CMOS Digital Integrated Circuit Silicon Monolithic

TC90207FG

LVDS-Rx IC

1. Description

TC90207FG is LVDS-Rx IC for picture IF. Input signal is LVDS (4ch Data/1ch Clock), and output signal is LVTTL.

2. Application

For picture IF IC.

3. Features

- LVDS input(4ch Data lane / 1ch Clock lane)
- LVTTL output(28bit Data, Clock)
- Power Down(LVDS-Rx, output pin is Low)
- Capable of LVTTL output Data swapping
 - Input Lane swap(Rx-A⇔Rx-D, Rx-B⇔Rx-D)
 - Output swap(DOUT[n]⇔DOUT[27-n])
- 8bit RGB output swap
- Power supply: 3.3V, 1.5V
 Package: LQFP64-P-1010-0.50E

4. Block Diagram

Figure 4.1 Block diagram

TOSHIBA

5. Pin Layout

Figure 5.1 Pin Layout

6. Pin Description

TOSHIBA

Pin Number	Name	I/O	Function	When unused
1	AVS	-	GND(LVDS-Rx)	-
2	PWD	In	Power down control (Low: Normal, High: Power Down)	GND
3	RESET	In	RESET Pin (Low: Reset, High: Normal)	-
4	TEST	In	TEST Pin (Low: Normal)	GND
5	SW2	In	Output data swapping control	GND
6	SW1	In	Output data swapping control	GND
7	SW0	In	Output data swapping control	GND
8	DVDD	-	1.5V Power Supply for Logic circuit	-
9	DOUT27	Out	Data output	Open
10	DOUT26	Out	Data output	Open
11	DOUT25	Out	Data output	Open
12	VSS	-	GND	-
13	VDDIO	-	3.3V Power Supply for I/O	-
14	DOUT24	Out	Data output	Open
15	DOUT23	Out	Data output	Open
16	DOUT22	Out	Data output	Open
17	DOUT21	Out	Data output	Open
18	DOUT20	Out	Data output	Open
19	DOUT19	Out	Data output	Open
20	VSS	-	GND	-
21	VDDIO	-	3.3V Power supply for I/O	-
22	DOUT18	Out	Data output	Open
23	DOUT17	Out	Data output	Open
24	DOUT16	Out	Data output	Open
25	DOUT15	Out	Data output	Open
26	DOUT14	Out	Data output	Open
27	VSS	-	GND	-
28	CLK	Out	Clock output	Open
29	VDDIO	-	3.3V Power Supply for I/O	-
30	DOUT13	Out	Data output	Open
31	DOUT12	Out	Data output	Open
32	DOUT11	Out	Data output	Open

Table 6.1Pin Description

Pin Number	Name	I/O	Function	When unused
33	DOUT10	Out	Data output	Open
34	DOUT9	Out	Data output	Open
35	DVDD	-	1.5V Power Supply for Logic circuit	-
36	VSS	-	GND	-
37	VDDIO	-	3.3V Power Supply for I/O	-
38	DOUT8	Out	Data output	Open
39	DOUT7	Out	Data output	Open
40	DOUT6	Out	Data output	Open
41	DOUT5	Out	Data output	Open
42	DOUT4	Out	Data output	Open
43	DOUT3	Out	Data output	Open
44	VSS	-	GND	-
45	VDDIO	-	3.3V Power Supply for I/O	-
46	DOUT2	Out	Data output	Open
47	DOUT1	Out	Data output	Open
48	DOUT0	Out	Data output	Open
49	AVD33	-	3.3V Power Supply for LVDS-Rx	-
50	AVS	-	GND (LVDS-Rx)	-
51	RxA-	In	LVDS Ach (-) input	GND
52	RxA+	In	LVDS Ach (+) input	GND
53	RxB-	In	LVDS Bch (-) input	GND
54	RxB+	In	LVDS Bch (+) input	GND
55	RxC-	In	LVDS Cch (-) input	GND
56	RxC+	In	LVDS Cch (+) input	GND
57	AVD	-	1.5V Power Supply for LVDS-Rx	-
58	AVD33	-	3.3V Power Supply for LVDS-Rx	-
59	AVS	-	GND (LVDS-Rx)	-
60	RxCK-	In	LVDS Clock (-) input	GND
61	RxCK+	In	LVDS Clock (+) input	GND
62	RxD-	In	LVDS Dch (-) input	GND
63	RxD+	In	LVDS Dch (+) input	GND
64	AVD33	-	3.3V Power Supply for LVDS-Rx	

7. Functional description

7.1. LVDS signal input

LVDS data input interface takes differential signal input of 4 channels, and generates the clock frequency 7-multiplied for input clock by PLL circuit in receiver core. And it takes out signal in 7 bit of each channel by deserializer.

Therefore data of all 28 bits (7 bits x 4 channels) can be received.

Figure 7.1 LVDS Data arrangement

7.2. LVTTL output

Input LVDS signal is converted to LVTTL. It can swap output data like the following table by the L/H state of SW0-SW2 control pins.

SW0	L	Н	L	Н	L	Н	L	Н
SW1	L	L	Н	Н	L	L	Н	Н
SW2	L	L	L	L	Н	Н	Н	Н
DOUT0	RA0	RD0	RD6	RA6	RC3	RB3	RD6	RA6
DOUT1	RA1	RD1	RD5	RA5	RC2	RB2	RC6	RB6
DOUT2	RA2	RD2	RD4	RA4	RC1	RB1	RC4	RB4
DOUT3	RA3	RD3	RD3	RA3	RC0	RB0	RC5	RB5
DOUT4	RA4	RD4	RD2	RA2	RB6	RC6	RD0	RA0
DOUT5	RA5	RD5	RD1	RA1	RB5	RC5	RD1	RA1
DOUT6	RA6	RD6	RD0	RA0	RD5	RA5	RA0	RD0
DOUT7	RB0	RC0	RC6	RB6	RD4	RA4	RA1	RD1
DOUT8	RB1	RC1	RC5	RB5	RB4	RC4	RA2	RD2
DOUT9	RB2	RC2	RC4	RB4	RB3	RC3	RA3	RD3
DOUT10	RB3	RC3	RC3	RB3	RB2	RC2	RA4	RD4
DOUT11	RB4	RC4	RC2	RB2	RB1	RC1	RA5	RD5
DOUT12	RB5	RC5	RC1	RB1	RB0	RC0	RD2	RA2
DOUT13	RB6	RC6	RC0	RB0	RA6	RD6	RD3	RA3
DOUT14	RC0	RB0	RB6	RC6	RD3	RA3	RA6	RD6
DOUT15	RC1	RB1	RB5	RC5	RD2	RA2	RB0	RC0
DOUT16	RC2	RB2	RB4	RC4	RA5	RD5	RB1	RC1
DOUT17	RC3	RB3	RB3	RC3	RA4	RD4	RB2	RC2
DOUT18	RC4	RB4	RB2	RC2	RA3	RD3	RB3	RC3
DOUT19	RC5	RB5	RB1	RC1	RA2	RD2	RB4	RC4
DOUT20	RC6	RB6	RB0	RC0	RA1	RD1	RD4	RA4
DOUT21	RD0	RA0	RA6	RD6	RA0	RD0	RD5	RA5
DOUT22	RD1	RA1	RA5	RD5	RD1	RA1	RB5	RC5
DOUT23	RD2	RA2	RA4	RD4	RD0	RA0	RB6	RC6
DOUT24	RD3	RA3	RA3	RD3	RC5	RB5	RC0	RB0
DOUT25	RD4	RA4	RA2	RD2	RC4	RB4	RC1	RB1
DOUT26	RD5	RA5	RA1	RD1	RC6	RB6	RC2	RB2
DOUT27	RD6	RA6	RA0	RD0	RD6	RA6	RC3	RB3
CLKOUT	CLK							

Table 7.2 1 Description of data output pin

7.3. Power down

When the PWD pin is the High state, LVDS-Rx core is power down state, and LVTTL output is Low.

7.4. Reset control

Reset system: Asynchronous reset (Even if LVDS clock isn't input, it can control a reset.) Reset period : Maintaining Low state for more than 1μ s.

When normal operation, Reset pin is the high state.

8. Absolute maximum rating

The parameters listed in the following absolute maximum rating table are limit values for this product. Exceeding even one of these limit values even momentarily may cause damage to the product. Be sure to use it within the operating ratings.

Parameter	Symbol	Rating	Unit
Power supply1 (1.5V block)	VDD1	-0.3 to VSS+2.0	V
Power supply 2 (3.3V block)	VDD2	-0.3 to VSS+3.9	V
Input voltage (LVDS)	V _{LVDSIN}	-0.3 to VDD1+0.3	V
Input voltage (3.3V I/O)	V _{TTLIN}	-0.3 to VDD1+0.3	V
Potential difference between supply pins (1.5V block supply voltage pins)	∆VDG1 (Note 1)	0.3	V
Potential difference between supply pins (3.3V block supply voltage pins)	∆VDG2 (Note 1)	0.3	V
Power dissipation	PD	1739	W
Operating temperature	T _{opr}	-40 to 85	°C
Storage temperature	T _{stg}	-50 to 125	°C

 Table 8.1
 Absolute maximum rating

Note 1: For each of 1.5V and 3.3V, system power supply terminal is made into the same voltage.

The maximum potential difference should not exceed rating for all power supply terminals then. In addition, potential difference between all V_{SS} terminal must be under 0.01V in this status. If using a temperature higher than Ta=25°C, reduce by 17.39mW per 1°C increase. When Ta=85°C, maximum power dissipation is 696mW.

8.1. Allowable power dissipation

9. Operating conditions

The product may not operate normally if its rated supply voltage range is exceeded.

Once a rated supply voltage range is exceeded, the product may remain in a condition different from the previous condition even if it gets back to the rated range.

If a rated range is exceed, it is necessary to turn the product powor off and on again.

Parameter	Symbol	Min	Тур.	Max	Unit
Digital block supply voltage (Note1)	VDD-D	1.4	1.5	1.6	V
I/O block supply voltage (Note 2)	VDD-IO	3.0	3.3	3.6	V
LVDS block supply voltage1 (Note 1)	VDD-L1	1.4	1.5	1.6	V
LVDS block supply voltage2 (Note 2)	VDD-L2	3.0	3.3	3.6	V
Operating temperature	Topr	-40		85	°C

Table 9.1Operating conditions

Note 1: It's necessary to make the digital block supply voltage and the LVDS block supply voltage 1 the same electric potential mostly.

Note 2: It's necessary to make the I/O block supply voltage and the LVDS block supply voltage 2 the same electric potential mostly.

10. Electrical characteristics

			(T	a=-40 to 8	35°C,VDD1=1	$.50 \pm 0.1$	1V, VDD2= 3.30 ± 0.3 V	
Parameter	Symbol	Pin number	Min	Тур.	Max	Unit	Remarks	
	IDD1 (1.5V block)	57	—	—	10	mA	1.5V for LVDS	
Power		8,35	—	_	10	mA	1.5V for digital block	
supply		49,58,64	—	_	60	mA	3.3V for LVDS	
current	(3.3V block)	13,21,29,37,45	_	_	70	mA	3.3V for I/O (Note 1)	
Input	VIH	2,3,5,6,7	VDD2×0.8	_	VDD2	V	2.2) (block I/O insut sin	
voltage	VIL	2,3,5,6,7	VSS	_	VDD2×0.2	V	3.3V block I/O input pin	
Input	IIH	2,3,5,6,7	-10	_	10	μA	2.2)/ block I/O input nin	
current	IIL	2,3,5,6,7	-10	_	10	μA	3.3V block I/O input pin	
Output voltage	VOH	9,10,11,14,15,16, 17,18,19,22,23,24, 25,26,28,30,31,32, 33,34,38,39,40,41, 42,43,46,47,48	VDD2-0.6	_	VDD2	V	3.3V block I/O output pin with 4mA sink load	
	VOL	9,10,11,14,15,16, 17,18,19,22,23,24, 25,26,28,30,31,32, 33,34,38,39,40,41, 42,43,46,47,48	VSS	_	0.4	V		
Differential input	VTH	51,52,53,54,55,56, 60,61,62,63	_	-	100	mV	Differential input pin	
input voltage	VTL	51,52,53,54,55,56, 60,61,62,63	-100	_	_	mV	Voc=1.2V	
Differential input input current	IIN	51,52,53,54,55,56, 60,61,62,63	-10	-	10	μΑ	_	

Table 10.1 DC characteristics

Note 1: It depends on the load capacity for the current value of the 3.3V block voltage.

When the load capacity is high, there is a possibility beyond the mentioned maximum.

Unit: mm

11. Package

Weight: 0.35g (typ.)

12. Revision history

Rev.	Date	Content
1.00	2016/02/24	First edition (Summary)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this
 document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY
 HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF
 HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for
 specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities,
 equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
 signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to
 electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO
 LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.