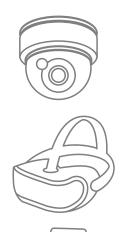
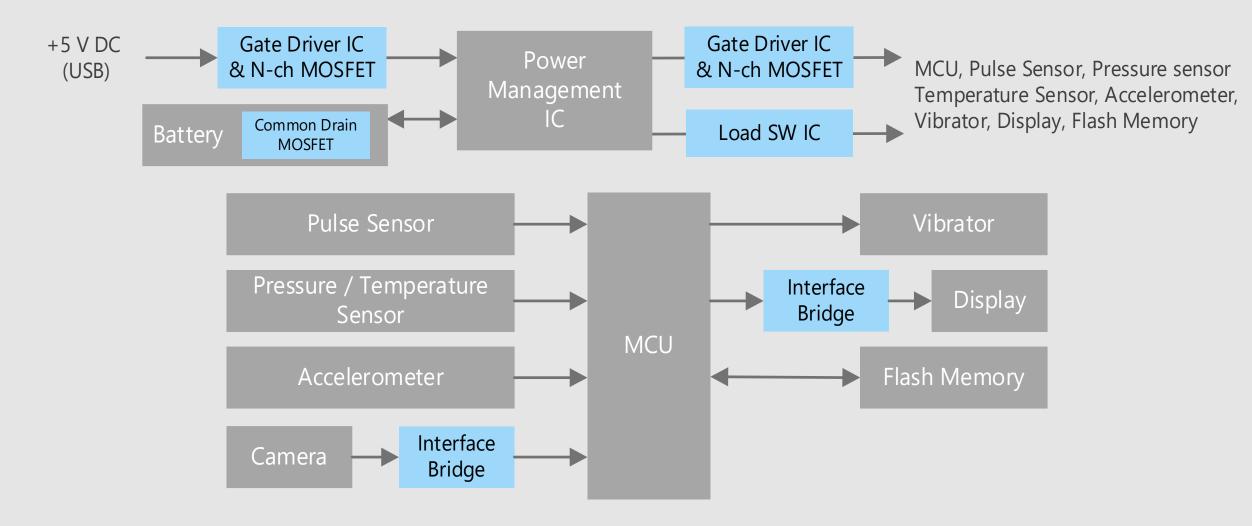
Smart Watch

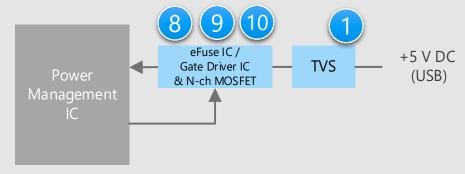
Solution Proposal by Toshiba





Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.

Block Diagram


Smart Watch Overall block diagram

Smart Watch Detail of power supply unit

Power supply circuit

USB type

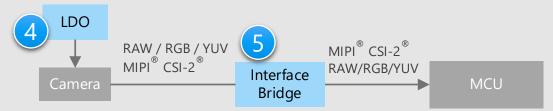
Power supply circuit Battery type SBD Common Drain MOSFET Battery SBD: Schottky Barrier Diode

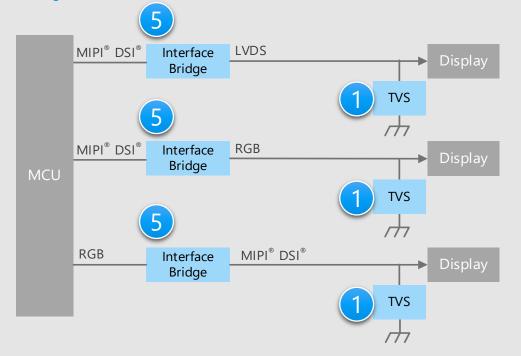
Criteria for device selection

- MOSFETs with low on-resistance are suitable for the control of USB and battery powered supply circuits.
- TVS diodes are suitable for ESD protection of power line.

Proposal from Toshiba

- Prevent circuit malfunctions by absorbing static electricity from external terminals
 TVS diode
- Realize the set with low power consumption by low on-resistance
 Small single MOSFET
- **High speed, low loss** Schottky barrier diode
- Built-in protection function against short circuit, over current, over voltage, etc.
 Electronic fuse (eFuse IC)
- Small package and built-in over voltage protection function
 N-ch MOSFET gate driver IC
- Low on-resistance and small package
 N-ch common drain MOSFET




^{*} Click on the blue circled numbers above to view detailed descriptions.

Smart Watch Detail of peripheral unit

Camera input circuit

Display output circuit

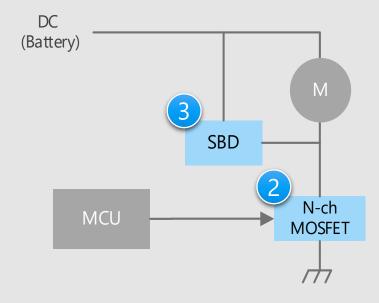
^{*} Click on the blue circled numbers above to view detailed descriptions.

Criteria for device selection

- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for sensor modules.
- By using interface bridge, display and camera components can be selected without any concern for interface standards.

Proposal from Toshiba

- Prevent circuit malfunctions by absorbing static electricity from external terminals
 TVS diode
- Supply the power with low noise
 Small surface mount LDO regulator
- Absorb differences in interfaces
 Interface bridge



Smart Watch Detail of motor control unit

Motor control for vibrators

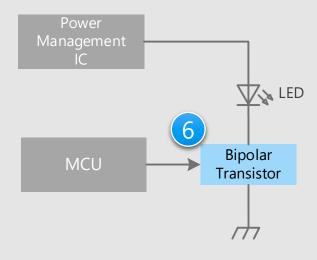
SBD: Schottky Barrier Diode

Criteria for device selection

- MOSFETs with low on-resistance are suitable for motor driving.
- By using a Schottky barrier diode with low V_F and low I_R, the power consumption of the set can be reduced.

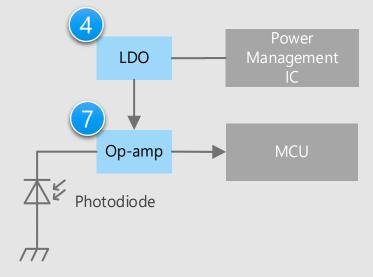
Proposal from Toshiba

- The set with low power dissipation can be realized by low on-resistance Small signal MOSFET
- High speed, low loss
 Schottky barrier diode


3

^{*} Click on the blue circled numbers above to view detailed descriptions.

Smart Watch Detail of pulse detection unit


Pulse detection circuit

Light emission side

Pulse detection circuit

Light detection side

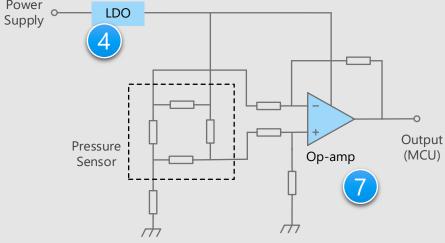
^{*} Click on the blue circled numbers above to view detailed descriptions.

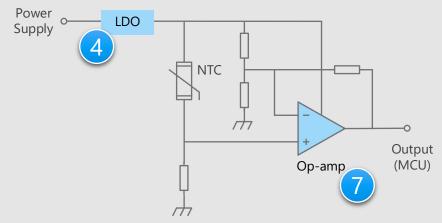
Criteria for device selection

- Transistors with small package and low collector-emitter saturation voltage are required.
- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for sensor modules.
- The operational amplifier should be low current consumption or low noise device.

Proposal from Toshiba

- Small package, low V_{CE(sat)}
 Bipolar transistor
- Supply the power with low noise Small surface mount LDO regulator
- Amplification of detected small signal with low noise
 - Low current consumption op-amp / Low noise op-amp





Smart Watch Detail of sensor units

Atmospheric pressure sensor circuit

Temperature sensor circuit

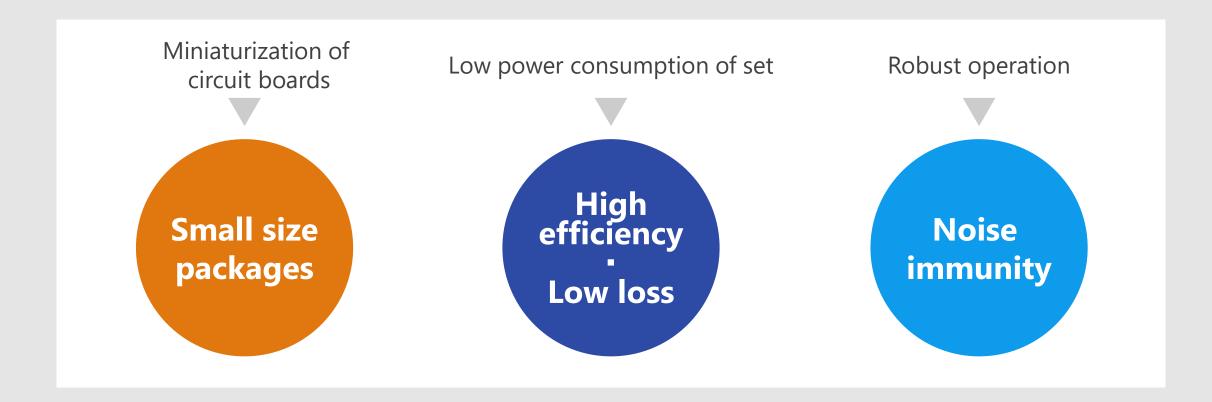
* Click on the blue circled numbers above to view detailed descriptions.

Criteria for device selection

- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for sensor modules.
- The operational amplifier should be low current consumption or low noise device.

Proposal from Toshiba

- Supply the power with low noise
 Small surface mount LDO regulator
- Amplification of detected small signal with low noise
 - Low current consumption op-amp / Low noise op-amp



Device solutions to address customer needs

As described above, in the design of a smart watch, "Miniaturization of circuit boards", "Low power consumption of set" and "Robust operation" are important factors. Toshiba's proposals are based on these three solution perspectives.

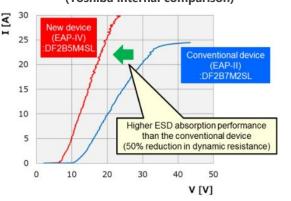
Device solutions to address customer needs

	Small size packages	High efficiency . Low loss	Noise immunity
1 TVS diode			
2 Small signal MOSFET			
3 Schottky barrier diode			
4 Small surface mount LDO regulato	r •		
5 Interface bridge			
6 Bipolar transistor			
Low current consumption op-amp Low noise op-amp	/		
8 Electronic fuse (eFuse IC)			
N-ch MOSFET gate driver IC			
10 N-ch common drain MOSFET			

This absorbs static electricity from external terminals, prevents circuit malfunction and protects devices.

High ESD pulse absorption performance

Improved ESD absorption compared to our conventional products. (50 % reduction in operating resistance) For some products, both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality.


2 Suppress ESD energy by low clamp voltage

Protect the connected circuits and devices using Toshiba own technology.

Suitable for high density mounting

A variety of small packages are available.

ESD Pulse Absorption Performance (Toshiba internal comparison)

Unidirectional

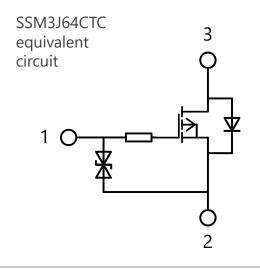
Suitable for paths such as logic signals. There are lineups of 1in1, 2in1, 4in1, 5in1, 7in1.

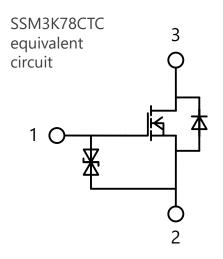
Bidirectional

Suitable for paths with both polar signals such as audio signals

Lineup						
Part number	DF2B6M4SL	DF2B6M4BSL	DF2B20M4SL	DF2B5BSL	DF2B5PCT	DF2B7PCT
Package		SI	CST2			
V _{ESD} [kV]	±20	±8	±15	±23	±30	±30
V _{RWM} (Max) [V]	5.5	5.5	18.5	3.3	3.6	5.5
C _t (Typ.) [pF]	0.2	0.12	0.2	11	41	45
R _{DYN} (Typ.) [Ω]	0.5	1.05	0.2	0.2	0.1	0.1
Purpose	Signal line	Signal line	Signal line Power line	Power line	Power line	Power line Audio line

(NOTE) This product is an ESD protection diode and cannot be used for purposes other than ESD protection.


Suitable for power management, contributes to miniaturization.


Low voltage operation

Operates down to $|V_{GS}| = 1.2 \text{ V}$

Low on-resistance

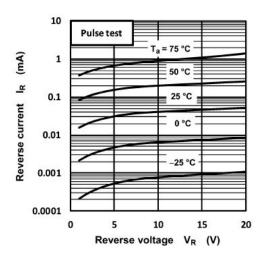
By reducing drain and source on-resistance, heat radiation and power dissipation is minimized.

Lineup							
Part number	SSM3J64CTC	SSM3K78CTC					
Package	CST3C	CST3C					
$R_{DS(ON)}$ (Typ.) [Ω] @ V_{GS} = 2.5 V	0.4	1.1					
I _D [A]	-1	0.25					
V _{DSS} [V]	-12	20					
V _{GSS} [V]	±10	±10					
Polarity	P-ch	N-ch					

Schottky barrier diode

Value provided

(mA)


Forward current

Fast, low loss, small package and suitable for many applications

Fast switching

Suitable for fast switching applications.

Small package

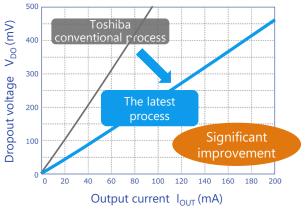
Sealed in a CST2 type package.

Lineup	
Part number	CTS05S30
Package	CST2
I _O [A]	0.5
V _R [V]	20
V _F (Typ.) [V] @I _F = 0.1 A	0.28
I _R (Max) [mA] @V _R = 10 V	0.15

Wide line up from general purpose type to small package type are provided. Contribute to realize a stable power supply not affected by fluctuation of battery.

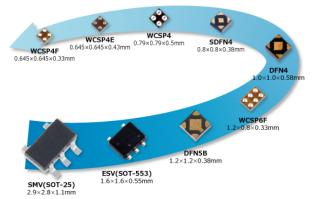
Low dropout voltage

The originally developed latest process significantly improved the dropout voltage characteristics.


High PSRR Low output noise voltage

Many product series that realize both high PSRR (Power Supply Rejection Ratio) and low output noise voltage characteristics are provided. They are suitable for stable power supply for analog circuit.

3 Low current consumption


 $0.34~\mu A$ of $I_{B(ON)}$ is realized by utilizing CMOS process and unique circuit technology. (TCR3U Series)

Low dropout voltage

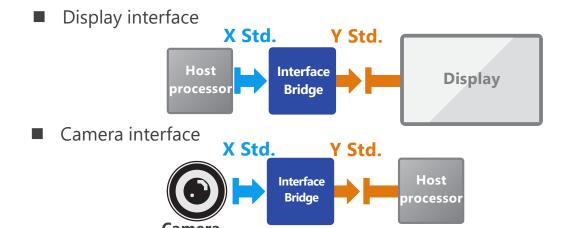
(Note) Toshiba internal comparison with TCR3U series.

Rich package lineup

Lineup									
Part number	TCR15AG Series	TCR13AG Series	TCR8BM Series	TCR5BM Series	TCR5RG Series	TCR3RM Series	TCR3U Series	TCR2L Series	TAR5 Series
Features	Low dropout voltage High PSRR			Low Low c	PSRR noise urrent mption		urrent mption	15 V Input voltage Bipolar type	
I _{OUT} (Max) [A]	1.5	1.5 1.3 0.8 0			.5	0.	.3		0.2
PSRR (Typ.) [dB] @f = 1 kHz	95	90	98	98	100	100	70	-	70
I _B (Typ.) [μΑ]	25	56	20	19	7	7	0.34	1	170

Eliminating the interface gap between host and display/camera allows more options of component selection.

Wider component selection


Conversion of the interface allows shared procurement with other products as well as adoption of less inexpensive parts.

Noise immunity

Converting parallel communication to serial improves noise tolerance and suppresses noise generation to the surroundings.

3 Less cabling

Converting from parallel communication to serial reduces total number of wires and the risks of wire breakage.

Lineup									
Part number	TC358774XBG	TC358767AXBG	TC358768AXBG	TC358746AXBG					
Package	VFBGA49	VFBGA81	VFBGA72	VFBGA72					
Input	MIPI [®] DSI [®] 1.01 4Lanes x 1ch	(1) MIPI® DSI® 1.01 (2) MIPI® DPI SM 2.0 (3) MIPI® DSI® 1.01	RGB	(1) MIPI® CSI-2® (2) Parallel 24bit					
LVDS Output Single Link (5 pairs/link)		(1)(2) VESA DisplayPort TM 1.1a (3) MIPI® DPI SM 2.0	MIPI [®] DSI [®] 1.02	(1) Parallel 24bit (2) MIPI® CSI-2®					

Suitable for low frequency switching and contributes to miniaturization

Many package lineups

A large number of packages, such as flat lead and leadless, are available, allowing you to choose products that suit your board.

Low collector-emitter saturation voltage

The saturation voltage between the collector and emitter is low and the power consumption is low.

Lineup		
Part number	2SC6026CT	2SA2154CT
Package	CST3	CST3
V _{CEO} [V]	50	-50
I _C [mA]	100	-100
V _{CE(sat)} (Max) [V]	0.25	-0.3
Polarity	NPN	PNP

Low current consumption op-amp / Low noise op-amp TC75S102F / TC75S67TU

Value provided

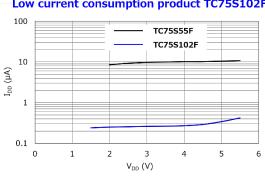
Low current consumption type and low noise type operational amplifiers maximize the performance of system.

Low voltage operation

We have a lineup of low power supply voltage-driven operational amplifiers using CMOS process for low power supply voltage-driven wearable equipment.

Low current consumption (TC75S102F) $I_{DD} = 0.27 \, [\mu A] \, (Typ.)$

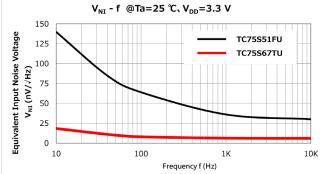
CMOS processes have been used to achieve lower current consumption. This contributes to lower power consumption and longer life of wearable equipment.


Low noise (TC75S67TU) $V_{NI} = 6.0 [nV/\sqrt{Hz}] (Typ.) @f = 1 kHz$

This CMOS operational amplifier can amplify minute signals detected by various sensors [Note] with low noises. By optimizing the process, the equivalent input noise voltage has been reduced.

TC75S102F

Current Consumption Characteristic (Toshiba internal comparison)


Low current consumption product TC75S102F

TC75S67TU

Noise Characteristic (Toshiba internal comparison)

Reduce 1/f noise (10 Hz) by 86 % from our normal products

[Note] Sensor types: vibration, shock, acceleration, pressure, infrared, temperature, etc.

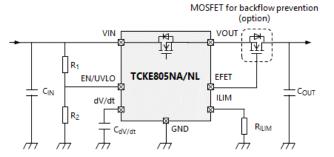
Lineup		
Part number	TC75S102F	TC75S67TU
Package	SMV 🙀	UFV 🔷
V _{DD} - V _{SS} [V]	1.5 to 5.5	2.2 to 5.5
V _{IO} (Max) [mV]	1.3	3
CMV _{IN} (Max) [V]	V_{DD}	1.4 (@V _{DD} = 2.5 V)
I _{DD} (Typ. / Max) [μA]	0.27 / 0.46 (@V _{DD} = 1.5 V)	430 / 700 (@V _{DD} = 2.5 V)
V_{NI} (Typ.) [nV/ \sqrt{Hz}] @f = 1 kHz	-	6

Electronic fuse (eFuse IC) can be used repeatedly to protect circuits from abnormal conditions such as overcurrent and overvoltage.

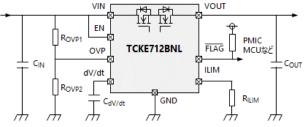
Can be used repeatedly

When overcurrent flows through the electronic fuse (eFuse IC), the internal detection circuit operates and switches off the internal MOSFET. It is not destroyed by a single overcurrent and can be used repeatedly.

IEC 62368-1 certified


Toshiba's eFuse ICs are certified to the international safety standard IEC 62368-1 (G9: Integrated circuit (IC) current limiters) and contribute to robust protection and simplification of circuit design.

3 Rich protection functions


TCKE8 Series: Short-circuit protection, overcurrent protection, overcurrent clamp function, overvoltage clamp function, thermal shut down, inrush current suppression, backflow prevention (optional), etc.

TCKE7 Series: Short-circuit protection, overcurrent protection, overvoltage protection, thermal shut down, FLAG signal output, backflow prevention (built-in), etc.

Reference circuit example of TCKE8 Series

Reference circuit example of TCKE7 Series

Lineup						
Part number	TCKE800NA/NL	TCKE712BNL				
Package	WSO 3.0 x 3.0 x	WSON10 3.0 x 3.0 x 0.75 mm				
V _{IN} [V]		4.4 to 18		4.4 to 13.2		
R _{ON} (Typ.) [mΩ]		28				
Return function	NL: Latch	Latch type (external signal control)				
V _{OVC} (Typ.) [V]						

It is N-ch MOSFET gate driver IC with OVP [Note 1] function. It contributes to reduction of power consumption and miniaturization of load switch circuit.

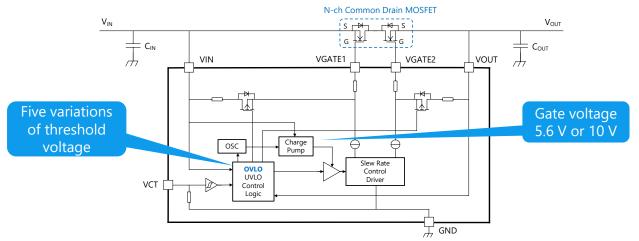
[Note 1] OVP: Over Voltage Protection

Three types of N-ch MOSFET can be driven

The following types of MOSFET can be driven: TCK40xG: Single high side connection Common source connection TCK42xG: Single high side connection Common drain connection

Wide operating voltage range and various OVLO [Note 2] threshold voltage

Operating voltage V_{opr} : 2.7 to 28 V Maximum input voltage: 40 V V_{IN_OVLO} [Note 3] lineups suitable for 5 to 24V power supply line.


[Note 2] OVLO: Over Voltage Lock Out [Note 3] V_{IN OVLO}: V_{IN} OVLO threshold

3 Small packages

It contributes to reduction of the mounting area and miniaturization of the circuit board:

WCSP6E: 1.2 x 0.8 mm, t: 0.55 mm WCSP6G: 1.2 x 0.8 mm, t: 0.35 mm

Circuit example of TCK42xG with N-ch common drain connection MOSFET

Lineup					
Part number	V _{IN_OVLO} Min / Max [V]	V _{GS} Typ. / Max [V]	N-ch MOSFET type can be driven	Packag	ge
TCK401G	Over 28	Max 10	Single high side	WCSP6E	
TCK402G	Over 20	(V _{IN} ≥ 12 V)	Common Source	WC3P6E	
TCK420G	26.50 / 28.50	10 / 11			
TCK421G	22.34 / 24.05	10 / 11 (V _{IN} ≥ 5 V)			
TCK422G	13.61 / 14.91	(VIN 2 3 V)	Single high side	WCCDCC	
TCK423G	13.61 / 14.91		Common Drain	WCSP6G	
TCK424G	10.35 / 11.47	5.6 / 6.3			
TCK425G	5.76 / 6.87				

This is low on-resistance MOSFET with small and thin package. It contributes to suppressing heat generation during charging and discharging, as well as to reducing the size of set.

Low on-resistance

Low on-resistance is achieved by applying a low resistance diffusion process.

This contributes to suppression of heat generation.

Small and thin package

While in a dual configuration, it is a small and thin chipLGA package products.

This contributes to miniaturization of set.

Low gate-source leakage current

Low gate-source leakage current characteristics enable low standby power and contribute to long term operation of battery used sets.

Examples of common drain MOSFET application

Power multiplexer Li-ion battery protection circuit SSM10N961L Gate Driver TCK42xG VINB VINB Gate Driver Drain MOSFET Battery Batte

Lineup				
Part number	SSM14N956L	SSM10N954L	SSM6N951L	SSM10N961L
Package	inn			
	TCSPED-302701	TCSPAC-153001	TCSP6A-172101	TCSPAG-341501
Source-source voltage V _{SSS} [V]		12		30
Gate-source voltage V _{GSS} [V]		±8		±20
Source current (DC) I _S [A]	20.0	13.5	8.0	14.0
$R_{SS(ON)}$ (Typ.) [m Ω] @ V_{GS} = 3.8 V	1.1	2.2	4.6	-
$R_{SS(ON)}$ (Typ.) [m Ω] @ V_{GS} = 10 V	-	-	-	9.9

If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html

Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and Customer who downloads or uses this Reference Design. Customer shall comply with this terms of use. This Reference Design means all documents and data in order to design electronics applications on which our semiconductor device is embedded.

Section 1. Restrictions on usage

- 1. This Reference Design is provided solely as reference data for designing electronics applications. Customer shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
- 2. Customer shall not use this Reference Design for sale, lease or other transfer.
- 3. Customer shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
- 4. This Reference Design shall not be used for or incorporated into any product or system whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

Section 2. Limitations

- 1. We reserve the right to make changes to this Reference Design without notice.
- 2. This Reference Design should be treated as a reference only. WE ARE NOT RESPONSIBLE FOR ANY INCORRECT OR INCOMPLETE DATA AND INFORMATION.
- 3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, Customer is responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customer must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
- 4. Designing electronics applications by referring to this Reference Design, Customer must evaluate the whole system sufficiently. Customer is solely responsible for applying this Reference Design to Customer's own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMER'S PRODUCT DESIGN OR APPLICATIONS.
- 5. WE SHALL NOT BE RESPONSIBLE FOR ANY INFRINGEMENT OF PATENTS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM THE USE OF THIS REFERENCE DESIGN. NO LICENSE TO ANY INTELLECTUAL PROPERTY RIGHT IS GRANTED BY THIS TERMS OF USE, WHETHER EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE.
- 6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF FUNCTION AND WORKING, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

Section 3. Terms and Termination

It is assumed that Customer agrees to any and all this terms of use if Customer downloads or uses this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and without any cause. Upon termination of this terms of use, Customer shall eliminate this Reference Design. Furthermore, upon our request, Customer shall submit to us a written confirmation to prove elimination of this Reference Design.

Section 4. Export Control

Customer shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Act and the U.S. Export Administration Regulations. Export and re-export of this Reference Design is strictly prohibited except in compliance with all applicable export laws and regulations.

Section 5. Governing Laws

This terms of use shall be governed and construed by laws of Japan, without reference to conflict of law principle.

Section 6. Jurisdiction

Unless otherwise specified, Tokyo District Court in Tokyo, Japan shall be exclusively the court of first jurisdiction for all disputes under this terms of use.

RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. **TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.**
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. **TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.**

TOSHIBA

- * MIPI®, CSI-2® and DSI® are registered service marks of MIPI Alliance, Inc. DPISM is service mark of MIPI Alliance, Inc.
- * DisplayPortTM and the DisplayPortTM logo are trademarks owned by the Video Electronics Standards Association (VESA®) in the United States and other countries.
- * All other company names, product names, and service names may be trademarks of their respective companies.