TOSHIBA CDMOS Integrated Circuit Silicon Monolithic

TC7735FTG

System power management IC for TFT / low-temperature polysilicon liquid crystal display

1. Summary

The TC7735FTG is a system power management IC for liquid crystal module of TFT and low-temperature polysilicon. It can generate each voltage level, which the liquid crystal display (LCD) driver requires. In addition, the TC7735FTG can generate the high-voltage power supply for source driver and gate driver and incorporates VCOM amplifier circuit. So, it can drive the LCD of TFT and low-temperature polysilicon easily by itself.

The TC7735FTG can also output the required voltage to connect various LCD drivers by incorporating the function of adjusting voltage. This optimizes the characteristics of whole LCD system. And the protection functions like the over current protection circuit and the under voltage lockout circuit are incorporated to improve safety in driving the IC.

2. Applications

TFT LCD module, low-temperature polysilicon LCD module, and so on

3. Features

- System power management IC for compound LCD module CH1: Buck/Boost DC-DC convertor CH2: Buck DC-DC convertor CH3: Positive regulated charge pump CH4: Negative regulated charge pump Op-Amp for VCOM
- Supporting input voltage in wide range: 4.5V to 16V
- Built-in power supply sequence generating circuit
- Built-in OSC circuit: 1MHz
- Capable of supplying external clocks of switching frequency
- Built-in monitor of internal state by Power Good (PG terminal.)
- Built-in input under voltage lockout circuit, input over voltage protection circuit, thermal shutdown, and output over voltage protection circuit.
- Serial communication for debug (I²C bus)
- Power on reset function
- Operating temperature :-40 to 85°C
- Package : QFN32pin

This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive mat and an ionizer. Ensure also that the ambient temperature and relative humidity are maintained at reasonable levels.

4. Block diagram

5. Pin assignment

Figure 5.1 Pin assignment

Note: Package of QFN32 adopted to the TC7735FTG has a thermal pad for heat radiation on the back side of the package. Contact the back side of the package to the board by reflow and so on.

6. Pin description

Table 6.1 Pin description

Pin name	I/O		Pin description				
PVIN	-	Power supply terminal (1) Power supply terminal. Supply the same power supply as AVIN terminal. It is short circuited internally to AVIN terminal.					
AVIN	-	Power supply termin Analog power sup internally to PVIN te	ply terminal. Supply the same power supply as PVIN terminal. It is short circuited				
PGND	-	Power GND termina Connect to the co	l mmon ground (GND). It is short circuited internally to SGND terminal.				
SGND	-	Analog GND termina Connect to the co	al mmon ground (GND). It is short circuited internally to PGND terminal.				
VDD42	ο		tput terminal oltage of 4.2V for internal circuit. Connect the capacitor between VDD42 terminal and stabilize the voltage. It cannot supply power to the external device.				
VREF	0		tput terminal oltage of 1.5V for internal circuit. Connect the capacitor between VREF terminal and abilize the voltage. It cannot supply power to the external device.				
XSTBY	I		ol terminal (with pull-down) ninal for the TC7735FTG. XSTBY="L": Operations of all circuits stop.				
		Enable control terminal Enable terminal to control output voltage. Time of output voltage pattern, which is managed by control logic, can be controlled by ENABLE terminal. Input should not be in floating state.					
ENABLE	I	ENABLE	ENABLE Functions				
		L Po	ower supplies for LCD modules (CH1 to CH4) and Op-amp for VCOM: All off				
		H Power supplies for LCD modules (CH1 to CH4) and Op-amp for VCOM: All on Each power supply starts up according to the sequence configured by the registered					
EXTCLK	1	Input terminal of external clock signal (with pull-down) To control switching frequency of each power supply by inputting external clocks, input clocks by EXTCLK terminal. In supplying external clocks, set INT_EXT terminal high level. When external clocks are not used, configure the EXTCLK terminal open.					
		•	ck select signal for each power supply.				
			OSC clocks or external clocks for each power supply.				
INT_EXT	.	INT_EXT	Functions				
		L	Internal clock mode: Clocks for each power supply use internal OSC circuit.				
	External clock mode: Clocks for each power supply are supplied externally. Input clock signal by EXTCLK terminal.						
		When INT_EXT is high level, short circuit to VDD42 terminal.					
SCL	I	I ² C clock input terminal In using I ² C communication, connect pull-up resistance. (Note 1) When it is not used, connect it to GND.					
SDA	I/O	I ² C data input/outpu In using I ² C comn When it is not used,	nunication, connect pull-up resistance. (Note 1)				

Note 1:ESD protection diode is connected to SDA and SCL terminals (VDD42 side). Pay attention that I²C bus cannot be shared with the external IC.

Table 6.2 Pin description

Pin name	I/O	Pin description			
PG	ο	Power Good output terminal PG signal outputs low level when channels of CH1 to CH4 operate normally. Connect pull-up resistance because this terminal is an open drain output terminal.			
LX1I LX1O	0	Inductor connection terminal for CH1 (voltage buck/boost DC-DC convertor) Driver output terminal of voltage buck/boost DC-DC convertor. Voltage boost DC-DC convertor or buck DC-DC convertor can be constructed by connecting the inductor between LX1I terminal and LX10 terminal. Input voltage is switched to the boosting voltage or bucking voltage automatically.			
VOUT1	0	Output terminal for CH1 (voltage buck/boost DC-DC convertor) Output terminal of voltage buck/boost DC-DC convertor. The voltage of LDO circuit and charge pump circuit is generated referring to the configured voltage which is outputted from VOUT1 terminal. Connect the capacitor between VOUT1 terminal and PGND terminal to stabilize the voltage.			
LX2	0	Inductor connection terminal for CH2 (voltage buck DC-DC convertor) It generates the system power supply for LCD module. Available voltage range is 3V to 5V. Connect the inductor to LX2 terminal.			
VOUT2	I	Feedback terminal for CH2 (voltage buck DC-DC convertor) It is a feedback input terminal to stabilize the output voltage of the voltage buck DC-DC convertor. Connect the capacitor between VOUT2 terminal and PGND terminal to stabilize the voltage.			
CP1P CP1N CP2P CP2N	I/O	Capacitor connection terminal for CH3 (positive charge pump) Positive charge pump circuit can be used by connecting capacitors between CP1P terminal and CF terminal, and between CP2P terminal and CP2N terminal. When double charge pumps are used, terminals of CP1P and CP1N should be open.			
CP10	0	Output terminal of middle point for CH3 (positive regulated charge pump) It outputs the middle voltage of the voltage boost generated by the charge pump. Connect the between CP1O terminal and PGND terminal to stabilize the voltage. When double charge pump used, terminals of CP1O should be open.			
VOUT3	0	Output terminal for CH3 (positive regulated charge pump) It outputs high voltage required by gate driver of LCD module. Connect the capacitor between VOUT3 terminal and PGND terminal to stabilize the voltage.			
DRVN	ο	Drive output terminal for CH4 (negative regulated charge pump) It outputs high voltage of negative-side required by gate driver of LCD module. Charge pump circuit is constructed by connecting the capacitor and the diode. And inverted voltage of VOUT1 is outputted.			
VOUT4	I	Feedback terminal for CH4 (negative regulated charge pump) Feedback input terminal stabilizes the output voltage of the negative charge pump. Feedback the output voltage of the constructed charge-pump circuit externally.			
VCOMP	I	Non-inverted input terminal of Op-amp for VCOM			
VCOMN	I	Inverted input terminal of Op-amp for VCOM			
VCOMO	0	Output terminal of Op-amp for VCOM			
VPP	I	Voltage input terminal for eFuse Short circuit to VDD42 terminal.			
TEST	I	Test terminal (with pull-down) Toshiba test terminal for shipping investigation. Connect it to the common ground (GND).			

7. Equivalent circuit of input/output terminal

7.1 Power supply terminal

Table 7.1 Equivalent circuit of power supply terminal

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory

purposes.	
Pin name	Equivalent circuit
AVIN,PVIN PGND, SGND	AVIN, PVIN

7.2 Logic input/output terminal

Table 7.2 Equivalent circuit of logic input/output terminal

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Pin name	Equivalent circuit
XSTBY	XSTBY Internal circuit \$ 100kΩ
	VDD42
TEST EXTCLK	TEST EXTCLK
	SGND SGND
	VDD42
SCL	SCL
	VDD42
SDA	SDA Internal Internal Internal Internal Circuit

Table 7.3 Equivalent circuit of logic input/output terminal

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

7.3 Analog input/output terminal

Table 7.4 Equivalent circuit of analog input/output terminal

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Table 7.5 Equivalent circuit of analog input/output terminal

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory

8. Function / Operation description

The TC7735FTG can generate high voltage that LCD driver requires. It can generate the power supply for system logic (VCC) and following four kinds of power supplies. High-voltage power supply (AVDD) for source driver, high-voltage power supply (VGH) and low-voltage power supply (VGL) for gate driver, and power supply for VCOM.

Figure 8.1 System diagram

The TC7735FTG can adjust the output voltage level of each power supply and the timing of ON/OFF sequence because it incorporates serial communication function for debug. The voltage environment can be optimized by writing these data to the internal eFuse.

_		
Output	Standard setting product	Setting range (Note)
VOUT1	9.2V	5 to 15V (0.2V step)
VOUT2	3.3V	3 to 5V (0.1V step)
VOUT3	18.0V	14 to 22V (0.2V step)
VOUT4	-6.0V	-5 to -15V (0.2V step)

Table 8.1 Setting output

Note: Standard setting product cannot be used to change the voltage setting. Product sample for debug is required in order to change the output settings using the serial communication function.

8.1 Operation description

Operation mode of the TC7735FTG transits by the setting of XSTBY and ENABLE terminals shown in the Figure 8.2.

Figure 8.2 Mode transition diagram

8.1.1 DEEP STANDBY

DEEP STANDBY supplies the power supply to PVIN and AVIN. XSTBY="L" input. All of OSC circuit, internal regulator, and each power supply circuit are turned off. Low-current consumption drive can be kept even in applying voltage to the power supply of PVIN and AVIN.

8.1.2 WAKEUP

It indicates the starting up of OSC circuit and the internal regulator after inputting high level to XSTBY. Register setting value is read out from eFuse.

8.1.3 STANDBY

In STANDBY mode, all internal regulators are operating under the condition that XSTBY is "H" and ENABLE is "L". I^2C can be controlled and register setting value is kept. Each power supply circuit for driving LCD is turned off.

8.1.4 STARTUP

Channel of each power supply and Op-Amp for VCOM start soft start according to the power ON sequence by inputting high level to ENABLE from STANDBY. Power ON sequence depends on the register setting value. When soft start of all power channels and of Op-Amp for VCOM have been completed, the operation moves to the OPERATE mode. In STARTUP, all protection circuits except SCP and OVP are valid.

8.1.5 OPERATE

All power channels and Op-Amp for VCOM operate and all protection functions are enabled. PG terminal outputs low level. The operation moves to PROTECTED mode after abnormality is detected by protection functions except OCP under the following conditions; abnormality is detected continuously during delay time counted by each function.

8.1.6 STOPSEQ

After OPERATE mode, each power supply is turned off according to the power OFF sequence by inputting low level to ENABLE. Power OFF sequence depends on the register setting value. When all power supplies are turned off, the operation moves to STANDBY mode.

8.1.7 PROTECTED

PROTECTED mode is moved from STARTUP or OPERATE mode when the outputs of power channels are turned off by the protection function of IOVP, SCP, TSD, or UVLO. PG terminal is Hi-Z. When IOVP or UVLO is released, the operation moves to STARTUP mode.

When low level is inputted to ENABLE, the operation moves to STANDBY mode.

8.2 Description of register (for debug)

The TC7735FTG incorporates $\mathrm{I}^2\mathrm{C}$ bus for debug to control the registers.

As shown in the Figure 8.3, pull up SCL and SDA terminals and connect them to the external MCU.

Figure 8.3 Example of connecting to MCU

Note: Register should be changed in STANDBY mode (XSTBY="H", ENABLE="L").

8.3 Register map

Refer to the below table of the register map. Register No. 03h to 06h are enabled in product sample for debug.

Table 8.2 Register map

Register No.	D7	D6	D5	D4	D3	D2	D1	D0	R/W
00h	Reserved	SEL_REGI	SLP_S	EL[1:0]	-	PWIDE_SEL[2:0]			R/W
01h	CH3TIM	_SEL[1:0]	CH3DIV_	CH3DIV_SEL[1:0]		/_SEL[1:0] Reserved		R/W	
02h	CH1_D	0LY[1:0]	CH4_DLY CH1_FDLY		FSQ_SEL	-	-	-	R/W
03h	Reserved	Reserved	CH1_VSET[5:0]				R/W		
04h	-	Reserved	- CH2_VSET[4:0]				R/W		
05h	-	Reserved	CH3_VSET[5:0]				R/W		
06h	-	Reserved	CH4_VSET[5:0]				R/W		
07h	-	TSD	UVLO	OVP	SCP_CH1	SCP_CH2	SCP_CH3	SCP_CH4	R

8.3.1 Setting (00h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
00h	Reserved	SEL_REGI	SLP_SI	EL[1:0]	-		PWIDE_SEL[2:0]	
Initial value	0	0	0	1	0	0	0	1

SEL_REGI

: Select eFuse or register.

To enable the register, set SEL_REGI="1". Table 8.3 SEL_REGI

SEL_REGI	Function
0	eFuse: Enable
1	Register: Enable

SLP_SEL [1:0] Adjustment register in inputting external clocks (Refer to Table 8.4)

PWIDE_SEL [2:0] : Adjustment register in inputting external clocks (Refer to Table 8.4)

Table 8.4 SLP_SEL, PWIDE_SEL

External clock frequency	SLP_SEL[1:0]	PWIDE_SEL [2:0]
400kHz to 800kHz	11	100
800kHz to 1.2MHz	01	001

Note: bit7: Fix to "0".

8.3.2	Setting	(01h)						
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
01h	CH3TIM	_SEL[1:0]	CH3DIV_SEL[1:0]		CH4DIV	_SEL[1:0]	Rese	erved
Initial value	0	0	1	0	1	0	1	0

CH3TIM_SEL [1:0] : CH3: Setting the number of multiple steps of the positive charge pump.

Table 8.5 CH3TIM_SEL

CH3TIM_SEL [1:0]	Number of multiple steps
00	×4
01	×3
10	×2
11	Setting forbidden

CH3DIV_SEL [1:0] : CH3: Setting the ratio of frequency dividing of the positive charge pump. Switching frequency recommended value is 125kHz.

Table 8.6 CH3DIV_SEL

CH3DIV_SEL[1:0]	Ratio of dividing frequency
00	1/2
01	1/4
10	1/8
11	Setting forbidden

CH4DIV_SEL [1:0] : CH4: Setting the ratio of frequency dividing of the negative charge pump. Switching frequency recommended value is 125kHz.

Table 8.7 CH4DIV_SEL

CH4DIV_SEL[1:0]	Ratio of dividing frequency
00	1/2
01	1/4
10	1/8
11	Setting forbidden

Note: bit1-0: Fix to "10".

8.3.3	Setting	(02h)						
_	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
02h	CH1_D	LY[1:0]	CH4_DLY	CH1_FDLY	FSQ_SEL	-	-	-
Initial value	0	0	0	0	0	0	0	0

CH1_DLY [1:0] : Setting the rising delay time of CH1 output.

Table 8.8 CH1_DLY

CH1_DLY[1:0]	Delay time
00	40ms
01	20ms
10	10ms
11	CH2 rising (90% is reached)

CH4_DLY : Setting the rising delay time of CH4 output.

Table 8.9 CH4_DLY

CH4_DLY	Delay time
0	20ms
1	10ms

CH1_FDLY : Setting the falling delay time of CH1 output.

Table 8.10 CH1_FDLY

CH1_FDLY	Delay time
0	4ms
1	2ms

FSQ_SEL Setting the rising order of CH3 and CH4 output.

Table 8.11 FSQ_SEL

FSQ_SEL	Falling order
0	CH3⇒CH4
1	CH4⇒CH3

<u>TOSHIBA</u>

8.3.4 Setting VOUT1 (03h)

CH1_VSET [5:0] : Setting VOUT1.

				_			
CH1_VSET [5:0]	VOUT1[V]	CH1_VSET [5:0]	VOUT1[V]	CH1_VSET [5:0]	VOUT1[V]	CH1_VSET [5:0]	VOUT1[V]
000000	5.0	010000	8.2	100000	11.4	110000	14.6
000001	5.2	010001	8.4	100001	11.6	110001	14.8
000010	5.4	010010	8.6	100010	11.8	110010	15.0
000011	5.6	010011	8.8	100011	12.0	110011	
000100	5.8	010100	9.0	100100	12.2	110100	
000101	6.0	010101	9.2	100101	12.4	110101	
000110	6.2	010110	9.4	100110	12.6	110110	
000111	6.4	010111	9.6	100111	12.8	110111	
001000	6.6	011000	9.8	101000	13.0	111000	
001001	6.8	011001	10.0	101001	13.2	111001	Setting forbidden
001010	7.0	011010	10.2	101010	13.4	111010	
001011	7.2	011011	10.4	101011	13.6	111011	
001100	7.4	011100	10.6	101100	13.8	111100	
001101	7.6	011101	10.8	101101	14.0	111101	
001110	7.8	011110	11.0	101110	14.2	111110	
001111	8.0	011111	11.2	101111	14.4	111111	

Table 8.12 CH1_VSET

Note: bit7,bit6: Fix to "0".

CH2_VSET [4:0] : Setting VOUT2. (Note1)

Table 8.13 CH2_VSET

CH2_VSET[4:0]	VOUT2[V]	CH2_VSET[4:0]	VOUT2[V]
00000	3.0	10000	4.6
00001	3.1	10001	4.7
00010	3.2	10010	4.8
00011	3.3	10011	4.9
00100	3.4	10100	5.0
00101	3.5	10101	
00110	3.6	10110	
00111	3.7	10111	
01000	3.8	11000	
01001	3.9	11001	
01010	4.0	11010	Setting forbidden
01011	4.1	11011	-
01100	4.2	11100	
01101	4.3	11101]
01110	4.4	11110]
01111	4.5	11111]

Note 1: Setting range of VOUT2: VOUT2 < V_{IN} × 0.75

(It is the reference value because it depends on the conditions and external parts. Please confirm the operation in the actual operation conditions.)

Note: bit6: Fix to "0".

8.3.6 Setting VOUT3 (05h)

CH3_VSET [5:0] : Setting VOUT3. (Note1)

Table 8.14 CH3_VSET

CH3_VSET [5:0]	VOUT3[V]	CH3_VSET [5:0]	VOUT3[V]	CH3_VSET [5:0]	VOUT3[V]	CH3_VSET [5:0]	VOUT3[V]
000000		010000	15.2	100000	18.4	110000	21.6
000001		010001	15.4	100001	18.6	110001	21.8
000010		010010	15.6	100010	18.8	110010	22.0
000011		010011	15.8	100011	19.0	110011	
000100	Setting	010100	16.0	100100	19.2	110100	
000101	forbidden	010101	16.2	100101	19.4	110101	
000110		010110	16.4	100110	19.6	110110	
000111		010111	16.6	100111	19.8	110111	
001000		011000	16.8	101000	20.0	111000	
001001		011001	17.0	101001	20.2	111001	Setting forbidden
001010	14.0	011010	17.2	101010	20.4	111010	
001011	14.2	011011	17.4	101011	20.6	111011	
001100	14.4	011100	17.6	101100	20.8	111100	
001101	14.6	011101	17.8	101101	21.0	111101	
001110	14.8	011110	18.0	101110	21.2	111110	
001111	15.0	011111	18.2	101111	21.4	111111	

Note 1: Setting range of VOUT3: VOUT3 < VOUT1 × 2- 0.97V

or VOUT3 < VOUT1 × 3 - 1.33V

or VOUT3 < VOUT1 × 4 - 2.82V

(It is the reference value because it depends on the conditions and external parts. Please confirm the operation in the actual operation conditions.)

Note: bit6: Fix to "0".

Setting VOUT4 (06h) 8.3.7 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 06h Reserved CH4_VSET[5:0] _ Initial value 0 0 0 0 0 1 0 1

CH4_VSET [5:0] : Setting VOUT4. (Note1)

CH4_VSET [5:0]	VOUT4[V]	CH4_VSET [5:0]	VOUT4[V]	CH4_VSET [5:0]	VOUT4[V]	CH4_VSET [5:0]	VOUT4[V]
000000	-5.0	010000	-8.2	100000	-11.4	110000	-14.6
000001	-5.2	010001	-8.4	100001	-11.6	110001	-14.8
000010	-5.4	010010	-8.6	100010	-11.8	110010	-15.0
000011	-5.6	010011	-8.8	100011	-12.0	110011	
000100	-5.8	010100	-9.0	100100	-12.2	110100	
000101	-6.0	010101	-9.2	100101	-12.4	110101	
000110	-6.2	010110	-9.4	100110	-12.6	110110	
000111	-6.4	010111	-9.6	100111	-12.8	110111	
001000	-6.6	011000	-9.8	101000	-13.0	111000	
001001	-6.8	011001	-10.0	101001	-13.2	111001	Setting forbidden
001010	-7.0	011010	-10.2	101010	-13.4	111010	
001011	-7.2	011011	-10.4	101011	-13.6	111011	
001100	-7.4	011100	-10.6	101100	-13.8	111100	
001101	-7.6	011101	-10.8	101101	-14.0	111101	
001110	-7.8	011110	-11.0	101110	-14.2	111110	
001111	-8.0	011111	-11.2	101111	-14.4	111111	

1)

Table 8.15 CH4_VSET

Note 1: Setting range of VOUT4: VOUT4 > VOUT1×(-3) + 5.97V

(It is the reference value because it depends on the conditions and external parts. Please confirm the operation in the actual operation conditions.)

Note: bit6: Fix to "0".

<u>TOSHIBA</u>

8.3.8 Status read (07h) bit 6 bit 7 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 07h -TSD UVLO OVP SCP_CH1 SCP_CH2 SCP_CH3 SCP_CH4 -Initial value -------

Bit6-1: Outputting detection result of each protection.

Table 8.16 Status read

Bit	Register	Function	Data="0"	Data="1"
6	TSD	Read out detection result of TSD (Thermal shutdown) error.	Non detection	Detection
5	UVLO	Read out detection result of UVLO (Under voltage lockout) error.	Non detection	Detection
4	OVP	Read out detection result of OVP (Over voltage protection) error.	Non detection	Detection
3	SCP_CH1	Read out detection result of SCP (Short circuit protection) error of CH1.	Non detection	Detection
2	SCP_CH2	Read out detection result of SCP (Short circuit protection) error of CH2.	Non detection	Detection
1	SCP_CH3	Read out detection result of SCP (Short circuit protection) error of CH3.	Non detection	Detection
0	SCP_CH4	Read out detection result of SCP (Short circuit protection) error of CH4.	Non detection	Detection

8.4 Power supply sequence

8.4.1 Power ON sequence

Figure 8.4 Power ON sequence

8.4.2 Power OFF sequence

Figure 8.5 Power OFF sequence

8.5 **Protection functions**

8.5.1 Under voltage lockout (UVLO) function

Under voltage lockout (UVLO) function reduces the malfunction caused by low voltage of AVIN terminal. UVLO function works when the voltage of AVIN terminal is 4.0V (typ.) or less. When the voltage does not exceed 4.2 V (typ.) for 5 μ s (typ.), the operation moves to PROTECTED state and set 06h [5] (UVLO) to "1".

8.5.2 Over current detection (OCP) function

Over current detection (OCP) function prevents the IC from being destructed by over current of DC-DC convertor of CH1 or CH2. OCP function works when the current flowing in high-side MOSFET of the DC-DC convertor reaches the specified value. OCP detection current is as follows; driver current of CH1 > 0.8A (typ.), driver current of CH2 > 1A (typ.) When OCP is detected, high-side MOSFET of DC-DC convertor is turned off and low-side MOSFET is turned on. OCP function works by the switching cycle. So, OCP is released automatically at the next switching cycle and the normal operation recovers.

8.5.3 Short circuit protection (SCP) function

SCP function prevents the IC from being destructed by over current and over heat caused by short circuit of each power channel. SCP function works when the voltage of the feedback terminal of each power channel falls to less than the threshold voltage (80% of configured output voltage). When it does not exceed the threshold voltage within 1ms (typ.), the operation moves to PROTECTED state and sets 06h [3:0] (SCP_CHx) to "1".

8.5.4 Thermal shutdown (TSD) function

Thermal shutdown (TSD) function prevents the IC from being destructed by internal over heat. When internal temperature exceeds $150^{\circ}C$ (typ.), TSD function works. In the case the temperature does not fall to $130^{\circ}C$ (typ.) or less within 1ms (typ.), the operation moves to PROTECTED state and set 06h[6](TSD) to "1".

8.5.5 Input over voltage protection (IOVP)

Input over voltage protection prevents the IC from being destructed by over voltage of AVIN terminal. When the voltage of AVIN terminal becomes 22V (typ.) or more, switching operations of the power supplies of CH1 and CH2 are turned off. When the voltage of AVIN terminal falls below 17.0V (min), the operation recovers automatically to the OPERATE state.

8.5.6 Output over voltage protection (OVP)

Output over voltage protection prevents the IC from being destructed by over voltage of DC-DC convertor of CH1. In case the voltage of VOUT1 terminal exceeds the threshold value (120% of configured output voltage), OVP works. And in case the voltage does not fall below the threshold value within 5μ s (typ.), the operation moves to PROTECTED state and 06h [4] (OVP) is set to "1".

8.6 Interface

The TC7735FTG sets each function by I²C interface. It supports the slave operation and the fast mode (400kHz) of I²C standard. Single write, continuous write, single read, and continuous read are possible. The slave address of the TC7735FTG is fixed to 0b1001101. As for descriptions of writing and reading, refer to Figure 8.6 to Figure 8.9.

Symbol	Description
S	Start condition
Sr	Repeat start condition
Slave Address	Slave address (7bit)
R	Read mode (R/W=1)
W	Write mode (R/W=0)
A	Acknowledge signal (output L level)
NA	Non- acknowledge signal (output HiZ)
Р	Stop condition

Table 8.17 Description of I²C interface

Figure8.6 Single write mode

Figure8.7 Continuous write mode

Note: In continuous write mode, data is not written to the register 07h and the signal of ACK is returned.

Figure8.8 Single read mode

<u>TOSHIBA</u>

Figure8.9 Continuous read mode

- Note: When ACK is set to "1", configure MCU to stop condition.
- Note: When stop condition is recognized, the TC7735FTG opens SDA and waits for start condition. In case it is under accessed in this time, transfer data is canceled and the clock count is initialized.
- Note: When the command is interrupted on the way of operation, the command before it is interrupted is reflected. The interrupted command is not executed. To reflect the command, configure the command again.

9. Absolute maximum ratings (Ta=25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage		– 0.3 to 18	V
Supply voltage	AVIN,PVIN	40 (1s)	V
Supply voltage	SGND, PGND	+ 0.3	V
Terminal voltage (Note 1)	V _{IN1} ,	-0.3 to 40.0	V
Terminal voltage (Note 2)	V _{IN2}	-0.3 to 30.0	V
Terminal voltage (Note 3)	V _{IN3}	-0.3 to 18.0	V
Terminal voltage (Note 4)	V _{IN4} ,	- 18.0 to 0.3	V
Terminal voltage (Note 5)	V _{IN5} ,	– 0.3 to 7.8	V
Terminal voltage (Note 6)	V _{IN6} ,	– 0.3 to 5.5	V
Terminal voltage (Note 7)	V _{IN7}	– 0.3 to 8.0	V
Power dissipation	PD	4.2 (Note 8)	W
Operating temperature	Topr	– 40 to 85	°C
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	– 55 to 150	°C

Table 9.1 Absolute maximum rating

- Note: The absolute maximum ratings of a semiconductor device are a set of specified parameter values, which must not be exceeded during operation, even for an instant. If any of these rating would be exceeded during operation, the device electrical characteristics may be irreparably altered and the reliability and lifetime of the device can no longer be guaranteed. Moreover, these operations with exceeded ratings may cause break down, damage and/or degradation to any other equipment. Applications using the device should be designed such that each absolute maximum rating will never be exceeded in any operating conditions. Before using, creating and/or producing design, refer to and comply with the precautions and conditions set forth in this document.
- Note 1: LX1I and LX2 terminals
- Note 2: VOUT3, CP1P, CP1O, CP2N, and CP2P terminals
- Note 3: VOUT1, LX10, DRVN, CP1N, and VCOMP terminals
- Note 4: VOUT4 terminal
- Note 5: VCOMN and VCOMO terminal
- Note 6: XSTBY, SDA, SCL, ENABLE, EXTCLK, INT_EXT, PG, TEST, VDD42, VOUT2 and VREF terminals
- Note 7: VPP terminal
- Note 8: Thermal simulation value. Conditions: Still air, standard four-layer JEDEC board

10. Electrical characteristics

10.1 DC characteristics (1)

10.1.1 Common characteristics

Table 10.1 DC characteristics (1)

(Unless otherwise specified, V_{IN} =14.0V, PGND =SGND = 0V, and Ta = 25°C)

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Pin
Operation voltage	V _{IN}	Ta = −40 to 85°C	4.5	_	16	V	AVIN PVIN
IOVP detection voltage	V _{IOVP}		21	22	23	V	AVIN
IOVP hysteresis	VIOVP Hys		—	5	—	V	AVIN
UVLO operation voltage	V _{UVLO}	AVIN falling	3.8	4.0	4.2	V	AVIN
UVLO hysteresis	V _{UVLO Hys}		—	0.2	—	V	AVIN
VDD42 voltage	V _{REG42}		—	4.2	—	V	VDD42
VREF voltage	V _{REF}		—	1.5	—	V	VREF
	IQ1	XSTBY="L" (DEEP_STANDBY)	_	_	12	μA	AVIN PVIN
Consumption current	ICC1	XSTBY="H", ENABLE="L" (STANDBY, PROTECTED)	_	_	4.5	mA	AVIN PVIN
	ICC2	ENABLE="H"(OPERATE) Non Switching	_	_	10	mA	AVIN PVIN
Oscillator frequency	foscint		850		1150	kHz	
Input range of external clock	fOSCEX		400	_	1,200	kHz	EXTCLK
External clock DUTY	fOSC_duty		40	_	60	%	EXTCLK
	VIH1		1.8	_	_		ENABLE XSTBY
Input voltage	VIL1		_	_	0.5	V	EXTCLK INT_EXT SDA, SCL
TSD detection	T _{TSD}	Temp. rising	—	150	—	°C	
temperature	T _{TSDHys}	Hysteresis	_	20	—		
Output voltage	VOL	I _{SINK} =4mA	GND	_	0.5	V	PG

10.1.2 CH1 automatic buck/boost DC-DC convertor

Table 10.2 DC characteristics (2)

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Pin
Output voltage	V _{O1}	Standard setting product (Note)	-	9.2	-	V	VOUT1
Accuracy of output voltage	⊿V ₀₁		-1.5	_	1.5	%	VOUT1
Peak current of OCP detection	I _{OCP1}	In Buck mode	_	0.8	_	А	
SCP detection voltage	V _{SCP1}		_	V _{O1} × 0.8	_	v	VOUT1
Through rate of output voltage	V _{SR1}	In startup, In using internal clocks	_	2.5	_	V/ms	VOUT1
Maximum of drive capability	I _{OUT1max}		100	_	_	mA	VOUT1

Note: The output voltage can be changed by the eFuse writing.

10.1.3 CH2 buck DC-DC convertor

Table 10.3 DC characteristics (3)

(Unless otherwise specified, V_{IN} =14.0V, PGND =SGND = 0V, Ta = 25°C)

	, 114		,				
Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Pin
Output voltage	V _{O2}	Standard setting product (Note)	_	3.3		V	VOUT2
Accuracy of output voltage	⊿V _{O2}		-2.0	_	2.0	%	VOUT2
Peak current of OCP detection	I _{OCP2}		_	1.0	_	А	
SCP detection voltage	V _{SCP2}		_	V _{O2} × 0.8	_	v	VOUT2
Through rate of output voltage	V _{SR2}	In startup, In using internal clocks	_	2.5	_	V/ms	
Maximum of drive capability	I _{OUT2max}		500	_	_	mA	

Note: The output voltage can be changed by the eFuse writing.

10.1.4 CH3 positive charge pump

Table 10.4 DC characteristics (4)

(Unless otherwise specified, V_{IN} =14.0V, PGND =SGND = 0V, and Ta = 25°C)

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Pin
Output voltage	V _{O3}	Standard setting product (Note)	_	18.0	_	V	VOUT3
Accuracy of output voltage	⊿v _{o3}		-2.0	-	2.0	%	VOUT3
SCP detection voltage	V _{SCP3}		_	V _{O3} × 0.8	_	v	VOUT3
Switching frequency	f _{SW3}	In using external clocks (Setting range of frequency dividing ratio) Recommended value:125kHz	100	_	200	kHz	
Through rate of output voltage	V _{SR3}	In using internal clocks	_	2.5	_	V/ms	VOUT3
Maximum of drive capability	I _{OUT3max}		2			mA	

Note: The output voltage can be changed by the eFuse writing.

10.1.5 CH4 negative charge pump

Table 10.5 DC characteristics (5)

	Unless otherwise specified,	1/ = 4.4 01/.	DONID = OONID = OV	$T_{\alpha} = \Omega E^{0} \Omega^{1}$
- (Unless otherwise specified	VIN = 14 UV	P(a N) = S(a N) = UV	18 = 25 0
		•		, .a. <u>_</u> o o,

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Pin
Output voltage	V _{O4}	Standard setting product (Note)	_	-6.0		V	VOUT4
Accuracy of output voltage	⊿V _{O4}		-5.0	-	5.0	%	VOUT4
SCP detection voltage	V _{SCP4}		_	V _{O3} × 0.8	_	v	VOUT4
Switching frequency	f _{SW4}	In using external clocks (Setting range of frequency dividing ratio) Recommended value:125kHz	100	_	200	kHz	
Through rate of output voltage	V _{SR4}	In using internal clocks	_	-2.5		V/ms	VOUT4
Maximum of drive capability	I _{OUT4max}		2	_	_	mA	

Note: The output voltage can be changed by the eFuse writing.

10.1.6 VCOM amplifier

Table 10.6 DC characteristics (6)

(Unless otherwise specified, V_{IN} =14.0V, PGND =SGND = 0V, Ta = 25°C)

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Pin
Output voltage range	V _{VCOMO}	0.5 ≥ VCOMP ≥ 7.5V VO1 ≥ VVCOMO+0.6V	0.5	_	7.5	V	VCOMO
Off set between terminals	V _{p-pOS}	In following voltage (short circuit VCOMN and VCOMO terminals)	-25		25	mV	VCOMO
Maximum of drive capability	I _{COMmax}	,	2			mA	

10.2 AC characteristics

10.2.1 I²C bus

Table 10.7 AC characteristics

(Unless otherwise specified, V_{IN} =14.0V, PGND =SGND = 0V, and Ta = 25°C)

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit
Operation clock frequency	fSCL		_	_	400	kHz
Hold time of repeat start condition	t _{HD:STA}		0.6	_	_	μS
Setup time of repeat start condition	^t SU:STA		0.6	_	_	μS
Data hold time	t _{HD;DAT}		0		0.9	μs
Data setup time	t _{SU;DAT}		100	-	_	ns
Low term of SCL signal	tLOW		1.3	_	_	μS
High term of SCL signal	t _{HIGH}		0.6	_	_	μS

11. Application circuit

- Note: When CH3TIM_SEL [1:0] is set to "10"(×2), terminals of CP1P, CP1N and CP1O should be open.
- Note: The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.

Usage Considerations

A large current might abruptly flow through the IC in case of a short-circuit across its outputs, a short-circuit to power supply or a short-circuit to ground, leading to a damage of the IC. Also, the IC or peripheral parts may be permanently damaged or emit smoke or fire resulting in injury especially if a power supply pin (PVIN,AVIN) or an output pin is short-circuited to adjacent or any other pins. These possibilities should be fully considered in the design of the output, PVIN, AVIN, and ground lines.

A fuse should be connected to the power supply line.

12. Characteristics (Reference data)

CH1 Efficiency

13. Package dimensions

P-WQFN32-0505-0.50-001

Unit: mm

Weight: 0.06 g (Typ.)

14. RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.