

TPD7104AF Application note

Description

TPD7104AF is a high-side gate driver IC for N-channel MOSFETs with 12 V power supply. The MOSFET is driven by an internal charge pump circuit. By selecting the optimum MOSFET for the operating condition, a high-side switch with suitable specifications can be configured for systems handling a wide range of currents. This IC is equipped with a power reverse connection protection function in addition to a load short protection function and a diagnostic function, all of which contribute to improved system safety. Additionally, it is available in a compact PS-8 surface-mount package (2.9 mm * 2.8 mm), enabling system miniaturization.

Table of Contents

Description	1
Table of Contents	2
1. Product overview	5
2. Application circuit example	5
2.1. Application example of load switch circuit (disable reverse polarity protection)	5
2.2. Application example of reverse polarity protection circuit (enable reverse polarity protection)	6
3. Terminal equivalent circuit	7
4. Normal operation	8
5. Description of each function or circuit	9
5.1. Reverse polarity protection function	9
5.2. Load short (overcurrent) protection function	10
5.3. Charge pump circuit	13
5.4. Charge pump voltage monitor circuit	16
5.5. V _{DD} pin overvoltage protection circuit	16
6. Electrical characteristics measurement circuit	17
7. Definition and terminology	21
7.1. Absolute maximum rating	21
7.2. Electrical characteristics	22
8. Evaluation board	24
8.1. Appearance of evaluation board	24
8.2. Circuit diagram for evaluation board	25
8.3. Bill of materials	26
8.4. Board layout	27
Points to note in the description	28
IC usage consideration	28
Notes on handing of ICs	28
RESTRICTIONS ON PRODUCT USE	29

List of Figures

Fig. 2.1	Block diagram (load switch circuit)	5
Fig. 2.2	Block diagram (reverse polarity protection)	6
Fig. 3.1	Equivalent circuit of V _{DD} pin	7
Fig. 3.2	Equivalent circuit of IS and R _{ISref} pins	7
Fig. 3.3	Equivalent circuit of OUT pin	7
Fig. 3.4	Equivalent circuit of SUB and GND pins	7
Fig. 3.5	Equivalent circuit of IN pin	7
Fig. 3.6	Equivalent circuit of DIAG pin	7
Fig. 4.1	Timing chart of normal operation	8
Fig. 5.1	Reverse polarity protection	9
Fig. 5.2	Load short detection	10
Fig. 5.3	V _{RISref} - R _{IS}	11
Fig. 5.4	Relationship between V _{RISref} and V _{ISOC}	11
Fig. 5.5	Timing chart of load short detection operation	12
Fig. 5.6	Charge pump equivalent circuit	13
Fig. 5.7	Charge pump circuit operation	14
Fig. 5.8	Operation waveforms of each node in charge pump circuit	15
Fig. 5.9	Charge pump voltage monitor circuit	16
Fig. 5.10	V _{DD} pin overvoltage protection circuit	16
Fig. 5.11	Image of V _{DD} pin overvoltage protection operation	16
Fig. 6.1	Supply current IDD(off) measurement circuit	17
Fig. 6.2	Supply current I _{DD(on)} measurement circuit	17
Fig. 6.3	High-level input voltage V _{IH} measurement circuit	17
Fig. 6.4	Low-level input voltage V _{IL} measurement circuit	17
Fig. 6.5	Input current I _{IH} measurement circuit	17
Fig. 6.6	Input current I _{IL} measurement circuit	17
Fig. 6.7	Output voltage V _{OUT1,2} measurement circuit	18
Fig. 6.8	Output clamp voltage V _{clamp} measurement circuit	18
Fig. 6.9	Output resistance R _{SINK} measurement circuit	18
Fig. 6.10	Diagnosis output leakage current IDIAGH measurement circuit	18
Fig. 6.11	Diagnosis output voltage V _{DIAGL} measurement circuit	19
Fig. 6.12	Short circuit detection voltage V _{ISOC} measurement circuit	19
Fig. 6.13	R _{ISref} pin output current I _{ISref(1),(2),(3)} measurement circuit	19
Fig. 6.14	Switching time ton, toff measurement circuit	19
Fig. 6.15	Output current under reverse power connection I _{REV(1), (2)} measurement circuit	20
Fig. 8.1	TPD7104AF evaluation board	24
Fig. 8.2	Circuit diagram of TPD7104AF evaluation board	25
Fig. 8.3	Layout of TPD7104AF evaluation board	27

List of Tables

Table 4.1 Truth table of normal operation	
Table 5.1 Truth table of load short detection operation	11
Table 8.1 BOM list	26

1. Product overview

The TPD7104AF is a high-side gate driver IC for N-channel MOSFETs, designed for applications such as semiconductor relays and load switches. By selecting the most suitable MOSFET for the system, the IC can accommodate a wide range of applications. This IC incorporates power reverse connection protection and load short-circuit (overcurrent) detection circuits.

2. Application circuit example

2.1. Application example of load switch circuit (disable reverse polarity protection)

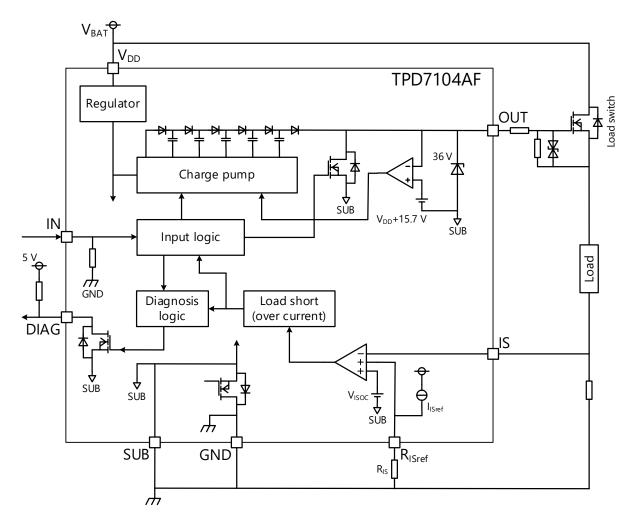


Fig. 2.1 Block diagram (load switch circuit)

2.2. Application example of reverse polarity protection circuit (enable reverse polarity protection)

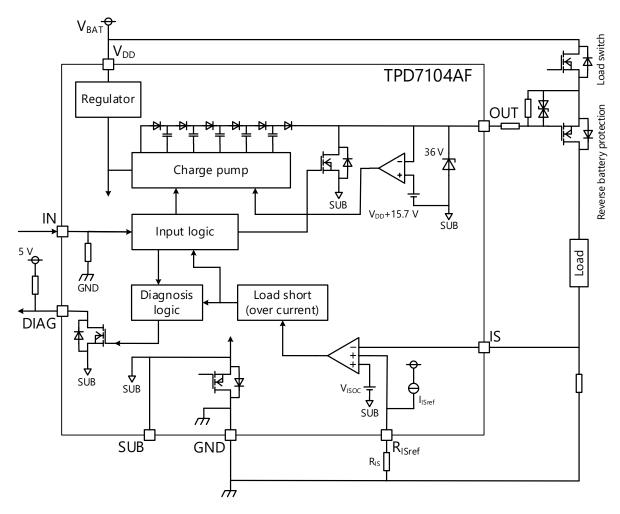


Fig. 2.2 Block diagram (reverse polarity protection)

3. Terminal equivalent circuit

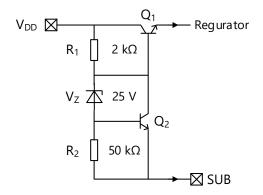


Fig. 3.1 Equivalent circuit of V_{DD} pin

Fig. 3.2 Equivalent circuit of IS and R_{ISref} pins

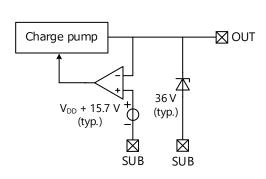


Fig. 3.3 Equivalent circuit of OUT pin

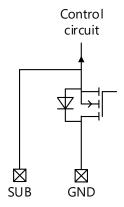


Fig. 3.4 Equivalent circuit of SUB and GND pins

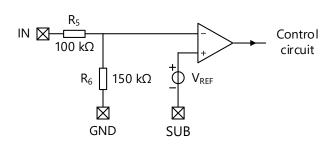


Fig. 3.5 Equivalent circuit of IN pin

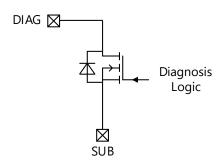


Fig. 3.6 Equivalent circuit of DIAG pin

4. Normal operation

TPD7104AF controls the output voltage at the OUT pin according to the input level at the IN pin, thereby driving an external N-channel MOSFET. When $V_{IN} = V_{IL}$, the OUT pin outputs Low, turning off the external N-channel MOSFET, and the DIAG pin outputs High. When $V_{IN} = V_{IH}$, the OUT pin outputs High, turning on the external N-channel MOSFET, and the DIAG pin outputs Low. Ensure that the voltage at the V_{DD} pin remains within the operating range (5 V to 18 V) during operation.

 VIN
 VOUT
 VDIAG
 External N-channel MOSFET

 L
 L
 H (Note)
 OFF

 H
 H
 L
 ON

Table 4.1 Truth table of normal operation

Note: The DIAG output is configured as an N-channel open-drain MOSFET. When V_{DIAG} is 'H', the MOSFET is OFF.

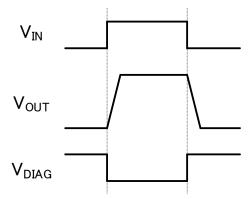


Fig. 4.1 Timing chart of normal operation

5. Description of each function or circuit

5.1. Reverse polarity protection function

TPD7104AF is equipped with a reverse polarity protection function. This function prevents current from flowing into the IC from the GND pin when the power supply is connected in reverse, thereby protecting the IC. In this case, ensure that the voltage at each pin does not exceed the absolute maximum ratings. In addition, since the OUT pin is pulled down to the V_{DD} pin through an internal resistor, the external N-channel MOSFET remains off. When using this function, leave the SUB pin open. If this function is not used, short the SUB pin and the GND pin externally.

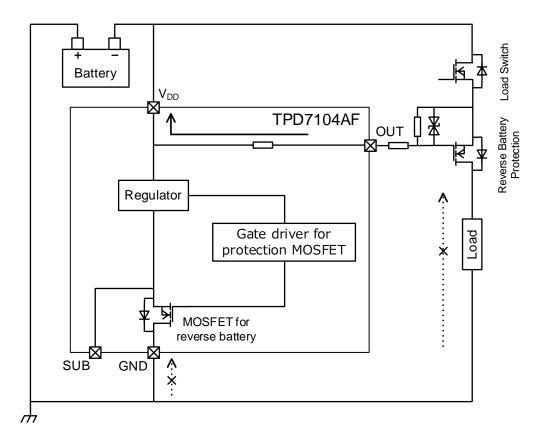


Fig. 5.1 Reverse polarity protection

5.2. Load short (overcurrent) protection function

TPD7104AF is equipped with a load short (overcurrent) protection function. This function latches VOUT output to Low, turns off the external N-channel MOSFET, and latches V_{DIAG} to High if V_{IS} remains at or above the load short detection voltage threshold V_{LSref} for the filter time of 1.8 μ s (typical). V_{IS} is generated by passing the load current (I_{LOAD}) through the shunt resistor (R_{SHUNT}) inserted between the IS pin and GND. The threshold value V_{LSref} is determined as the smaller of the following two values: (1) V_{ISOC} (1.02 V_{ISOC}), which is a fixed voltage generated internally in the IC, and (2) V_{RISref} (the voltage at the R_{ISref} pin), which is the product of the resistance R_{IS} (variable) inserted between the R_{ISref} pin and GND and the internally generated current I_{ISref} (a fixed value of 38 μ A (typ.)). If (2) is not used, leave the R_{ISref} pin open. To release the latch, set V_{IN} from V_{IL} to V_{IH} . In addition, if this function is not used, short the IS pin to GND.

The load short detection current threshold can be calculated using the following (Eq. 5-1) to (Eq. 5-2-2).

(1) When the R_{ISref} pin is left open:

Load short detection current threshold =
$$\frac{V_{ISOC}}{R_{SHUNT}}$$
 (Eq. 5-1)

(2) When a resistor is connected to the R_{ISref} pin:

Load short detection current threshold =
$$\frac{V_{RISref}}{R_{SHIINT}}$$
 (Eq. 5-2-1)

(2 - 2) If V_{ISOC} < V_{RISref} (= I_{ISref} * R_{IS}):

Load short detection current threshold =
$$\frac{V_{ISOC}}{R_{SHIINT}}$$
 (Eq.5-2-2)

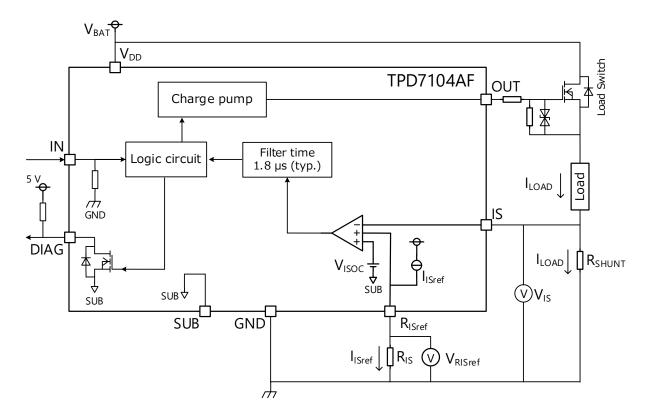


Fig. 5.2 Load short detection

V _{IN}	V _{IS}	V _{OUT}	V _{DIAG}	External N-channel MOSFET	Notes
Н	< V _{LSref}	Н	L	ON	Normal operation
Н	> V _{LSref}	L (latch)	H (latch)	OFF	Load short detection operation

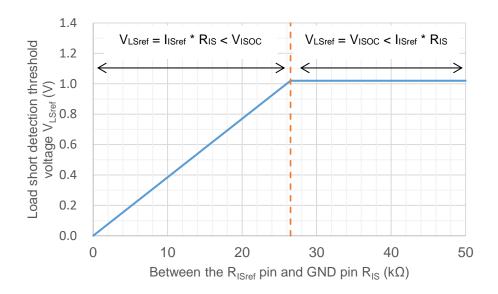


Fig. 5.3 V_{RISref} - R_{IS}

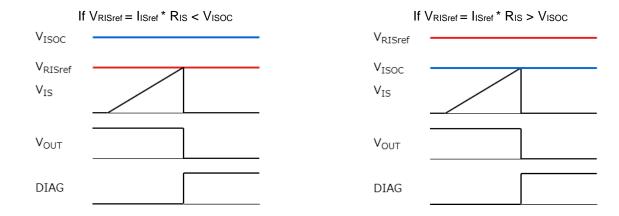


Fig. 5.4 Relationship between V_{RISref} and V_{ISOC}

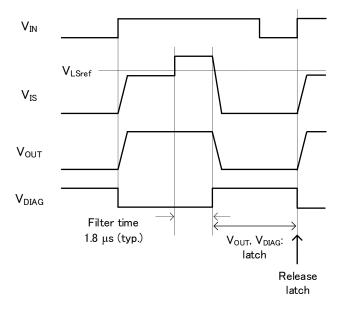


Fig. 5.5 Timing chart of load short detection operation

5.3. Charge pump circuit

The charge pump circuit is a boost power supply circuit for generating the gate-driving voltage of an external N-channel MOSFET. For high-side switches, when the external N-channel MOSFET is turned on, the source potential becomes nearly equal to the supply voltage. Therefore, to maintain the on-state, it is necessary to apply a voltage plus 10 to 15 V to the gate terminal. The charge pump circuit generates this voltage inside the IC. TPD7104AF incorporates a Dickson-type charge pump circuit, which consists of diodes, capacitors, and inverter circuits as shown in Fig. 5.6. The boosted voltage $V_{CP(OUT)}$ can be calculated using (Eq. 5-3).

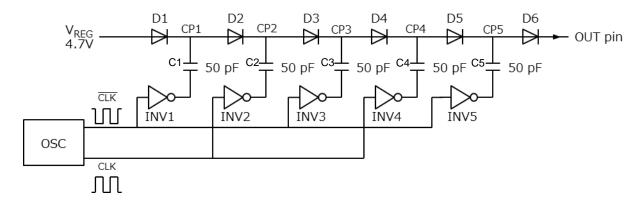


Fig. 5.6 Charge pump equivalent circuit

$$V_{CP(OUT)} = N * (V_{REG} - V_F)$$
 (Eq. 5-3)

N : Number of stages

V_{REG}: Power supply voltage for control circuit (V)

V_F: Diode forward voltage (V)

Fig. 5.7 illustrates the operation of the Dickson-type charge pump circuit. Here, it is assumed that the voltage amplitudes of CLK and $\overline{\text{CLK}}$ are equal to that of V_{REG} .

Operation 1

When $\overline{\text{CLK}}$ is at the "L" level, capacitor C1 is charged from V_{REG} through diode D1, causing the voltage across C1 to become V_{REG} - V_{F} and voltage across CP1 swings between $2V_{\text{REG}}$ - V_{F} and V_{REG} - V_{F} .

Operation 2

When $\overline{\text{CLK}}$ is at the "H" level and CLK is at the "L" level, the charge stored in C1 charges C2 through D2, causing the voltage across C2 to become $2V_{\text{REG}}$ to $2V_{\text{F}}$, and voltage across CP2 swings between $3V_{\text{REG}}$ - $2V_{\text{F}}$ and $2V_{\text{REG}}$ - $2V_{\text{F}}$.

Operation 3

When $\overline{\text{CLK}}$ is at the "L" level and CLK is at the "H" level, the charge stored in C2 charges C3 through D3, causing the voltage across C3 to become $3V_{\text{REG}}$ to $3V_{\text{F}}$, and voltage across CP3 swings between $4V_{\text{REG}}$ - $3V_{\text{F}}$ and $3V_{\text{REG}}$ - $3V_{\text{F}}$.

Operation 4

When $\overline{\text{CLK}}$ is at the "H" level and CLK is at the "L" level, the charge stored in C3 charges C4 through D4, causing the voltage across C4 to become $4V_{REG}$ - $4V_{F}$, and voltage across CP4 swings between $5V_{REG}$ - $4V_{F}$ and $4V_{REG}$ - $4V_{F}$.

Operation 5

When $\overline{\text{CLK}}$ is at the "L" level and CLK is at the "H" level, the charge stored in C4 charges C5 through D5, causing the voltage across C5 to become $5V_{REG}$ - $5V_{F}$, and voltage across CP5 swings between $6V_{REG}$ - $5V_{F}$ and $5V_{REG}$ - $5V_{F}$.

Operation 6

The charge stored in C5 drives the gate of the external N-channel MOSFET with the voltage that is eventually boosted to 6 * (V_{REG} - V_F) through D6.

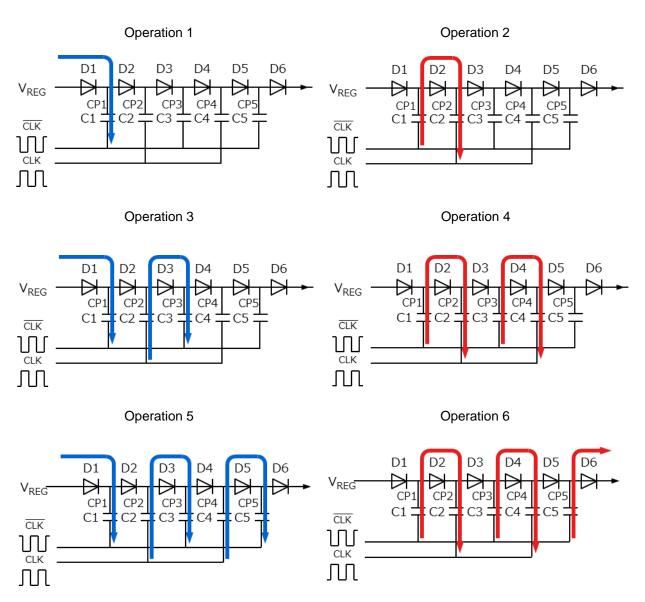


Fig. 5.7 Charge pump circuit operation

The voltage waveforms at the nodes of the charge pump circuit are as shown in Fig. 5.8. When $V_{REG} = 4.7 \text{ V}$ and $V_F = 0.7 \text{ V}$, the output voltage calculated from (Eq. 5-3) becomes $V_{CP(OUT)} = 24 \text{ V}$, which is almost the same as the $V_{CP(OUT)}$ value shown in Fig. 5.8.

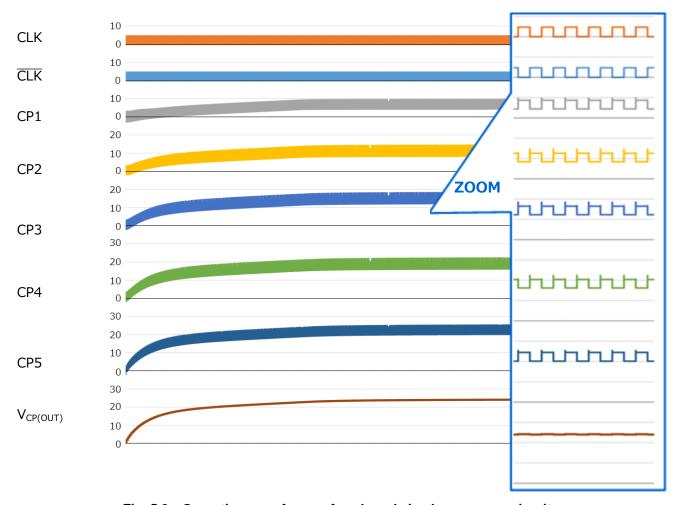


Fig. 5.8 Operation waveforms of each node in charge pump circuit

5.4. Charge pump voltage monitor circuit

TPD7104AF incorporates a charge pump voltage monitor circuit inside the OUT pin. This circuit stops the charge pump operation to protect the external N-channel MOSFET if the charge pump output voltage rises above V_{DD} + 15.7 V (typ.) due to external noise or other factors. A 36 V (typ.) Zener diode is also incorporated between the OUT and the SUB pins to protect the internal elements.

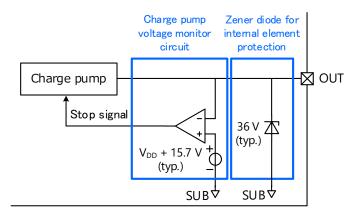
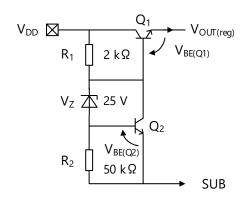



Fig. 5.9 Charge pump voltage monitor circuit

5.5. V_{DD} pin overvoltage protection circuit

TPD7104AF incorporates a series regulator, as shown in Figure 5.10, inside the V_{DD} pin to protect the internal elements when an overvoltage is applied to the V_{DD} pin. The output voltage of this regulator can be calculated using (Eq. 5-4). The power supply voltage for each control circuit is provided from the power supply for the control circuits connected to the subsequent stage through this regulator. When V_{DD} rises above 25 V, the output voltage of the series regulator is clamped at approximately 25 V, as shown in Figure 5.11.

$$V_{OUT(reg)} \approx V_Z + V_{BE(Q2)} - V_{BE(Q1)}$$
 (Eq. 5-4)

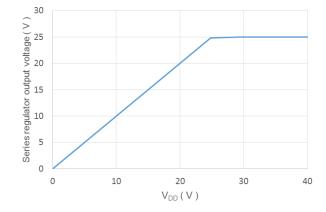


Fig. 5.10 V_{DD} pin overvoltage protection circuit

Fig. 5.11 Image of V_{DD} pin overvoltage protection operation

6. Electrical characteristics measurement circuit

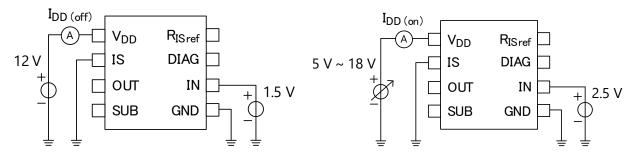


Fig. 6.1 Supply current I_{DD(off)} measurement circuit

Fig. 6.2 Supply current I_{DD(on)} measurement circuit

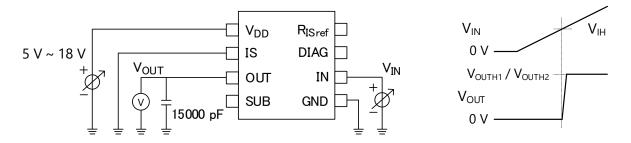


Fig. 6.3 High-level input voltage V_{IH} measurement circuit

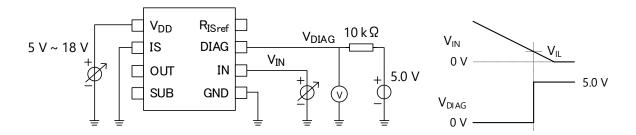


Fig. 6.4 Low-level input voltage V_{IL} measurement circuit

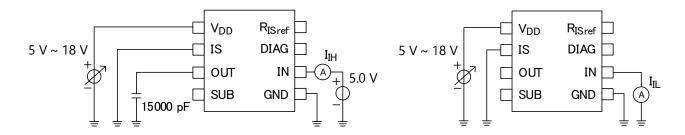


Fig. 6.5 Input current I_{IH} measurement circuit

Fig. 6.6 Input current I_{IL} measurement circuit

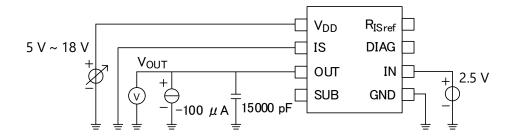


Fig. 6.7 Output voltage V_{OUT1,2} measurement circuit

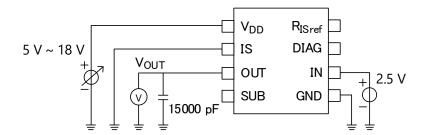


Fig. 6.8 Output clamp voltage V_{clamp} measurement circuit

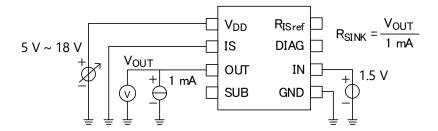


Fig. 6.9 Output resistance R_{SINK} measurement circuit

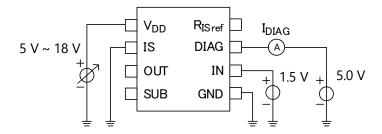


Fig. 6.10 Diagnosis output leakage current IDIAGH measurement circuit

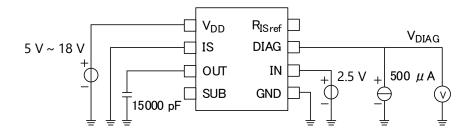


Fig. 6.11 Diagnosis output voltage V_{DIAGL} measurement circuit

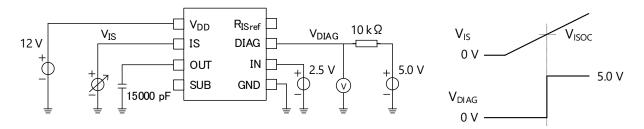


Fig. 6.12 Short circuit detection voltage V_{ISOC} measurement circuit

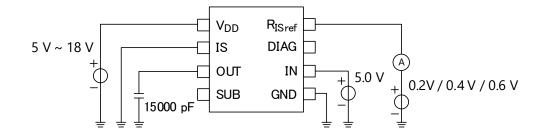


Fig. 6.13 R_{ISref} pin output current I_{ISref(1),(2),(3)} measurement circuit

Fig. 6.14 Switching time ton, toff measurement circuit

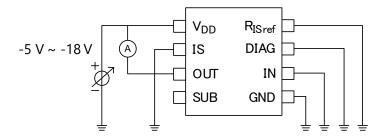


Fig. 6.15 Output current under reverse power connection I_{REV(1), (2)} measurement circuit

7. Definition and terminology

7.1. Absolute maximum rating

Term	Symbol	Description
Power supply voltage (DC)	V _{DD(1)}	DC voltage rating applied to the V_{DD} pin ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Power supply voltage (pulse)	V _{DD(2)}	Pulse voltage rating applied to the V_{DD} pin ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Power supply reverse connection	- V _{DD(3)}	Voltage rating applied to the V_{DD} pin ensuring no IC destruction, characteristic degradation, or reliability deterioration, even when a positive power supply is applied to the GND pin and a negative power supply is applied to the V_{DD} pin.
Input voltage	VIN	Voltage rating applied to the IN pin ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Output source current	I _{OUT(-)}	Current rating applied to the OUT pin (source current) ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Output sink current	I _{OUT(+)}	Current rating applied to the OUT pin (sink current) ensuring no IC destruction, characteristic degradation, or reliability deterioration.
IS pin Voltage	Vis	Voltage rating applied to the IS pin ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Diagnosis output voltage	V_{DIAG}	Voltage rating applied to the DIAG pin ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Diagnosis pin current	I _{DIAG}	Current rating applied to the DIAG pin ensuring no IC destruction, characteristic degradation, or reliability deterioration.
Power dissipation	P_D	Maximum allowable power dissipation throughout the operating range, ensuring no IC damage.
Operating temperature	T_{opr}	Ambient temperature range required for proper IC operation.
Junction temperature	Tj	Maximum allowable junction temperature during IC operation.
Storage temperature	T_{stg}	Ambient temperature range for storage or transportation without applied voltage applied to IC.

7.2. Electrical characteristics

Term	Symbol	Description
Operating supply voltage	V _{DD(opr)}	The supply voltage range that guarantees the normal operation and electrical characteristics of this IC within the specified junction temperature range.
Supply current	I _{DD(off)}	The current flowing into the V_{DD} pin when the IC is turned off by setting V_{IN} to V_{IL} within the specified junction temperature range.
Supply current	I _{DD(on)}	The current flowing into the V_{DD} pin when the IC is turned on by setting V_{IN} to V_{IH} within the specified junction temperature range.
High level input voltage	Vıн	The voltage at the IN pin that ensures the internal control circuit operates normally and the external N-channel MOSFET turns on within the specified junction temperature range.
Low level input voltage	VIL	The voltage at the IN pin that ensures the internal control circuit operates normally and the external N-channel MOSFET turns off within the specified junction temperature range.
Input current	Іін	The current flowing into the IN pin when the voltage specified in the measurement condition is applied to the IN pin within the specified junction temperature range.
Input current	Iı∟	The current flowing into the IN pin when the voltage specified in the measurement condition is applied to the IN pin within the specified junction temperature range.
High level output voltage	Vоитн1 Vouth2	The output voltage at the OUT pin when the voltage and current specified in the measurement conditions are applied within the specified junction temperature range.
Output clamp voltage	V_{clamp}	The clamp voltage at the OUT pin when the voltage specified in the measurement conditions is applied within the specified junction temperature range.
Output resistance	Rsink	The resistance value between the OUT pin and the GND pin when the voltage and current specified in the measurement conditions are applied within the specified junction temperature range.
Diagnostic output leakage current	Idiagh	The leakage current flowing into the DIAG pin when the voltage specified in the measurement conditions is applied within the specified junction temperature range.
Diagnostic output voltage	Vdiagl	The on-voltage at the DIAG pin when the voltage and current specified in the measuring conditions are applied within the specified junction temperature range.
Short circuit detection voltage	Visoc	The reference voltage for load short detection inside the IC when the voltage specified in the measurement conditions is applied within the specified junction temperature range.
R _{ISref} pin output current	I ISref	The current flowing into the R _{ISref} pin when the voltage specified in the measurement conditions is applied within the specified junction temperature range.

Term	Symbol	Description			
Switching time	ton toff	ton: delay time from $V_{IN} = V_{IH}$ (rising) to $V_{OUT} = V_{DD} + 4 V$ toff: delay time from $V_{IN} = V_{IL}$ (falling) to $V_{OUT} = 1.5 V$			
Output current for reverse connection	I _{REV(1)} I _{REV(2)}	The value of current flowing into the OUT pin when the voltage specified by the measurement condition is applied within the specified junction temperature range.			

8. Evaluation board

8.1. Appearance of evaluation board

We provide this product along with an evaluation board equipped with peripheral devices. By using this board, you can check the operation and the protection diagnosis function when using an actual load.

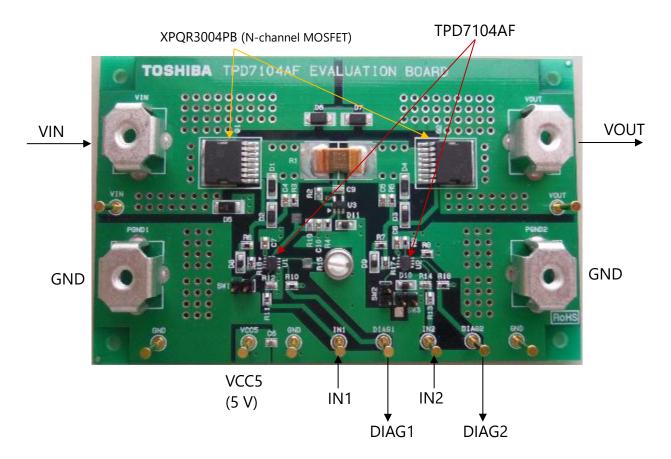


Fig. 8.1 TPD7104AF evaluation board

8.2. Circuit diagram for evaluation board

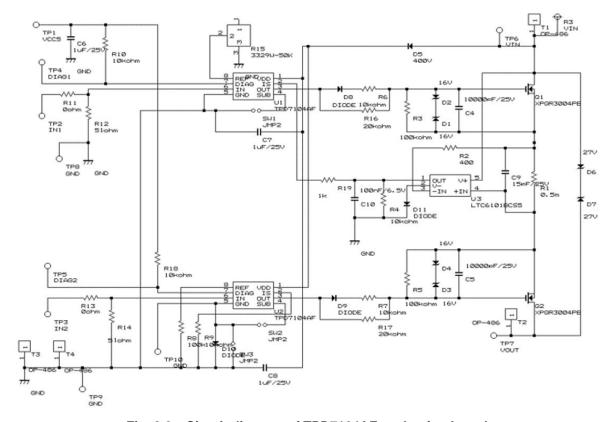


Fig. 8.2 Circuit diagram of TPD7104AF evaluation board

8.3. Bill of materials

Table 8.1 BOM list

No.	item	p/n	maker	spec.	location	PKG	QTY	Note.
1	IC	TPD7104AF	Toshiba	driver IC	U1, U2	PS-8	2	
2		LTC6101HVACS5	LT	sense amp.	U3	TSOT-23	1	
3	Power MOS	XPQR3004PB	Toshiba	Nch / 40V	Q1, Q2	L-TOGL	2	
4	R	BVS-M-R0005-1.0	Isabellenhuette	0.5 mΩ	R1		1	
5				300 Ω	R2	1608	1	
6		ERJP03F1003V	Panasonic	100 kΩ	R3, R5, R8	1608	3	
7		ERJP03F1002V	Panasonic	10 kΩ	R4, R6, R7, R9, R10, R18	1608	5	
8		ERJ3GEY0R00V	Panasonic	0 Ω	R11, R13	1608	2	
9		RR0816Q-510-D	Susumu	51 Ω	R12, R14	1608	2	
10		3329H	BOURNS	0 to 50 kΩ	R15	-	1	
11		CR0603-FX-2002ELF	BOURNS	20 kΩ	R16, R17	1608	2	
12				1 kΩ	R19	1608	1	
13	O	GRM155B11E103KA01D	Murata	10000pF / 25V	C4, C5	1005	2	
14		GRM188B31E105KA	Murata	1 μF / 25V	C6, C7, C8	1608	3	
15		C0603CH1E150J	TDK	15pF / 25V	C9	0603	1	
16				100 nF	C10	1608	1	
17	TP	ST2-2-2			TP1 to TP10		10	
18	D	CRZ16	Toshiba	16 V Zdi	D1 to D4	S-FLAT	4	
19		CMG06A	Toshiba	400 V / 1A	D5	M-FLAT	1	
20		CMZ27	Toshiba	27V / 1W	D6, D7	S-FLAT	2	
21		1SS352	Toshiba	80 V / 100 mA	D8 to D11	SOD-323	4	
22	terminal	OP-486	Osada	40 A DC max	T1 to T4		4	
23	jumper	XJ8T	Omron	2 poles / 2.54 mm	SW1 to SW3		3	

8.4. Board layout

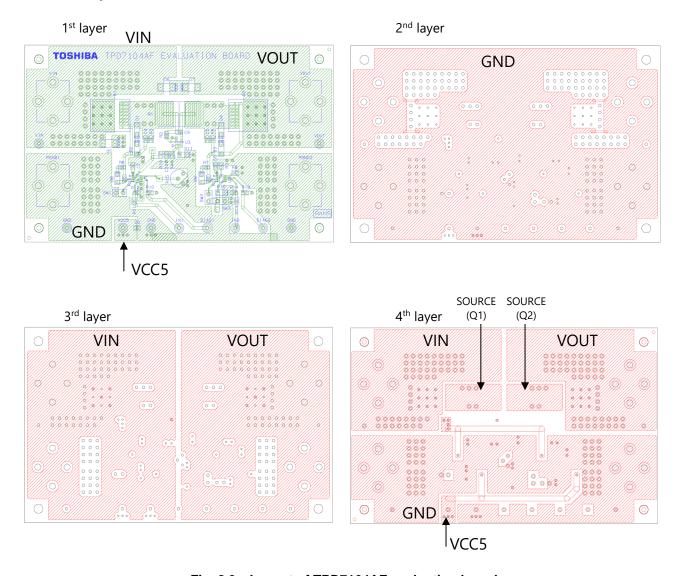


Fig. 8.3 Layout of TPD7104AF evaluation board

Points to note in the description

1. Block diagram

Function blocks, circuits, constants, etc. in the block diagram are partially omitted or simplified for explanation of functions.

2. Equivalent circuit

The equivalent circuit may be partially omitted or simplified for explanation of the circuit.

3. Measurement circuit

The measurement circuit may be partially omitted or simplified for explanation of the measurement conditions.

IC usage consideration

Notes on handing of ICs

The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Exceeding the maximum rating may cause destruction, damage, and deterioration, and may result in injury due to explosion or burning.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY
 CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation,
 equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment,
 equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or
 explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE,
 TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our
 website.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
 infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any
 intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR
 PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
 INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING
 WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2)
 DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR
 INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for
 the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass
 destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations
 including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export
 and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and
 regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including
 without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT
 OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices & Storage Corporation

https://toshiba.semicon-storage.com/