Toshiba BiCD Process Integrated Circuit Silicon Monolithic

TB67S105FTG

8bit Serial controlled bipolar stepping motor driver

1. Outline

The TB67S105FTG is a two phase bipolar stepping motor driver using a PWM chopper, controlled by 8-bit serial data. Fabricated by the BiCD process, the TB67S105FTG is rated at 50 V/3.0 A. The internal voltage regulator allows to control the device

with a single VM power supply.

Weight: 0.12 g (typ.)

2. Features

- BiCD process integrated monolithic IC.
- Capable of controlling one bipolar stepping motor.
- Low on-resistance MOSFET output stage.
- High voltage and current (for specification, please refer to the absolute maximum ratings and operation ranges).
- Built-in serial-parallel convert circuit (8bit shift register)
- 3-line (Data, Clock, Latch) serial output function for cascade connection
- PWM controlled constant-current drive.
- Allows full and half step operation
- 4 bit (16 steps) adjustable torque function (TRQ1, TRQ2, TRQ3, TRQ4).
- Built-in error detection circuits (Thermal shutdown (TSD), over current shutdown (ISD), and power on reset(POR)).
- Built-in VCC regulator for internal use.
- Chopping frequency of a motor can be customized by external resistor and capacitor.
- Package type: P-WQFN48-0707-0.50-003

Note: Please be careful about thermal conditions during use.

3. Pin assignment

Figure3 Pin assignment

Note: Please solder the four corner pins of the QFN package and the exposed pad to the GND area of the PCB.

4. Pin explanations

Table4 Pin explanations

Pin No.1 to	o 28	
Pin No.	Pin Name	Function
1	NC	Non-connection pin
2	SCLR-	Serial register clear pin (low active)
3	G-	Serial data select pin (low active)
4	STANDBY	Standby pin
5	GND	Ground pin
6	NC	Non-connection pin
7	RS_A(Note)	Motor Ach current sense pin
8	RS_A(Note)	Motor Ach current sense pin
9	NC	Non-connection pin
10	OUT_A+(Note)	Motor Ach (+) pin
11	OUT_A+(Note)	Motor Ach (+) pin
12	NC	Non-connection pin
13	NC	Non-connection pin
14	NC	Non-connection pin
15	GND	Ground pin
16	OUT_A-(Note)	Motor Ach (-) pin
17	OUT_A-(Note)	Motor Ach (-) pin
18	GND	Ground pin
19	GND	Ground pin
20	OUT_B-(Note)	Motor Bch (-) pin
21	OUT_B-(Note)	Motor Bch (-) pin
22	GND	Ground pin
23	NC	Non-connection pin
24	NC	Non-connection pin
25	NC	Non-connection pin
26	OUT_B+(Note)	Motor Bch (+) pin
27	OUT_B+(Note)	Motor Bch (+) pin
28	NC	Non-connection pin

Note:Please do not run patterns under NC pins. Please connect the pins with the same pin name.

Pin No.29 to 48

Pin No.	Pin Name	Function
29	RS_B(Note)	Motor Bch current sense pin
30	RS_B(Note)	Motor Bch current sense pin
31	NC	Non-connection pin
32	VM	Motor power supply pin
33	NC	Non-connection pin
34	VCC	Internal VCC regulator monitor pin
35	L_OUT	Serial 'Latch' output pin
36	NC	Non-connection pin
37	NC	Non-connection pin
38	C_OUT	Serial 'Clock' output pin
39	D_OUT	Shift register data output pin
40	GND	Ground pin
41	VREF_B	Motor Bch output current set pin
42	VREF_A	Motor Ach output current set pin
43	OSCM	Oscillating circuit frequency for PWM chopping set pin
44	NC	Non-connection pin
45	SI	Serial 'Data' input pin
46	SCK	Serial 'Clock' input pin
47	RCK	Serial 'Latch' input pin
48	NC	Non-connection pin

Note:Please do not run patterns under NC pins. Please connect the pins with the same pin name.

5. Block diagram

Figure5 Block diagram

- Note: Functional blocks/circuits/constants in the block diagram may be omitted or simplified for explanatory purposes.
- Note: All the grounding wires of the TB67S105FTG must run on the solder mask on the PCB, and be externally connected at a single point. Also, the grounding method should be considered for efficient heat dissipation.

Careful attention should be paid to the layout of the output, VM and GND traces, to avoid short circuits across output pins or to the power supply or ground. If such a short circuit occurs, the device may be permanently damaged.

Also, the utmost care should be taken for pattern designing and implementation of the device since it has power supply pins (VM, RS_x+, RS_x-, OUT_x+, OUT_x-, GND (x=A or B)) through which a particularly large current may run. If these pins are wired incorrectly, an operation error may occur or the device may be destroyed.

The logic input pins must also be wired correctly. Otherwise, the device may be damaged owing to a current running through the IC that is larger than the specified current.

6. Output current feedback circuit, current setting circuit

Note: Logic pins are either pulled up or pulled down internally by 100 k Ω resistor. Please refer to the equivalent circuit.)

Figure6 Output control circuit current value feedback circuit, current value setting circuit

Note: Functional blocks/circuits/constants in the block diagram may be omitted or simplified for explanatory purposes.

6

7. INPUT/OUTPUT equivalent circuit

Table7 INPUT/OUTPUT equivalent circuit

7

© 2012-2024 Toshiba Electronic Devices & Storage Corporation

Pin Name	Input/output equivalent circuit
OUT_A+ OUT_A- OUT_B+ OUT_B- RS_A RS_B	OUT_A+ OUT_B+ OUT_B+ IM

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

8. Control mode/Function explanation

Figure8 Serial control interface (8 bit shift register+8bit storage register)

Note: The block diagram and equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

If the logic signal is not asserted, the initial status of the logic pins will be as shown below.

SCK: Low SI: Low SCLR-: Low (shift register and storage register are at the initial status.) RCK: Low G-: High (PHASE_A, ENABLE_A, PHASE_B, ENABLE_B, TRQ1, TRQ2, TRQ3, TRQ4=Disable) STANDBY: Low (Standby mode)

Table8 Truth table

		Input			Function					
SI	SCK	SCLR-	RCK	G-	Function					
х	Х	х	Х	Н	PHASE_A, ENABLE_A, PHASE_B, ENABLE_B, TRQ1, TRQ2, TRQ3, TRQ4=Disable					
х	Х	х	Х	L	PHASE_A, ENABLE_A, PHASE_B, ENABLE_B, TRQ1 TRQ2, TRQ3, TRQ4=Enable					
Х	Х	L	Х	Х	Shift register and storage register are initialized					
L	Î	Н	Х	Х	The first data of the shift register is L, and the other register will be stored with the data before.					
н	↑	Н	Х	Х	The first data of the shift register is H, and the other register will be stored with the data before.					
х	\downarrow	Н	х	Х	The shift register data will maintain its status. The data after the shift register(Qh) will be output from D_OUT pin.					
Х	Х	Н	↑	Х	Shift register data will be stored to the storage register.					
Х	Х	Н	\rightarrow	Х	(The storage register data will maintain its status.)					

X: Don't care

Note: To send the logic output data correctly to the next IC, please make sure to end the SCK data transfer with a Low signal.

8.1. Function explanation

The motor current is defined as plus when the current flows from OUT_X+ to OUT_X-, and defined minus when the current flows from OUT_X- to OUT_X+.

Signal	Н	L	
ENABLE_X	OUTPUT: ON	OUTPUT: OFF	When ENABLE_X is set to L, no matter what the PHASE status are, the corresponding output stage will be set OFF(Hi-z).
	OUT_X+: H	OUT_X+: L	When set to H, the current will flow from OUT_X+ to OUT_X-
PHASE_X	OUT_X-: L	OUT_X-: H	at charge status.
STANDBY	Motor operational	Standby mode	When STANDBY is set to L, the internal OSC circuit as well as output stage is set OFF; therefore the motor will not operate.

(X=A or B)

8.2. Internal signal and current ratio

Table8.2.1 Full step

	Ach		Bch			
Internal signal		Output	Internal signal		Output	
PHASE_A	ENABLE_A	IOUT_A	PHASE_B	ENABLE_B	IOUT_B	
Н	Н	+100 %	Н	Н	+100 %	
L	Н	-100 %	Н	Н	+100 %	
L	Н	-100 %	L	Н	-100 %	
Н	Н	+100 %	L	Н	-100 %	

	Ach			Bch	
Interna	Internal signal		Interna	l signal	Output
PHASE_A	ENABLE_A	IOUT_A	PHASE_B	ENABLE_B	IOUT_B
Н	Н	+100 %	Н	Н	+100 %
Х	L	0 %	Н	Н	+100 %
L	Н	-100 %	Н	Н	+100 %
L	Н	-100 %	Х	L	0 %
L	Н	-100 %	L	Н	-100 %
Х	L	0 %	L	Н	-100 %
Н	Н	+100 %	Ĺ	Н	-100 %
Н	Н	+100 %	Х	L	0 %

Table8.2.2 Half step

X: Don't care

Table8.2.3 TRQ function: Current Ratio

TRQ1	TRQ2	TRQ3	TRQ4	Current Ratio(%)
L	L	L	L	0
L	L	L	Н	5
L	L	Н	L	10
L	L	Н	Н	15
L	Н	L	L	25
L	Н	L	Н	29
L	Н	Н	L	38
L	Н	Н	Н	43
Н	L	L	L	52
Н	L	L	Н	60
Н	L	Н	L	67
Н	L	Н	Н	74
Н	Н	L	L	80
Н	Н	L	Н	86
Н	Н	Н	L	94
Н	Н	Н	Н	100

9. Absolute Maximum Ratings (T_a = 25 °C)

Table9 Absolute Maximum Ratings

Characteristics		Symbol	Rating	Unit	Note
Motor power supply		V _M	50	V	-
Ν	Aotor output voltage	V _{OUT}	50	V	-
1	Notor output current	lout	3	А	Note 1
l	nternal VCC voltage	Vcc	6	V	Note 2
	Logic input voltage	VIH	6	V	-
		I _{ОН}	-7	mA	-
	_ogic output current	I _{OL}	7	mA	-
	VREF input voltage	V _{REF}	5	V	-
Power	Device alone	П	1.3	W	Note 3
dissipation	When mounted on a PCB	PD	4.16	W	Note 4
Operating temperature		T _{opr}	-20 to 85	С°	-
Storage temperature		T _{stg}	-55 to 150	С°	-
J	unction temperature	Tj	150	°C	-

Note 1: Usually the maximum current value should be controlled below 80 % or less of the absolute maximum ratings for a standard based on thermal rating. The maximum output current may be further limited due to thermal considerations, depending on ambient temperature and board conditions.

- Note 2: VCC is an internal voltage regulator and regulates 4.75 V≤VCC≤5.25 V in a normal condition. The above rating shows the pin tolerance.
- Note 3: Device alone. (Ta =25 °C)

If the ambient temperature is above 25 °C, the power dissipation must be de-rated by 10.4 mW/°C.

Note 4: When mounted on a specially designed FR-4 PCB (4-layer, 100 mm × 200 mm × 1.6 mm, Ta =25 °C)

If the ambient temperature is above 25 °C, the power dissipation must be de-rated by 33.3 mW/°C.

T_a: Ambient temperature

T_{opr}: Ambient temperature while the device is active

T_j: Junction temperature while the device is active. The maximum junction temperature is limited by the thermal shutdown(TSD) circuitry. It is advisable to keep the maximum current below a certain level so that the maximum junction temperature, T_{j(max)}, will not exceed 120 °C.

Caution) Absolute maximum ratings

The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings. Exceeding the rating(s) may cause device breakdown, damage or deterioration, and may result in injury by explosion or combustion. The value of even one parameter of the absolute maximum ratings should not be exceeded under any circumstances. The device does not have overvoltage detection circuit. Therefore, the device is damaged if a voltage exceeding its rated maximum is applied. All voltage ratings, including supply voltages, must always be followed. The other notes and considerations described later should also be referred to.

(For reference) PD-Ta graph

- (1) Rth(j-a) Device alone (96 °C /W)
- (2) When mounted on a specially designed FR-4 PCB (100 mm \times 200 mm \times 1.6 mm: 30 °C /W: reference value)

10. Operating Range (T_a=0 to 85 °C)

Characteristics	Symbol	Min	Тур.	Max	Unit	Note
Motor power supply	V _M	10	24	40	V	-
Motor output current	I _{OUT}	-	1.0	2.4	А	Note
	V _{IN(H)}	3.0	-	5.5	V	Logic H level
Logic input voltage	V _{IN(L)}	0	-	2.0	V	Logic L level
Chopping frequency set	f _{chop(range)}	40	100	150	kHz	-
range						
VREF input voltage	V_{REF}	GND	3.0	3.6	V	-

Figure10 Operating Range

Note: Maximum current for actual usage may be limited by the operating circumstances such as operating conditions (exciting mode, operating time, etc), ambient temperature, and heat conditions (board condition and so on).

11. Electrical Specifications1 ($T_a = 25 \text{ °C}$, $V_M = 24 \text{ V}$, unless otherwise specified)

Characterist	tics	Symbol	Test conditions	Min	Тур.	Max	Unit
Logic input	Logic input HIGH voltage LOW			3.0	-	5.5	V
voltage			Logic input pin (Note1)	0	-	2.0	V
Logic input hyste	eresis	V _{IN(HYS)}		0.3	-	0.5	V
Logic input	HIGH	I _{IN(H)}	Logic input voltage:3.3 V	-	33	50	μA
current	LOW	I _{IN(L)}	Logic input voltage:0 V	-	-	1	μA
Logic output pin	HIGH	V _{OH(LO)}	I _{OH(LO)} =-3 mA, VCC based	-0.41	-0.34	-0.27	V
voltage	LOW	V _{OL(LO)}	I _{OL(LO)} =3 mA, GND based	0.20	0.25	0.30	V
		I _{M1}	Output pins=open, STANDBY=L	-	2	3.5	mA
Power consum	Power consumption		Output pins=open, STANDBY=H, ENABLE=L	-	3.5	5.5	mA
			Output pins=open, (Full step)	-	5.5	7	mA
Output leakage	High side	I _{ОН}	V _M =RS=50 V, V _{OUT} =0 V	-	-	1	μA
current	Low side	I _{OL}	V _M =RS=V _{OUT} =50 V	1	-	-	μA
	Motor current channel differential		Current differential between Ach and Bch	-5	0	5	%
Motor current setting accuracy		ΔI _{OUT2}	I _{OUT} =1 A (Note2)	-5	0	5	%
RS pin curre	nt	I _{RS}	V _M =RS=24 V	0	-	10	μA
Output MOSF On resistand (High+Low sid	e	$R_{ds(on)}$	I _{OUT} =2.4 A, T _j =25 °C, Forward direction, (High side + Low side)	-	0.6	0.8	Ω

Table11 Electrical Specifications1

- Note1: V_{IN (H)} is defined as the V_{IN} voltage that causes the outputs (OUT_A, OUT_B) to change when a pin under test is gradually raised from 0 V. V_{IN (L)} is defined as the V_{IN} voltage that causes the outputs (OUT_A, OUT_B) to change when the pin is then gradually lowered. The difference between V_{IN (H)} and V_{IN (L)} is defined as the V_{IN (HYS)}.
- Note2: When using the internal VCC regulator and for VREF input voltage with a resistance divider; taking VCC accuracy and VREF ratio into consideration, the motor current setting accuracy specification will be ±8 %.
- Note: When the logic signal is applied to the device whilst the VM power supply is not asserted; the device is designed not to function, but for safe usage, please apply the logic signal after the VM power supply is asserted and the VM voltage reaches the proper operating range.

12. Electrical Specifications2 (T₂=25 °C, V_M=24 V, unless otherwise specified)

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
VREF input voltage	V _{REF}	V _M =24 V, V _{CC} =5 V	GND	3.0	3.6	V
VREF input current	I _{REF}	V _{REF} =3 V	-	0	1	μA
VCC pin voltage	Vcc	I _{cc} =5 mA	4.75	5	5.25	V
VCC pin current	Icc	$V_{CC}=5$ V	-	2.5	5	mA
VREF ratio	V _{REF(gain)}	V _{REF} =2 V	1/5.2	1/5	1/4.8	-
Thermal shutdown threshold	T _{SD}	Note 1	140	150	170	°C
VM POR threshold	V _{MR}	-	7	8	9	V
Over-current detection threshold	I _{SD}	Note 2	3.6	4.6	5.6	А

Table12 Electrical Specifications2

Note 1: About Thermal shutdown (TSD)

When the junction temperature of the device reaches the TSD threshold, the TSD circuit is triggered; the internal reset circuit then turns off the output transistors. Noise rejection blanking time is built-in to avoid misdetection.

Once the TSD circuit is triggered; the detect latch signal can be cleared by reasserting the VM power source, or setting the device to standby mode. The TSD circuit is a backup function to detect a thermal error, therefore is not recommended to be used aggressively.

Note 2: About Over-current detection (ISD)

When the output current reaches the threshold, the ISD circuit is triggered; the internal reset circuit then turns off the output transistors. Once the ISD circuit is triggered, the detect latch signal can be cleared by reasserting the VM power source, or setting the device to standby mode. For fail-safe, please insert a fuse to avoid secondary trouble.

12.1. Back-EMF

While the motor is rotating, there is a timing at which power is fed back to the power supply. At that timing, the motor current recirculates back to the power supply due to the effect of the motor back-EMF.

If the power supply does not have enough sink capability, the power supply and output pins of the device might rise above the rated voltages. The magnitude of the motor back-EMF varies with usage conditions and motor characteristics. It must be fully verified that there is no risk that the device or other components will be damaged or fail due to the motor back-EMF.

12.2. Cautions on Overcurrent Shutdown (ISD) and Thermal Shutdown (TSD)

The ISD and TSD circuits are only intended to provide temporary protection against irregular conditions such as an output short-circuit; they do not necessarily guarantee the complete IC safety. If the device is used beyond the specified operating ranges, these circuits may not operate properly: then the device may be damaged due to an output short-circuit.

The ISD circuit is only intended to provide a temporary protection against an output short-circuit. If such condition persists for a long time, the device may be damaged due to overstress. Overcurrent conditions must be removed immediately by external hardware.

12.3. IC Mounting

Do not insert devices incorrectly or in the wrong orientation. Otherwise, it may cause breakdown, damage and/or deterioration of the device.

13. Electrical Specification(T_a=25 °C, V_M=24 V, 6.8 mH/5.7 Ω unless otherwise specified)

Characteristics	Symbol	Test conditions	Min	Тур.	Max	Unit
Minimum pulse width	t _{w(H)}	f _{oscм} =1600 kHz	100	-	-	ns
(SCK,ŘCK,SI)	t _{w(L)}	f _{oscм} =1600 kHz	100	-	-	ns
	t _{set1}	SCLR-→SCK	50	-	-	ns
Minimum setup time	t _{set2}	SI→SCK	50	-	-	ns
	t _{set3}	SCK→RCK	50	-	-	ns
Minimum clock signal cycle(SCK,RCK)	t _{cyc}	f _{OSCM} =1600 kHz	200	-	-	ns
Minimum hold time	t _{hold1}	SCK→SI	50	-	-	ns
	t _{hold2}	SCLR-→Data	50	-	-	ns
Output transistor	t _r	Motor output	70	120	170	ns
switching time	t _f	Motor output	100	150	200	ns
Analog noise blanking time	At _{BLK}	At _{BLK} V _M =24 V, I _{OUT} =1 A Analog t _{BLK}		400	550	ns
OSCM frequency	foscm	C_{OSC} =270 pF, R_{OSC} =3.6 k Ω	1360	1600	1840	kHz
Chopping frequency	uency f _{chop} Output:Activ		-	100	-	kHz

Table13 AC Electrical Specification

Figure13 AC Electrical Specification Timing chart

Application Notes

14. Mixed Decay Mode waveform and settings

During constant current control, the rate of the Mixed decay mode which determines the current ripple is fixed to 37.5 %.

Figure14 Mixed Decay Mode waveform and settings

14.1. Mixed Decay Mode waveform (Current waveform)

14.2. Mixed (Slow + Fast) Decay Mode current waveform

Figure 14.2.2 When the set current value is in the decreasing direction

Note: Timing charts may be simplified for explanatory purpose.

Note: These figures are intended for illustrative purposes only. If designed more realistically, they would show transient response curves.

The Charge period starts as the internal oscillator clock starts counting. When the output current reaches the predefined current level, the internal RS comparator detects the predefined current level (NF); as a result, the IC enters Slow-Decay mode.

The device transits from Slow-Decay mode to Fast-Decay mode at the point 37.5% of a PWM frequency (one chopping frequency) remains in a whole PWM frequency period (on the rising edge of the 11th clock of the OSCM clock).

When the OSCM pin clock counter clocks 16 times, the Fast-Decay mode ends; and at the same time, the counter is reset, which brings the device into Charge mode again.

15. PHASE signal and internal OSC - output current waveform (Full step mode)

Note: Timing charts may be simplified for explanatory purpose.

Figure15 PHASE signal and internal CR CLK and output current waveforms

16. Motor output function

Figure16 Motor output MOSFET operation mode

Note: The device has a dead time to avoid shoot-through current during the mode changes.

16.1. Motor output function

Mode	U1	U2	L1	L2
CHARGE	ON	OFF	OFF	ON
SLOW	OFF	OFF	ON	ON
FAST	OFF	ON	ON	OFF

Table16.1 At positive current

Note: The table above is an example when the current flow in the direction shown in the figure above. The table below shows when it is in reverse.

Table16.2 At negative current

Mode	U1	U2	L1	L2
CHARGE	OFF	ON	ON	OFF
SLOW	OFF	OFF	ON	ON
FAST	ON	OFF	OFF	ON

This device controls each mode automatically to achieve the constant current drive. The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

17. Current threshold calculation

The peak current (current threshold) is set by current sense resistor (R_S) and reference voltage (V_{REF}).

 $I_{OUT(max)} = V_{REF(gain)} \quad x \qquad \qquad \frac{V_{REF}(V)}{R_{S}(\Omega)}$

 $V_{\text{REF}(\text{gain})}$: V_{REFgain} is rated at 1 / 5.0 (typ.).

Example) When current ratio is 100 %,

When V_{REF} = 3.0 V, Torque = 100 %, R_S = 0.51 Ω is applied

the current threshold (peak current) is calcculated as below;

 I_{OUT} = 3.0 V / 5.0 / 0.51 Ω= 1.18 A

18.OSCM frequency calculation

The approximation of the OSCM frequency (f_{OSCM}) and chopping frequency (f_{chop}) can be calculated by below.

 $f_{OSCM}{=}1/[0.60x\{Cx(R_1{+}500)\}]$ C,R1: OSCM resistor and capacitor value (e.q. C=270 pF , R1=3.6 k\Omega)

 $f_{chop} = f_{OSCM} / 16$

Increasing the chopping frequency will decrease the current ripple, which will lead to a better waveform quality. But it will also increase the gate loss, leading to an increase in heat generation.

Decreasing the chopping frequency will most likely lower the heat generation, but will also lead to an increase in the current ripple.

Therefore, as a reference the chopping frequency should be set to 70 kHz first, then be adjusted between the range of 50 kHz to 100 kHz, depending on each customer's usage conditions.

19. Power consumption

The power consumed within the device is mainly separated into two groups; the output power stage and the internal logic.

19.1. Motor output power consumption ($R_{ds(on)}$ = 0.6 Ω)

The power consumption of the output stage is mainly due to the H-Bridges.

The power consumption within the two H-Bridges can be calculated as below.

 $P_{(out)} = 2 (H-Bridge) \times I_{OUT} (A) \times V_{DS} (V) = 2 (H-Bridge) \times I_{OUT} (A)^2 \times R_{ds(on)} (\Omega).....(1)$

Controlling the motor in full step mode ideally will make the motor current to a trapezoidal waveform. In this case, the average power consumption can be calculated as shown below.

Example: $R_{ds(on)} = 0.6 \Omega$, $I_{OUT (peak: Max)} = 1.0 A$, $V_M = 24 V$ $P_{(out)} = 2 (H-Bridge) \times 1.0 (A)^2 \times 0.6(\Omega) \dots(2)$ = 1.2 (W)

19.2. Internal logic power consumption

There are two states in which the internal logic power consumption can be considered.

 $I_{(IM3)} = 5.5 \text{ mA (typ.)}$: When motor is in operation. $I_{(IM2)} = 3.5 \text{ mA (typ.)}$: When motor is stopped.

The output is connected to the $V_M(24 \text{ V})$; therefore, the power consumed should be multiplied by the VM and IM.

The power consumption in this case can be calculated as below.

 $P_{(IM3)} = 24 (V) \times 0.0055 (A)....(3)$ = 0.132 (W)

The power consumption can also be calculated when the motor is not in operation.

 $P_{(IM2)} = 24 (V) \times 0.0035 (A) = 0.084 (W)$

19.3. Total power consumption

As a result from (2) and (3) above, the total power consumption can be calculated as shown below.

 $P = P_{(out)} + P_{(IM)} = 1.332 (W)$

Note that the calculation is just a reference and the margin for PCB design should be considered based on evaluation and consideration under the actual usage conditions.

20. OSCM-Charge DELAY:

Figure20.1 OSCM-Charge DELAY

Note: Timing charts may be simplified for explanatory purpose.

When transferring the OSCM waveform into the internal OSC, there will be some delay due to the level determination of the OSCM waveform. The maximum delay between the OSCM and the internal OSC is nearly 1 μ s (f_{OSCM} = 1600 kHz).

Figure20.2 Timing charts of the OSCM and the internal OSC waveform

21. Step resolution sequence

21.1. Full step resolution sequence

Figure21.1.2 Full step resolution sequence timing chart

21.2. Half step resolution sequence

Figure21.2.2 Half step resolution sequence timing chart

22. Step resolution sequence

22.1. Full step sequence(TRQ1/TRQ2,TRQ3,TRQ4 settings)

Ach current [%]

Figure22.1.1	(Example) <full step=""></full>	(TRQ1,TRQ2,TRQ3,TRQ4=H,H,H,H=100 %)
--------------	---------------------------------	-------------------------------------

Ach			Bch			
Input		Output	Input		Output	
PHASE_A	ENABLE_A	I _{OUT(A)}	PHASE_B ENABLE_B		I _{OUT (B)}	
Н	Н	+100 %	Н	Н	+100 %	
L	Н	-100 %	Н	Н	+100 %	
L	Н	-100 %	L	Н	-100 %	
Н	Н	+100 %	L	Н	-100 %	

Figure22.1.2 (Example) <Full step> (TRQ1,TRQ2,TRQ3,TRQ4=H,L,L,H=60 %)

Ach			Bch		
Input		Output	Input		Output
PHASE_A	ENABLE_A	I _{OUT(A)}	PHASE B ENABLE B		I _{OUT(B)}
Н	Н	+60 %	Н	Н	+60 %
L	Н	-60 %	Н	Н	+60 %
L	Н	-60 %	L	Н	-60 %
Н	Н	+60 %	L	Н	-60 %

27

22.2. Half step sequence(TRQ1/TRQ2,TRQ3,TRQ4 settings)

Ach current [%]

Figure22	.2.1 (Example)	<half step(a)=""></half>	(TRQ1,TRQ2,TRQ	3,TRQ4=H,H,H,H	=100 %)	
	Ach		Bch			
Inp	out	Output	In	Input		
PHASE_A	ENABLE_A	I _{OUT (A)}	PHASE_B	ENABLE_B	I _{OUT (B)}	
Н	Н	+100 %	Н	Н	+100 %	
Х	L	0	Н	Н	+100 %	
L	Н	-100 %	Н	Н	+100 %	
L	Н	-100 %	Х	L	0	
L	Н	-100 %	L	Н	-100 %	
Х	L	0	L	Н	-100 %	
Н	Н	+100 %	L	Н	-100 %	
Н	Н	+100 %	Х	L	0	

X: Don't care

Figure22.2.2 (Example) <half step(a)=""></half>			(TRQ1,TRQ2,TRQ3,TRQ4=L,H,L,L=25 %)				
	Ach			Bch			
In	out	Output	Input		Output		
PHASE_A	ENABLE_A	I _{OUT (A)}	PHASE_B	ENABLE_B	I _{OUT (B)}		
Н	Н	+25 %	Н	Н	+25 %		
Х	L	0	Н	Н	+25 %		
L	Н	-25 %	Н	Н	+25 %		
L	Н	-25 %	Х	L	0		
L	Н	-25 %	L	Н	-25 %		
Х	L	0	L	Н	-25 %		
Н	Н	+25 %	L	Н	-25 %		
Н	Н	+25 %	Х	L	0		

x: Don't care

23. Blanking time for over current detection

Figure23 Blanking time for over current detection timing chart

Note: Timing charts may be simplified for explanatory purpose.

To avoid misdetecting the ISD which may be caused by external noise or switching spikes, the ISD circuit has a blanking

time. This blanking time is counted up by the internal system clock(6.4 MHz (typ.)).

f_{oscs}=6.4 MHz(typ.) internal clock 1/f_{oscs}×7 to 8 clk (1.09 μs to 1.25 μs)

Note: that this blanking time is just a designed value and only for reference. It does not guarantee that the ISD will be detected in the ideal way when used in the actual conditions. Therefore, for safety measures, please insert a protective fuse in the VM power line. The optimum value of the fuse will change in each customer's usage conditions, so please select a fuse with enough margin to operate correctly and safely.

24. Blanking time for over thermal detection

Figure24 Blanking time for over thermal detection timing chart

Note: Timing charts may be simplified for explanatory purpose. To avoid misdetecting the TSD, the TSD circuit has a blanking time. This blanking time is counted up by the internal system clock(6.4 MHz (typ.)).

Note: f_{oscs}=6.4 MHz(typ.) internal clock 1/(f_{oscs}/2)×7 to 8 clk=1/f_{oscs}×14 to 16 clk (2.18 µs to 2.5 µs)

25. TB67S105FTG application circuit

(Values of the components are for reference.)

Figure26 TB67S105FTG application circuit

- Note that the shaded area shown above is either the GND pins or GND area, and shown in gray is the NC pins.
- Note: Please consider adding capacitors if needed. Also make sure that the GND pattern is connected to each other.

For RS_A, RS_B, OUT_A+, OUT_A-, OUT_B-, and OUT_B+; there are two pins so please tie the same pins together when using the device.

Note: Solder/mount the four corner pads and the exposed pad to the GND area of the board.

Note: The application circuit above is an example; therefore, mass-production design is not guaranteed.

26. Notes on Contents

Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Timing Charts

Timing charts may be simplified for explanatory purposes.

Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage. Toshiba does not grant any license to any industrial property rights by providing these examples of

application circuits.

Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

27. IC Usage Considerations

27.1. Notes on handling of ICs

- (1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings. Exceeding the rating(s) may cause the device breakdown, damage, or deterioration, and may result injury by explosion or combustion.
- (2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
- (3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke, or ignition. Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke, or ignition.
- (4) Do not insert devices in the wrong orientation or incorrectly. Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

32

27.2. Points to remember on handling of ICs

(1) Over Current Protection Circuit

Over current protection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all circumstances. If the Over current protection circuits operate against the over current, clear the over current status immediately.

Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the over current protection circuit to not operate properly or IC breakdown before operation. In addition, depending on the method of use and usage conditions, if over current continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.

(2) Thermal Shutdown Circuit

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately.

Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.

(3) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator, or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_j) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

(4) Back-EMF

When a motor rotates in the reverse direction, stops, or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

28. Package dimensions

P-WQFN48-0707-0.50-003

Unit: mm

Weight: 0.12 g (typ.)

Figure27 Package dimensions

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices & Storage Corporation https://toshiba.semicon-storage.com/jp/