

フォトカプラー 赤外LED+フォトトライアック

TLP3083,TLP3083F

1. 用途

- ソリッドステートリレー用
- トライアックドライブ用
- 家電機器用
- 事務機器用

2. 概要

TLP3083は、ゼロクロスタイプのフォトトライアックと赤外発光ダイオードを光結合させたフォトカプラーです。 TLP3083はDIP6パッケージを採用し、絶縁物厚0.4 mmを保証しているため、海外安全規格強化絶縁クラスにも適応 しています。

3. 特長

(1) ハロゲンフリー

詳細は、本資料末尾に記載の"ハロゲンフリー樹脂製品について"を参照してください。

- (2) ピーク阻止電圧: 800 V (最小)
- (3) ゼロクロスタイプ (ZC)
- (4) トリガーLED電流: 5 mA (最大)
- (5) 実効オン電流: 100 mA (最大)
- (6) 絶縁耐圧: 5000 Vrms (最小)
- (7) 安全規格

UL認定品 UL 1577, ファイルNo.E67349

cUL認定品 CSA Component Acceptance Service No.5A ファイルNo.E67349

VDE認定品 EN 60747-5-5, EN 62368-1 (注1)

CQC認定品 GB4943.1, GB8898 日本工場生産品

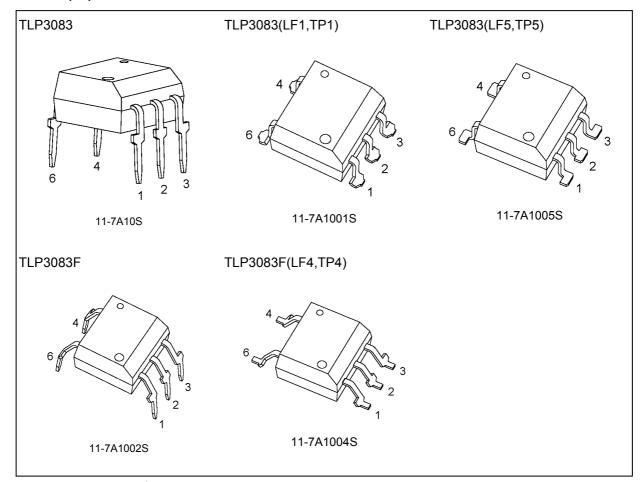
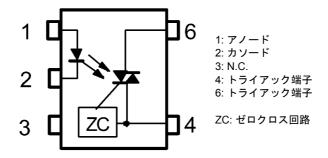

注1: VDE認定品を採用する場合は"オプション (D4) 品"とご指定ください。

表 3.1 構造パラメーター

項目	7.62 mmピッチ TLP3083	10.16 mmピッチ TLP3083F	単位
沿面距離	7.0 (最小)	8.0 (最小)	mm
空間距離	7.0 (最小)	8.0 (最小)	
絶縁物厚	0.4 (最小)	0.4 (最小)	



4. 外観図 (注)

注: スルーホールタイプ: TLP3083, TLP3083F リードフォーミングオプション: (LF1), (LF4), (LF5) テーピングオプション: (TP1), (TP4), (TP5)

5. 端子配置図

6. 製品名呼称方法

単体品番の後に記号を付けて、出荷形態の区分をしています。区分方法は下記のとおりです。

例) TLP3083(TP1,F

東芝単体品番: TLP3083 テーピング名称: TP1 **(注1)**

[[G]]/RoHS COMPATIBLE: F (注2)

注1: テーピング名称欄にはリードフォーミングを含め下記オプション名が使用されます。

TLP3083: LF1, TP1, LF5, TP5

TLP3083F: LF4, TP4

注2: 本製品のRoHS適合性など, 詳細につきましては製品個別に必ず弊社営業窓口までお問合せください。 RoHS指令とは, 「電気電子機器に含まれる特定有害物質の使用制限 (RoHS) に関する2011年6月8日付けの欧州 議会および欧州理事会の指令 (EU指令2011/65/EU)」のことです。

7. 絶対最大定格 (注) (特に指定のない限り, Ta = 25 ℃)

	項目	記号	注記	定格	単位	
発光側	入力順電流		I _F		50	mA
	入力順電流低減率	(T _a ≥ 53 °C)	$\Delta I_F/\Delta T_a$		-0.7	mA/°C
	入力順電流 (パルス)		I _{FP}	(注1)	1	Α
	入力逆電圧		V_R		5	V
	入力許容損失		P _D		100	mW
	入力許容損失低減率	(T _a ≧ 25 °C)	$\Delta P_D/\Delta T_a$		-1.0	mW/°C
	接合温度	,	Tj		125	°C
受光側	ピーク阻止電圧		V_{DRM}		800	V
	実効オン電流	(T _a = 25 °C)	I _{T(RMS)}		100	mA
		(T _a = 70 °C)			50	mA
	実効オン電流低減率	(T _a ≧ 25 °C)	$\Delta I_{T(RMS)}/\Delta T_a$		-1.1	mA/°C
	オン電流 (パルス)		I _{ONP}	(注2)	2	Α
	ピーク1サイクルサージ電流		I _{TSM}	(注3)	1.2	Α
	出力許容損失		Po		300	mW
	出力許容損失低減率	(T _a ≧ 25 °C)	ΔP _O /ΔT _a		-4.0	mW/°C
	接合温度		Tj		125	°C
共通	全許容損失		P _T		400	mW
	全許容損失低減率	(T _a ≧ 25 °C)	$\Delta P_T / \Delta T_a$		-4.4	mW/°C
	動作温度		T _{opr}		-40 ~ 100	Ĵ
	保存温度		T _{stg}		-55 ~ 125	
	はんだ付け温度	(10 s)	T _{sol}		260	
	絶縁耐圧	AC, 60 s, R.H. ≦ 60 %	BV _S	(注4)	5000	Vrms

注: 本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格以内での使用においても, 高負荷 (高温および大電流/高電圧印加, 多大な温度変化等) で連続して使用される場合は, 信頼性が著しく低下するおそれがあります。 弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および個別信頼性情報 (信頼性試験レポート, 推定故障率等) をご確認の上, 適切な信頼性設計をお願いします。

注1:パルス幅 ≦ 100 μs, 100 pps

注2: パルス幅 ≦ 100 µs, 120 pps

注3: パルス幅 ≦ 10 ms

注4: ピン1, 2, 3とピン4, 6をそれぞれ一括し, 電圧を印加する。

8. 推奨動作条件(注)

項目	記号	注記	最小	標準	最大	単位
使用電圧	V _{AC}	(注1)	_	_	480	V
入力順電流	I _F		7.5	10	20	mA
オン電流 (パルス)	I _{ONP}		_	_	1	Α
動作温度	T _{opr}		-25	_	85	°C

注: 推奨動作条件は、期待される性能を得るための設計指標です。また、各項目はそれぞれ独立した指標となっておりますので、設計の際は電気的特性などで規定された値も合わせてご確認願います。

注1: AC使用専用

9. 電気的特性 (特に指定のない限り, Ta = 25 °C)

	項目	記号	注記	測定条件	最小	標準	最大	単位
発光側	入力順電圧	V _F		I _F = 10 mA	1.0	1.15	1.3	V
	入力逆電流	I _R		V _R = 5 V	_	_	10	μΑ
	端子間容量 (入力側)	Ct		V = 0 V, f = 1 MHz	_	30	_	pF
受光側	ピークオフ電流	I _{DRM}		V _{DRM} = 800 V	_	10	1000	nA
	ピークオン電圧	V _{TM}		I _{TM} = 100 mA	_	1.7	3.0	V
	保持電流	I _H		_	_	0.6	_	mA
	オフ電圧上昇率	dv/dt		V _{in} = 240 V, T _a = 25 ℃ 図9.1参照		2000		V/μs
	転流 (dv/dt)	dv/dt(c)		V _{in} = 60 Vrms, I _T = 15 mA 図9.1参照	_	0.2	_	

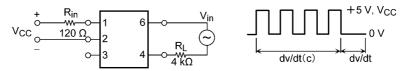
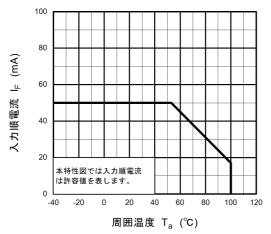


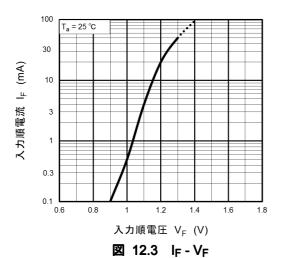
図 9.1 dv/dt測定回路, 波形

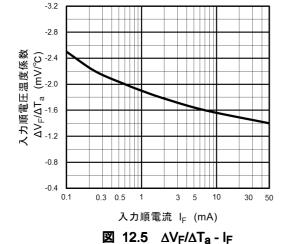
10. 結合特性 (特に指定のない限り, Ta = 25 ℃)

項目	記号	注記	測定条件	最小	標準	最大	単位
トリガーLED電流	I _{FT}		$V_T = 3 V$	_	_	5	mA
インヒビット電圧	V _{IH}		I _F = Rated I _{FT}	_	_	20	V
インヒビット電流	I _{IH}		I_F = Rated I_{FT} , V_T = Rated V_{DRM}		200	600	μΑ


11. 絶縁特性 (特に指定のない限り, Ta = 25 ℃)

項目	記号	注記	測定条件	最小	標準	最大	単位
端子間容量 (入力-出力間)	Cs	(注1)	V _S = 0 V, f = 1 MHz	_	0.8	_	pF
絶縁抵抗	R _S	(注1)	V _S = 500 V, R.H. ≦ 60 %	1012	1014	_	Ω
絶縁耐圧	BV _S	(注1)	AC, 60 s	5000		_	Vrms


注1: ピン1, 2, 3とピン4, 6をそれぞれ一括し, 電圧を印加する。



12. 特性図 (注)

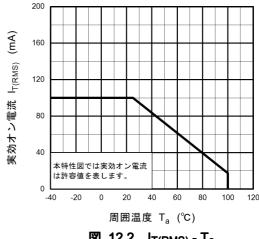


図 12.2 I_{T(RMS)} - T_a

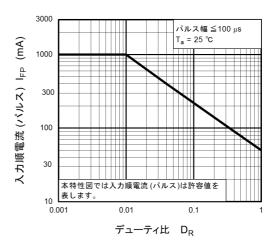


図 12.4 I_{FP} - D_R

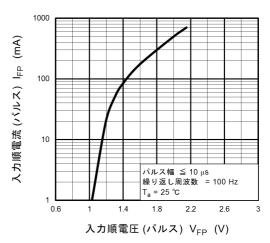
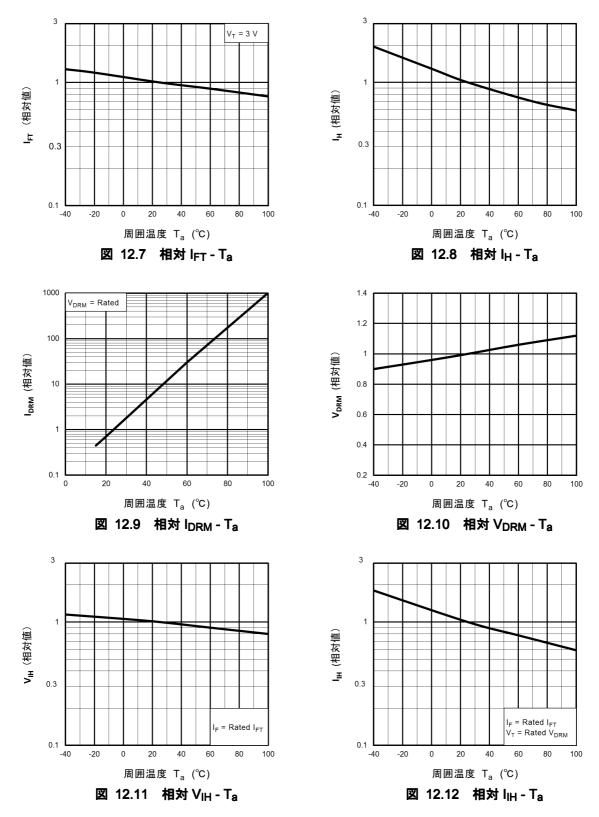
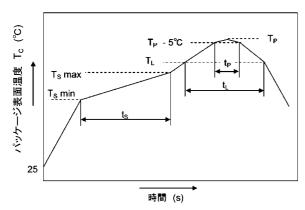



図 12.6 IFP - VFP

Rev.9.0

注: 特性図の値は,特に指定のない限り保証値ではなく参考値です。


13. 実装・保管条件

13.1. 実装条件

はんだ付けは、はんだごて法、リフロー法ともに次の条件でできる限り本体の温度上昇を防いでください。

・ リフローの場合 (下図参照) (パッケージ表面温度を基準にしております。) リフロー回数は2回までです。

リフローの1回目から2回目までを2週間以内に終了するようにお願いいたします。

	記号	Min	Max	単位
プリヒート温度	Ts	150	200	°C
プリヒート時間	ts	60	120	s
温度上昇率 (T _L - T _P)			3	°C/s
本加熱温度	TL	2	217	
本加熱時間	t∟	60	150	s
ピーク温度	T _P		260	°C
T _P - 5 °Cの時間	t _P		30	s
温度下降率 (T _P - T _L)			6	°C/s

図 13.1.1 鉛フリーはんだ使用時の温度 プロファイルー例

はんだフローの場合
 プリヒートは、150 ℃で60~120秒 (パッケージ表面温度を基準)で実施してください。
 260 ℃以下、10秒以内でお願いします。
 フロー回数は1回までです。

・ はんだコテによる場合 260 ℃以下,10秒以内もしくは350 ℃,3秒以内で実施してください。 はんだコテによる加熱は1端子1回までです。

13.2. 保管条件

- 水漏れの可能性のある場所や直射目光の当たる場所では保管しないでください。
- ・ 運搬や保管時は包装箱への注意表示に従ってください。
- 保管場所の温度と湿度は、5~35℃、45~75%を目安としてください。
- ・ 有害ガス (特に腐食性ガス) の発生する場所や塵埃の多い所では、保管しないでください。
- ・ 温度変化の少ない場所に保管してください。保管時の急激な温度変化は結露が生じ、リードの酸化、腐食などが発生し、はんだ濡れ性が悪くなります。
- ・ デバイスを包装から取り出した後、再び保管する場合は帯電防止処理された収納容器を使用してください。
- 保管時はデバイスに直接荷重を掛けないでください。
- ・ 上記形態で保管された場合でも長時間 (2年以上) 経過した場合には, 使用前にはんだ付け性の確認をする事を推 奨します。

14. 参考パッド寸法

(Unit: mm)

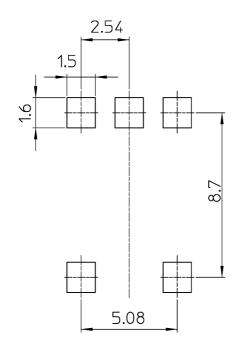


図 14.1 TLP3083 リードフォーミング, テーピング オプション (LF1), (TP1), (LF5), (TP5)

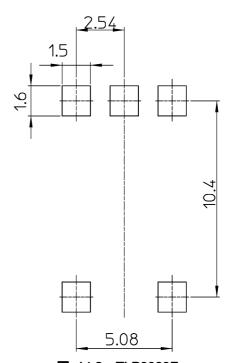


図 14.2 TLP3083F リードフォーミング, テーピング オプション (LF4), (TP4)

15. EN 60747-5-5オプション (D4) 仕様

· 品番: TLP3083 (注1)

・ 適用品種: EN 60747の要求試験を適用した"オプション(D4)仕様"は次の商品名を付与します。

例: TLP3083(D4,TP1,F

D4: EN 60747オプション指定

TP1: 標準テーピング名

F: [[G]]/RoHS COMPATIBLE (注2)

注1: 安全規格認定のための品番申請は標準製品品番を使用してください。

適用例: TLP3083(D4,TP1,F → TLP3083

注2: 本製品のRoHS適合性など, 詳細につきましては製品個別に必ず弊社営業窓口までお問合せください。 RoHS指令とは, 「電気電子機器に含まれる特定有害物質の使用制限 (RoHS) に関する2011年6月8日付けの欧州 議会および欧州理事会の指令 (EU指令2011/65/EU)」のことです。

項目	記号	定格値	単位	
使用クラス 定格主電圧 ≦ 300 Vrms に対し 定格主電圧 ≦ 600 Vrms に対し		I-IV I-III	_	
環境試験クラス			40 / 100 / 21	_
汚染度			2	_
最大許容動作絶縁電圧	TLPxxxx タイプ	\/.a=	890	Vnook
■ 取入計分割TF把核电圧 ■ ■	TLPxxxxF タイプ	VIORM	1140	Vpeak
部分放電試験電圧、入力一出力間 ダイアグラム 1	TLPxxxx タイプ	- V _{pr}	1424	· Vpeak
V _{pr} = 1.6 × V _{IORM} ,型式および抜き取り試験 t _p = 10 s,部分放電電荷 <5 pC	TLPxxxxF タイプ		1824	
部分放電試験電圧,入力一出力間 ダイアグラム 2	TLPxxxx タイプ	- V _{pr}	1670	- Vpeak
V _{pr} = 1.875 × V _{IORM} ,全数試験 t _p = 1 s,部分放電電荷 < 5 pC	TLPxxxxF タイプ		2140	
最大許容過電圧 (過度過電圧, t _{pr} = 60 s)		V _{TR}	8000	Vpeak
安全最大定格 (故障時の最大許容値, ダイアグラム3の低減グラフ) 電流 (入力電流 I _F , P _{SO} = 0) 電力 (出力あるいは全許容損失) 温度	I _{si} P _{so} T _s	400 700 150	mA mW °C	
絶縁抵抗,入力一出力間 V_{IO} = 500 V, T_a = 25 °C V_{IO} = 500 V, T_a = 100 °C V_{IO} = 500 V, T_a = T_s		R _{si}		Ω

図 15.1 EN 60747絶縁定格

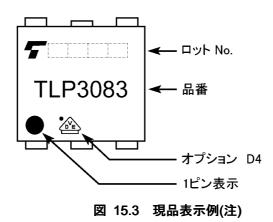


表	絶縁構造ノ	パラメ	ーター	(注)
---	-------	------------	-----	-----

絶縁構造パラメーター	記号	TLP3083	TLP3083F
最小沿面距離	Cr	7.0 mm	8.0 mm
最小空間距離	CI	7.0 mm	8.0 mm
最小絶縁物厚	ti	0.4 mm	0.4 mm
トラッキング指数	CTI	175	175

- 注: プリント基板に実装された場合には,沿面距離,空間距離はこの値以下になることがあります。 (例えば,標準の7.5 mmランド間距離で実装される場合など) これが許容されない場合には適切な処置を講じる必要があります。
- 注: このフォトカプラーは、安全最大定格の範囲内でのみ**安全な電気絶縁**に適用することができます。 必要に応じ保護回路を設け、安全最大定格が確実に維持されるよう処置を講じる必要があります。

注: EN 60747の要求試験を適用した"オプション(D4)仕様"には上記のマーキングを実施します。

ダイアグラム **Figure**

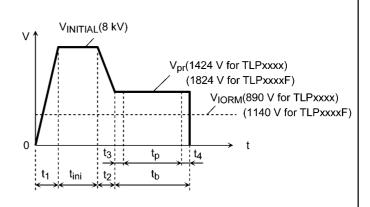
1 EN 60747 による試験電圧波形, 手順 a), 破壊試験 (型式試験や抜き取り試験に適用)

1 Partial discharge measurement procedure according to EN 60747

Destructive test for qualification and sampling tests.

Method A

(for type and sampling tests, destructive tests)


 $t_1,\,t_2$ = 1 to 10 s= 1 st3, t4

tp (Measuring time for

partial discharge) = 10 s= 12 s

tb

t_{ini} = 60 s

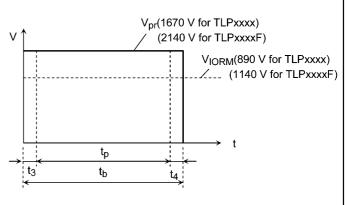
ダイアグラム

2 EN 60747 による試験電圧波形, 手順 b), 非破壊試験 (全数試験に適用)

Figure Partial discharge measurement procedure according to EN 60747

Non-destructive test for 100 % inspection.

Method B


(for sample test, nondestructive test)

= 0.1 st3. t4

tp (Measuring time for

partial discharge) = 1 s= 1.2 s

 t_{b}

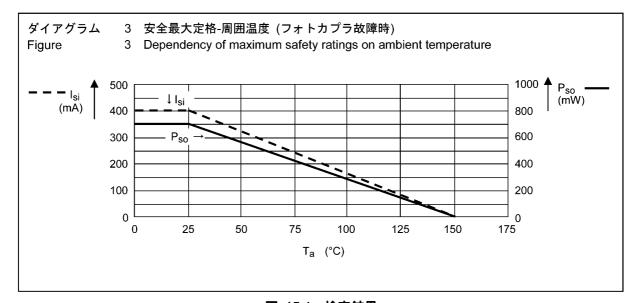


図 15.4 検査結果

16. オーダー情報 (製品名例)

製品名	外観 (注1)	VDEオプション	包装形態 (最小オーダー数)
TLP3083(F	TH		マガジン (50個)
TLP3083(LF1,F	LF1		マガジン (50個)
TLP3083(LF5,F	LF5		マガジン (50個)
TLP3083(TP1,F	LF1		テーピング (1500個)
TLP3083(TP5,F	LF5		テーピング (1500個)
TLP3083(D4,F	TH	EN 60747-5-5	マガジン (50個)
TLP3083(D4,LF1,F	LF1	EN 60747-5-5	マガジン (50個)
TLP3083(D4,LF5,F	LF5	EN 60747-5-5	マガジン (50個)
TLP3083(D4,TP1,F	LF1	EN 60747-5-5	テーピング (1500個)
TLP3083(D4,TP5,F	LF5	EN 60747-5-5	テーピング (1500個)
TLP3083F(F	TH, ワイドフォーミング		マガジン (50個)
TLP3083F(LF4,F	LF4, ワイドフォーミング		マガジン (50個)
TLP3083F(TP4,F	LF4, ワイドフォーミング		テーピング (1000個)
TLP3083F(D4,F	TH, ワイドフォーミング	EN 60747-5-5	マガジン (50個)
TLP3083F(D4,LF4F	LF4, ワイドフォーミング	EN 60747-5-5	マガジン (50個)
TLP3083F(D4,TP4F	LF4, ワイドフォーミング	EN 60747-5-5	テーピング (1000個)

注1: TH: スルーホール, LF: 表面実装用リードフォーミング

17. ハロゲンフリー樹脂製品について

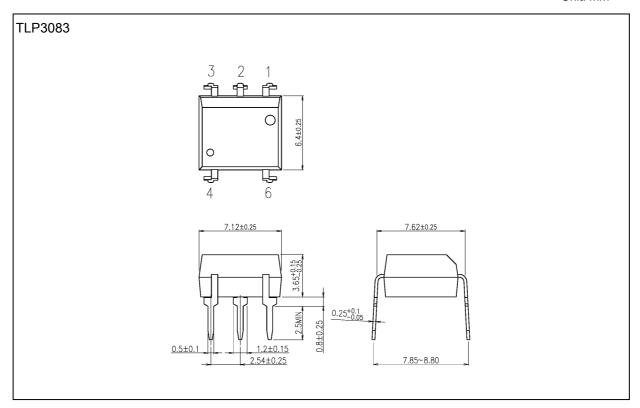
・本製品はハロゲンフリー樹脂製品です。

ハロゲンフリー樹脂製品の定義:

東芝デバイス&ストレージ株式会社は、「ハロゲンフリー樹脂製品」と表記されている半導体製品を以下の条件に適合する製品と定義します。

半導体製品の構成要素として半導体パッケージ用封止樹脂がある場合は、半導体パッケージ用封止樹脂中に、半導体パッケージ用封止樹脂の重量に対して、臭素 (Br)、塩素 (Cl)、アンチモン (Sb) のいずれの物質についても最大0.09重量パーセントを超えて含有しない、かつ、臭素と塩素の合計については、最大0.15重量パーセントを超えて含有しないこと。

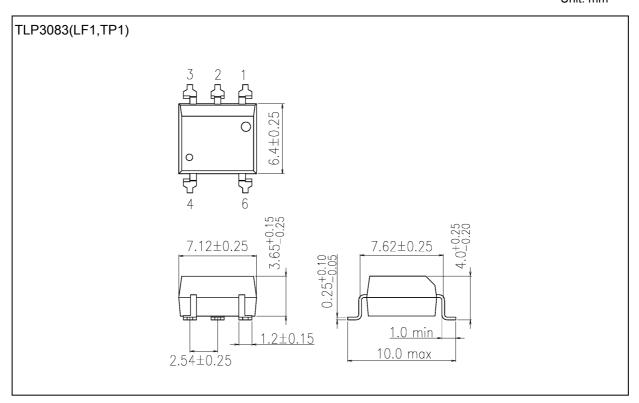
上述の条件に加えて、半導体製品の構成要素としてプリント基板がある場合は、プリント基板中の各樹脂部中に、プリント基板中の各樹脂部それぞれの重量に対して、臭素、塩素、アンチモンのいずれの物質についても最大0.09重量パーセントを超えて含有しない、かつ、臭素と塩素の合計については、最大0.15重量パーセントを超えて含有しないこと。


なお,上述の「ハロゲンフリー樹脂製品」は,半導体パッケージ用封止樹脂,およびプリント基板中の各樹脂部に,アンチモンやハロゲン族元素である臭素,塩素,ヨウ素 (I),フッ素 (F),およびアスタチン (At) を全く含有しないことを意味するものではありません。

ハロゲンフリー樹脂製品であっても半導体パッケージ用封止樹脂以外の部分やプリント基板中の各樹脂部以外の部分から,アンチモンやハロゲン族元素が検出されることがあります。

この情報は本データシート発行日時点で,当社の材料調達先からの調査回答に基づいたものです。

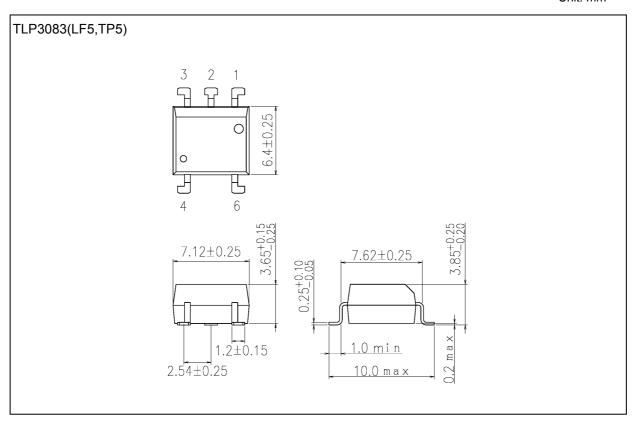
Unit: mm



質量: 0.40 g (typ.)

	パッケージ名称
東芝名称: 11-7A10S	

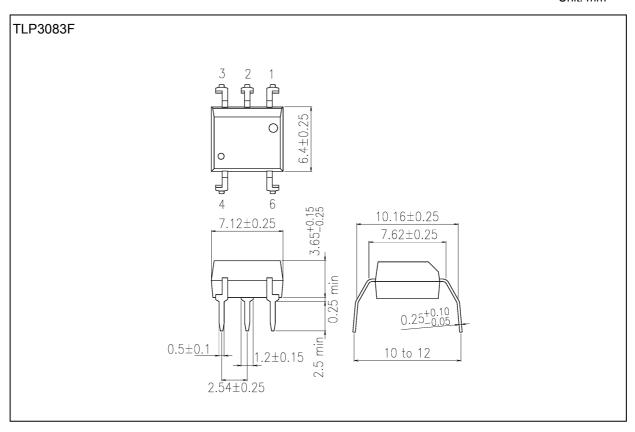
Unit: mm



質量: 0.39 g (typ.)

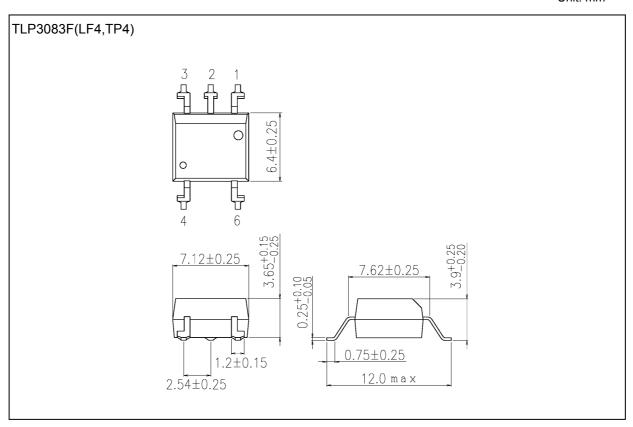

	パッケージ名称
東芝名称: 11-7A1001S	

Unit: mm



質量: 0.39 g (typ.)

Unit: mm


質量: 0.40 g (typ.)

パッケージ名称

東芝名称: 11-7A1002S

Unit: mm

質量: 0.39 g (typ.)

	パッケージ名称
東芝名称: 11-7A1004S	

製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。 本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- ・当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、 膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途" という)に使用されることは意図されていませんし、保証もされていません。 特定用途には原子力関連機器、航空・宇宙機器、医療機器(ヘルスケア除く)、車載・輸送機器、列車・船舶 機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。 特定用途に使用された場合には、当社は一切の責任を負いません。
- ・本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。

なお、詳細は当社営業窓口まで、または当社Webサイトのお問い合わせフォームからお問い合わせください。

- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当 社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証 (機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品にはGaAs(ガリウムヒ素)が使われています。その粉末や蒸気等は人体に対し有害ですので、破壊、 切断、粉砕や化学的な分解はしないでください。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。
 本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

東芝デバイス&ストレージ株式会社

https://toshiba.semicon-storage.com/jp/