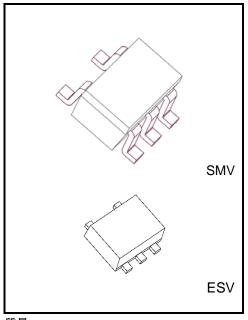


東芝 CMOS 形リニア集積回路 シリコン モノリシック

TCR2EF シリーズ TCR2EE シリーズ


200 mA CMOS Low Dropout Regulator with Fast Load Transient Response

低ドロップアウト、低出力雑音電圧、コントロール端子付き、CMOS プロセスのシングル出力 LDO レギュレータです。

出力電圧は電圧固定タイプで 1.0 V から 5.0 V まで選択可能です。出力電流は最大 200 mA まで出力可能で、過電流保護回路、高速負荷過渡応答回路、オートディスチャージ機能を搭載しております。

また、ドロップアウト電圧は 180 mV (2.5 V 出力, I_{OUT} = 150 mA) と低ドロップアウト特性であり、同時に 35 μ V $_{rms}$ (2.5 V 出力) の低出力雑音電圧特性と Δ V $_{OUT}$ = \pm 60 mV (I_{OUT} = 1 mA \Leftrightarrow 150 mA, I_{OUT} =1.0 μ F) の優れた負荷過渡応答特性を実現しております。

パッケージは汎用 SMV(SOT-25)と小型 ESV(SOT-553)をラインアップしており、低ノイズ出力特性と優れた出力安定性を求めるアナログ・RF 回路などに最適です。

質量:

SMV (SOT-25)(SC-74A): 16 mg (標準) ESV (SOT-553): 3.0 mg (標準)

特長

• 低ドロップアウト電圧です。

V_{DO} = 150 mV (標準) @ 3.0 V 出力, I_{OUT} = 150 mA

V_{DO} = 180 mV (標準) @ 2.5 V 出力, I_{OUT} = 150 mA

V_{DO} = 230 mV (標準) @ 1.8 V 出力, I_{OUT} = 150 mA

VDO = 380 mV (標準) @ 1.2 V 出力, IOUT = 150 mA

V_{DO} = 510 mV (標準) @ 1.0 V 出力, I_{OUT} = 150 mA

- 低出力雑音電圧です。 (V_{NO} = 35 µV_{rms} (標準) @ 2.5 V 出力, I_{OUT} = 10 mA, 10 Hz < f < 100 kHz)
- 負荷過渡応答特性に優れています。 (∠Vout = ±60 mV (標準) @ lout = 1 mA ⇔ 150 mA, Cout =1.0 μF)
- 低バイアス電流です。 (I_B = 35 µA (標準) @ I_{OUT} = 0 mA)
- 高リップル圧縮度です。 (73 dB (標準) @ 2.5 V 出力, I_{OUT} = 10 mA, f = 1 kHz)
- 幅広い出力電圧ラインアップです。 (Vout = 1.0 ~ 5.0 V)
- 高出力電圧精度 ±1.0 % (1.8 V ≦ V_{OUT})
- 過電流保護回路内蔵です。
- オートディスチャージ機能内蔵です。
- コントロール端子はプルダウン接続です。
- セラミックコンデンサを使用可能です。 (C_{IN} = 0.1μF, C_{OUT} =1.0 μF)
- 汎用パッケージ SMV(SOT-25)(2.8 mm x 2.9 mm x 1.1 mm)および ESV(SOT-553) (1.6 mm x 1.6 mm x 0.55 mm)です。

製品量産開始時期 2012-10

絶対最大定格 (Ta = 25°C)

		項	目			記号		定	格		単位	
入		力	電	Æ	Ξ	VIN	6.0				V	
⊐	ン	Ь П	ール	電圧	=	V _C T			V			
出		力	電	Æ	=	Vout		V				
			電				SMV	20	0	(注 1)	- mW	
消		費		J		P_{D}	Olviv	58	0	(注 2)		
/H		ę ę	电	,	'	י ט	F0\/	15	0	(注 1)	11100	
							320 320		0	(注 3)		
接		合	温	厚	F	Tj		150	0		°C	
保		存	温	厚	Ę	T _{stg}	-55~150				°C	

注: 本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格/動作範囲以内での使用においても、高負荷 (高温および大電流/高電圧印加、多大な温度変化等) で連続して使用される場合は、信頼性が著しく低下するおそれがあります。 弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および個別信頼性情報 (信頼性試験レポート、推定故障率等) をご確認の上、適切な信頼性設計をお願いします。

注 1: 単体

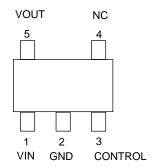
注 2: 基板付け時定格 (FR4 基板: 25.4 mm × 25.4 mm × 1.6 mm)

注 3: 基板付け時定格 (FR4 基板: 30 mm × 30 mm × 0.8 mm)

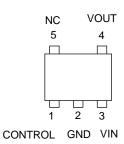
動作範囲

項目									記号		定格		単位
入		力 電 圧 V _{IN} 1.5~5.5 (注					(注 4)	V					
П	ン	۲]	_	ル	電	圧	Vст	0 ~ 5.5			V
出			カ			電		圧	Vout		V		
出		カ 電 流 l _{OUT}						流	lout	DC	200	(注 5)	mA
動			作			温		度	Topr		°C		
出	カ	п	ン	デ	ン	サ	容	量	Cout		_		
入	力	П	ン	デ	ン	サ	容	量	C _{IN}		_		

注 4: IOUT = 1 mA 時


出力電圧別ドロップアウト電圧表 (5ページ) をご参照の上、絶対最大定格の接合温度、及び、動作温度の範囲内でご使用ください。

注 5: 本製品を動作範囲の上限またはその付近で長時間使用させると、信頼性に著しい悪影響を与える可能性があります。



端子接続図 (top view)

SMV(SOT-25)(SC-74A)

ESV(SOT-553)

品名、出力電圧、現品表示一覧表

品	名	Vout	現品表示	品 名		Vout	現品表示	
SMV(SOT-25)	ESV(SOT-553)	(V)(標準)		SMV(SOT-25)	ESV(SOT-553)	(V)(標準)		
TCR2EF10	TCR2EE10	1.0	1N0	TCR2EF28	TCR2EE28	2.8	2N8	
TCR2EF105	TCR2EE105	1.05	1NA	TCR2EF285	TCR2EE285	2.85	2ND	
TCR2EF11	TCR2EE11	1.1	1N1	TCR2EF29	TCR2EE29	2.9	2N9	
TCR2EF115	TCR2EE115	1.15	1NB	-	TCR2EE295	2.95	2NE	
TCR2EF12	TCR2EE12	1.2	1N2	TCR2EF30	TCR2EE30	3.0	3N0	
TCR2EF125	TCR2EE125	1.25	1NC	-	TCR2EE305	3.05	3NA	
TCR2EF13	TCR2EE13	1.3	1N3	TCR2EF31	TCR2EE31	3.1	3N1	
TCR2EF135	TCR2EE135	1.35	1ND	TCR2EF32	TCR2EE32	3.2	3N2	
TCR2EF14	TCR2EE14	1.4	1N4	TCR2EF33	TCR2EE33	3.3	3N3	
-	TCR2EE145	1.45	1NE	-	TCR2EE335	3.35	3ND	
TCR2EF15	TCR2EE15	1.5	1N5	-	TCR2EE34	3.4	3N4	
-	TCR2EE17	1.7	1N7	-	TCR2EE35	3.5	3N5	
TCR2EF18	TCR2EE18	1.8	1N8	TCR2EF36	TCR2EE36	3.6	3N6	
-	TCR2EE185	1.85	1NF	-	TCR2EE39	3.9	3N9	
TCR2EF19	TCR2EE19	1.9	1N9	TCR2EF40	TCR2EE40	4.0	4N0	
TCR2EF20	TCR2EE20	2.0	2N0	TCR2EF41	TCR2EE41	4.1	4N1	
-	TCR2EE24	2.4	2N4	-	TCR2EE42	4.2	4N2	
TCR2EF25	TCR2EE25	2.5	2N5	TCR2EF45	TCR2EE45	4.5	4N5	
TCR2EF27	TCR2EE27	2.7	2N7	-	TCR2EE48	4.8	4N8	
-	TCR2EE275	2.75	2NF	TCR2EF50	TCR2EE50	5.0	5N0	

その他の電圧ランクは営業窓口とご相談ください。

現品表示 (top view)

例) TCR2EF33 (3.3 V 出力)の場合

例) TCR2EE33 (3.3 V 出力)の場合

電気的特性

(特に指定がない場合, $V_{IN} = V_{OUT} + 1 V$, $I_{OUT} = 50$ mA, $C_{IN} = 0.1$ μF , $C_{OUT} = 1.0$ μF , $T_j = 25$ °C)

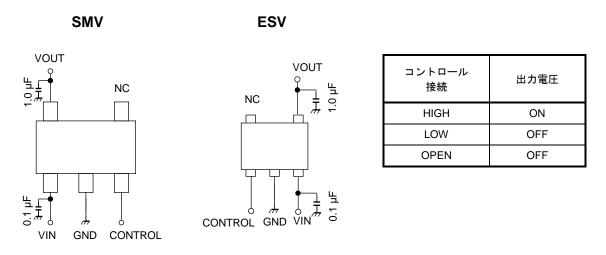
	項	目		記号	測定	条 件	最小	標準	最大	単位
出	ъ	電		E Vout	IOUT = 50 mA (注 6)	Vout <1.8 V	-18	_	+18	mV
1	71	电		VO01	1001 = 50 IIIA (± 6)	1.8V ≦ V _{OUT}	-1.0	_	+1.0	%
入	カ	電		E V _{IN}	I _{OUT} = 1 mA		1.5	1	5.5	V
入	カ	安	定	度 Reg·line	$\begin{aligned} V_{OUT} + 0.5 &\ V \leqq V_{IN} \leqq 5. \\ I_{OUT} = 1 &\ mA \end{aligned}$	5 V,	l	1	15	mV
負	荷	安	定	度 Reg·load	1 mA \leq I _{OUT} \leq 150 mA	1 mA ≤ I _{OUT} ≤ 150 mA			30	mV
バ	イ ア	ス	電	た I _B	I _{OUT} = 0 mA	_	35	60	μA	
ス	タ ン	バイ	電	危 I _{B (OFF)}	VCT = 0 V		0.1	1.0	μA	
۲	ロップ	アウ	ト電	E VDO	IOUT = 150 mA		180	230	mV	
丑	力 電 圧	温度	係	为 T _{CVO}	$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$		1	100		ppm/°C
出	力 雑	音	電	E VNO	$V_{IN} = V_{OUT} + 1 V$, I_{OUT} 10 Hz $\leq f \leq$ 100 kHz	= 10 mA, (注 7)	l	35	1	μV _{rms}
IJ	ップ	ル 圧	縮	度 R.R.	$V_{IN} = V_{OUT} + 1 \text{ V, } I_{OUT} = 10 \text{ mA,}$ $f = 1 \text{ kHz, } V_{Ripple} = 500 \text{ mV}_{p-p} $ (注 7)		ı	73	ı	dB
負	荷 過 渡	応答	特	± ⊿Vouτ	I _{OUT} = 1 mA⇔150mA, 0	C _{OUT} = 1.0 μF		±60	_	mV
П	ントロー	- ル 電	圧(ON) VCT (ON)	_	_	1.0	_	5.5	V
П	ントロー	- ル 電	圧 (OF	VCT (OFF)	_	_	0	_	0.4	V

注 6: IOUT を固定し、十分に出力電圧が安定した状態での規定値です。

注 7: 2.5 V 出力品です。

注 8: 出力 4.5 V 以上の上記特性表は、 $V_{IN} = V_{OUT} + 0.5 V$ 条件での規格値です。

出力電圧別ドロップアウト電圧表


(IOUT = 150 mA, CIN = 0.1 μ F, COUT = 1.0 μ F, Tj = 25°C)

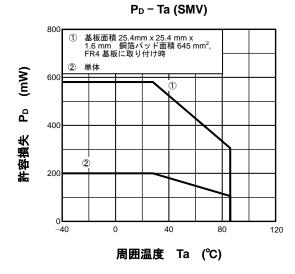
出力電圧	記 号	最 小	標準	最大	単位
1.0 V, 1.05 V		_	510	770	
1.1 V, 1.15 V		_	440	670	
1.2 V, 1.25 V		_	380	570	
1.3 V		_	350	470	mV
1.4 V	V_{DO}	_	310	420	
1.5 V ≦ V _{OUT} < 1.8 V		_	290	390	
1.8 V ≤ V _{OUT} < 2.5 V		_	230	310	
2.5 V ≦ V _{OUT} < 3.0 V		_	180	230	
3.0 V ≤ V _{OUT} ≤ 5.0 V		_	150	200	

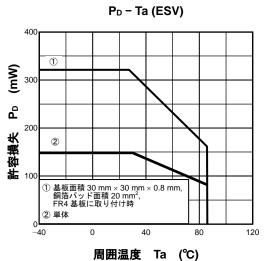
アプリケーションノート

1. 使用回路例

上図にロードロップアウトレギュレータの使用回路例を示します。入出力には安定動作のためコンデンサを接続してください。 (セラミックコンデンサの使用が可能です。)

2. 許容損失


TCR2EF シリーズおよび TCR2EE シリーズの許容損失は単体、基板実装時の両方を絶対最大定格で規定しております。 基板は以下に示すサイズ、パターンで測定しています。


熱抵抗評価基板

SMV

ESV

*基板材質: FR4 基板 基板面積 25.4 mm × 25.4 mm × 1.6 mm 銅箔パッド面積: 645 mm² *基板材質: FR4 基板 基板面積: 30 mm × 30 mm × 0.8 mm 銅箔パッド面積: 20 mm²

ご使用上の注意

● 出力コンデンサについて

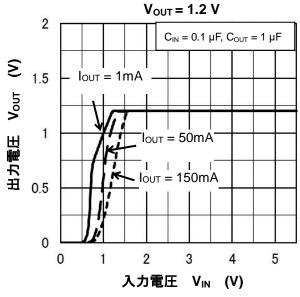
本製品はセラミックコンデンサが使用可能でありますが、種類によっては非常に大きな温度特性をもつ場合もあります。 コンデンサの選定にあたっては、使用環境を充分に考慮し、選定してください。また、セラミックコンデンサの ESR は 10Ω 以下のものを推奨いたします。

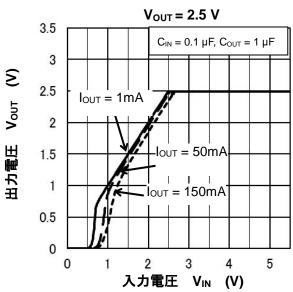
● 実装について

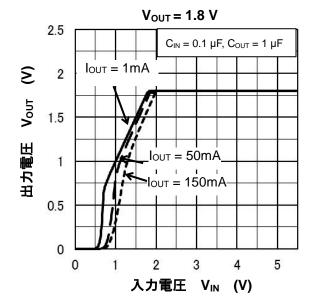
ICと出力コンデンサの距離が長いと、この配線抵抗のインピーダンスやL成分により位相補償に影響を及ぼす可能性があります。より安定した電源にするため、出力コンデンサはできるだけ ICの近くに実装し、V_{IN}と GND パターンはできるだけ大きくして配線インピーダンスを小さくしてください。

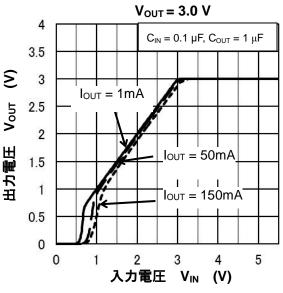
実使用状態では予想される最大許容損失に対して、できるだけ余裕をもった基板パターン設計をしてください。また、実際のご使用の際には周囲温度、入力電圧、出力電流等のパラメータを考慮の上、最大許容損失に対して、適当なディレーティング(一般的には最大値の 70~80 %)を考慮した設計をお願いします。

● 過電流保護回路について

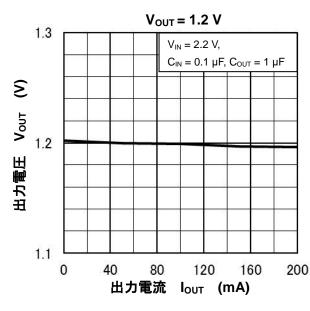

本製品はフォールドバックタイプの過電流保護回路を内蔵しておりますが、デバイスの動作を常に絶対最大定格内に抑える事を保証するものではございません。本デバイスの出力端子と GND 端子間が不完全なショートモードに陥った場合、本デバイスが破壊に至るおそれがあります。

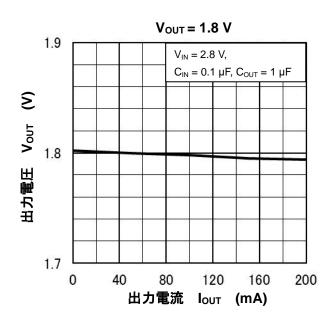

本デバイスのご使用にあたっては、上記及び当社「半導体信頼性ハンドブック」等に記載の絶対最大定格に対するディレーティングを考慮の上、いかなる場合においても絶対最大定格を超えないようご注意ください。なお、セットにおいてフェールセーフ等の充分な安全対策を施すことを推奨いたします。

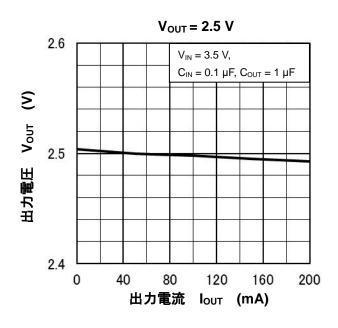


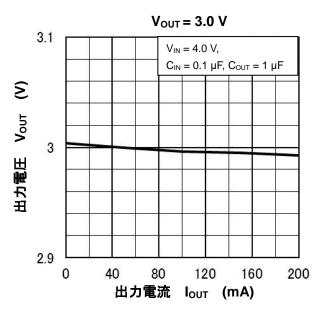

代表特性例(注)

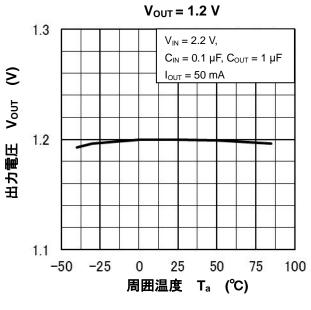
1) 出力電圧-入力電圧特性例

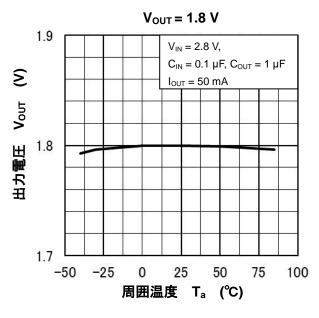


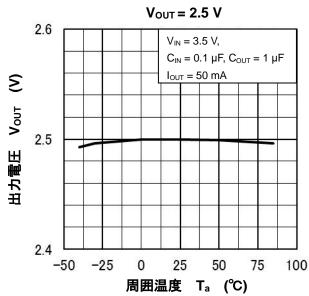


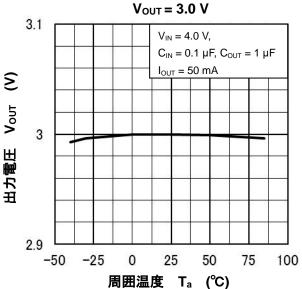



2) 出力電圧-出力電流特性例

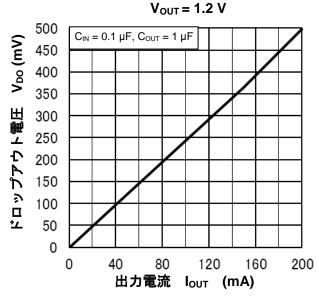


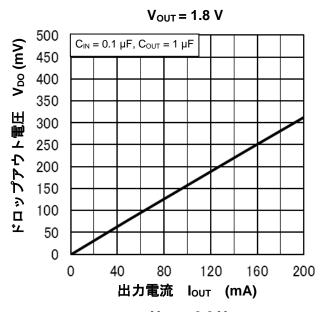


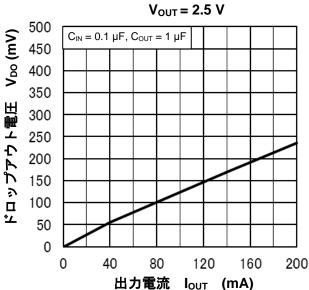


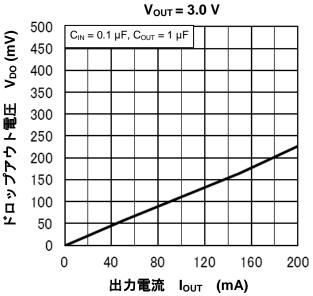


3) 出力電圧-周囲温度特性例

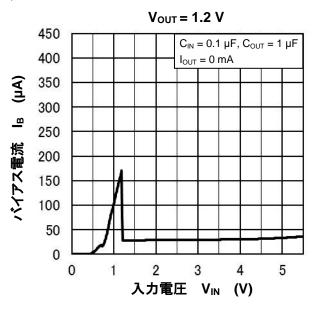


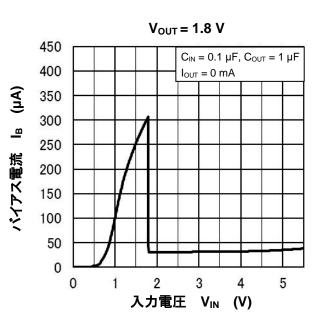


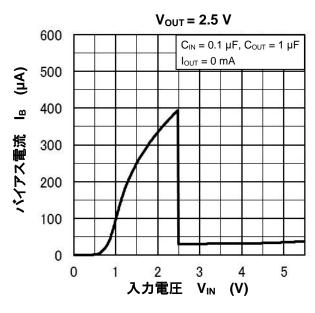


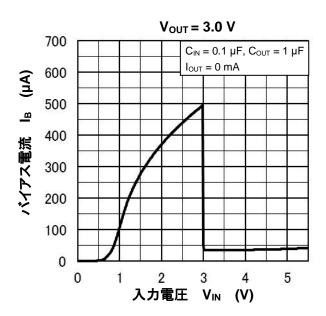


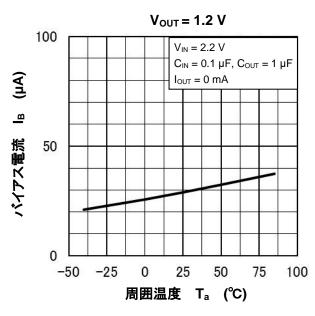
4) ドロップアウト電圧-出力電流特性例

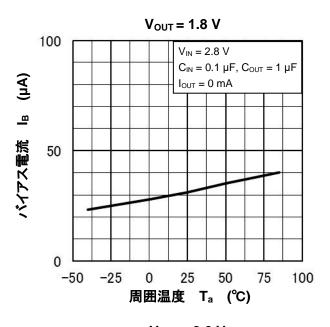


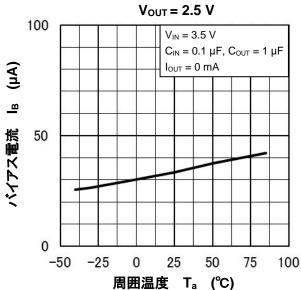


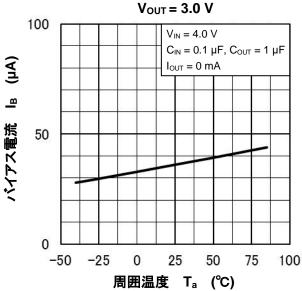



5) バイアス電流 - 入力電圧特性例

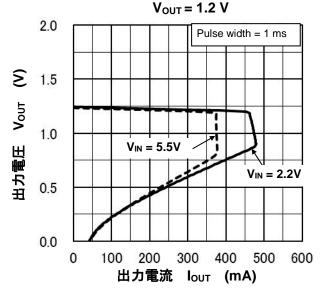


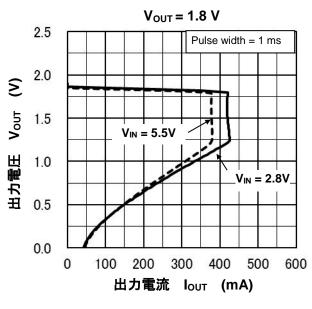


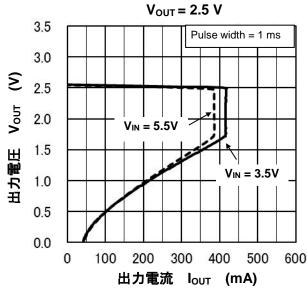


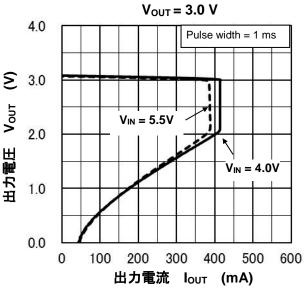


6) バイアス電流 - 周囲温度特性例



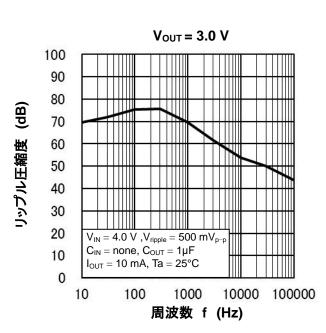


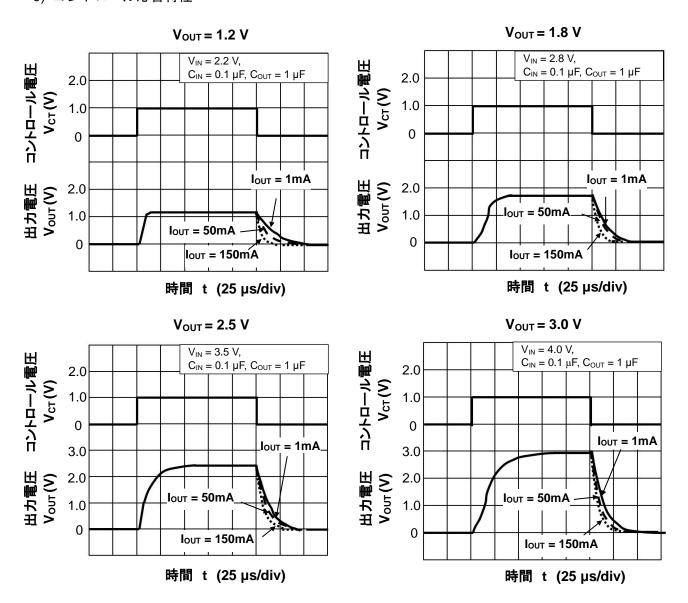


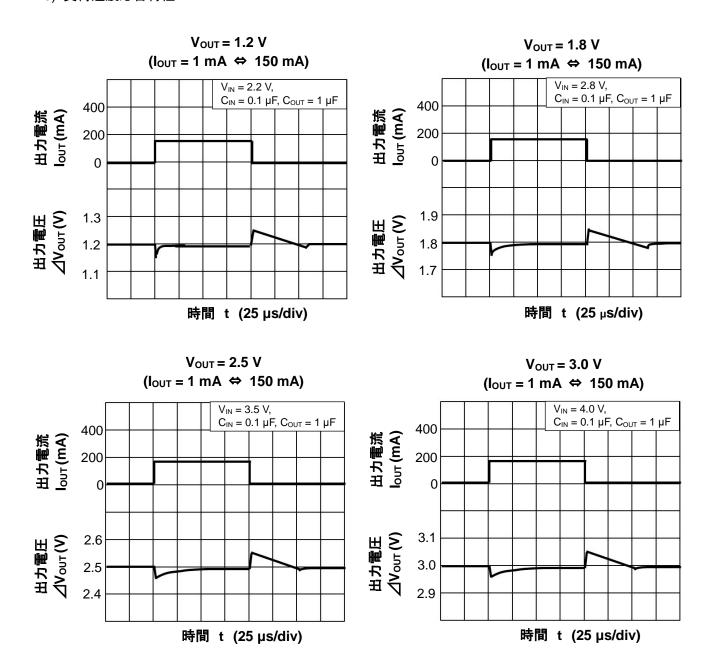


7) 出力電圧-出力電流例



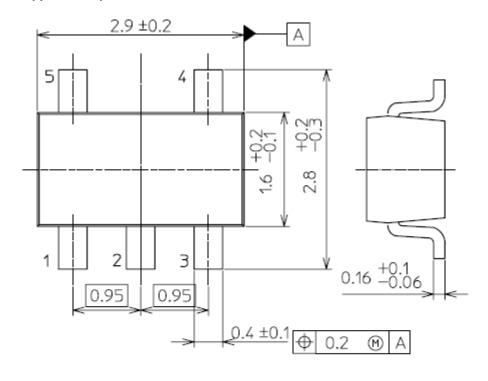


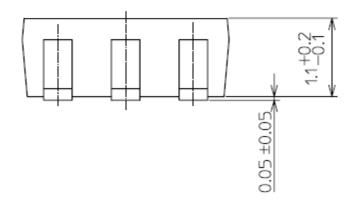

8) リップル圧縮度-周波数特性代表例



9) コントロール応答特性

10) 負荷過渡応答特性

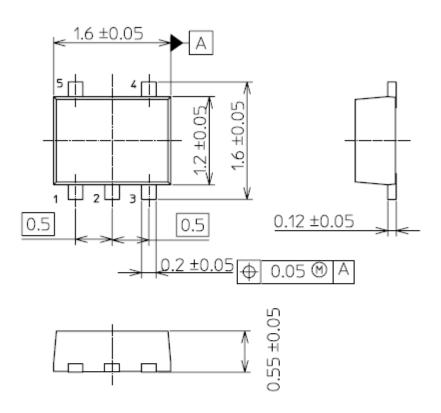

(注) 特性図の値は、特に指定のない限り保証値ではなく参考値です。



外形図

SMV (SOT-25)(SC-74A)

単位: mm




質量: 16 mg (標準)

外形図

ESV (SOT-553) 単位: mm

質量: 3.0 mg (標準)

製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。 本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- ◆ 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本 資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器(ヘルスケア除く)、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社 Web サイトのお問い合わせフォームからお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- ◆ 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- ◆ 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいは その他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸 出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

https://toshiba.semicon-storage.com/jp/

Toshiba Electronic Devices & Storage Corporation