

フォトカプラ GaAlAs赤外LED+フォトIC

TLP2768A

1. 用途

- ・ FAネットワーク用
- 計測・制御装置などの高速デジタルインタフェース用
- · I/Oインタフェースボード用

2. 概要

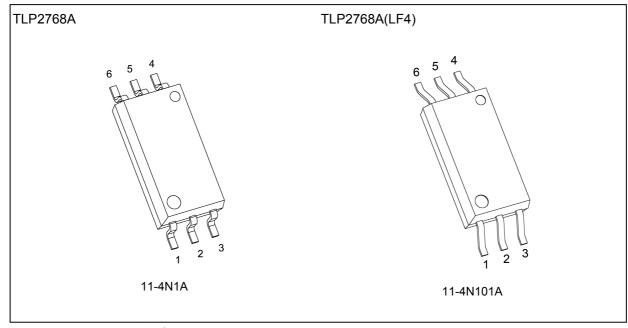
TLP2768Aは、GaAℓAs赤外発光ダイオードと高利得・高速の集積回路受光チップを組み合わせた電源電圧 $2.7\,V\sim5.5\,V$ 、 $125\,^{\circ}$ C動作保証のSO6Lパッケージフォトカプラです。SO6Lパッケージはパッケージ高さが最大 $2.3\,$ mmと薄型ながら、 $5\,$ kVrms (最小) の高い絶縁耐圧、また海外安全規格の強化絶縁クラスにも適合しています。

TLP2768Aは受光側にシールドを施し、 $\pm 20 \, \mathrm{kV/\mu s}$ の高い瞬時コモンモード除去を与えており、入出力間の耐ノイズ性に優れています。

3. 特長

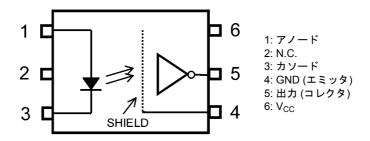
- (1) インバータロジック出力タイプ (オープンコレクタ出力)
- (2) パッケージ: SO6L
- (3) 動作温度: -40~125℃
- (4) データ伝送レート: 20 MBd (標準) (NRZ)
- (5) スレッショルド入力電流: 5.0 mA (最大)
- (6) 供給電流: 4 mA(最大)
- (7) 瞬時コモンモード除去電圧: ±20 kV/µs (最小)
- (8) 絶縁耐圧: 5000 Vrms (最小)
- (9) 安全規格

UL認定品 UL1577, ファイルNo.E67349

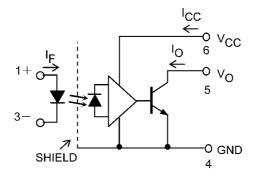

cUL認定品 CSA Component Acceptance Service No.5A ファイルNo.E67349

VDE認定品 EN60747-5-5, EN60065, EN60950-1, EN 62368-1 (注1)

注1: VDE認定品を採用する場合は"オプション(D4)品"とご指定ください。



4. 外観図 (注)



注: リードフォーミングオプション: (LF4)

5. 端子配置図

6. 内部回路構成 (注)

注: 6ピンと4ピンの間にバイパス用のコンデンサ0.1 µFを付ける必要があります。

Rev.10.0

7. 機能説明

7.1. 真理値表

入力	LED	出力
Н	ON	L
L	OFF	Н

7.2. 構造パラメータ

項目	寸法	単位
パッケージ高さ	2.3 (最大)	mm
沿面距離	8.0 (最小)	
空間距離	8.0 (最小)	
絶縁物厚	0.4 (最小)	

8. 絶対最大定格 (注) (特に指定のない限り, Ta = 25 ℃)

	項目		記号	注記	定格	単位
発光側	入力順電流		I _F		25	mA
	入力順電流低減率	(T _a ≥ 110 °C)	$\Delta I_F/\Delta T_a$		-0.67	mA/°C
	入力順電流 (パルス)		I _{FP}	(注1)	50	mA
	入力順電流低減率 (パルス)	(T _a ≧ 110 °C)	$\Delta I_{FP}/\Delta T_a$		-1	mA/°C
	入力許容損失		P_{D}		40	mW
	入力許容損失低減率	(T _a ≧ 110 °C)	$\Delta P_D/\Delta T_a$		-1.0	mW/°C
	入力逆電圧		V_{R}		5	V
受光側	出力電流		I _O		25	mA
	出力電圧		Vo		6	V
	電源電圧		V _{CC}		6	
	出力許容損失		Po		60	mW
	出力許容損失低減率	(T _a ≧ 110 °C)	$\Delta P_{O}/\Delta T_{a}$		-1.5	mW/°C
共通	動作温度		T _{opr}		-40 to 125	°C
	保存温度		T _{stg}		-55 to 125	
	はんだ付け温度	(10 s)	T _{sol}		260	
	絶縁耐圧	(AC, 60 s, R.H. ≦ 60 %)	BV _S	(注2)	5000	Vrms

注: 本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格以内での使用においても, 高負荷 (高温および大電流/高電圧印加, 多大な温度変化等) で連続して使用される場合は, 信頼性が著しく低下するおそれがあります。 弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および個別信頼性情報 (信頼性試験レポート, 推定故障率等) をご確認の上, 適切な信頼性設計をお願いします。

注1: パルス幅 ≦ 1 ms, duty = 50 %

注2: ピン1, 2, 3とピン4, 5, 6をそれぞれ一括し, 電圧を印加する。

9. 推奨動作条件 (注)

項目	記号	注記	最小	標準	最大	単位
入力オン電流	I _{F(ON)}	(注1)	7.5	_	14	mA
入力オフ電圧	V _{F(OFF)}		0	_	0.8	V
電源電圧	V _{CC}	(注2)	2.7	3.3 / 5	5.5	
動作温度	T _{opr}	(注2)	-40	_	125	°C

注: 推奨動作条件は、期待される性能を得るための設計指標です。また、各項目はそれぞれ独立した指標となっておりますので、設計の際は電気的特性などで規定された値も合わせてご確認願います。

注1: 入力オン電流の立ち上がり, 立ち下がりは0.5 µs以下で駆動させてください。

注2: この項目は推奨動作条件ではなく, 動作範囲を意味しております。

注: 出力フォトICは, 非常に高感度のアンプを内蔵しており, 発振防止用として, ピン6とピン4の間に高周波特性の良いバイパスコンデンサ $0.1~\mu$ Fをピンより1~cm以内の場所に取り付けてください。ない場合には, スピードやON/OFFの正常な動作をしない場合があります。

10. 電気的特性 (注) (特に指定のない限り, Ta = -40~125 °C, V_{CC} = 2.7~5.5 V)

項目	記号	測定回路	測定条件	最小	標準	最大	単位
入力順電圧	V _F		I _F = 10 mA, T _a = 25 °C	1.45	1.55	1.70	V
入力順電圧温度係数	$\Delta V_F/\Delta T_a$		I _F = 10 mA		-2.0		mV/°C
入力逆電流	I _R		V _R = 5 V, T _a = 25 °C			10	μΑ
端子間容量 (入力側)	Ct		$V_S = 0 \text{ V, f} = 1 \text{ MHz, T}_a = 25 ^{\circ}\text{C}$		20		pF
ハイレベル出力電流	I _{OH}	図13.1.1	$V_{CC} = V_O = 5.5 \text{ V}, V_F = 0.8 \text{ V}$			50	μА
			$V_{CC} = V_O = 5.5 \text{ V}, V_F = 0.8 \text{ V},$ $T_a = 25 ^{\circ}\text{C}$	_		10	
ローレベル出力電圧	V _{OL}	図13.1.2	I _F = 10 mA, I _O = 13 mA	_		0.6	V
ハイレベル供給電流	I _{CCH}	図13.1.3	I _F = 0 mA	-		4	mA
ローレベル供給電流	I _{CCL}	図13.1.4	I _F = 10 mA			4	
スレッショルド入力電流 (H/L)	I _{FHL}		$I_O = 13 \text{ mA}, V_O < 0.6 \text{ V}$			5.0	

注: 標準値は, T_a = 25 ℃の条件下での値です。

11. 絶縁特性 (特に指定のない限り, Ta = 25 ℃)

項目	記号	注記	測定条件	最小	標準	最大	単位
端子間容量 (入力-出力間)	Cs	(注1)	V _S = 0 V, f = 1 MHz	_	1.0		pF
絶縁抵抗	R _S	(注1)	V _S = 500 V, R.H. ≦ 60 %	1 × 10 ¹²	1014		Ω
絶縁耐圧	BV _S	(注1)	AC, 60 s	5000	_	_	Vrms
			AC, 1 s in oil	_	10000	_	
			DC, 60 s in oil	_	10000	_	Vdc

注1: ピン1, 2, 3とピン4, 5, 6をそれぞれ一括し, 電圧を印加する。

12. スイッチング特性 (注) (特に指定のない限り, Ta = -40~125 ℃, V_{CC} = 2.7~5.5 V)

項目	記号	注記	測定回路	測定条件	最小	標準	最大	単位
伝搬遅延時間 (H/L)	t _{pHL}	(注1)		I _F = 7.5 mA, C _L = 15 pF,			60	ns
伝搬遅延時間 (L/H)	t _{pLH}			$R_L = 350 \Omega$			60	
伝搬遅延時間バラツキ	t _{pHL} -t _{pLH}						35	
伝搬遅延スキュー	t _{psk}	(注1), (注2)			-40		40	
立ち下がり時間	t _f	(注1)			_	30		
立ち上がり時間	t _r					30		
ハイレベル瞬時コモンモード 除去電圧	CM _H			I _F = 0 mA, V _{CC} = 5 V, V _{CM} = 1000 V _{p-p} , T _a = 25 °C	±20	±25		kV/μs
ローレベル瞬時コモンモード 除去電圧	CM _L			I _F = 10 mA, V _{CC} = 5 V, V _{CM} = 1000 V _{p-p} , T _a = 25 °C	±20	±25	_	

注: 標準値は, T_a = 25 ℃の条件下での値です。

注1: 周波数f = 5 MHz, duty = 50 %, t_r = t_f = 5 ns以下, C_Lはプローブとワイヤ浮遊容量 (~15 pF)

注2: 伝搬遅延スキューは、複数製品間の伝搬遅延時間 (t_{pHL}またはt_{pLH}) の最小値と最大値の差として定義されます。同一動作条件下 (電源電圧・入力電流・温度条件等) で適用されます。

13. 参照図

13.1. 測定回路図

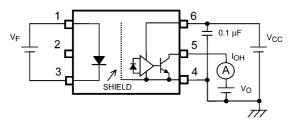


図 13.1.1 I_{OH}測定回路

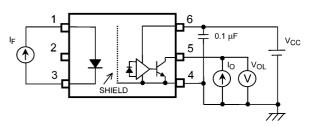


図 13.1.2 VOL測定回路

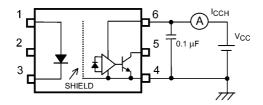


図 13.1.3 I_{CCH}測定回路

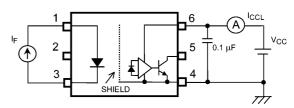
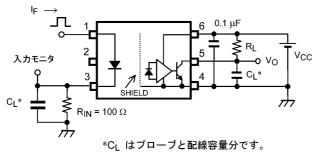
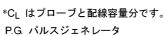




図 13.1.4 I_{CCL}測定回路

 $I_F = 7.5 \text{ mA (P.G.)}$ $(f = 5 \text{ MHz}, \text{ duty} = 50\%, t_r = t_f = 5 \text{ ns以下})$

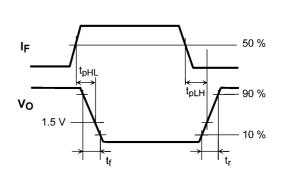
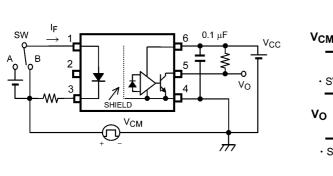
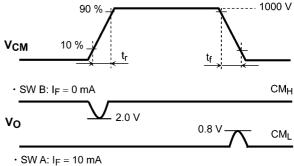




図 13.1.5 伝搬遅延時間測定回路,波形

$$CM_{H}=\ \ \, \frac{800\;(V)}{t_{\Gamma}\left(\mu s\right)} \qquad \quad \, CM_{L}=-\frac{800\;(V)}{t_{f}\left(\mu s\right)} \label{eq:cmh}$$

図 13.1.6 コモンモードノイズ除去電圧測定回路,波形

13.2. 特性図 (注)

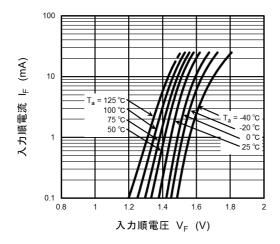


図 13.2.1 I_F - V_F

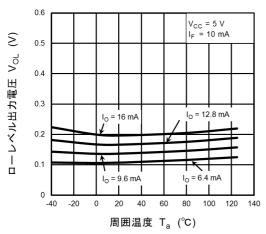


図 13.2.3 V_{OL} - T_a

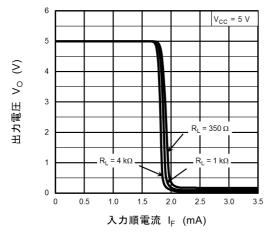


図 13.2.5 V_O-I_F

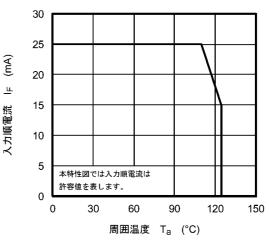


図 13.2.2 IF - Ta

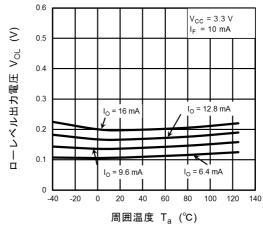


図 13.2.4 V_{OL} - T_a

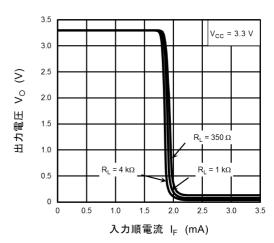


図 13.2.6 V_O-I_F

Rev.10.0

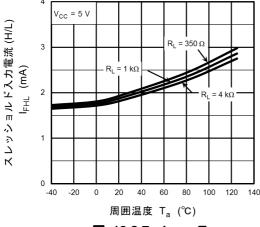
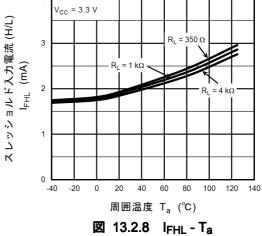



図 13.2.7 I_{FHL} - T_a

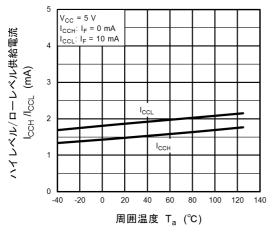


図 13.2.9 I_{CCH}, I_{CCL} - Ta

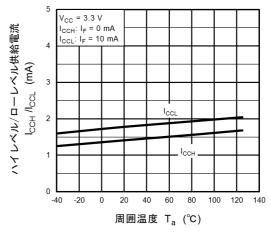


図 13.2.10 I_{CCH}, I_{CCL} - Ta

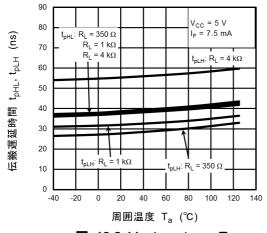


図 13.2.11 t_{pHL}, t_{pLH} - T_a

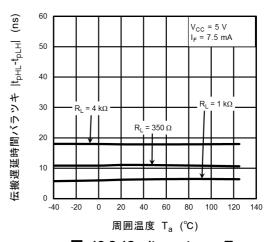
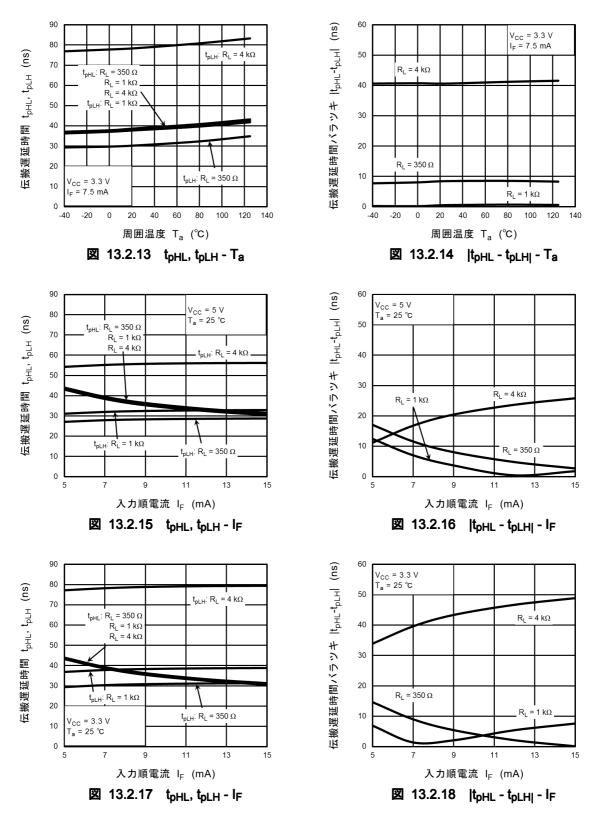
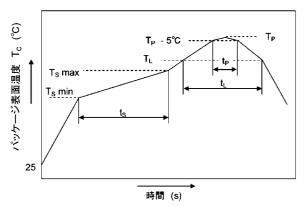



図 13.2.12 |t_{pHL} - t_{pLH|} - T_a

注: 特性図の値は,特に指定のない限り保証値ではなく参考値です。

Rev.10.0


14. 実装・保管条件

14.1. 実装条件

はんだ付けは、はんだごて法、リフロー法ともに次の条件でできる限り本体の温度上昇を防いでください。

・ リフローの場合 (下図参照) (パッケージ表面温度を基準にしております。) リフロー回数は2回までです。

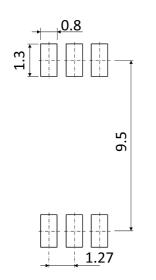
リフローの1回目から2回目までを2週間以内に終了するようにお願いいたします。

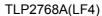
	記号	Min	Max	単位
プリヒート温度	Ts	150	200	°C
プリヒート時間	ts	60	120	s
温度上昇率 (T _L - T _P)			3	°C/s
本加熱温度	TL	217		°C
本加熱時間	t∟	60	150	s
ピーク温度	T _P		260	°C
T _P - 5 °Cの時間	t _P		30	s
温度下降率 (T _P - T _L)			6	°C/s

図 14.1.1 鉛フリーはんだ使用時の温度プロファイルー例

- はんだフローの場合
 プリヒートは、150 ℃で60~120秒 (パッケージ表面温度を基準) で実施してください。
 260 ℃以下、10秒以内でお願いします。
 フロー回数は1回までです。
- ・ はんだコテによる場合 260 $^{\circ}$ C以下、 $^{\circ}$ 10秒以内もしくは $^{\circ}$ 350 $^{\circ}$ C、 $^{\circ}$ 3秒以内で実施してください。 はんだコテによる加熱は $^{\circ}$ 1端子 $^{\circ}$ 1回までです。

14.2. 保管条件


- ・ 水漏れの可能性のある場所や直射日光の当たる場所では保管しないでください。
- 運搬や保管時は包装箱への注意表示に従ってください。
- ・ 保管場所の温度と湿度は,5~35°C,45~75%を目安としてください。
- 有害ガス(特に腐食性ガス)の発生する場所や塵埃の多い所では、保管しないでください。
- ・ 温度変化の少ない場所に保管してください。保管時の急激な温度変化は結露が生じ、リードの酸化、腐食などが発生し、はんだ濡れ性が悪くなります。
- ・ デバイスを包装から取り出した後、再び保管する場合は帯電防止処理された収納容器を使用してください。
- 保管時はデバイスに直接荷重を掛けないでください。
- ・ 上記形態で保管された場合でも長時間 (2年以上) 経過した場合には, 使用前にはんだ付け性の確認をする事を推 奨します。



15. 参考パッド寸法

Unit: mm

TLP2768A

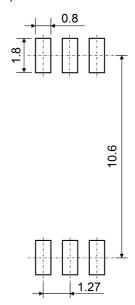
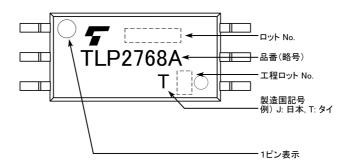



図 15.1 リードフォーミングオプション (standard)

図 15.2 リードフォーミングオプション (LF4)

16. 現品表示

17. EN60747-5-5オプション (D4) 仕様

- · 品番: TLP2768A (注1)
- ・ 適用品種: EN60747の要求試験を適用した"オプション(D4)仕様"は次の商品名を付与します。

例: TLP2768A(D4-TP,E

D4: EN60747オプション指定

TP: 標準テーピング名

E: [[G]]/RoHS COMPATIBLE (注2)

- 注1: 安全規格認定のための品番申請は標準製品品番を使用してください。 適用例: TLP2768A(D4-TP,E → TLP2768A
- 注2: 本製品のRoHS適合性など, 詳細につきましては製品個別に必ず弊社営業窓口までお問合せください。 RoHS指令とは, 「電気電子機器に含まれる特定有害物質の使用制限 (RoHS) に関する2011年6月8日付けの欧州 議会および欧州理事会の指令 (EU指令2011/65/EU)」のことです。

項目	記号	定格値	単位
使用クラス 定格主電圧 ≦ 600 Vrms に対し 定格主電圧 ≦ 1000 Vrms に対し		I-IV I-III	-
環境試験クラス		55 / 125 / 21	_
汚染度		2	_
最大許容動作絶縁電圧	VIORM	1230	Vpeak
部分放電試験電圧, 入力一出力間 ダイアグラム 1 V _{pr} = 1.6 × V _{IORM} , 型式および抜き取り試験 t _p = 10 s, 部分放電電荷 < 5 pC	V _{pr}	1970	Vpeak
部分放電試験電圧, 入力一出力間 ダイアグラム 2 V _{pr} = 1.875 × V _{IORM} , 全数試験 t _p = 1 s, 部分放電電荷 <5 pC	V _{pr}	2310	Vpeak
最大許容過電圧 (過度過電圧, t _{pr} = 60 s)	V _{TR}	8000	Vpeak
安全最大定格 (故障時の最大許容値, ダイアグラム3の低減グラフ) 電流 (入力電流 I _F , P _{SO} = 0) 電力 (出力あるいは全許容損失) 温度	I _{si} P _{so} T _s	250 400 150	mA mW °C
絶縁抵抗, 入力一出力間 V _{IO} = 500 V, T _a = 25 °C V _{IO} = 500 V, T _a = 100 °C V _{IO} = 500 V, T _a = T _s	R _{si}	$ \geq 10^{12} $ $ \geq 10^{11} $ $ \geq 10^{9} $	Ω

図 17.1 EN60747絶縁定格

最小沿面距離	Cr	8.0 mm
最小空間距離	CI	8.0 mm
最小絶縁物厚	ti	0.4 mm
トラッキング指数	CTI	175

図 17.2 絶縁構造パラメータ (注)

注: このフォトカプラは、安全最大定格の範囲内でのみ**安全な電気絶縁**に適用することができます。 必要に応じ保護回路を設け、安全最大定格が確実に維持されるよう処置を講じる必要があります。

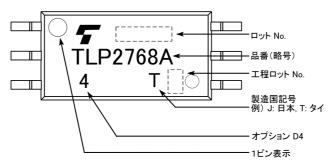


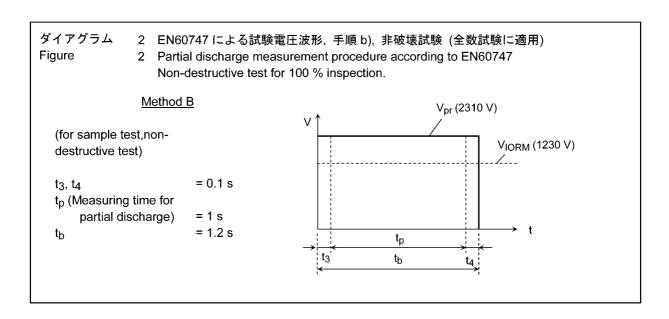
図 17.4 現品表示例 (注)

注: EN60747の要求試験を適用した"オプション(D4)仕様"には上記のマーキングを実施します。

tb

t_{ini}

1 EN60747 による試験電圧波形, 手順 a), 破壊試験 (型式試験や抜き取り試験に適用) ダイアグラム 1 Partial discharge measurement procedure according to EN60747 Figure Destructive test for qualification and sampling tests. Method A V_{INITIAL}(8 kV) (for type and sampling tests, destructive tests) V_{pr} (1970 V) t₁, t₂ = 1 to 10 sV_{IORM} (1230 V) t3, t4 = 1 stp (Measuring time for partial discharge) = 10 s


t_{ini}

= 12 s

= 60 s

tp

 t_{b}

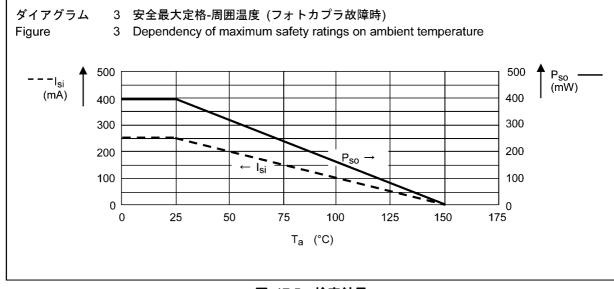


図 17.5 検査結果

18. (TP) エンボステーピング包装仕様

18.1. 適用パッケージ

パッケージ名称	製品
SO6L / SO6L(LF4)	長沿面ミニフラットカプラ

18.2. 製品名呼称方法

単体品番の後に記号を付けて、出荷形態の区分をしています。区分方法は下記のとおりです。

例) TLP2768A(TP,E

東芝単体品番: TLP2768A

テーピング名称: TP

[[G]]/RoHS COMPATIBLE: E (注)

注: 本製品のRoHS適合性など,詳細につきましては製品個別に必ず弊社営業窓口までお問合せください。 RoHS指令とは,「電気電子機器に含まれる特定有害物質の使用制限 (RoHS) に関する2011年6月8日付けの欧州 議会および欧州理事会の指令 (EU指令2011/65/EU)」のことです。

18.3. テープ仕様

テーピング名称	区分	包装数量 (個/リール)
TP / TP4	_	1500

18.3.1. テープ方向

キャリアテープ凹み角穴内の製品の向きは、下図に示すとおりです。

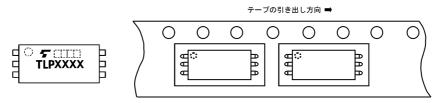


図 18.3.1.1 凹み角穴内の製品の向き

18.3.2. 製品封入不良率

項目	規格	備考
連続した製品抜け	0個	リーダ, トレイラ部を除いたテープの任意の40 mm内
非連続の製品抜け	最大6個 (1リール当たり)	リーダ, トレイラ部は除く

18.3.3. リーダ部および空部

テープの巻き始めには空凹み角穴を14ヶ所以上付け、巻き終わりには空凹み角穴を34ヶ所以上とカバーテープを30 mm以上付けます。

18.3.4. テープ寸法

テープ材質: プラスチック (静電防止仕様)

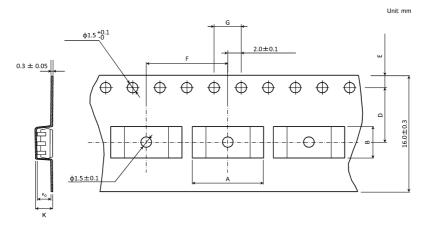


表 テープ寸法 (unit: mm, 公差: ±0.1)

記号	寸法 (standard)	寸法 (LF4)	備考
Α	10.4	11.55	_
В	4.24	4.24	_
D	7.5	7.5	凹み角穴と送り丸穴の中心線
Е	1.75	1.75	テープ端と穴中心との距離
F	12.0	16.0	累積誤差 +0.1/10ピッチ, -0.3/10ピッチ
G	4.0	4.0	累積誤差 +0.1/10ピッチ, -0.3/10ピッチ
K	2.7	2.8	_
K ₀	2.4	2.4	内部空間

18.3.5. リール仕様

材質: プラスチック (静電防止仕様)

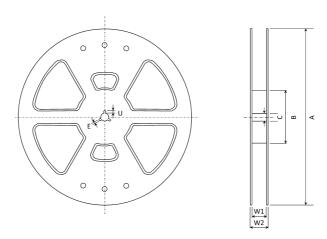


表 リール寸法 (unit: mm)

記号	寸法
А	$\varphi 330 \pm 2.0$
В	φ100 ± 1.0
С	$\phi 13 \pm 0.5$
E	2.0 ± 0.5
U	4.0 ± 0.5
W1	17.4 ± 0.5
W2	21.4 ± 1.0

18.4. 梱包(注)

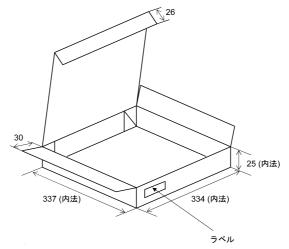
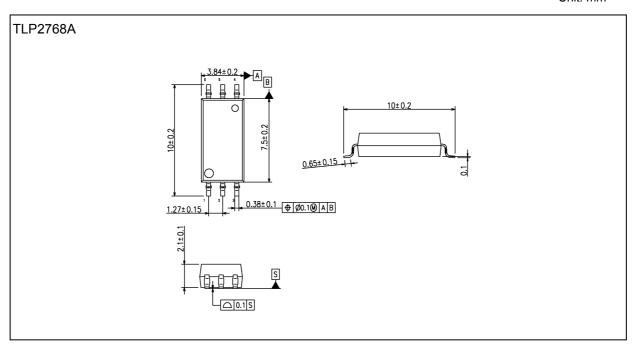


図 18.4.1 1リール入り梱包箱 (unit: mm)

注: テーピング リール径: φ330 mm

18.5. 包装表示

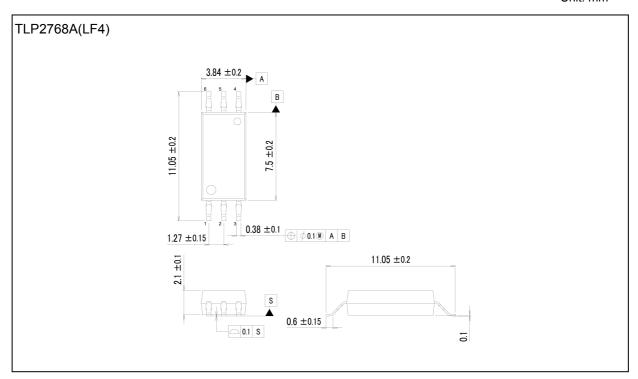
- (1) 箱: 品番, 数量, ロットNo., 当社名を表示します。
- (2) リール: 品番, テーピング名, 数量, ロットNo.を表示します。


19. オーダー情報 (製品名例)

製品名	外観	VDEオプション	包装形態 (最小オーダー数)
TLP2768A(E			マガジン (125個)
TLP2768A(TP,E			テーピング (1500個)
TLP2768A(D4,E		EN60747-5-5	マガジン (125個)
TLP2768A(D4-TP,E		EN60747-5-5	テーピング (1500個)
TLP2768A(LF4,E	LF4, ワイドフォーミング		マガジン (125個)
TLP2768A(TP4,E	LF4, ワイドフォーミング		テーピング (1500個)
TLP2768A(D4LF4,E	LF4, ワイドフォーミング	EN60747-5-5	マガジン (125個)
TLP2768A(D4TP4,E	LF4, ワイドフォーミング	EN60747-5-5	テーピング (1500個)

外形寸法図

Unit: mm


質量: 0.126 g (typ.)

	パッケージ名称	
東芝名称: 11-4N1A		

外形寸法図

Unit: mm

質量: 0.126 g (typ.)

	パッケージ名称
東芝名称: 11-4N101A	

製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。 本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- ・当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- ・本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、 膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下 "特定用途" という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、 航空・宇宙機器、医療機器、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種 安全関連機器、昇降機器、電力機器、金融関連機器などが含まれますが、本資料に個別に記載する用途は除 きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで お問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当 社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証 (機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品にはGaAs(ガリウムヒ素)が使われています。その粉末や蒸気等は人体に対し有害ですので、破壊、 切断、粉砕や化学的な分解はしないでください。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

東芝デバイス&ストレージ株式会社