CMOSデジタル集積回路 シリコン モノリシック

74VHCT9125AFT,74VHCT9126AFT

1. 機能

• 5-Bit Universal Schmitt Buffer with 3-State Outputs

2. 概要

74VHCT9125AFT, 74VHCT9126AFTは、シリコンゲートCMOS技術を用いた超高速CMOS 5回路入りシュミットトリガバッファです。CMOSの特長である低い消費電力で、 高速ショットキTTLに匹敵する高速動作を実現できます。

入力はTTLレベルですので、TTLレベルのバスに直結可能であり、3 V系から5 V系へのレベル変換も可能です。

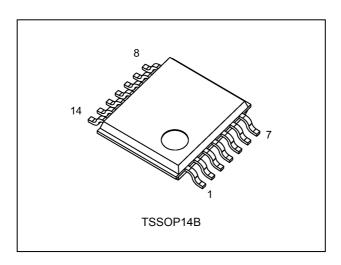
 $Y1 \sim Y4004$ ビット出力は、イネーブル信号(\overline{G})でコントロールすることが可能であり、CONT端子への信号を切り替えることによりインバータタイプ、バッファタイプを選択することができます。CONTが"L"レベル時にはインバータタイプを選択でき、"H"レベル時にはバッファタイプを選択することが可能です。

74VHCT9125AFTはY5が反転出力タイプ, 74VHCT9126AFTはY5が非反転出力タイプとなります。

全ての入力端子はヒステリシスを持っているため、ゆるやかなスロープを持つ信号波形の整形、またノイズに強い特長があります。

また,全ての入力端子には,プラス側ダイオードが入らない入力保護回路を,出力バッファ部には,高レベル側寄生ダイオードが入らない回路をそれぞれ採用しました。これにより,電源電圧にかかわらず5Vの入力電圧,および出力電圧(出力オフ時のみ)の印加が許容されます。この入出力パワーダウンプロテクション方式により,2電源間インタフェース,バッテリバックアップ回路,活線挿抜などへの幅広い応用が可能となります。

3. 特長

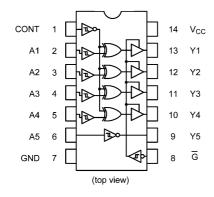

- (1) AEC-Q100 (Rev. H) (注1)
- (2) 動作温度が広い: Topr = -40~125℃
- (3) 高速動作: t_{pd} = 6.6 ns (標準) (V_{CC} = 5.0 V)
- (4) 低消費電流: I_{CC} = 2.0 µA (最大) (T_a = 25 °C)
- (5) TTLレベル入力: V_{IL} = 0.5 V (最大)

V_{IH} = 2.1 V (最小)

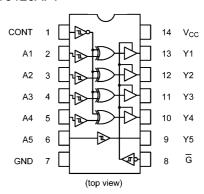
- (6) 全入出力とも、パワーダウンプロテクション機能あり
- (7) バランスのとれた遅延時間: t_{PLH}≈t_{PHL}
- (8) 入出力端子の平行ピン接続

注1: AEC-Q100の信頼性レベルを満足した製品です。詳細については弊社営業にお問合せください。

4. 外観図

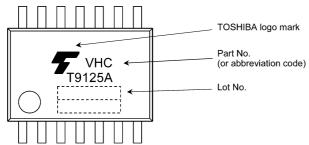

製品量産開始時期

2015-02

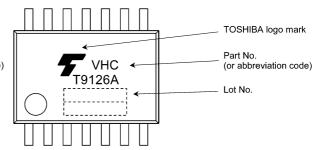


5. 端子配置図

74VHCT9125AFT



74VHCT9126AFT



6. 現品表示

74VHCT9125AFT

74VHCT9126AFT

7. 真理値表

	Inputs	Outputs	
Ğ	CONT	A1 to 4	Y1 to 4
Н	Х	Х	Z
L	L	L	Н
L	L	Н	L
L	Н	Ш	١
L	Н	H	Н

Inputs	Outputs				
A5	Y5 (74VHCT9125AFT)	Y5 (74VHCT9126AFT)			
L	Н	L			
Н	L	Н			

X: Don't care

Z: ハイインピーダンス

8. 絶対最大定格 (注)

項目	記号	注記	定格	単位
電源電圧	V _{CC}		-0.5 ~ 7.0	V
入力電圧	V _{IN}		-0.5 ~ 7.0	V
出力電圧	V _{OUT}	(注1)	-0.5 ~ 7.0	V
		(注2)	-0.5 ~ V _{CC} + 0.5	
入力保護ダイオード電流	I _{IK}		-20	mA
出力寄生ダイオード電流	I _{OK}	(注3)	±20	mA
出力電流	I _{OUT}		±25	mA
電源/GND電流	I _{CC}		±50	mA
許容損失	P _D	(注4)	180	mW
保存温度	T _{stg}		-65 ~ 150	°C

注: 絶対最大定格は、瞬時たりとも超えてはならない値であり、1つの項目も超えてはなりません。

本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格/動作範囲以内での使用においても, 高負荷 (高温および大電流/高電圧印加, 多大な温度変化等) で連続して使用される場合は, 信頼性が著しく低下するおそれがあります。

弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および 個別信頼性情報 (信頼性試験レポート, 推定故障率等) をご確認の上, 適切な信頼性設計をお願いします。

注1: 出力オフ状態

注2: ハイ (H) またはロー (L) 状態, I_{OUT}の絶対最大定格を超えないこと。

注3: V_{OUT} < GND, V_{OUT} > V_{CC}

注4: T_a = -40 ~ 85 $^{\circ}$ C まで, 180 mW。 T_a = 85 ~ 125 $^{\circ}$ Cの範囲では-3.25 mW/ $^{\circ}$ Cで, 50 mWまでディレーティングしてください。

9. 動作範囲 (注)

項目	記号	注記	定格	単位
電源電圧	V _{CC}		4.5 ~ 5.5	V
入力電圧	V _{IN}		0 ~ 5.5	V
出力電圧	V _{OUT}	(注1)	0 ~ 5.5	V
		(注2)	0 ~ V _{CC}	
動作温度	T _{opr}		-40 ~ 125	°C

注: 動作範囲は動作を保証するための条件です。

使用していない入力は、VCC、もしくはGNDに接続してください。

注1: 出力オフ状態

注2:ハイ (H) またはロー (L) 状態

10. 電気的特性

10.1. DC特性 (特に指定のない限り, Ta = 25 ℃)

項目	記号	測定条件		V _{CC} (V)	最小	標準	最大	単位
ハイレベルしきい値電圧	V_P	_		4.5	_	_	1.90	V
				5.5		_	2.10	
ローレベルしきい値電圧	V_N	_		4.5	0.50	_	_	V
				5.5	0.60	_	_	
ヒステリシス電圧	V_{H}	_		4.5	0.40	_	1.40	V
				5.5	0.40	_	1.50	
ハイレベル出力電圧	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -50 μA	4.5	4.4	4.5	_	V
			I _{OH} = -8 mA	4.5	3.94	1	_	
ローレベル出力電圧	V_{OL}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 50 μA	4.5		0.0	0.1	V
			I _{OL} = 8 mA	4.5		_	0.36	
スリーステートオフリーク電 流	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		5.5			±0.25	μА
入力リーク電流	I _{IN}	V _{IN} = 5.5 V or GND		0 ~ 5.5			±0.1	μΑ
静的消費電流	I _{CC}	V _{IN} = V _{CC} or GND		5.5		_	2.0	μΑ
	I _{CCT}	Per input: V _{IN} = 3.4 V Other input: V _{CC} or GND		5.5	_	_	1.35	mA
出カリーク電流 (電源オフ時)	I _{OPD}	V _{OUT} = 5.5 V		0	_	_	0.5	μА

10.2. DC特性 (特に指定のない限り, Ta = -40 ~ 85 ℃)

項目	記号	測定条件		V _{CC} (V)	最小	最大	単位
ハイレベルしきい値電圧	V _P	_		4.5		1.90	V
				5.5		2.10	
ローレベルしきい値電圧	V _N	_		4.5	0.50	_	V
				5.5	0.60		
ヒステリシス電圧	V _H	_		4.5	0.40	1.40	V
				5.5	0.40	1.50	
ハイレベル出力電圧	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -50 μA	4.5	4.4	_	V
			I _{OH} = -8 mA	4.5	3.80	_	
ローレベル出力電圧	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA	4.5	_	0.1	V
			I _{OL} = 8 mA	4.5	_	0.44	
スリーステートオフリーク電流	l _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		5.5	_	±2.5	μА
入カリーク電流	I _{IN}	V _{IN} = 5.5 V or GND		0 ~ 5.5	_	±1.0	μА
静的消費電流	I _{CC}	V _{IN} = V _{CC} or GND		5.5	_	20.0	μА
	I _{CCT}	Per input: V _{IN} = 3.4 V Other input: V _{CC} or GND		5.5	_	1.50	mA
出カリーク電流 (電源オフ時)	I _{OPD}	V _{OUT} = 5.5 V		0	_	5.0	μΑ

10.3. DC特性 (特に指定のない限り, Ta = -40 ~ 125 ℃)

項目	記号	測定条件		V _{CC} (V)	最小	最大	単位
ハイレベルしきい値電圧	V _P	_		4.5	_	1.90	V
				5.5	_	2.10	
ローレベルしきい値電圧	V _N	_		4.5	0.50	_	\ \
				5.5	0.60	_	
ヒステリシス電圧	V _H	_		4.5	0.40	1.40	\ \
				5.5	0.40	1.50	
ハイレベル出力電圧	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA	4.5	4.4	_	V
			I _{OH} = -8 mA	4.5	3.70	_	
ローレベル出力電圧	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA	4.5	_	0.1	V
			I _{OL} = 8 mA	4.5	_	0.55	
スリーステートオフリーク電流	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		5.5	_	±10.0	μА
入力リーク電流	I _{IN}	V _{IN} = 5.5 V or GND		0 ~ 5.5	_	±2.0	μА
静的消費電流	Icc	V _{IN} = V _{CC} or GND		5.5	_	40.0	μА
	I _{CCT}	Per input: V _{IN} = 3.4 V Other input: V _{CC} or GND		5.5	_	1.50	mA
出カリーク電流 (電源オフ時)	I _{OPD}	V _{OUT} = 5.5 V		0	_	20.0	μА

10.4. AC特性 (特に指定のない限り, Ta = 25 ℃, Input: t_r = t_f = 3 ns)

項目	記号	注記	測定条件	V _{CC} (V)	C _L (pF)	最小	標準	最大	単位
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	_	6.6	8.5	ns
(A1 ~ 4-Y1 ~ 4)					50	_	8.1	11.5	
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	_	8.0	10.5	ns
(CONT-Y1 ~ 4)					50	_	9.9	14.5	
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	_	6.0	8.0	ns
(A5-Y5)					50	_	7.9	10.5	
出カイネーブル時間	t_{PZL}, t_{PZH}		$R_L = 1 k\Omega$	5.0 ± 0.5	15	_	6.4	8.5	ns
					50	_	8.4	12.5	
出力ディセーブル時間	t_{PLZ}, t_{PHZ}		$R_L = 1 k\Omega$	5.0 ± 0.5	50	_	6.7	11.5	ns
出力ピン間スキュー	t _{osLH} ,t _{osHL}	(注1)	_	5.0 ± 0.5	50	_	_	1.0	ns
入力容量	C _{IN}		_			_	4	10	pF
出力容量	C _{OUT}		_			_	9	_	pF
等価内部容量	C _{PD}	(注2)	f _{IN} = 1 MHz			_	14		pF

注1: t_{osLH}およびt_{osHL}は, 設計的に保証される項目です。(t_{osLH} = |t_{PLH}m-t_{PLH}n|, t_{osHL} = |t_{PHL}m-t_{PHL}n|)

無負荷時の平均消費電流は,次式から求められます。

 $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC} / 5 (1ビット当たり)$

10.5. AC特性 (特に指定のない限り, T_a = -40 ~ 85 °C, Input: t_r = t_f = 3 ns)

項目	記号	注記	測定条件	V _{CC} (V)	C _L (pF)	最小	最大	単位
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	1.0	10.0	ns
(A1 ~ 4-Y1 ~ 4)					50	1.0	13.0	
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	1.0	12.0	ns
(CONT-Y1 ~ 4)					50	1.0	17.0	
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	1.0	9.5	ns
(A5-Y5)					50	1.0	12.0	
出カイネーブル時間	t _{PZL} ,t _{PZH}		R _L = 1 kΩ	5.0 ± 0.5	15	1.0	10.0	ns
					50	1.0	14.5	
出力ディセーブル時間	t _{PLZ} ,t _{PHZ}		$R_L = 1 k\Omega$	5.0 ± 0.5	50	1.0	13.0	ns
出カピン間スキュー	t _{osLH} ,t _{osHL}	(注1)	_	5.0 ± 0.5	50	_	1.0	ns
入力容量	C _{IN}		_			_	10	pF

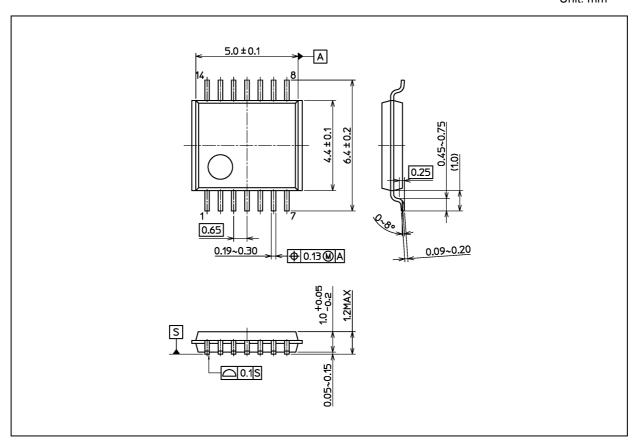
注1: t_{osLH} および t_{osHL} は、設計的に保証される項目です。 (t_{osLH} = $|t_{PLH}$ m- t_{PLH} n|, t_{osHL} = $|t_{PHL}$ m- t_{PHL} n|)

注2: CPDは,動作消費電流から算出したIC内部の等価容量です。

10.6. AC特性 (特に指定のない限り, T_a = -40 ~ 125 ℃, Input: t_r = t_f = 3 ns)

項目	記号	注記	測定条件	V _{CC} (V)	C _L (pF)	最小	最大	単位
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	1.0	11.0	ns
(A1 ~ 4-Y1 ~ 4)					50	1.0	14.0	
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	1.0	13.0	ns
(CONT-Y1 ~ 4)					50	1.0	19.0	
伝搬遅延時間	t _{PLH} ,t _{PHL}		_	5.0 ± 0.5	15	1.0	10.5	ns
(A5-Y5)					50	1.0	13.0	
出力イネーブル時間	t _{PZL} ,t _{PZH}		$R_L = 1 k\Omega$	5.0 ± 0.5	15	1.0	11.0	ns
					50	1.0	16.0	
出力ディセーブル時間	t _{PLZ} ,t _{PHZ}		$R_L = 1 k\Omega$	5.0 ± 0.5	50	1.0	14.0	ns
出力ピン間スキュー	t _{osLH} ,t _{osHL}	(注1)	_	5.0 ± 0.5	50		1.0	ns
入力容量	C _{IN}		_				10	pF

注1: t_{osLH} および t_{osHL} は、設計的に保証される項目です。 (t_{osLH} = $|t_{PLH}$ m- t_{PLH} n|, t_{osHL} = $|t_{PHL}$ m- t_{PHL} n|)


10.7. ノイズ特性 (特に指定のない限り, T_a = 25 ℃, Input: t_r = t_f = 3 ns)

項目	記号	測定条件	V _{CC} (V)	標準	Limit	単位
非動作出力最大ダイナミックV _{OL}	V _{OLP}	C _L = 50 pF	5.0	0.6	0.8	V
非動作出力最小ダイナミックV _{OL}	V_{OLV}	C _L = 50 pF	5.0	-0.2	-0.8	V
最小ダイナミック $V_{ m IH}$	V_{IHD}	C _L = 50 pF	5.0	1	2.1	V
最大ダイナミックV _{IL}	V_{ILD}	C _L = 50 pF	5.0	1	0.5	V

外形寸法図

Unit: mm

質量: 0.054 g (typ.)

	パッケージ名称	
通称名: TSSOP14B		

製品取り扱い上のお願い

- 本資料に掲載されているハードウエア、ソフトウエアおよびシステム(以下、本製品という)に関する情報 等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- ・当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、電力機器、金融関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口までお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当 社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。