V_vwout	V_vuoin=V_vwoin=VO=1.5 V	1.480	1.500	1.520	V
	v_vwout	V_vuoin=V_vwoin=2.188 V, VO=1.5 V	_	2.875		V
Detection circuit gain	Av_uo	Total gain of buffer of the prior step and detection of the latter step	2.00	2.02	2.04	_
Flow current of input pin	I_vuin I_voin I_vwin	VU=VO=VW=1.5 V	_		±5	μΑ

<Operation description> AC voltage detection

AC voltage detection circuit is shown in Figure-13. It monitors the system AC voltage as the value of voltage.

The voltage of AC_U/AC_O/AC_W is divided to 0.37 % (0.125 to 2.875 V) for the resistance of $10k\Omega$ (between VU, VO, and VW pin and AC_REF), and is inputted to buffer circuit (1.01 times). Then, each detection voltage between U and O, and between W and O is amplified to twice by detection circuit and input to internal ADC.

The detection voltage between U and O is outputted to VUO_OUT pin.

In this time, the output voltage offset is ± 10 mV (max) under the condition that offset/gain of buffer circuit of the prior step is ± 3 mV/1.01 times and offset/gain of detection circuit of the latter step is ±3 mV/2 times.

Cut off frequency of detection circuit of the latter step is 3.4 kHz (typ.).

Equivalent circuit>

The values of internal resistance and capacitor are typical.

rate of the AC_U/AC_O/AC_W voltage to 0.37 %. -142.8\

(Shift of center voltage before and after combination) Figure-14

Detection level of system (AC) voltage (typ.)>

Level	Detecti	ion voltage	Input voltage V_vuoin V_vwoin	Output voltage V_ain0_core0 V_ain0_core1	Approximate equation is as follows; Ex.) FS (130 %): Rating voltage 101(Vrms) -> 100 %: $\times\sqrt{2}$ = 142.8(V) Input voltage V_vuoin
	%	V_peak	V_dc	V_dc	=Detection voltage (V_dc)×rate of resistive dividing
-FS	-130	-185.69	0.813	0.125	0.37 %+level shift
-OV	-120	-171.40	0.866	0.231	=185.69(V_dc)×(0.37/100)+1.5(V_dc)≈2.187 V
-Rating	-100	-142.84	0.972	0.442	Output voltage V_ain0_core0 = (V_vuoin(V_dc)-Input offset)×Circuit gain+Output offse
Zero	0	0	1.500	1.500	≈(2.187-1.5)×2+1.5≈2.875(V)
Rating	100	142.84	2.029	2.558	Relation of input voltage V_vwoin and output voltage
OV	120	171.40	2.135	2.769	(V_ain0_core1) is as same as above equation.
FS	130	185.69	2.188	2.875]

Table-17

Zero cross detection (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V) Table-18

Comparator block of zero cross detection

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
Input offset voltage	ΔV_vuofo	Voltage of VUO_FO pin -1.5 V	-20		+20	mV

<Operation description>Zero cross detection circuit, second order Sallen-Key type LPF

As shown in Figure-15, Zero cross of AC voltage of the system is detected.

Second order Sallen-Key type LPF is applied for the buffer circuit in the IC (between VUO_FIN pin and VUO_FO pin) and the comparator (between L_HZD_HYS pin and L_HZO pin).

Cut off frequency is set by the external parts (C0, C1, R0, and R1), and the hysteresis of avoiding chattering is set by the external parts (C2, R2, R3, R4, and R5).

Equivalent circuit>

The values of internal resistance and capacitor are typical.

Setting threshold for comparator DAC (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Characteristics	Symbol	Table-19 Condition	Min	Тур.	Max	Unit
DC over current detection level	DC_OC_REF	1Step=0.18 A	3.283	3.570	3.839	А
DC over voltage detection level	DC_OV_REF	1Step=2.58 V	500.8	545.3	587.1	V
AC over current detection level	AC_OC_REF	1Step=0.026 A	±1.901	±2.323	±2.719	А
AC limit current detection level	AC_CL_REF	1Step=0.026 A	±1.558	±1.980	±2.376	А

<Operation description> Setting threshold for comparator DAC

Threshold values of over current detection and over voltage detection (DC_OC, DC_OV, AC_CL, and AC_OC) are configured. The setting voltage can be monitored by I_INV pin by setting S/P interface.

Block diagram>

Figure-17

Setting value of threshold (DAC) for comparator (reference)> DC over current Detection level setting range: Default setting=Setting 16>

Table-20

Setting			Detection
Se	tting	DC_OC_REF	current
DEC	BIN	V_dc	A_dc
0	00000	2.344	3.283
1	00001	2.355	3.301
2	00010	2.367	3.319
3	00011	2.379	3.337
4	00100	2.391	3.355
5	00101	2.402	3.373
6	00110	2.414	3.391
7	00111	2.426	3.409
8	01000	2.438	3.427
9	01001	2.449	3.445
10	01010	2.461	3.463
11	01011	2.473	3.481
12	01100	2.484	3.498
13	01101	2.496	3.516
14	01110	2.508	3.534
15	01111	2.520	3.552

Set	tting	DC_OC_REF	Detection current
DEC	BIN	V_dc	A_dc
16	10000	2.531	3.570
17	10001	2.543	3.588
18	10010	2.555	3.606
19	10011	2.566	3.624
20	10100	2.578	3.642
21	10101	2.590	3.660
22	10110	2.602	3.678
23	10111	2.613	3.696
24	11000	2.625	3.714
25	11001	2.637	3.732
26	11010	2.648	3.750
27	11011	2.660	3.768
28	11100	2.672	3.786
29	11101	2.684	3.804
30	11110	2.695	3.822
31	11111	2.707	3.839

DC over voltage Detection level setting range: Default setting= Setting 16> Table-21

Set	ting	DC_OV_REF	Detection voltage	Se	tting	DC_OV_REF	Detection voltage
DEC	BIN	V_dc	V_dc	DEC	BIN	V_dc	V_dc
0	00000	2.109	500.8	16	10000	2.297	545.3
1	00001	2.121	503.6	17	10001	2.309	548.1
2	00010	2.133	506.4	18	10010	2.320	550.9
3	00011	2.145	509.1	19	10011	2.332	553.7
4	00100	2.156	511.9	20	10100	2.344	556.4
5	00101	2.168	514.7	21	10101	2.355	559.2
6	00110	2.180	517.5	22	10110	2.367	562.0
7	00111	2.191	520.3	23	10111	2.379	564.8
8	01000	2.203	523.1	24	11000	2.391	567.6
9	01001	2.215	525.8	25	11001	2.402	570.4
10	01010	2.227	528.6	26	11010	2.414	573.1
11	01011	2.238	531.4	27	11011	2.426	575.9
12	01100	2.250	534.2	28	11100	2.438	578.7
13	01101	2.262	537.0	29	11101	2.449	581.5
14	01110	2.273	539.8	30	11110	2.461	584.3
15	01111	2.285	542.5	31	11111	2.473	587.1

<u> </u>		AC_O	C_REF	Detectio	n current	6		AC_O	C_REF	Detectio	on current
26	etting	Higher	Lower	Higher	Lower	50	etting	Higher	Lower	Higher	Lower
DEC	BIN	V_dc	V_dc	A_peak	A_peak	DEC	BIN	V_dc	V_dc	A_peak	A_peak
0	00000	2.344	0.656	1.901	-1.901	16	10000	2.531	0.469	2.323	-2.323
1	00001	2.355	0.645	1.927	-1.927	17	10001	2.543	0.457	2.350	-2.350
2	00010	2.367	0.633	1.954	-1.954	18	10010	2.555	0.445	2.376	-2.376
3	00011	2.379	0.621	1.980	-1.980	19	10011	2.566	0.434	2.402	-2.402
4	00100	2.391	0.609	2.006	-2.006	20	10100	2.578	0.422	2.429	-2.429
5	00101	2.402	0.598	2.033	-2.033	21	10101	2.590	0.410	2.455	-2.455
6	00110	2.414	0.586	2.059	-2.059	22	10110	2.602	0.398	2.482	-2.482
7	00111	2.426	0.574	2.086	-2.086	23	10111	2.613	0.387	2.508	-2.508
8	01000	2.438	0.563	2.112	-2.112	24	11000	2.625	0.375	2.534	-2.534
9	01001	2.449	0.551	2.138	-2.138	25	11001	2.637	0.363	2.561	-2.561
10	01010	2.461	0.539	2.165	-2.165	26	11010	2.648	0.352	2.587	-2.587
11	01011	2.473	0.527	2.191	-2.191	27	11011	2.660	0.340	2.614	-2.614
12	01100	2.484	0.516	2.218	-2.218	28	11100	2.672	0.328	2.640	-2.640
13	01101	2.496	0.504	2.244	-2.244	29	11101	2.684	0.316	2.666	-2.666
14	01110	2.508	0.492	2.270	-2.270	30	11110	2.695	0.305	2.693	-2.693
15	01111	2.520	0.480	2.297	-2.297	31	11111	2.707	0.293	2.719	-2.719

AC over current Detection level setting range: Default setting=Setting 16> Table-22

AC limit current Detection level setting range: Default setting=Setting 16>

Table-23

S	etting	AC_C	L_REF	Detectio	n current	Se	tting	AC_C	L_REF	Detectio	n current
		Higher	Lower	Higher	Lower			Higher	Lower	Higher	Lower
DEC	BIN	V_dc	V_dc	A_peak	A_peak	DEC	BIN	V_dc	V_dc	A_peak	A_peak
0	00000	2.191	0.809	1.558	-1.558	16	10000	2.379	0.621	1.980	-1.980
1	00001	2.203	0.797	1.584	-1.584	17	10001	2.391	0.609	2.006	-2.006
2	00010	2.215	0.785	1.610	-1.610	18	10010	2.402	0.598	2.033	-2.033
3	00011	2.227	0.773	1.637	-1.637	19	10011	2.414	0.586	2.059	-2.059
4	00100	2.238	0.762	1.663	-1.663	20	10100	2.426	0.574	2.086	-2.086
5	00101	2.250	0.750	1.690	-1.690	21	10101	2.438	0.563	2.112	-2.112
6	00110	2.262	0.738	1.716	-1.716	22	10110	2.449	0.551	2.138	-2.138
7	00111	2.273	0.727	1.742	-1.742	23	10111	2.461	0.539	2.165	-2.165
8	01000	2.285	0.715	1.769	-1.769	24	11000	2.473	0.527	2.191	-2.191
9	01001	2.297	0.703	1.795	-1.795	25	11001	2.484	0.516	2.218	-2.218
10	01010	2.309	0.691	1.822	-1.822	26	11010	2.496	0.504	2.244	-2.244
11	01011	2.320	0.680	1.848	-1.848	27	11011	2.508	0.492	2.270	-2.270
12	01100	2.332	0.668	1.874	-1.874	28	11100	2.520	0.480	2.297	-2.297
13	01101	2.344	0.656	1.901	-1.901	29	11101	2.531	0.469	2.323	-2.323
14	01110	2.355	0.645	1.927	-1.927	30	11110	2.543	0.457	2.350	-2.350
15	01111	2.367	0.633	1.954	-1.954	31	11111	2.555	0.445	2.376	-2.376

12-bit ADC and Boost-IC interface (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Table-24

12-bit SAR AD converter

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit
Integral non-linearity error	INL		11		11	LSB
Differential non-linearity error	DNL		-11	_	11	LSD
<reference value=""></reference>						
Integral non-linearity error	INL	Manuated an based	-5	_	5	LSB
Differential non-linearity error	DNL	Mounted on board	-4		4	LSB

Internal PLL

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit
Internal main clock	f_asclk	External clock f_mclk=10 MHz	38	40	42	MHz

<Operation description> 12-bit ADC and Boost-IC interface

System AC voltage (W-O side, U-O side), AC current, and DC voltage are sampled by two ADC cores (core0 and core1).

• Core0 outputs sampling data of AC current to system AC voltage (U-O side) from DOUT0 continually.

• Core1 outputs sampling data of DC voltage to system AC voltage (W-O side) from DOUT1 continually.

System AC voltage

Connection of AD converter and each analog input>

	Iable-25							
ADC core	Input AIN0	Input AIN1						
0	System AC	System AC voltage (U-O side)						
	current							
1	DC voltage	System AC voltage (W-O side)						

AD converter Output table of DOUT0 and DOUT1>

Table-26

Figure-18

DOUTn	Setting function	Setting description
ADF	AD converter / Identification flag	0=ADC0, 1=ADC1
D[11:0]	Sampling data (MSB fast, 24-bit data)	DOUT0=AC current (HCT) -> system AC voltage (U-O side)
		DOUT1= DC voltage -> System AC voltage (W-O side)

Input timing>

Recommended timing of ADST pin that is a trigger of starting ADC is as follows;

Input S/P interface waveform which matches this timing.

Tabl	~ ~ 7 7
Tabl	e-//

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
External clock	f_mclk	—		10		MHz
Pulse width of ADC start trigger	tadst	From rising edge of ADST to falling edge of ADST	71.2	_	210	ns

Output timing>

Output I/F of ADC generates internal main clock (f_asclk=40 MHz) from the frequency of 10 MHz to the external reference clock (f_mclk) as IP and operates at the following output timing. Detail timing chart is shown in the next page.

		Table-28				
Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
ADC transfer clock High level time	thadclk	ADCLK	23.8	25	26.3	ns
ADC transfer clock Low level time	tladclk	ADCLK	23.8	25	26.3	ns
ADC sampling hold time	tadsh	—	238	250	272	ns
ADC data delay time	tsu	ADCLK to DOUT0 and DOUT1	0		20	ns
Conversion time	tconv	ADC internal clock 40 MHz±5 %		0.925	1.07	μs
	tconvall		1.76	250 272 - 20	μs	

Boost-IC interface timing chart>

The sampling result of each AD convertor is outputted from DOUT0 and DOUT1 in synchronization with ADCLK by triggering High level pulse of ADST pin.

S/P interface Timing condition (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Table-29

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
SCLK frequency	fsclk	—	_		10	MHz

<Operation description> Frame format of S/P interface (slave)

S/P interface uses three pins of CSN, SCLK, and DIN. If is slave-only interface to set each configuration of the TC7717FTG and the register for a test.

Input format supports only general transfer format of 16-bit serial data.

1-bit of MSB: Wire only (=1) -> 7 bits (A[6:0]): Register address setting -> 8 bits (D[7:0]): Each data setting

CSN pin: Low active

DIN pin: Always input. When the transmitting side turns off output during non-transmission, fix the output level with Pull-up/Pull-down resistance.

Timing chart>

Input timing condition>

Recommended timing corresponding to SCLK frequency (fsclk=10 MHz) is as follows; Input S/P interface waveform which matches this timing.

		Table-30				
Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
Waiting time from CSN↓ to SCLK↑	tcss		100		—	ns
Setup time of DIN and SCLK1	tsu		50	—	—	ns
Hold time of SCLK↑ and DIN	thd		50	—	—	ns
Waiting time from SCLK↓ to CSN↑	tcsh	For S/P interface 10 MHz	100	—	—	ns
Input Low time of SLCK	twl	10 10112	0.025	—	500	μs
Input High time of SLCK	twh		0.025	—	500	μs
Input High time of CSN	tcs		100			ns

Data table of S/P interface (slave) (1)

Mode setting registe	er											Tabl	e-31					
Register name Address									Data and each register name									
	R/W	A6	A5	A4	43	A2	A1	A0	HEX	D7	D6	D5	D4	D3	D2	D1	D0	
Mode setting register (1)	1	0	0	0	0	0	0	1	01	Used by vender	—	—	ACPATHS	DACSEL1	DACSEL0	ADC_en	SOFTRST	
Register value in initial mode	and externa	al RST	N=Low	v (reset)						0	0	0	0	0	0	0	0	
Description and remark of each register										normal operation. D7 is used in the vendor side. And so all inputs are set low in the normal operation.the internal amplifi in AC voltage detection.0: Normal operation.0: Normal operation			5	It selects the judging level setting DAC of each detection 00: DC_OC_REF 01: DC_OV_REF 10: AC_OC_REF 11: AC_CL_REF		It controls AD conversion of internal ADC. 0: Stop conversion 1: Capable of conversion	For software reset 0: Normal operation 1: Reset (register set is cleared)	
Setting register of ju	dging le	vel	DAC	for ea	ch c	letec	tion	comp	parator									
Register name				Ac	dres	s								D	ata			
	R/W	A6	A5	A4	43	A2	A1	A0	HEX	D7	D6	D5	D4	D3	D2	D1	D0	
DAC setting register	1	0	0	0	0	0	1	0	02	—		—	DAC4	DAC3	DAC2	DAC1	DAC0	
Register value in initial mode	and externa	al RST	N=Low	v (reset)						0	0	0	1	0	0	0	0	
Description and remark of each register								It sets voltage of DAC. D[7:5]: All=0, D[4:0]: Each DAC voltage is set										
Setting register of a	halog mo	onito	or															
Register name Address							Data											
	R/W	A6	A5	A4	43	A2	A1	A0	HEX	D7	D6	D5	D4	D3	D2	D1	D0	
Analog monitor setting register	1 0 0 0 0 0 1 1 03				03	_	_	-	Used by vender	INVSEL3	INVSEL2	INVSEL1	INVSEL0					
Register in initial mode and i	n external R	STN=	Low (re	eset)						0	0	0	0	0	0	0	1	
Description and remark of each register											endor side. A		rmal operation. D4 is all inputs are set 0 in the	It monitors the operation by I_INV pin and selects the reference voltage of each detection comparator. 0000: I_INV, 0001:PLL_LOCK flag 0010: DC_OC_REF, 0011:DC_OV_REF, 0100: AC_OC_REF_H, 0101:AC_OC_REF_L, 0110: AC_CL_REF_H, 0111:AC_CL_REF_L, 1000 to 1111 are used in the vendor side. Input is forbidden in the normal operation.				
PLL setting register																		
Register name Address							Data											
	R/W	A6	A5	A4	43	A2	A1	A0	HEX	D7	D6	D5	D4	D3	D2	D1	D0	
PLL setting register	1	0	0	0	0	1	0	1	05	—	_	-	_	PLL_FIL1	PLL_FIL0	PLL_WIDR1	PLL_WIDR0	
Register in initial mode and in external RSTN=Low (reset)								0	0	0	0	1	0	0	1			
Description and remark of each register					It is an unused inputs are set	-	the no	rmal operation. All	It sets time constant of PLL lock. It sets window of PLL_LOCK flag. 00: 51.2 μs, 01: 102 μs 00: ±1.56 %, 01: ±3.13 %, 10: 205 μs, 11: 410 μs 10: ±6.25 %, 11: ±12.5 %									

Data table of S/P interface (slave) (2)

Trimming register of reference voltage (ADVREFO pin voltage)

			J .			•				Ţ	Table-32								
Register name Address										Data and each register name									
	R/W A6 A5 A4 A3 A2 A1 A0 HEX D7 D6 D5		D5	D4	D3	D2	D1	D0											
Trimming register of reference voltage	1	0	0	0	0	1	1	0	06	ADREFTMP2	ADREFTMP1	ADREFTMP0	ADREFT4	ADREFT3	ADREFT2	ADREFT1	ADREFT0		
Register in initial mode and in external RSTN=Low(reset)										1	0	0	1	0	0	0	0		
Recommended register value										0	1	1	1	0	0	1	0		
Description and remark of each register When using this reference voltage (ADVREFO pin), set the registers according to the values in the right columns, and connect to the reference voltage ADVREF pin of the ADC. It supplies about 2.997 V with this recommendation setting.									s in the	It adjusts the tempe voltage (ADREFTO (Set as follows; ADRI		of internal reference	It adjusts the absolute voltage of internal reference voltage (ADREFTO (3.0 V)). Set as follows; ADREFT[4:0]=10010						
Register name		<u></u>			ddress					Data and each register name									
	R/W	A6	A5	A4	A3	A2	A1	A0	HEX	D7	D6	D5	D4	D3	D2	D1	D0		
N/A	0	Х	Х	Х	Х	Х	Х	Х	XX	_	_	_	_	_	_	_	_		
Use vendor	0	0	0	0	0	1	0	0	04	—	—	_	_	—	—	—	_		
Register in initial mode and in external RSTN=Low(reset)										0	0	0	0	0	0	0	0		
Description and remark of each register											ster. It is forbidden to	•	peration						

As for address setting except above table (Read mode), input is forbidden because it is not used in the normal operation.

Operation of PLL lock flag>

Main control starts after PLL lock of the TC7717FTG is confirmed by MCU. The PLL lock flag is output recognized as the default output of I_INV pin.

	lable-33	
Characteristics	Condition	Operation
	Initial state	PLL lock flag is output from I_INV pin.
PLL lock flag	PLL lock: incomplete	I_INV="Low"
	PLL lock: complete	I_INV="High"

*: As for time constant of PLL lock and flag window, refer to PLL setting register (05h) of S/P interface.

Each function of reset signal (RSTN pin) and UVLO (AVDD pin) (Unless otherwise specified, Ta=25 °C, AVDD=DVDD=3.3 V, ADVREF=3.0 V, AGND=DGND=DC_LG=SH_LG=0 V)

Each function of Reset signal and UVLO operating>

Table-34

In case of RSTN=Low	Operation of each function
Release reset	Main power supply is connected. Internal circuit starts operation when RSTN outputs from low to high level.
Operation level of reset	It operates as same in the UVLO detection of AVDD (Refer to Page 14).
Register of sampling relation of ADC	All operations: Low, DOUT0 and DOUT1=ADCLK=Low or X (indefinite)
Setting contents from S/P interface	All operations are initialized to default. Data setting is not configured even if a signal is input with S/P interface.
I_INV	It returns to output of PLL flag monitor and outputs low.
Oscillation circuit of PLL circuit and others	Operation of PLL circuit is not in the standby mode if AVDD is applied.
Comparator output	All operations: High
AC_REF(1.5 V) and VDIG	It outputs the voltage of 1.5 V. (VDIG is the same.)
Standby function	Operation of analog circuit is not in the standby mode (voltage cut) if AVDD is applied.

Package dimensions P-VQFN40-0606-0.50-001

Unit: mm

Weight: 97.6 mg (typ.)

TC7717FTG

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage. Providing these application circuit examples does not grant a license for industrial property rights.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use
 Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION