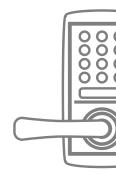

# IoT Sensor

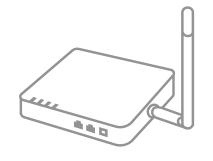
**Solution Proposal by Toshiba** 



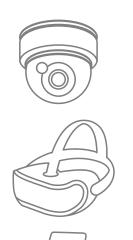






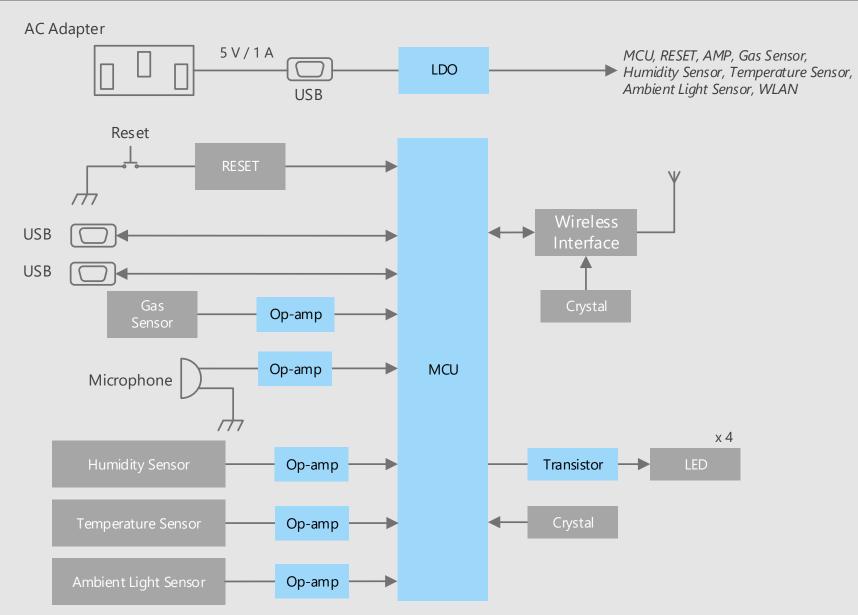


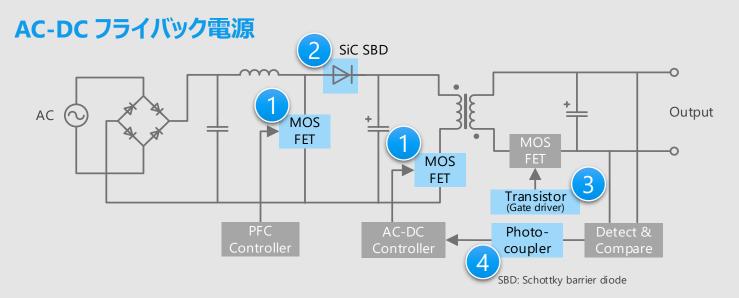


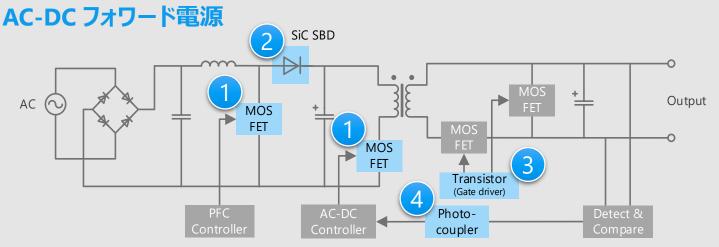






東芝デバイス&ストレージ株式会社では 既存セット設計の深い理解などにより、 新しくセット設計を考えられているお客様へ、 より適したデバイスソリューションをご提供したいと考えています。




# Block Diagram


© 2019-2025 Toshiba Electronic Devices & Storage Corporation

# IoTセンサー 全体ブロック図



## IoTセンサー 電源部詳細





SBD: Schottky barrier diode

※ 回路図内の番号をクリックすると、詳細説明ページに飛びます

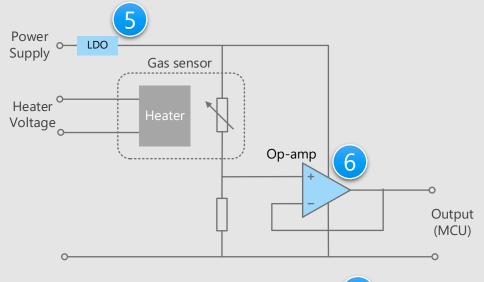
### デバイス選定のポイント

- AC-DCコンバーターの一次側スイッチングには、 高耐圧MOSFETが適しています。
- PFC回路にはSiCタイプのショットキーバリアダイ オードが適しています。

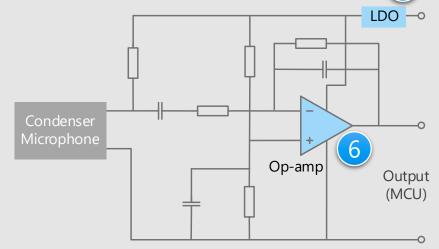
#### 東芝からの提案

- 高効率電源のスイッチングに好適 MOSFET
- 大電流サージ耐量で低スイッチング損失 SiCショットキーバリアダイオード
- MOSFETの高速ゲート制御に好適 バイポーラートランジスター (ゲートドライバー)
- 電源のフィードバック回路に好適IC出力フォトカプラー








## IoTセンサー センサー部詳細

#### ガス検知回路



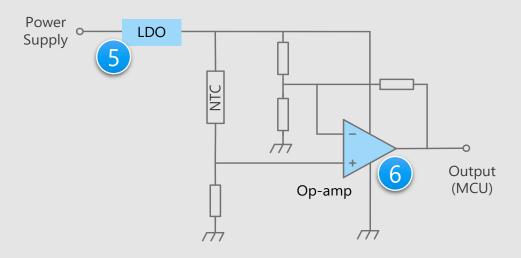
#### マイクロフォン増幅回路



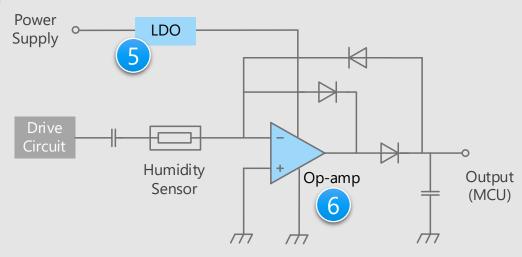
※ 回路図内の番号をクリックすると、詳細説明ページに飛びます

### デバイス選定のポイント

- LDOレギュレーターのPSRR (電源電圧変動除去 比) はセンサー回路の重要な指標です。
- → オペアンプは低消費電流または低ノイズであることが望まれます。
- 小型パッケージ品を採用することで基板面積を縮小できます。


### 東芝からの提案

- 低ノイズで電源を供給小型面実装LDOレギュレーター
- 検出された微小信号を増幅低消費電流オペアンプ / 低ノイズオペアンプ




# IoTセンサー センサー部詳細

#### 温度検知回路



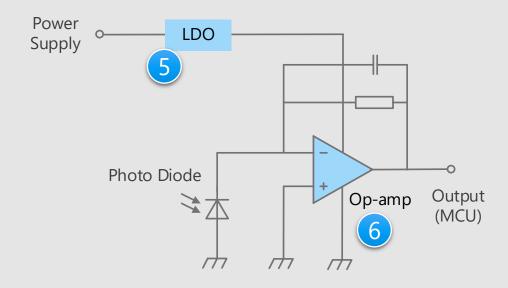
#### 湿度検知回路



### デバイス選定のポイント

- LDOレギュレーターのPSRR (電源電圧変動除去 比) はセンサー回路の重要な指標です。
- → オペアンプは低消費電流または低ノイズであることが望まれます。
- 小型パッケージ品を採用することで基板面積を縮小できます。

## 東芝からの提案


● 低ノイズで電源を供給 小型面実装LDOレギュレーター

- 5
- 検出された微小信号を増幅低消費電流オペアンプ / 低ノイズオペアンプ



## IoTセンサー センサー部詳細

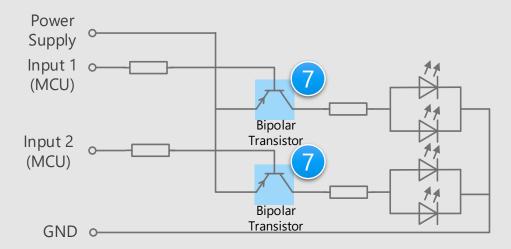
#### 周囲光検知回路



### デバイス選定のポイント

- LDOレギュレーターのPSRR (電源電圧変動除去 比) はセンサー回路の重要な指標です。
- → オペアンプは低消費電流または低ノイズであることが望まれます。
- 小型パッケージ品を採用することで基板面積を縮小できます。

### 東芝からの提案


● 低ノイズで電源を供給 小型面実装LDOレギュレーター

- 5
- ◆検出された微小信号を増幅低消費電流オペアンプ / 低ノイズオペアンプ



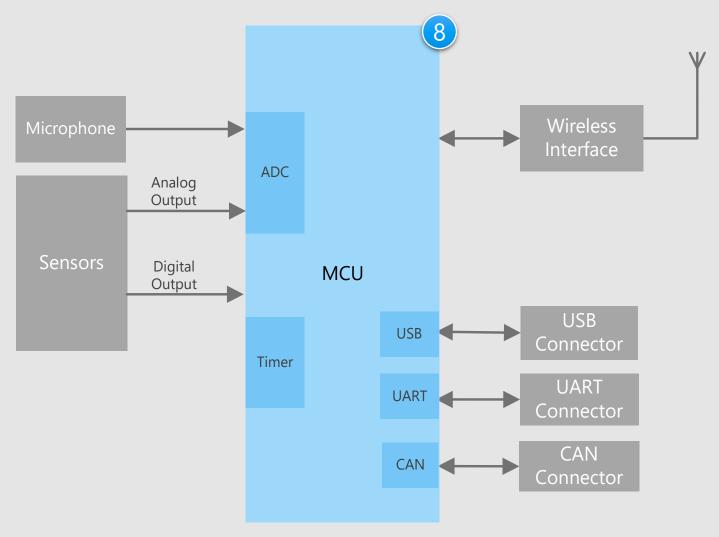
# IoTセンサー LED駆動部詳細

#### LED 駆動回路



# デバイス選定のポイント

● 小型パッケージ品を採用することで基板面積を 縮小できます。


# 東芝からの提案

 ● 高耐圧・高h<sub>FE</sub> の小型面実装パッケージ品 バイポーラートランジスター



# IoTセンサー メイン制御部詳細

#### メイン制御部



# デバイス選定のポイント

- ◆各種センサー出力をモニタリングするための アナログ、デジタルインターフェースが複数チャネル 必要になります。
- センサーデータの解析をリアルタイムに処理する 高速性が求められます。
- センサーデータや解析結果をクラウドにアップロード するための通信チャネルが必要です。

#### 東芝からの提案

● 複数チャネルのセンサーインターフェースと 多様な通信規格をサポートする高性能MCU

MCU M4Nグループ



# お客様の課題を解決するデバイスソリューション

以上のように、IoTセンサーの設計には「基板の小型化」「セットの低消費電力化」「堅牢な動作」が重要であると考え、三つのソリューション視点から製品をご提案します。



# お客様の課題を解決するデバイスソリューション

|                            | 小型<br>パッケージ<br>対応 | 高効率<br>・<br>低損失 | ノイズ耐性 |
|----------------------------|-------------------|-----------------|-------|
| 1 MOSFET                   |                   |                 |       |
| ② SiC ショットキーバリアダイオード       |                   |                 |       |
| ③ バイポーラートランジスター (ゲートドライバー) |                   |                 |       |
| 4 IC出力フォトカプラー              |                   |                 |       |
| 5 小型面実装LDOレギュレーター          |                   |                 |       |
| ⑥ 低消費電流オペアンプ / 低ノイズオペアンプ   |                   |                 |       |
| <b>7</b> バイポーラートランジスター     |                   |                 |       |
| 8 MCU M4Nグループ              |                   |                 |       |

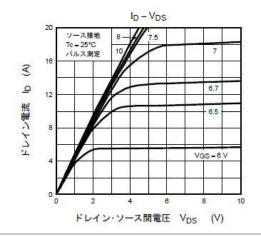


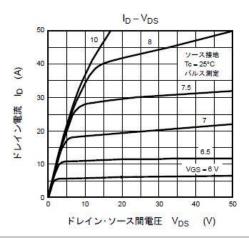




#### 提供価値

#### スイッチングレギュレーターに適したMOSFETで、取り扱いが容易で小型化に貢献します。


# 低いオン抵抗


ドレイン・ソース間のオン抵抗が低く、発熱と消費電力を低く抑えることができます。

# 一 低いリーク電流

ドレインしゃ断電流 I<sub>DSS</sub> = 10 μA (最大) (@V<sub>DS</sub> = 500 V)

#### TK18A50D 特性図





| ラインアップ                        |           |          |
|-------------------------------|-----------|----------|
| 品名                            | TK18A50D  | TK12P50W |
| パッケージ                         | TO-220SIS | DPAK 🌨   |
| V <sub>DSS</sub> [V]          | 500       | 500      |
| I <sub>D</sub> [A]            | 18        | 11.5     |
| P <sub>D</sub> [W]            | 50        | 100      |
| C <sub>iss</sub> (Typ.) [pF]  | 2600      | 890      |
| $R_{DS(ON)}$ (Max) $[\Omega]$ | 0.27      | 0.34     |
| 極性                            | N-ch      | N-ch     |







提供価値

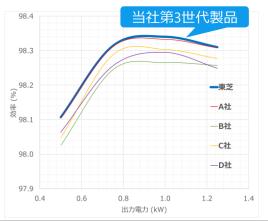
#### 新規メタルの採用およびデザインの最適化により、低損失・高効率なSiC SBD [注1] を実現しました。

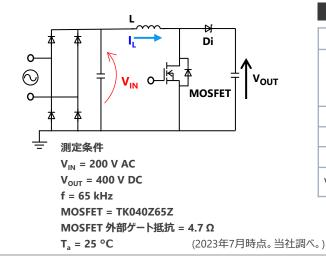
[注1] SBD: Schottky barrier diode

# 低い順方向電圧 (V<sub>F</sub>)

第3世代製品では、新規メタルの採用と薄ウエ ハー技術を導入し、当社従来製品の $V_F = 1.45$ V (Typ.) に対して、 $V_F = 1.2$  V (Typ.) を実現し、 約17 %低減しています。

# 電源の効率改善


第3世代製品は、当社従来製品と比較し、 $V_F \times Q_C$  [注2] のトレードオフを改善しました。また、当社試験の 800 Wの出力条件で約0.1 %の変換効率向上を実現しています。


# 3 パッケージシリーズ拡充

既存のパッケージシリーズに加え、面実装タイプのパッケージであるDFN8x8もそろえています。機器の小型化、高電力密度化に貢献します。

[注2] V<sub>F</sub> x Q<sub>C</sub>: 順電圧と総電荷量の積は、SiC SBDの損失性能を表す指数で、同一電流定格製品で比較した場合小さいほど低損失化が実現できます。

#### 当社第3世代製品と他社製品の比較





| ラインアッフ                    | P                              |                              |                              |                               |                              |                               |  |
|---------------------------|--------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|--|
| 品名                        | TRS24N65FB                     | TRS2E65H                     | TRS8E65H                     | TRS12E65H                     | TRS4V65H                     | TRS12V65H                     |  |
| パッケージ                     | パッケージ TO-247 (Center tap)      |                              | TO-220-2L                    |                               |                              | DFN8x8                        |  |
| V <sub>RRM</sub> [V]      | 650                            | 650                          | 650                          | 650                           | 650                          | 650                           |  |
| I <sub>F(DC)</sub> [A]    | 12 / 24 *                      | 2                            | 8                            | 12                            | 4                            | 12                            |  |
| I <sub>FSM</sub> [A]      | 92 / 184 *                     | 19                           | 56                           | 74                            | 28                           | 60                            |  |
| V <sub>F</sub> (Typ.) [V] | 1.45<br>@I <sub>F</sub> = 12 A | 1.2<br>@I <sub>F</sub> = 2 A | 1.2<br>@I <sub>F</sub> = 8 A | 1.2<br>@I <sub>F</sub> = 12 A | 1.2<br>@I <sub>F</sub> = 4 A | 1.2<br>@I <sub>F</sub> = 12 A |  |

\*: Per Leg / Both Legs

# 3 バイポーラートランジスター (ゲートドライバー) HN4B101J / HN4B102J







#### 提供価値

#### MOSFETのゲート制御に適した、バイポーラートランジスターです。

# 速いスイッチング時間

HN4B101J

 $t_f = 45 / 50 \text{ ns (Typ.) (PNP / NPN)}$ 

HN4B102J

 $t_f = 40 / 45 \text{ ns (Typ.) (PNP / NPN)}$ 

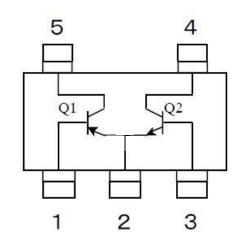
# **)** 高い直流電流増幅率 (h<sub>FE</sub>)

HN4B101J, HN4B102J

PNP:  $h_{FF} = 200 \sim 500$ 

NPN:  $h_{FF} = 200 \sim 500$ 

# ろ 低いコレクター・エミッター間飽和 電圧


HN4B101J

 $V_{CE(sat)} = -0.20 / 0.17 V (Max) (PNP / NPN)$ 

HN4B102J

 $V_{CE(sat)} = -0.20 / 0.14 V (Max) (PNP / NPN)$ 

#### HN4B101J / HN4B102J 内部接続図



| ラインアップ                        |                   |                   |  |  |  |  |
|-------------------------------|-------------------|-------------------|--|--|--|--|
| 品名                            | HN4B101J          | HN4B102J          |  |  |  |  |
| パッケージ                         | SMV               | SMV               |  |  |  |  |
| V <sub>CEO</sub> [V] @Q1 / Q2 | -30 / 30          | -30 / 30          |  |  |  |  |
| I <sub>C</sub> [A] @Q1 / Q2   | -1.0 / 1.2        | -1.8 / 2          |  |  |  |  |
| h <sub>FE</sub> (Min / Max)   | 200 / 500         | 200 / 500         |  |  |  |  |
| 極性                            | Q1: PNP + Q2: NPN | Q1: PNP + Q2: NPN |  |  |  |  |







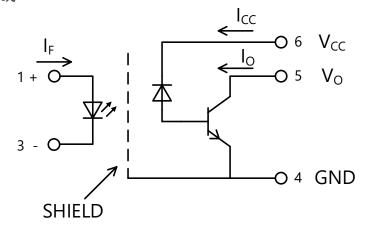
#### 提供価値

#### 高光出力の赤外発光ダイオードと高利得高速の受光ICチップを組み合わせたフォトカプラーです。

# アナログ出力

入力されたLED電流に応じ、出力電流はアナログ的に変化します。電源のフィードバック回路に適しています。

# コモンモード過渡耐性15 kV/μs (TLP2309)


フォトカプラーの両端に高いdV/dtが加わる用途の場合、高いCMTI (注)が要求されますが、入出力間にシールドを設けることで15 kV/µs以上のCMTIを実現しています。(TLP2309)

[注] Common Mode Transient Immunity

# 3 高速

伝搬時間は動作温度範囲で最大1 μs です。 当社のトランジスター出力フォトカプラーに比べて 設計が容易になります。(TLP2309)

#### 内部回路構成



#### ラインアップ

| 品名                                              | TLP2309 | TLP2719(LF4) |
|-------------------------------------------------|---------|--------------|
| パッケージ 5pin SO6                                  |         | SO6L(LF4)    |
| BV <sub>S</sub> [Vrms]                          | 3750    | 5000         |
| NRZ (Typ.) [Mbps]                               | 1       | 1            |
| CM <sub>H</sub> , CM <sub>L</sub> (Min) [kV/μs] | ±15     | ±10          |

# 小型面実装LDOレギュレーター

TCR15AG / TCR8BM / TCR5FM / TCR5RG / TCR3RM / TCR3U / TCR3LM / TCR3D / TCR3EM / TCR1HFシリーズ





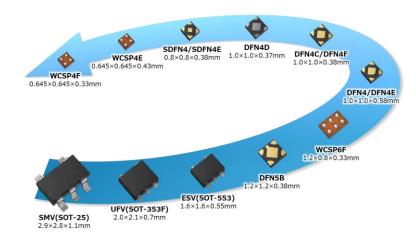


#### 提供価値

汎用タイプからWCSP (Wafer Level Chip Size Package) タイプまで幅広くラインアップしており、安定した電源供給を実現します。

## 低ドロップアウト電圧

当社が独自に開発したプロセスにより、ドロップアウト特性を改善しました。


#### 2 高PSRR 低出力雑音電圧

高いPSRR (Power Supply Rejection Ratio:電源電圧変動除去比)、低い出力雑音電圧 V<sub>NO</sub>を兼ね備えたシリーズを数多くラインアップしており、アナログ回路への安定電源に適しています。

# 3 低消費電流特性

CMOSプロセスを用いて、独自の回路技術により消費電流  $I_{B(ON)} = 0.34 \, \mu A$ を実現しました。 (TCR3Uシリーズ)

#### 豊富なパッケージラインアップ



#### ラインアップ

| 品名                             | TCR15AG<br>シリーズ | TCR8BM<br>シリーズ | TCR5FM<br>シリーズ                  | TCR5RG<br>シリーズ |                 | TCR3U<br>シリーズ | TCR3LM<br>シリーズ | TCR3D<br>シリーズ | TCR3EM<br>シリーズ | TCR1HF<br>シリーズ |
|--------------------------------|-----------------|----------------|---------------------------------|----------------|-----------------|---------------|----------------|---------------|----------------|----------------|
| 特長                             | 低ドロッ<br>高P      |                | 高PSRR<br>低 <i>ノ</i> イズ<br>低消費電流 |                | 低消費電流 スタンダードタイプ |               | 入力電圧<br>36 V   |               |                |                |
| I <sub>OUT</sub> (Max) [A]     | 1.5             | 0.8            | 0.5                             |                |                 | 0.3           |                |               | 0.15           |                |
| PSRR (Typ.) [dB]<br>@f = 1 kHz | 95              | 98             | 91                              | 100            | 100             | 70            | -              | 72            | 68             | 70             |
| I <sub>B</sub> (Typ.) [μΑ]     | 25              | 20             | 10                              | 7              | 7               | 0.34          | 1              | 86            | 35             | 170            |



#### 低消費電流オペアンプ / 低ノイズオペアンプ TC75S102F / TC75S67TU



高効率 低損失



#### 提供価値

低消費電力化に貢献する低消費電流タイプと、高性能センサーの性能を引き出す低ノイズタイプのオペアンプをライン アップしています。

# 低電圧動作

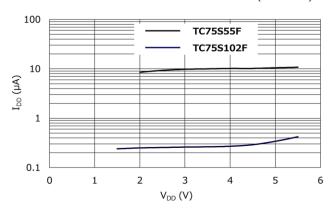
低電源電圧で動作する回路向けに、CMOSプ ロセスを用いた低電源電圧駆動のオペアンプを ラインアップしています。

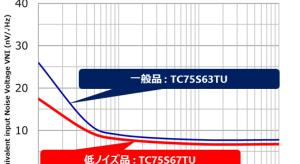
低消費電流 (TC75S102F)  $I_{DD} = 0.27 \, \mu A \, (Typ.)$ 

CMOSプロセスを用いて、低い消費電流を実現 しました。IoT機器の低消費電力化に貢献しま す。

10000

ニスト.フぃゴ


# 低ノイズ (TC75S67TU)


 $V_{NI} = 6.0 \text{ nV}/\sqrt{\text{Hz}}$  (Typ.) @f = 1 kHz

各種センサー[注]で検出された微小信号を、低 ノイズで増幅できるCMOSオペアンプです。 プロセスの最適化で入力換算雑音電圧を低減 しました。

[注] 各種センサー: 振動検出センサー、ショックセンサー、加速度センサー、圧力センサー、赤外線センサー、温度センサー,など

#### TC75S102F 消費電流特性(当社比)





Frequency f (Hz)

1000

100

10

TC75S67TU ノイズ特性 (当社比)

|                                                                                                          | 212132                                        |                                        |                                      |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------|--|--|
| 品名 パッケージ  V <sub>DD</sub> - V <sub>SS</sub> [V]  V <sub>IO</sub> (Max) [mV]  CMV <sub>IN</sub> (Max) [V] |                                               | TC75S102F                              | TC75S67TU                            |  |  |
|                                                                                                          |                                               | SMV                                    | UFV                                  |  |  |
|                                                                                                          |                                               | 1.5 ~ 5.5                              | 2.2 ~ 5.5                            |  |  |
|                                                                                                          |                                               | 1.3                                    | 3                                    |  |  |
|                                                                                                          |                                               | $V_{DD}$                               | 1.4 (@V <sub>DD</sub> = 2.5 V)       |  |  |
|                                                                                                          | I <sub>DD</sub> (Typ. / Max) [μA]             | 0.27 / 0.46 (@V <sub>DD</sub> = 1.5 V) | 430 / 700 (@V <sub>DD</sub> = 2.5 V) |  |  |
|                                                                                                          | $V_{NI}$ (Typ.) [nV/ $\sqrt{Hz}$ ] @f = 1 kHz | -                                      | 6                                    |  |  |
|                                                                                                          |                                               |                                        |                                      |  |  |

# **7** バイポーラートランジスター 2SA1313





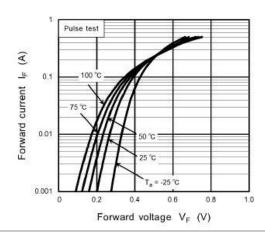


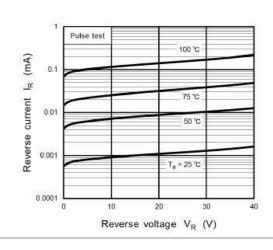
#### 提供価値

#### 豊富な製品ラインアップで、お客様のニーズに合った製品を提供します。

#### 高耐圧

V<sub>CEO</sub> を-50 V (最大) まで印加することができます。


# フコンプリメンタリー品


2SC3325 とコンプリメンタリーになります。

# 3 コレクター電流

I<sub>c</sub>を-500 mA (最大) まで流すことができます。

#### 2SA1313 特性図





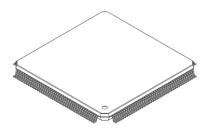
| ラインアップ               |         |  |  |  |
|----------------------|---------|--|--|--|
| 品名                   | 2SA1313 |  |  |  |
| パッケージ                | S-Mini  |  |  |  |
| V <sub>CEO</sub> [V] | -50     |  |  |  |
| I <sub>C</sub> [mA]  | -500    |  |  |  |
| P <sub>C</sub> [mW]  | 200     |  |  |  |
| 極性                   | PNP     |  |  |  |



#### 提供価値

ADコンバーターとタイマーを複数チャネル内蔵、豊富な通信インターフェースを搭載、センサーモニタリングを 低消費電力で実行します。

Arm® Cortex®-M4コア搭載


Arm Cortex-M4コア (最大200 MHz動作) を 搭載しています。センサーデータのリアルタイム処 理に適しています。また、多様な開発ツール、 パートナーをお選びいただくことが可能です。 システムコスト/開発負荷低減

ADコンバーターとタイマーを複数チャネル搭載、 システムの各所のモニタリングを効率よく実行しま す。また、M4Nグループは20製品のラインアップを 揃えることでセットに適した製品を提供します。

#### 豊富な通信インターフェースを 搭載

UART、FUART、TSPI、TSSI、I<sup>2</sup>C、CAN、USB、イーサネットコントローラー (ETHM) など 豊富な通信インターフェースを搭載し、クラウドと の通信手段を容易に構築できます。

#### TMPM4NRF\*\*FG



P-LQFP176-2020-0.40-002

#### TMPM4NQF\*\*FG



P-LOFP144-2020-0.50-002

#### TMPM4NNF\*\*FG



P-LQFP100-1414-0.50-002

#### ラインアップ

|            | TMPM4NRF20/15/10/D/FG                       | TMPM4NQF20/15/10/D/FG                       | TN 4 DN 4 4 N IN 15 20 (4 5 (4 0 /D /5 C    |
|------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| 品名         | TMPM4NRF20/15/10/D/XBG                      | TMPM4NQF20/15/10/D/XBG                      | TMPM4NNF20/15/10/D/FG                       |
| 動作周波数      |                                             | 200 MHz (Max)                               |                                             |
|            |                                             | , ,                                         |                                             |
| Flash ROM  | Code:                                       | 2048/1536/1024/512 KB + Data                | : 32 KB                                     |
| RAM        |                                             |                                             |                                             |
| Timer      |                                             |                                             |                                             |
| ADコンバーター   | 24ch                                        | 24ch (12bit)                                |                                             |
|            | UART: 6ch, FUART: 2ch,                      | UART: 5ch, FUART: 2ch,                      | UART: 3ch, FUART: 1ch,                      |
| 通信インターフェース | I <sup>2</sup> C: 5ch, TSPI: 9ch, TSSI: 2ch | I <sup>2</sup> C: 5ch, TSPI: 8ch, TSSI: 1ch | I <sup>2</sup> C: 3ch, TSPI: 5ch, TSSI: 1ch |
| 囲信1フターフェース | CANIC 2                                     | CAN: 2 units, USB: 1 unit,                  |                                             |
|            | CAN: 2 units, USB: 2                        | ETHM: 1 unit                                |                                             |
| 110. 1 5"  | P-LOFP176-2020-0.40-002                     | P-LOFP144-2020-0.50-002                     | D   OFD400 4444 0 F0 000                    |
| パッケージ      | P-VFBGA177-1313-0.80-001                    | P-VFBGA145-1212-0.80-001                    | P-LQFP100-1414-0.50-002                     |

製品にご興味をもたれた方、 ご意見・ご質問がございます方、 以下連絡先までお気軽にご連絡ください

連絡先: https://toshiba.semicon-storage.com/jp/contact.html



# ご利用規約

本規約は、お客様と東芝デバイス&ストレージ株式会社(以下「当社」といいます)との間で、当社半導体製品を搭載した機器を設計する際に参考となるドキュメント及びデータ(以下「本リファレンスデザイン」といいます)の使用に関する条件を定めるものです。お客様は本規約を遵守しなければなりません。

#### 第1条禁止事項

お客様の禁止事項は、以下の通りです。

- 1. 本リファレンスデザインは、機器設計の参考データとして使用されることを意図しています。信頼性検証など、それ以外の目的には使用しないでください。
- 2. 本リファレンスデザインを販売、譲渡、貸与等しないでください。
- 3. 本リファレンスデザインは、高低温・多湿・強電磁界などの対環境評価には使用できません。
- 4. 本リファレンスデザインを、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用しないでください。

#### 第2条 保証制限等

- 1. 本リファレンスデザインは、技術の進歩などにより予告ないに変更されることがあります。
- 2. 本リファレンスデザインは参考用のデータです。当社は、データ及び情報の正確性、完全性に関して一切の保証をいたしません。
- 3. 半導体素子は誤作動したり故障したりすることがあります。本リファレンスデザインを参考に機器設計を行う場合は、誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。また、使用されている半導体素子に関する最新の情報(半導体信頼性ハンドブック、仕様書、データシート、アプリケーションノートなど)をご確認の上、これに従ってください。
- 4. 本リファレンスデザインを参考に機器設計を行う場合は、システム全体で十分に評価し、お客様の責任において適用可否を判断して下さい。当社は、適用可否に対する責任は負いません。
- 5. 本リファレンスデザインは、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証又は実施権の許諾を行うものではありません。
- 6. 当社は、本リファレンスデザインに関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をせず、また当社は、本リファレンスデザインに関する一切の損害(間接損害、結果的損害、特別損害、付随的損害、逸失利益、機会損失、休業損害、データ喪失等を含むがこれに限らない。)につき一切の責任を負いません。

#### 第3条 契約期間

本リファレンスデザインをダウンロード又は使用することをもって、お客様は本規約に同意したものとみなされます。本規約は予告なしに変更される場合があります。当社は、理由の如何を問わずいつでも本規約を解除することができます。本規約が解除された場合は、お客様は本リファレンスデザインを破棄しなければなりません。さらに当社が要求した場合には、お客様は破棄したことを証する書面を当社に提出しなければなりません。

#### 第4条 輸出管理

お客様は本リファレンスデザインを、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用してはなりません。また、お客様は「外国為替及び外国貿易法」、「米国輸出管理規則」等、 適用ある輸出関連法令を遵守しなければなりません。

#### 第5条 準拠法

本規約の準拠法は日本法とします。

#### 第6条 管轄裁判所

本リファレンスデザインに関する全ての紛争については、別段の定めがない限り東京地方裁判所を第一審の専属管轄裁判所とします。

## 製品取り扱い上のお願い

東芝デバイス&ストレージ株式会社およびその子会社ならびに関係会社を以下「当社」といいます。 本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- ●当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- •本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器(ヘルスケア除く)、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社Webサイトのお問い合わせフォームからお問い合わせください。
- ◆本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- ◆本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- ●別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- ●本製品にはGaAs(ガリウムヒ素)が使われているものがあります。その粉末や蒸気等は人体に対し有害ですので、破壊、切断、粉砕や化学的な分解はしないでください。
- ●本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、 「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- ●本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を 十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

# **TOSHIBA**

- \* Arm、Cortexは、米国および/あるいはその他の国におけるArm Limited (またはその子会社) の登録商標です。
- \* TXZ+™は、東芝デバイス&ストレージ株式会社の商標です。
- \* その他の社名・商品名・サービス名などは、それぞれ各社が商標として使用している場合があります。