東芝 BiCD プロセス集積回路 シリコン モノリシック

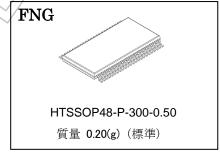
TB62215AFG, TB62215AFTG TB62215AFNG, TB62215AHQ

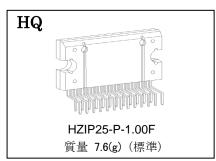
CLOCK 制御方式 バイポーラステッピングモータドライバ

TB62215A は、PWM チョッパ型 2 相バイポーラ駆動、クロックインデューダ内蔵のステッピングモータドライバです。BiCDプロセスを採用し、出力耐圧 $40\,\mathrm{V}$ 、最大電流 $3.0\,\mathrm{A}$ を実現しています。

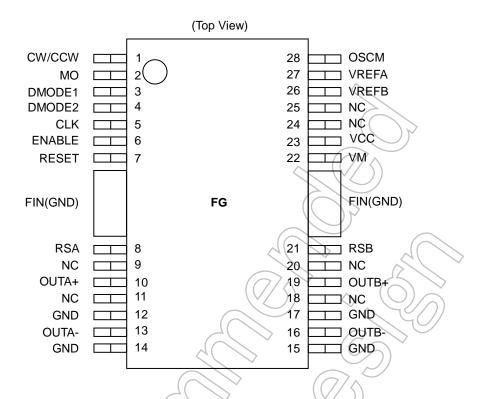
特長

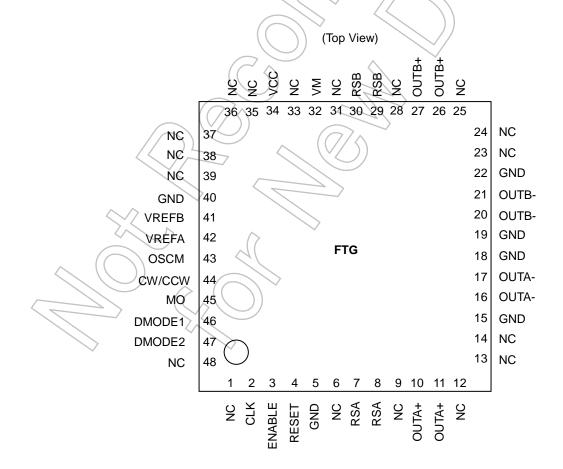
- ・BiCD プロセスによるモノリシック IC
- ・バイポーラ型ステッピングモータを1チップにて駆動可能。
- ・PWM 定電流駆動 /2 相、1-2 相、W1-2 相の励磁駆動に対応。
- ・低オン抵抗(上下和= 0.6Ω (typ.))の出力 MOSFET を内蔵。
- ・高耐圧+大電流 (絶対最大定格、動作範囲を参照)を実現。
- ・各種異常検出機能(過熱検出(TSD)、過電流検出(ISD)、パワーオシ リセット(POR))を内蔵。
- ・内部回路動作用の VCC レギュレータを内蔵。
- ・モータのチョッピング周波数を外付部品にて調整可能
- ・複数のパッケージラインアップを実現。

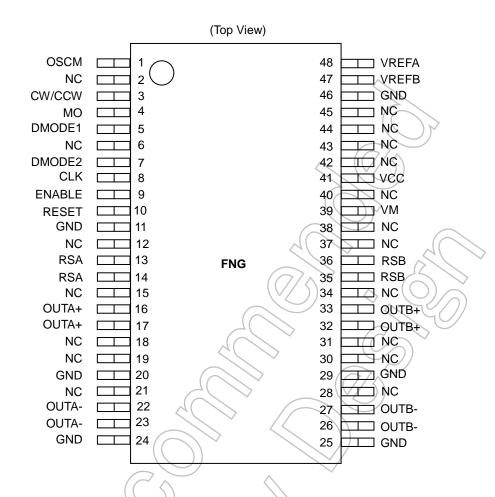

TB62215AFG: HSOP28-P-0450-0.80 TB62215AFTG: QFN48-P-0707-0.50 TB62215AFNG: HTSSOP48-P-300-0.50

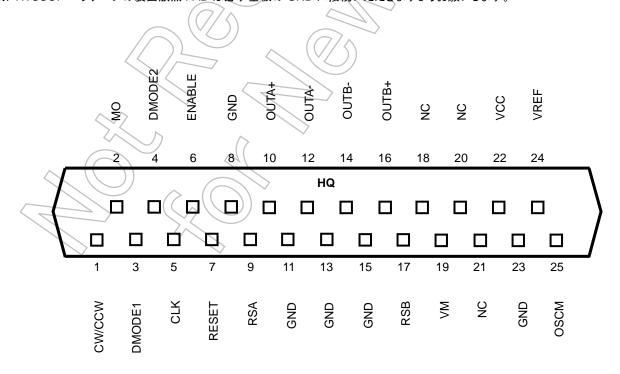

TB62215AHQ: HZIP25-P-1.00F

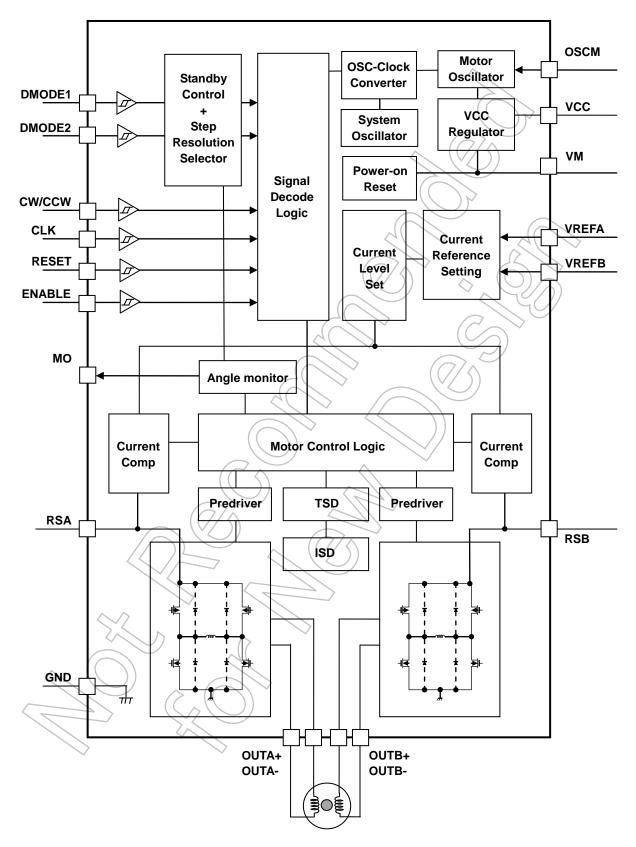
注: 使用に当たっては熱的条件に十分注意してください






ピン配置図(TB62215A)


※ HSOP パッケージの FIN 部分は必ず基板の GND に接続いただきますようお願いします。


※ QFN パッケージのコーナーPAD 及び裏面放熱 PAD は必ず基板の GND に接続いただきますようお願いします。

※ HTSSOP パッケージの裏面放熱 PAD は必ず基板の GND に接続いただきますようお願いします。

TB62215A ブロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化してあります。

注:TB62215A では GND 配線はベタ接続とし、基板から取り出し部は 1 点接地であるとともに、放熱設計を考慮したパターンになるようなレイアウトにしてください。

出力間のショートおよび出力の天絡、地絡時にICの破壊の恐れがありますので、出力ライン、VMライン、GNDラインの設計は十分注意してください。このICにおいては、特に大電流が流れる電源系の端子(VM、RS、OUT、GND)が正常に配線されていない場合、破壊も含む不具合が生じる可能性があります。

また、ロジックの入力端子についても正常に配線が行われていない場合、異常動作がおこりICが破壊することがあります。この場合、規定以上の大電流が流れるなどによってICが破壊する可能性があります。ICのパターンの設計や実装については十分ご注意願います。

端子機能説明

TB62215AFG (HSOP28)

端子番号 1~28 の機能説明

端子番号	端子名称	機能
1	CW/CCW	モータ動作の正転/逆転
2	MO	電気角モニタ端子
3	DMODE1	励磁設定端子 1
4	DMODE2	励磁設定端子 2
5	CLK	制御用クロック入力端子
6	ENABLE	A チャネル/B チャネル 出力 ON/OFF 制御端子
7	RESET	電気角を初期化します。
8	RSA	A チャネルモータ出力電流検出端子
9	NC	ノンコネクション
10	OUTA+	A チャネルモータ出力 +端子
11	NC	ノンコネクション
12	GND	GND 端子
13	OUTA-	A チャネルモータ出力 一端子
14	GND	GND 端子
15	GND	GND 端子
16	OUTB-	B チャネルモータ出力 一端子
17	GND	GND 端子
18	NC	ノンコネクション
19	OUTB+	B チャネルモータ出力 +端子
20	NC	ノンコネクション
21	RSB	B チャネルモータ出力電流検出端子
22	VM	夫—夕電源端子
23	vcc	内部レギュレータ モニタ端子
24	NC	ノンコネクション
25	(NC)	ノンコネクション
26	VREFB	B チャネルモータ出力設定端子
27	VREFA	A チャネルモータ出力設定端子
28	OSCM	チョッピング用発振回路周波数設定端子

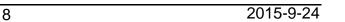
6

NCのピンは必ずOpenにて使用してください。

端子機能説明

TB62215AFTG (QFN48)

端子番号 1~28 の機能説明


端子番号	端子名称	機能
1	NC	ノンコネクション
2	CLK	制御用クロック入力端子
3	ENABLE	A チャネル/B チャネル 出力 ON/OFF 制御端子
4	RESET	電気角を初期化します。
5	GND	GND 端子
6	NC	ノンコネクション
7	RSA(注)	A チャネルモータ出力電流検出端子
8	RSA(注)	A チャネルモータ出力電流検出端子
9	NC	ノンコネクション
10	OUTA+(注)	A チャネルモータ出力 +端子
11	OUTA+(注)	A チャネルモータ出力 +端子
12	NC	ノンコネクション
13	NC	ノンコネクション
14	NC	ノンコネクション
15	GND	GND 端子
16	OUTA-(注)	A チャネルモータ出力 一端子
17	OUTA-(注)	A チャネルモータ出力 一端子
18	GND	GND 端子
19	GND	GND 端子
20	OUTB-(注)	B チャネルモータ出力 一端子
21	OUTB-(注)	B チャネルモータ出力 一端子
22	GND	GND 端子
23	NC	ソンコネクション
24	NC	ノンコネクション
25	NC	ノンコネクション
26	OUTB+(注)	Bチャネルモータ出力 +端子
27	OUTB+(注)	B チャネルモータ出力 +端子
28	NE	ノンコネクション

端子番号 29~48 の機能説明

端子番号	端子名称	機能
29	RSB(注)	B チャネルモータ出力電流検出端子
30	RSB(注)	B チャネルモータ出力電流検出端子
31	NC	ノンコネクション
32	VM	モータ電源端子
33	NC	ノンコネクション
34	VCC	内部レギュレータ モニタ端子
35	NC	ノンコネクション
36	NC	ノンコネクション
37	NC	ノンコネクション
38	NC	ノンコネクション
39	NC	ノンコネクション
40	GND	GND 端子
41	VREFB	B チャネルモータ出力設定端子
42	VREFA	A チャネルモータ出力設定端子
43	OSCM	チョッピング用発振回路周波数設定端子
44	CW/CCW	モータ動作の正転/逆転
45	MO	電気角モニタ端子
46	DMODE1	励磁設定端子 1
47	DMODE2	励磁設定端子 2
48	NC	ノンコネクション

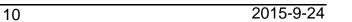
・NC のピンは、必ず Open にて使用してください。

注:複数存在する同一名称ピンは端子近傍でショートしてください。

端子機能説明

TB62215AFNG (HTSSOP48)

端子番号 1~28 の機能説明


	28 の機能説明	
端子番号	端子名称	機能
1	OSCM	チョッピング用発振回路周波数設定端子
2	NC	ノンコネクション
3	CW/CCW	モータ動作の正転/逆転
4	MO	電気角モニタ端子
5	DMODE1	励磁設定端子 1
6	NC	ノンコネクション
7	DMODE2	励磁設定端子 2
8	CLK	制御用クロック入力端子
9	ENABLE	A チャネル/B チャネル 出力 ON/OFF 制御端子
10	RESET	電気角を初期化します。
11	GND	GND 端子
12	NC	ノンコネクション
13	RSA(注)	A チャネルモータ出力電流検出端子
14	RSA(注)	A チャネルモータ出力電流検出端子
15	NC	ノンコネクション
16	OUTA+(注)	A チャネル出力+端子
17	OUTA+(注)	A チャネル出力+端子
18	NC	ノンコネクション
19	NC	ノンコネクション
20	GND	GND 端子
21	NC	ノシコネクション
22	OUTA-(注)	A チャネル出力-端子
23	OUTA-(注)	A チャネル出力-端子
24	GND	GND 端子
25	GND	GND 端子
26	OUTB-(注)	B チャネル出力∹端子
27	OUTB-(注)	B チャネル出力-端子
28 🔷	(NC)	ノンコネクション

端子番号 29~48 の機能説明

编于街号 29~40 U 機能説明				
端子番号	端子名称	機能		
29	GND	GND 端子		
30	NC	ノンコネクション		
31	NC	ノンコネクション		
32	OUTB+(注)	B チャネル出力+端子		
33	OUTB+(注)	B チャネル出力+端子		
34	NC	ノンコネクション		
35	RSB(注)	B チャネルモータ出力電流検出端子		
36	RSB(注)	B チャネルモータ出力電流検出端子		
37	NC	ノンコネクション		
38	NC	ノンコネクション		
39	VM	モータ電源端子		
40	NC	ノンコネクション		
41	VCC	内部レギュレータ モニタ端子		
42	NC	ノンコネクション		
43	NC	ノンコネクション		
44	NC	ノンコネクション		
45	NC	ノンコネクション		
46	GND	GND 端子		
47	VREFB	B チャネルモータ出力設定端子		
48	VREFA	A チャネルモータ出力設定端子		

・NC のピンは必ず Open にて使用してください。

注:複数存在する同一名称ピンは端子近傍でショートしてください。

端子機能説明

TB62215AHQ (HZIP25)

I DUZZ I JA	HQ (HZIP25)	
端子番号	端子名称	機能
1	CW/CCW	モータ動作の正転/逆転
2	MO	電気角モニタ端子
3	DMODE1	励磁設定端子 1
4	DMODE2	励磁設定端子 2
5	CLK	制御用クロック入力端子
6	ENABLE	A チャネル/B チャネル 出力 ON/OFF 制御端子
7	RESET	電気角を初期化します。
8	GND	GND 端子
9	RSA	A チャネルモータ出力電流検出端子
10	OUTA+	A チャネル出力+端子
11	GND	GND 端子
12	OUTA-	A チャネル出力-端子
13	GND	GND 端子
14	OUTB-	B チャネル出力-端子
15	GND	GND 端子
16	OUTB+	B チャネル出力+端子
17	RSB	B チャネルモータ出力電流検出端子
18	NC	ノンコネクション
19	VM	モータ電源端子
20	NC	ノンコネクション
21	NC	ノンコネクション
22	VCC	内部レギュレータ モニタ端子
23	GND	GND 端子
24	VREF	モータ出力設定端子
25	OSCM	チョッピング用発振回路周波数設定端子

入出力等価回路 (TB62215A)

端子名称	入出力信号	等価回路
DMODE1 DMODE2 CLK ENABLE RESET CW/CCW	デジタル入力 (VIH/VIL) VIH: 2.0V(min)~5.5V(max) VIL: 0V(min)~0.8V(max)	ロジック 入力端子 GND GND 150Ω CY00L 777
МО	デジタル出力 (VOH/VOL) VOH: 2.0V(min)~5.5V(max) VOL: 0V(min)~0.8V(max) (プルアップ抵抗:10k~100kΩ)	ロジック 出力端子 GND 図
VCC VREFA	VCC 電源電圧範囲 4.75V(min)~5.0V(typ.)~5.25V(max)	VCC Note that the second secon
VREFB	VREF 印加電圧範囲 0V~3.6V	GND ⊠
OSCM	OSCM 設定周波数範囲 0.64MHz(min)~1.6MHz(typ.)~2.4MHz(max)	OSCM ΣΙΚΩ GND ΣΙΚΩ MARKET M
OUTA+ OUTA- OUTB+ OUTB- RSA RSB	VM 電源電圧動作範囲 10V(min)~38V(max) OUT 端子耐圧 10V(min)~38V(max)	OUT+ OUT-

等価回路は、回路を説明するため、一部省略・簡略化しています。

動作説明(ステッピングモータ・モード)

1. CLK のファンクション

CLK 毎に電気角が1つ進みます。Up エッジで信号が反映されます。

CLK 入力	ファンクション
↑	アップエッジで次のステップへ
\downarrow	-(前状態を保持)

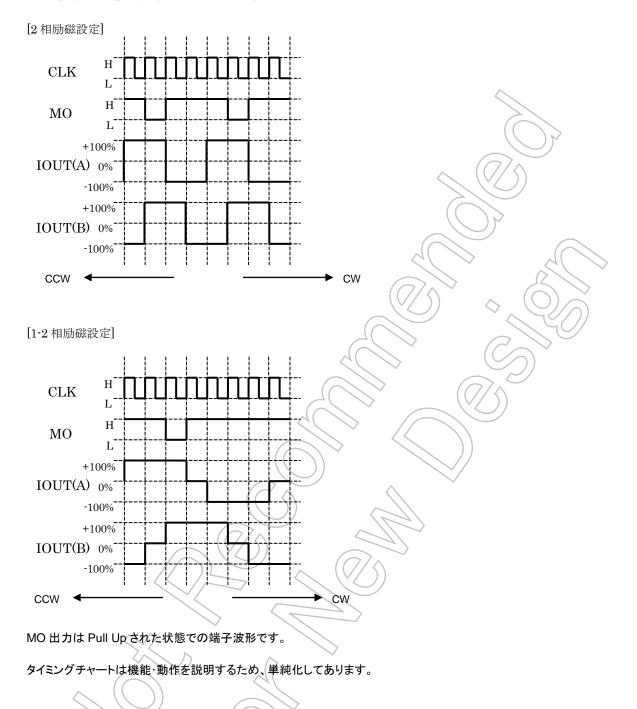
2. ENABLE のファンクション

ステッピングモータを駆動する場合に、電流のON/OFFを指定します。モータをOFFモード(ハイインピーダンス)で停止させる場合や、モータを駆動する場合には、この端子を制御すること()によって切り替えます。電源の立ち上げや立ち下げのときは、この端子を Lに固定してください。

ENABLE 入力	ファンクション
Н	出カトランジスタ ON 動作(通常動作)
L	出カトランジスタ動作 OFF(ハイインピーダンス)

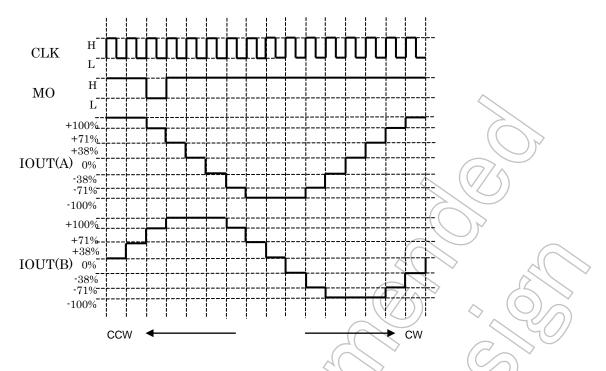
3. CW/CCW のファンクションおよび出力端子のファンクション (Charge スタート時の出力論理)

ステッピングモータの回転方向を切り替えます。CW は A 相電流が B 相電流より位相が 90°進んで出力されます。CCW は B 相電流が A 相電流より位相が 90°進んで出力されます。


CW/CCW 入力	OUT (+)	OUT (-)
H: 正転(CW)	(H	L
L: 逆転(CCW)		Н

4. 励磁設定のファンクション

DMODE1	DMODE2	ファンクション
L ^^	L	STANDBY MODE (OSCM 停止、出力トランジスタ動作停止)
L	Н	2 相励磁設定
Н		1-2 相励磁設定
() H	Н	W1-2 相励磁設定


DMODE1,2の変更は、イニシャル状態(MO = Low)でRESETをLowとした後に変更することを推奨いたします。

励磁設定の電気角、イニシャル位置

[W1-2 相励磁設定]

MO 出力は Pull Up された状態での端子波形です。

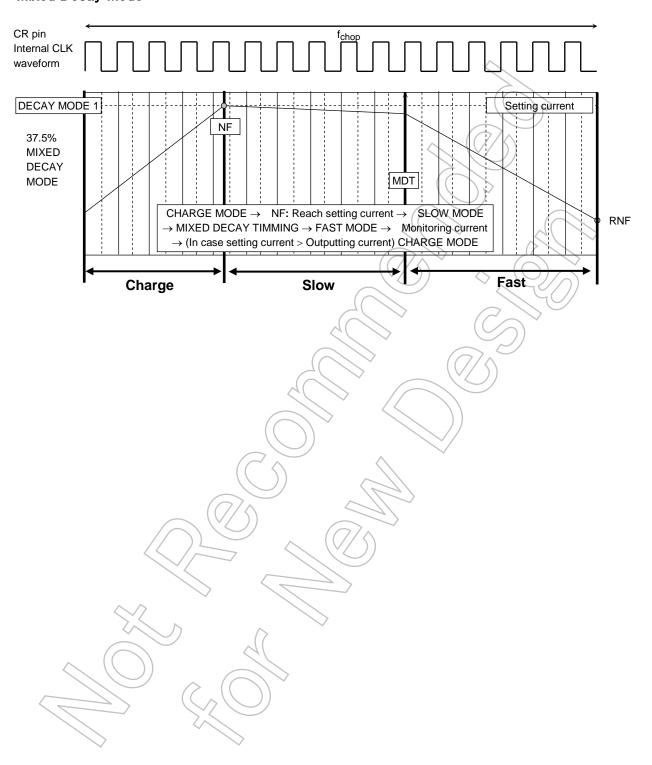
タイミングチャートは機能・動作を説明するため、単純化してあります。

駆動励磁ー電流設定値について

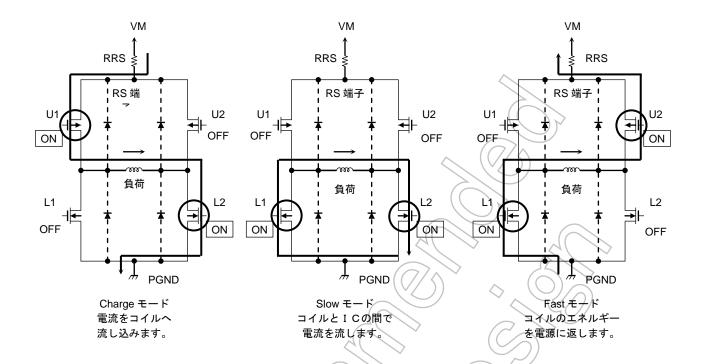
	電流設定値	2相	1-2 相	W1-2 相
	$\pm 100\%$	/ 0	000	000
	±71%	4		0
	±38%			0
)	0%	~ ((/	/\O	0

5. RESET のファンクション

RESET 入力		入力ファンクション	
(H (()		電気角初期化	
	\wedge	通常動作	


RESETをかけたときの各相電流は以下の通りです。この場合、MOはLowとなります。

励磁モード	A 相電流	B相電流	電気角
2 相励磁	100%	100%	45°
1-2 相励磁	100%	100%	45°
W1-2 相励磁	71%	71%	45°



6. Decay モードのファンクション

Mixed Decay Mode

7. 出力段トランジスタ動作モード

出力段トランジスタ動作のファンクション

MODE	U1	U2	L1 《	12
CHARGE	ON	OFF)	OFF	ON ON
SLOW	OFF	OFF	ON <	ON
FAST	OFF	ON	ON	OFF

注:上表は、例として上の図中の矢印の方向に電流を流す場合です。 逆方向の場合は、下表のようになります。

MODE	U1	Ú2	L1	L2
CHARGE	√∕ OFF	ON	ON	OFF
SLOW	OFF	OFF	ON	ON
FAST	ON	OFF	OFF	ON

17

この IC では、上図の様な3種類のモードを自動的に切り換え、定電流制御を行います。 等価回路は、回路を説明するため、一部省略・簡略化しています。

8. 設定電流の計算式について

この IC では、OSCM 発振回路の周波数を基準にした PWM 定電流制御を行い、モータの動作を行います。そのときの最高電流値 (設定電流値) については、電流をセンスするためのセンス抵抗 (RS) と、リファレンス電圧 (V_{ref}) を設定することによって、決定することができます。

$$IOUT(max) = Vref(gain) \quad x \quad \frac{}{} \quad Rrs(\Omega)$$

Vref(gain): Vref 減衰比は 1/5.0 (typ.) です。

例:100%設定のとき

Vref = 3.0 V, Torque = 100%, $RS = 0.51\Omega$

を入力した場合、モータの定電流出力値(Peak電流)は以下の値が計算されます。

IOUT = $3.0V / 5.0 / 0.51\Omega$ = 1.18 A となります。

9. OSCM 発振周波数 (チョッピング基準周波数) の計算式について

OSCM 発振周波数 (fOSCM) とチョッピング周波数 (fchop) は以下の式で計算できます。

 $fOSCM=1/[0.56x{Cx(R1+500)}]$

※C,R1: OSCM 用外付け定数(C=270pF, R1=3.6kΩ->fOSCM=1.6MHz(typ.)相当)

fchop = fOSCM / 16

※fOSCM=1.6MHz の場合、fchop:約 100kHz 相当

チョッピング周波数を上げた場合、電流の脈流分が減少するため波形の再現性はあがりますが、IC 内部のゲート損失が上昇するため、発熱が大きくなります。

チョッピング周波数を下げる事により発熱の減少が期待できますが、電流脈流分が増える可能性があります。 一般的には70kHz 程度の周波数を基準にし、50kHz から100kHz 程度の周波数範囲にて設定される事を推奨します。

絶対最大定格 (Ta = 25°C)

項	項目		定格	単位	備考
モータ電	モータ電源電圧		40	V	
モータ出	出力電圧	Vout	40	V	
モータ出	出力電流	IOUT	3.0	Α 📏	注1
内部ロジッ	ク電源電圧	VCC	6.0	V	外部印加時
n Sing A	入力電圧	VIN(H)	6.0	v (()> -
ロンケケ.	八刀电江	VIN(L)	-0.4	V	<u> </u>
MO出力	端子電圧	VMO	6.0	(V7/<	-
MO出力端	子流入電流	IMO	30	mA) -
	QFN48	PD	1.3	W	注2
許容損失	HTSSOP48	PD	1.3	(w)	注2
计分换人	HSOP28	PD	1.15	W	注2
	HZIP25	PD	3.2	\\ W	注2
動作	動作温度		-20~85	သိ	\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
保存	温度	TSTR	-55~150	ွ	25
接合語	部温度	Tj(max)	(150	°Ç	(\bigcirc)

注 1 : 通常時の最大電流値は熱計算の上、絶対最大定格の 70%以下を目安にご使用ください。 周囲温度条件や基板条件により、電流がさらに制限されることがあります。(発熱に依存します。)

注 2: 単体測定時 (Ta =25°C)

Ta:ICの周囲温度です。

Topr:動作させるときの IC の周囲温度です。

Tj :動作中の IC のチップ温度です。Tj 最大値は TSD (サーマルシャットダウン回路) の温度で制限されます。

Tj の最大値は、120°C 程度をめどに使用最大電流を考慮して設計することを推奨します。

重要)絶対最大定格について

絶対最大定格は瞬時たりとも超えてはならない規格です。絶対最大定格を超えると IC の破壊や劣化や損傷の原因となり、IC 以外にも破壊や損傷や劣化を与えるおそれがあります。いかなる動作条件においても必ず絶対最大定格を超えないように設計を行ってください。また、この製品には、過電圧検出の回路は搭載しておりません。したがって、定格以上の過剰な電圧が印加された場合、IC が破壊します。電源電圧も含む各電圧範囲は、必ず Spec の範囲内でお使いいただけますようお願いいたします。また、この注意事項に関しては、後ページの注意事項の項も合わせてご確認ください。

動作範囲(Ta=-20~85℃)

項目	記号	最小	標準	最大	単位	備考
モータ電源電圧	VM	10	24	38	V	
モータ出力電流	TOUT	-	1.8	3.0	Α	注 1
ロジック入力電圧	VIN(H)	2.0	-	5.5	V	ロジックの Hレベル
ログラク人が電圧	AIN(L)	0	•	0.8	V	ロジックの L レベル
MO 出力端子電圧	VMO	-	3.3	5.0	V	
クロック周波数入力範囲	fCLK	•	•	100	kHz	
チョッピング周波数設定範囲	fchop(range)	40	100	150	kHz	
Vref 電圧入力範囲	Vref	GND	2.0	3.6	V	

注 1: 動作環境(励磁モードや動作時間等の動作条件、周囲温度条件、基板条件等の発熱条件)から、実際に使用できる最大電流は制限されることがあります。動作環境下での熱計算の上、実際に使用できる最大電流値をご確認ください。

電気的特性 1 (特に指定のない項目は、Ta = 25°C, VM = 24 V)

項目		記号	測定条件	最小	標準	最大	単位
ロジック入力端子	HIGH	VIN(H)	LOGIC系入力端子(注)	2.0	-	5.5	V
入力電圧	LOW	VIN(L)	LOGIC系入力端子(注)	0	-	0.8	V
入力ヒステリシス		VIN(HYS)	LOGIC系入力端子(注)	100	-	300	mV
ロジック入力端子	HIGH	IIN(H)	測定LOGIC系入力端子:5V	35	50	75	μΑ
入力電流	LOW	IIN(L)	測定LOGIC系入力端子:0V	(\ \rightarrow -	1	μΑ
MO端子出力電圧	LOW	VOL(MO)	IOL=24mA 出力:Low時) <u>.</u> (0.2	0.5	V
		IM1	出力:OPEN, スタンバイモード時	7/	2.0	3.0	mA
消費電流		IM2	出力:OPEN, スタンバイ解除, ENABLE=L時		3.5	5.0	mA
		IM3	出力:OPEN (2相励磁)	-	5.0	7.0	mA
モータ出力	上側	IOH	VRS=VM=40V,Vout=0V	-	_	1	μΑ
リーク電流	下側	IOL	VRS=VM=Vout=40V	1	(-)	-	μΑ
出力電流ch間誤差		ΔIOUT1	出力電流のch間の誤差	-5	0	5	%
出力設定電流値誤差		ΔIOUT2	IOUT≠1.5A	-5	0	5	%
RS端子電流		IRS	VRS=VM=24V	0,	7/	10	μΑ
出力トランジスタ ドレイン-ソース間 オン抵抗(上下和)		Ron(H+L)	Tj=25℃,順方向 (上+下)和	<u>.</u>	0.6	0.8	Ω

注)測定端子に VIN を加えその電圧を 0V から上昇させ、出力(QUTA、QUTB 端子)が変化したときの VIN 電圧を VIN(H)とします。また、測定端子に VIN を加えその電圧を 5V から下降させ、出力(QUTA、QUTB 端子)が変化したときの VIN 電圧を VIN(L)とします。 VIN(H)と VIN(L)の差を VIN(HYS)とします。

注)VM 電圧が供給されてない状態で、ロジック入力信号が入力された場合でも、信号入力による起電力やリーク電流は発生しない回路設計となっておりますが、VM 電圧再供給の前には、再供給と共にモータが動作しないよう、ロジック入力信号の制御を行ってください。

電気的特性 2 (特に指定がない項目は, Ta =25°C, VM = 24 V)

項目	記号	測定条件	最小	標準	最大	単位
Vref入力電流	Iref	Vref=2.0V	-	0	1	μA
VCC端子電圧	VCC	ICC=5.0mA	4.75	5.0	5.25	V
VCC端子電流	ICC	VCC=5.0V	<u>-</u>	2.5	5	mA
Vref減衰比	Vref(gain)	Vref=2.0V	1/5.2	1/5.0	1/4.8	1
過熱検出(TSD)機能動作温度(注1)	T _j TSD	_	140	150	170	°C
VM復帰電圧	VMR	(7.0	8.0	9.0	V
過電流検出(ISD)機能動作電流(注2)	ISD	-	(3.0)	4.0	5.0	Α

注 1: 過熱検出機能(TSD)について

IC のジャンクション温度が規定温度に達した場合、内部検出回路が働き、出力部をOFF 状態にします。スイッチングなどによる誤動作を避けるため、IC 内部で不感帯時間を設けております。TSD の動作状態では、IC はスタンバイモードになります。過熱検出後は、電源の再投入または DMODE 端子にてスタンバイモードに設定いただくことで解除することが可能です。TSD 機能は IC が異常発熱した場合に検出する機能です。TSD 機能を積極的に活用するようなご使用方法は避けてください。

注 2: 過電流検出機能(ISD)について

モータ出力に規定値以上の電流が流れた場合、内部検出回路が働き、出力部を OFF 状態にします。スイッチングなどによる誤動作をさけるため、IC 内部で不感帯時間を設けております。ISD の動作状態では、IC はスタンバイモードになります。過電流検出後は、電源の再投入または DMODE 端子にてスタンバイモードに設定いただくことで解除することが可能です。フェイルセーフのために、二次トラブルを避けるために、ヒューズを挿入してください。

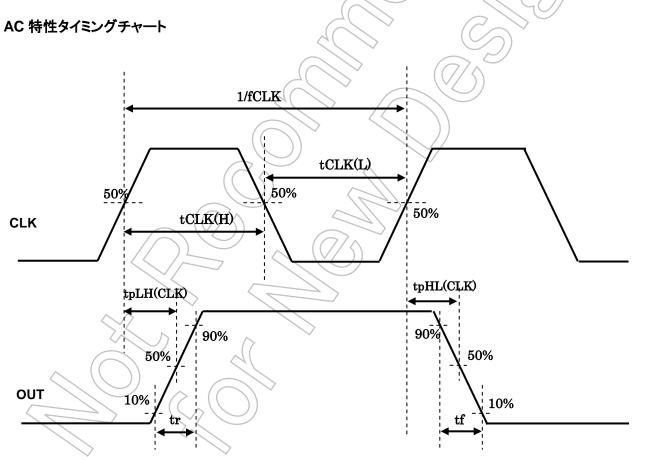
逆起電力に関して

モータを動作中に電力回生のタイミングが発生しますが、そのタイミングでモータの逆起電力の影響で、モータ電流が電源へ回生されます。 電源の Sink 能力がない場合、IC の電源端子、出力端子が定格以上に上昇する場合があります。使用条件や、モータの特性によってモータの逆起電力が異なりますので、逆起電力により IC の破壊、動作に問題ないこと、また周辺回路等に誤動作や破壊がないことを十分ご確認ください。

過電流検出および過熱検出機能について

これら検出機能は出力短絡などの異常状態を一時的に回避する機能であって、IC が破壊しないことを保証するものではありません。 動作保証範囲外では、これら検出機能が動作せず、出力短絡をすると IC が破壊するおそれがあります。過電流検出機能は、一時 的な短絡に対する検出を目的としたものです。長時間短絡が続きますとオーバーストレスとなり破壊するおそれがあります。過電流 状態を速やかに解除するようにシステムを構成してください。

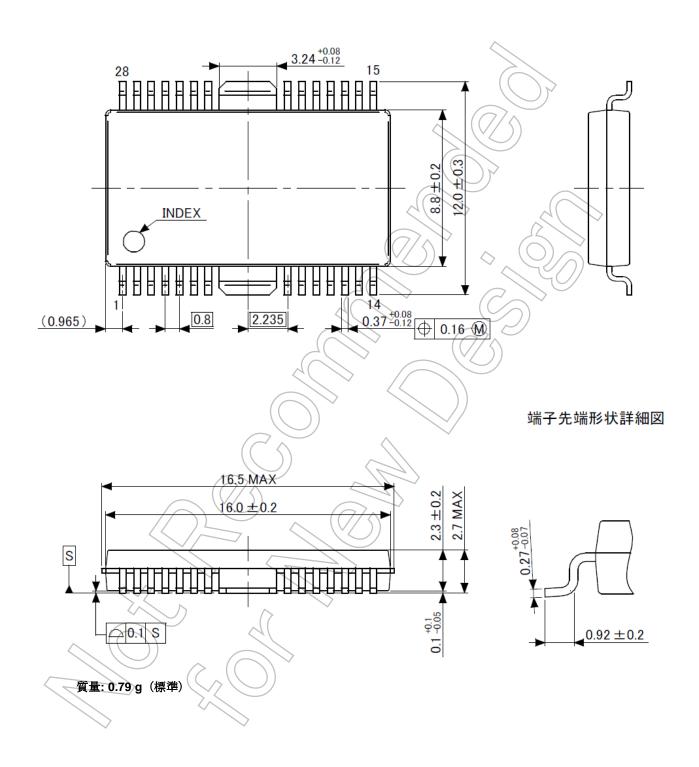
21

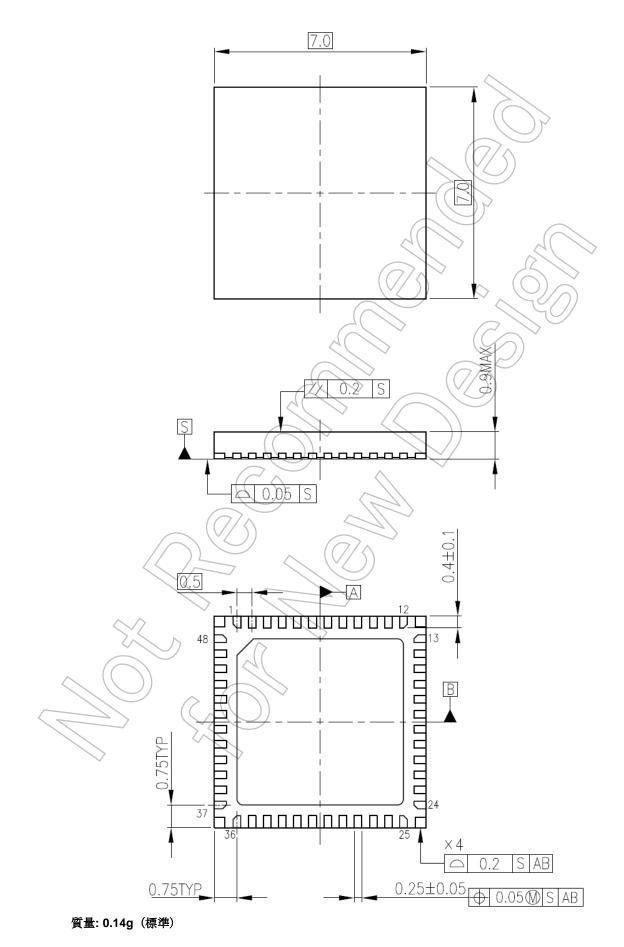

IC の取り扱いについて

回転差しを含めた誤装着はしないでください。ICや機器に破壊や損傷や劣化を招くおそれがあります。

TOSHIBA

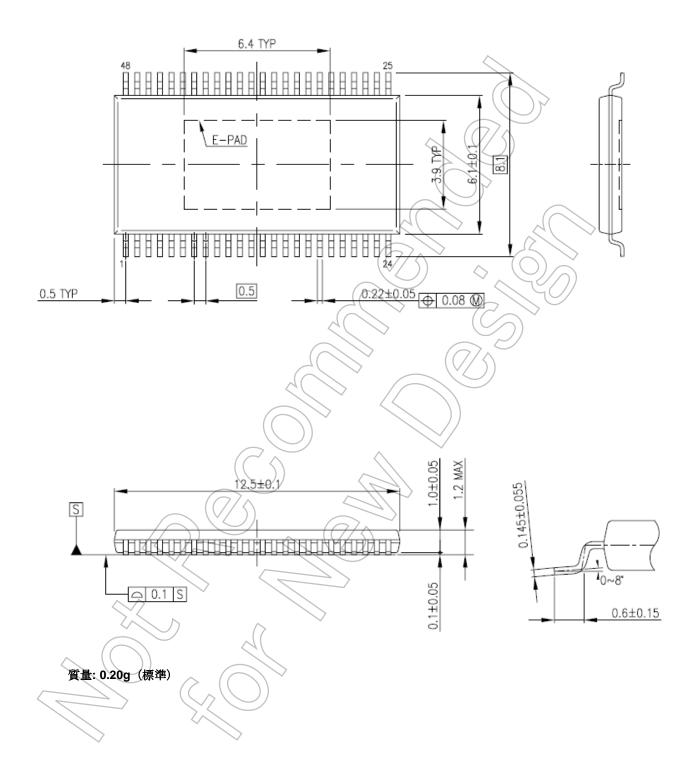
AC 電気的特性 (Ta = 25°C, VM = 24 V, 6.8 mH/5.7 Ω)


項目	記号	測定条件	最小	標準	最大	単位
CLK入力内部フィルタ最小High幅	tCLK(H)	CLK(H)最小パルス幅	300	-	-	ns
CLK入力内部フィルタ最小Low幅	tCLK(L)	CLK(L)最小パルス幅	250	-	1	ns
	tr	-	0.15	0.20	0.25	μs
出力トランジスタ	tf	-	0.10	0.15	0.20	μs
スイッチング特性	tpLH(CLK)	CLK - 出力電圧間	7/-{\	1000	-	ns
	tpHL(CLK)	CLK - 出力電圧間		1500	-	ns
ノイズ除去用不感帯時間	AtBLK	VM=24V,IOUT=1.5A Analog tblank 値	300	400	500	ns
OSC 発振周波数	fOSCM	COSC=270pF, ROSC=3.6kΩ	1200	1600	2000	kHz
チョッピング設定 周波数	fchop	出力アクティブ(IOUT=1.5A), fOSCM = 1600 kHz	> - (100	> -	kHz

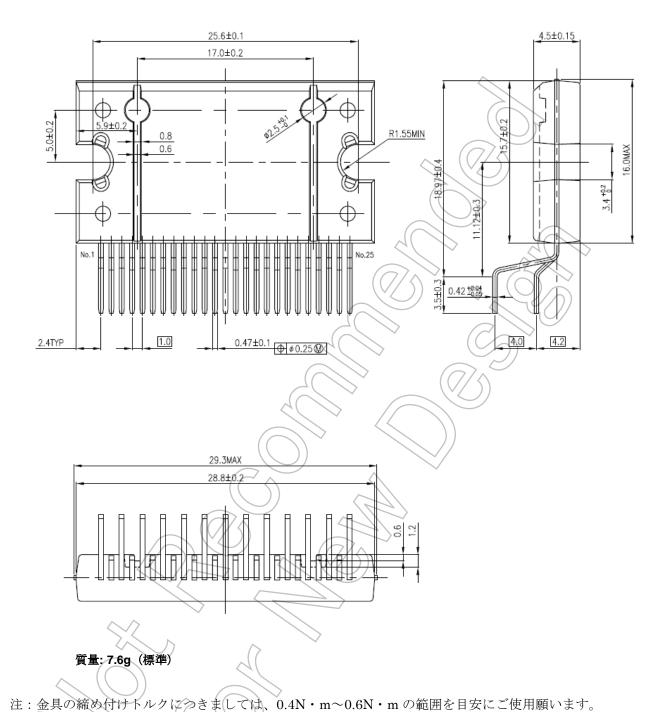

タイミングチャートは機能・動作を説明するため、単純化してあります。

外形図 (単位:mm)

HSOP28-P-0450-0.80



QFN48-P-0707-0.50 (単位:mm)



2015-9-24

HTSSOP48-P-300-0.50 (単位:mm)

HZIP25-P-1.00F (単位:mm)

記載内容の留意点

1. ブロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. 等価回路

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

3. タイミングチャート

タイミングチャートは機能・動作を説明するため、単純化している場合があります。

4. 応用回路例

応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。 また、工業所有権の使用の許諾を行うものではありません。

5. 測定回路図

測定回路内の部品は、特性確認のために使用しているものであり、応用機器の誤動作や故障が発生しないことを保証する ものではありません。

使用上のご注意およびお願い事項

使用上の注意事項

- (1) 絶対最大定格は複数の定格の、どの一つの値も瞬時たりとも超えてはならない規格です。 複数の定格のいずれに対しても超えることができません。 絶対最大定格を超えると破壊、損傷および劣化の原因となり、破裂・燃焼による傷害を負うことがあります。
- (2) デバイスの逆差し、差し違い、または電源のプラスとマイナスの逆接続はしないでください。電流や消費電力が絶対 最大定格を超え、破壊、損傷および劣化の原因になるだけでなく、破裂・燃焼により傷害を負うことがあります。なお、 逆差しおよび差し違いのままで通電したデバイスは使用しないでください。
- (3) 過電流の発生や IC の故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。IC は絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。破壊における大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設定が必要となります。
- (4) モータの駆動など、コイルのような誘導性負荷がある場合、ON 時の突入電流や OFF 時の逆起電力による負極性の 電流に起因するデバイスの誤動作あるいは破壊を防止するための保護回路を接続してください。IC が破壊した場合、 傷害を負ったり発煙・発火に至ることがあります。

保護機能が内蔵されている IC には、安定した電源を使用してください。電源が不安定な場合、保護機能が動作せず、IC が破壊することがあります。IC の破壊により、傷害を負ったり発煙・発火に至ることがあります。

(5) パワーアンプおよびレギュレータなどの外部部品 (入力および負帰還コンデンサなど) や負荷部品 (スピーカなど) の選定は十分に考慮してください。

27

入力および負帰還コンデンサなどのリーク電流が大きい場合には、IC の出力 DC 電圧が大きくなります。この出力電圧を入力耐電圧が低いスピーカに接続すると、過電流の発生や IC の故障によりスピーカの発煙・発火に至ることがあります。(IC 自体も発煙・発火する場合があります。) 特に出力 DC 電圧を直接スピーカに入力する BTL (Bridge Tied Load) 接続方式の IC を用いる際は留意が必要です。

使用上の留意点

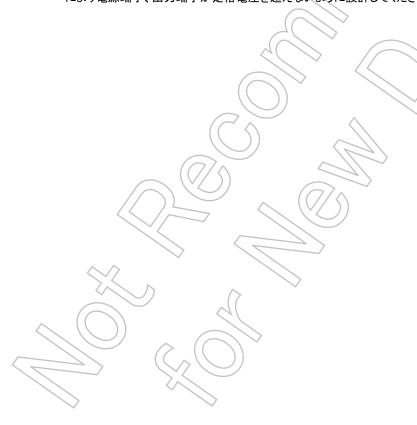
過電流検出回路

過電流検出回路 (ISD) はどのような場合でも IC を保護するわけではありません。動作後は、速やかに過電流状態を解除するようお願いします。

絶対最大定格を超えた場合など、ご使用方法や状況により、過電流検出回路が正常に動作しなかったり、動作する前にICが破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法や状況によっては、ICが発熱などにより破壊することがあります。

過熱検出回路

過熱検出回路 (TSD) は、どのような場合でも IC を保護するわけではありません。動作後は、速やかに過熱状態を解除するようお願いします。


絶対最大定格を超えて使用した場合など、ご使用法や状況により、過熱検出回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。

放熱設計

パワーアンプ、レギュレータ、ドライバなどの、大電流が流出入する IC の使用に際しては、適切な放熱を行い、規定接合温度 (Tj) 以下になるように設計してください。これらの IC は通常使用時においても、自己発熱をします。IC 放熱設計が不十分な場合、IC の寿命の低下・特性劣化・破壊が発生することがあります。また、IC の発熱に伴い、周辺に使用されている部品への影響も考慮して設計してください。

逆起電力

モータを逆転やストップ、急減速を行った場合に、モータの逆起電力の影響でモータから電源へ電流が流れ込みますので、電源の Sink 能力が小さい場合、IC の電源端子、出力端子が定格以上に上昇する恐れがあります。逆起電力により電源端子、出力端子が定格電圧を超えないように設計してください。

製品取り扱い上のお願い

- ◆ 本資料に掲載されているハードウエア、ソフトウエアおよびシステム(以下、本製品という)に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下 "特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、電力機器、金融関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口までお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- ◆ 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- ◆ 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当 社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。
 本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。