
Introduction

1-1

Chapter 1 Introduction

This chapter is useful for readers who want a general understanding of the features of the TX19.

This chapter also provides a general description of how the TX19 RISC design differs from such

CISC processors as the 900/L1 from Toshiba.

1.1 Processor General Features

The TX19 is a family of high-performance, compact core microprocessors that offer the speed of a

32-bit RISC solution with the added advantage of a significantly reduced code size and low-power

performance of a 16-bit architecture. The instruction set of the TX19 includes as a subset the 32-bit

instructions of the TX39, which is based on MIPS Technologies, Inc.’s R3000A architecture. Thus

the TX19 preserves software compatibility forward from the TX39. Additionally, the TX19 supports

the MIPS16 Application-Specific Extensions (ASE) for improved code density.

The TX19 family of integrated processors and controllers is built on an TX19 core processor, an on-

chip bus and a selection of intelligent peripherals appropriate for specific applications. The TX19 is

available both as an ASIC-ready core and in a family of standard ASSP products.

16-Bit and 32-Bit ISA Modes

• The 16-bit instructions are object-code compatible with the MIPS16 ASE.

Note: The TX19 does not provide support for MIPS16 instructions for 64-bit operations.

• The 32-bit instructions are object-code compatible with the high-performance TX39 family.

• Efficient run-time switching between 16-bit and 32-bit ISA modes through an instruction

• Upward compatible with the MIPS R3000A except for some of the coprocessor and TLB

instructions

• Hardware interlocks: The instruction immediately following a load can use the contents of

the loaded register, eliminating the need to insert a NOP (No Operation) instruction.

• Branch-likely instructions allow the processor to execute the instruction immediately

following the branch while the target instruction is being fetched. This eliminates the need

to insert a NOP instruction.

Introduction

1-2

High Performance

• Single clock cycle execution for most instructions

• 3-operand computational instructions

• Full 32-bit operations: Contains 32-bit general-purpose registers and a 32-bit program counter.

• 5-stage pipeline

• Provisions for independent on-chip instruction and data memory with an access time of one

clock cycle

• Provisions for independent on-chip instruction and data caches

• Provisions for an on-chip write buffer

• Harvard architecture

The TX19 uses separate buses for code and data operands. In the TX19, there are four sets of

buses: a data bus for carrying data (operands) in and out of the processor core, an address bus

for accessing data operands, a bus to carry the opcodes and an address bus to access the

opcodes. The ability to access code and data simultaneously through separate buses increases

instruction throughput.

• Nonblocking loads: Executes the next useful instruction in a load delay slot in the event a load

from external memory causes a large latency.

• On-chip multiplier/accumulator (MAC): Executes 32-bit x 32-bit multiplier operations with a

64-bit accumulation in a single clock cycle.

• 4-Gbyte virtual address space

• Provides support for 4 coprocessors: The TX19 contains the system control coprocessor (CP0)

for system configuration, exception handling and memory management.

Low Power

• Power-optimized design

• Programmable reduced frequency modes: fc/2, fc/4, fc/8 (where fc is the full-speed frequency

of the processor)

• Programmable power management modes (Halt and Doze): In Doze mode, the processor senses

external bus requests.

Real-Time Interrupt Response

• Distinct starting locations for each interrupt service routine

• Automatically generated vectors for each interrupt source: Interrupt priorities are resolved upon

reading the exception vector. This makes the TX19 suitable for interrupt-heavy applications in

which immediate action is required at a higher priority level than the current processor priority

level.

• Automatic update of the interrupt mask level

Processor Core for System ASIC Applications

• Unified manufacturing process and development environment

• Compact core design

• The processor core can be directly connected to the G-Bus, the standard on-chip bus for the TX

series.

Introduction

1-3

System Development Environments

• Language tools: C compilers and assemblers

Both Toshiba’s proprietary and third-party tools are offered.

• Real-time operating systems

Both Toshiba’s proprietary (µITRON) and third-party real-time operating systems are offered.

• Debug support systems

• Both Toshiba’s proprietary and third-party real-time emulators are offered to support

source-level debugging.

• Support is offered for utility software to insert debug support unit (DSU) circuitry into an

ASIC design.

1.2 What Is RISC?

Until the early 1980s, all CPUs followed the complex instruction set computer (CISC) design

philosophy. To preserve compatibility with the existing pool of software, CISC processors evolved

by adding new types of machine instructions and more intricate operations. Generally, CISC refers

to CPUs with hundreds of instructions designed for every possible situation. Designing CPUs with

hundreds of instructions not only requires many transistors but is also very complicated, timing-

consuming and expensive.

In the early 1980s, a controversy broke out in the computer design community. Proponents of a new

type of computer design argued that no one was using so many instructions. As it was developed, it

came to be know as reduced instruction set computer (RISC). RISC concepts emerged by statistical

analysis of how software actually uses the resources of a processor. According to experiments, many

of the complex instructions were never used by programmers and compilers. The huge cost of

implementing numerous instructions made some designers think of streamlining the instruction set.

Feature 1

RISC processors have a small instruction set. For example, there are no such complex instructions

as block transfer, block search, bit scan and so forth.

Additionally, RISC uses the load/store architecture. In CISC processors, data can be manipulated

while it is still in memory. For example, with Toshiba’s 900/L1, the instruction "ADD A, (1000H)"

brings the contents of memory location 1000H into the CPU, adds it to register A and places the

results back in A. RISC did away with this kind of instructions. In RISC, a single instruction can

either load from memory into a register or store from a register into memory. In other words, all

operations are performed on operands held in CPU registers.

Since CISC processors have such a large number of instructions, each with so many different

addressing modes, microcode is used to implement all of them. This feature of CISC makes the job

of programmers easy and helps to reduce code size. However, the implementation of microcode

takes up a sizable amount of chip’s real estate, creating a bottleneck in an effort to improve

processor performance.

Introduction

1-4

Feature 2

RISC processors have a fixed instruction size. In a CISC microprocessor, instructions can be 1, 2 or

even 7 bytes. This variable instruction size makes the task of the instruction decoder very difficult

since the size of the incoming instruction can never be known. In the TX19 microprocessor, the

instruction size is fixed at 32 bits. The fixed instruction size enables the CPU to decode instructions

quickly.

Feature 3

Since RISC has only a limited number of simple instructions, most of the instructions can be

executed in one clock cycle. Therefore, RISC is easier to pipeline than CISC in which each

instruction in a instruction pipeline can require a different number of clock cycles. Generally, RISC

processors are heavily pipelined.

1.3 Features of the TX19

The previous section provided an overview of the features that make RISC processors set apart from

CISC processors. In this section, we explore how the instruction set architecture (ISA) is

implemented in the TX19. Where pertinent, comparisons are made with the 870/X and the 900/L1,

8-bit and 16-bit CISC processors from Toshiba.

The TX19 has two ISA modes, 16-bit and 32-bit. It provides for efficient run-time switching

between 16-bit and 32-bit ISA modes through an instruction. The 16-bit instruction set (MIPS16) is

not really a separate instruction set, but a 16-bit extension of the full 32-bit MIPS architecture. The

32-bit ISA has 85 instructions, the 16-bit ISA 53 instructions. Programs will consist of procedures

in 16-bit mode for density or in 32-bit mode for performance.

On the other hand, the 870/X and the 900/L1 are both CISC processors having nearly 1000 types of

instructions and many addressing modes. CISC processors are, in general, excel in code efficiency.

1.3.1 Instruction Set Architecture

• The TX19 did away with complex instructions

The TX19 has only the basic instructions such as load, store, add, subtract, multiply, divide,

AND, OR, XOR, shift, jump and branch. There are no complex instructions like LDIR (block

transfer) and CPIR (block search) available with the 900/L1. It is the responsibility of the

compiler (or the programmer) to generate software routines to perform complex instructions that

are done in hardware by CICS processors. The exceptions are the multiply-add instructions

(MADD and MADDU) which require very fast processing. (These instructions are executed by

the dedicated MAC circuitry.)

• The TX19 did away with instructions that can be implemented by some other instructions

To reduce the size of the instruction set, the TX19 aggressively eliminated the instructions that

can be implemented using other instructions. For example, the TX19 does not have the NOP

(No Operation), INC (Increment) and DEC (Decrement) instructions. Instead of NOP, a shift

instruction can be used as shown below for TX19 processors:

SLL r0,r0,0

Introduction

1-5

In the TX19, register r0 is hardwired to a constant value of 0. The above instruction actually

shifts the contents of r0 by zero bits and places the result back in r0. (The assembler permits

NOP as a pseudoinstruction for program readability; however, it turns NOP into a shift

instruction.)

A register increment can be implemented by using the ADDIU (Add Immediate Unsigned)

instruction as shown below:

ADDIU rt,rs,1

where rt and rs are the target and source registers respectively. Likewise, a register decrement

can be implemented as follows:

ADDIU rt,rs,-1

• The TX19 discarded instructions synthesizable from two or more simple instructions

The TX19 further pared down the instruction set by discarding the instructions that can be

performed by two or more simple instructions. For example, the TX19 does not have the POP

and PUSH instructions for accessing the stack. In CISC processors, as a PUSH instruction is

executed, the contents of a register is saved on the stack and the stack pointer register is

decremented by the amount of the register size. In the TX19, one of the 32 general-purpose

registers is used as a stack pointer. The TX19 supports pushing onto the stack by executing an

add instruction on the stack pointer and a store instruction.

• The TX19 uses the load/store architecture

In the TX19, load and store instructions are the only instructions that move data between

memory and CPU general registers. In such CISC processors as the 870/X and the 900/L1, data

can be manipulated while it is still in memory. The TX19 did away with this kind of instructions

like ADD, A, (1000H).

• The TX19 has only a few memory addressing modes

The 900/L1 and the 870/X1 have seven or more addressing modes for memory accesses. For

example, there are register indirect, register indirect with autoincrement, indexed relative, based

indexed relative, etc. These versatile addressing modes are very useful for assembly language

programmers and contribute to a reduction in code size.

In contrast, in order to simplify hardware implementation, in 32-bit ISA mode, the TX19 has

only one addressing mode for accessing memory locations, i.e., based relative. In 16-bit ISA

mode, the TX19 has two more addressing modes called PC-relative and SP-relative; only three

16-bit instructions can use these addressing modes, though.

• The TX19 has three-operand computational instructions

In the TX19, many computational instructions use what is called triadic format. In triadic

instruction format, there are two source registers and one destination register. An example of

triadic format is:

ADD rd,rs1,rs2

This instruction adds the contents of two source registers, rs1 and rs2, and stores the results

in rd. Contrast this to

Introduction

1-6

ADD XWA,XBC

for the 900/L1 which adds the contents of XWA and XBC and puts the result in XWA.

• The TX19 does not have a flag register

The TX19 does not have a dedicated flag register with the carry, overflow and sign bits. For

example, in the 900/L1, the carry flag is used to indicate whether or not there was a carry from

an addition or a borrow as a result of subtraction. It is widely used in multibyte additions and

subtractions. The 900/L1 has the ADC instruction to add the carry bit to the sum of two registers.

On the other hand, the TX19 can perform 32-bit additions at a time; so the flag bit is rarely

needed. To perform an add-with-carry, a routine must first explicitly determine whether the

addition has resulted in a carry, and then record the occurrence of a carry in a register. When

doing multiword additions, two different code sequences are required: one for adding with a

carry-in and one for adding without a carry-in.

Additionally, the 900/L1 CP (compare) instruction uses the carry flag to indicate whether or not

there was a borrow as a result of subtraction. In the TX19, the result of compare instructions

such as SLT (Set On Less Than) is placed into a general register.

1.3.2 Instruction Format

The TX19 has two ISA modes, 16-bit and 32-bit. All the instructions for the 32-bit ISA mode, as

the name suggests, consist of 32 bits. All the instructions for the 16-bit ISA mode consist of 16 bits,

with a few exceptions.

Each 16-bit instruction corresponds to exactly one 32-bit instruction. The 16-bit instructions are

mapped to 32-bit instructions on the fly by relatively simple translation hardware. This is done

serially as a preprocessor before the standard instruction decoder.

The size of the 870/X instructions are 1, 2, 3, 4, 5 or even 6 bytes. The 900/L1 has a 7-byte

instruction. Although this variable instruction size is useful to reduce code size, it makes the task of

the instruction decoder very difficult and slow since the size of the incoming instruction is never

known.

1.3.3 Instruction Pipelines

The TX19 has a five-stage pipeline. The five-stage pipeline divides the execution of each instruction

into five discrete portions and executes up to five instructions simultaneously. Each stage takes one

clock cycle.

The major characteristics of the TX19 is that the execution of most instructions requires a uniform

number of clock cycles; thus the TX19 is relatively easy to pipeline. The TX19 achieves an

instruction execution rate approaching one instruction per clock cycle.

If the instruction stream includes a variety of different instruction lengths as in CISC processors,

pipeline management becomes very complex. Moreover, such a varied, complex instruction stream

makes it almost impossible for a compiler to schedule instructions to reduce or eliminate pipeline

stalls. For example, the instructions for the 870/X, which contains a 3-stage pipeline, takes 4 to 60

cycles to execute. The instructions for the 900/L1, also with a 3-stage pipeline, takes 2 to 27 cycles.

CPU Architecture Overview

2-1

Chapter 2 CPU Architecture Overview

This chapter describes how data is represented in the CPU registers and in memory and also

provides an overview of the functionality of the registers implemented in the TX19.

2.1 Data Formats

This section describes the organization of data in registers and memory and how operands are sign-

or zero-extended for operations.

2.1.1 Byte Ordering

The TX19 supports many data types including 8-bit, 16-bit, 32-bit and 64 bit. A byte is defined as 8

bits. A halfword is two bytes, or 16 bits. A word is four bytes, or 32 bits. A doubleword is two

words, or 64 bits.

For multibyte data types, the TX19 supports both big-endian and little-endian formats. Byte

ordering (endianness) can be set through the ENDIAN input pin during a reset sequence. (In some

TX19 components, byte ordering is fixed to either big-endian or little-endian.)

Figure 2-1shows the ordering of bytes in a word for the big-endian and little-endian formats. The

TX19 processor uses byte addressing. Big-endian ordering assigns the lowest address to the highest-

order (leftmost) byte. Little-endian ordering assigns the lowest address to the lowest-order

(rightmost) byte. Notice that, in little-endian format, each byte of a multibyte integer is placed in the

same memory location regardless of whether the integer is defined as a halfword or a word in size.

CPU Architecture Overview

2-2

MemoryRegister

Lower Address

Higher Address

Halfword AccessWord Access

(b) Little-endian

Bit 31 Bit 0

0x67

0x45

0x23

0x01

67452301

Halfword AccessWord Access

0x01

0x23

0x45

0x67

Byte

(a) Big-endian

0x45

0x67

0x67

0x45Halfword

Word

Byte Lower Address

Higher Address

Figure 2-1 Byte Ordering

2.1.2 Aligned and Misaligned Accesses

The TX19 uses byte addressing for byte, halfword and word accesses. The address of a multibyte

data item is the address of the lowest memory location for that data item; i.e, the address of the

most-significant byte on a big-endian configuration and the address of the least-significant byte on a

little-endian configuration.

Memory access instructions have a natural alignment boundary equal to the operand length. In other

words, the natural address of an operand is an integer multiple of the operand length. A memory

operand is said to be aligned if its address is a multiple of two for halfword accesses or a multiple of

four for word accesses.

Lower Address

Higher Address

(a) Memory Accesses

(b) Data Alignment

0

Memory

Operand

Address

Halfword BoundaryWord Boundary

Byte

Halfword Access Word AccessByte Access

Byte Byte

1

4

3

2

5

6

7

Figure 2-2 Aligned Data Items

CPU Architecture Overview

2-3

Most instructions require their memory operands to be aligned because alignment affects

performance. Special instructions are provided for addressing words that cross a boundary between

two words: LWL (Load Word Left), LWR (Load Word Right), SWL (Store Word Left) and SWR

(Store Word Right). These instructions are used in pairs. Figure 2-3 illustrates how a word of

aligned and misaligned data is loaded from memory into a CPU register.

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

+1 +2 +3 +0

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

Register r8

0x400

0x404

(a) Aligned Access (Big-Endian)

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

+1 +2 +3 +0

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

Register r8

0x400

0x404

(b) Misaligned Access (Big-Endian)

LWR r8 6(r9)
LW r8 0(r9) LWL r8 3(r9)

Note: r9 register stores "0x400" Note: r9 register stores "0x400"

Figure 2-3 Aligned and Misaligned Accesses

2.1.3 Data Extensions

Figure 2-4 illustrates sign extension and zero extension. In signed numbers, the most-significant bit

is the sign and the remaining bits are set aside for the magnitude of the number. Sign extension

copies the most-significant bit (i.e., sign bit) of the 16-bit immediate or the loaded byte or halfword

into the upper bits. Zero extension fills unused bits in a word with zeros irrespective of the value of

the most-significant bit of the 16-bit immediate or the loaded byte or halfword.

15

Sign Bit 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

15

Sign Bit 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

31

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

(a) 16-Bit to 32-Bit Sign Extension

15

The upper bits are always padded with zeros. 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

31 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

(b) 16-Bit to 32-Bit Zero Extension

Figure 2-4 Sign Extension and Zero Extension

CPU Architecture Overview

2-4

Sign extension is typically used to avoid problems associated with arithmetic operations. For

example, the ADDI (Add Immediate Signed) instruction can only take a 16-bit immediate. The

instruction "ADDI r3, r1, 0x1234" sign-extends 0x1234 and adds it to the contents of register r1 to

form a 32-bit result. The result is placed into register r3.

The TX19 also applies sign extension to such instructions as LB (Load Byte), LBU (Load Byte

Unsigned) LH (Load Halfword), LHU (Load Halfword Unsigned) LW (Load Word), SB (Store

Byte), SH (Store Halfword), SW (Store Word), etc. since the only addressing mode supported is

base register plus 16-bit immediate (i.e., offset). For example, the instruction "LW r9, 4(r8)" sign-

extends the offset (4 or binary 0100) and adds it to the contents of the base address held in r8 to

form an effective address. The word in the addressed memory location is loaded into r9.

The LB (Load Byte) instruction, for example, treats the byte at the specified memory location as a

signed number whereas the LBU (Load Byte Unsigned) assumes an unsigned number like the

ASCII code of a character. Therefore, the LB instruction sign-extends the loaded byte and puts it in

the target register; the LBU instruction zero-extends the loaded byte.

Additionally, there are two types of logical AND and logical OR instructions each, AND/ANDI and

OR/ORI. The AND and OR instructions perform AND and OR operations on two source registers

whereas the ANDI (AND Immediate) and ORI (OR Immediate) take a 16-bit immediate. ANDI and

ORI zero-extends the 16-bit immediate and combine it with the contents of a general register in a

bit-wise logical AND or OR operation.

CPU Architecture Overview

2-5

2.2 Programming Model

The TX19 programming model consists of two groups of registers, CPU registers and system

control coprocessor (CP0) registers.

2.2.1 CPU Registers

 Figure 2-5 shows the CPU registers. The TX19 has 32 general-purpose registers, a program counter

(PC) register and two special registers (HI/LO) that hold the results of integer multiply and divide

operations. All CPU registers are 32 bits in length.

 (a) General-Purpose Registers (b) Multiply/Divide Registers

r0 r16 (s0)

r1 (at) r17 (s1) HI

r2 (v0) r18 (s2)

r3 (v1) r19 (s3) LO

r4 (a0) r20 (s4)

r5 (a1) r21 (s5)

r6 (a2) r22 (s6)

r7 (a3) r23 (s7) (c) Program Counter

r8 (t0) r24 (t8)

r9 (t1) r25 (t9) PC

r10 (t2) r26 (k0)

r11 (t3) r27 (k1)

r12 (t4) r28 (gp)

r13 (t5) r29 (sp)

r14 (t6) r30 (fp)

r15 (t7) r31 (ra)

Figure 2-5 CPU Registers

General-Purpose Registers

The 32-bit ISA instructions can use any of the 32 general-purpose registers shown in Figure 2-5.

The general registers are numbered from r0 to r31. The general registers except r0 have symbol

names (software names) like at, v0-v1, a0-a3, and so on which are used by an assembler. The 32-bit

ISA instructions treat the general registers symmetrically, with the exception of r0 and r31. r0 is

hardwired to a value of 0. As such, r0 can be used by any instruction as a target register when the

result of an operation is to be discarded or as a source register when a zero value is necessary. r31

(ra: return address) is the link register used by Jump-and-Link, Branch-and-Link and Branch-Likely-

and-Limk instructions. These instructions store an address at which processing resumes after a

subroutine has been executed.

To the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to

r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, MIPS16

includes move instructions to copy values between the eight MIPS16 registers and the remaining 24

registers of the full MIPS architecture. Additionally, certain instructions can use r24 (t8), r29 (sp)

and r31 (ra). r24 serves as a special condition register for handling compare results. r29 maintains

the program stack pointer. r31 is the link register.

CPU Architecture Overview

2-6

HI and LO Registers

The HI and LO registers hold the results of integer multiply, divide and multiply-add operations.

Integer multiply and multiply-add operations store the doubleword, 64-bit result in the HI and LO

registers. Integer divide operations store the quotient in the LO register and the remainder in the HI

register. The MFHI, MFLO, MTHI and MTLO instructions are used to move data between the HI

and LO registers and general registers.

Program Counter (PC)

The least-significant bit of the program counter is the ISA mode bit that determines the width of

instructions: 0 means 32-bit-wide instructions and 1 means 16-bit-wide instructions. This bit is not

considered part of the address. The value formed by clearing it to 0 represents the address of the

currently executing instruction.

2.2.2 System Control Coprocessor (CP0) Registers

The system control coprocessor, CP0, is an integral part of the TX19 processor. It has 32 registers of

which nine registers shown in Figure 2-6 are accessible by users. These registers are all 32 bits in

length.

BadVAddr Register

Config Register

DEPC RegisterDebug Register

General Exception Processing

Debug Exception Processing

Cause Register

Status Register

IE RegisterPRId Register

EPC Register

System Configuration

Figure 2-6 System Control Coprocessor (CP0) Registers

The CP0 registers are classified into three groups: system configuration register, general exception

handling registers and debug exception handling registers. When the processor is in Kernel mode,

the system control coprocessor instructions can always use the CP0 registers regardless of the

setting of the CU[0] bit in the Status register. When the processor is in User mode, the CP0 registers

are accessible only when the CU[0] bit is 1. Operating modes are explained in Section 2.6, Memory

Management Summary.

CPU Architecture Overview

2-7

Table 2-1 System Configuration Register

Register Name Description

Config System configuration, e.g., power consumption management, cache enabling, etc.

Table 2-2 General Exception Handling Registers

Register Name Description

BadVAddr Bad virtual address that caused a virtual-to-physical address translation error. Read-only

Status Processor status, e.g., operating mode (User/Kernel), interrupt enabling, etc.

Cause Cause of the last exception

EPC Exception program counter; i.e., address of the instruction that caused an exception

PRId Processor revision identifier. Read-only

IE Interrupt enable

Table 2-3 Debug Exception Handling Registers

Register Name Description

Debug Cause and current status of a debug exception

DEPC
Debug exception program counter; i.e., address of the instruction that caused a debug

exception

2.3 32-Bit and 16-Bit ISA Modes

The TX19 has two ISA modes, 16-bit and 32-bit. It provides for efficient run-time switching

between 16-bit and 32-bit ISA modes through an instruction. The TX19 supports whole procedures

containing either 16-bit or 32-bit instructions, but it does not support mixing the two lengths

together in a single procedure. Programs will consist of procedures in 16-bit mode for density or in

32-bit mode for performance.

The least-significant bit of the program counter (PC) is the ISA mode bit that determines the width

of instructions: 0 means 32-bit-wide instructions and 1 means 16-bit-wide instructions. The JALX,

JR or JALR instruction can be used to switch from 32-bit mode to 16-bit mode or vice versa.

When an exception occurs while the processor is in 16-bit mode, the processor automatically

switches to 32-bit mode and saves the return address and the ISA mode bit to the Exception

Program Counter (EPC) or the Debug Exception Program Counter (DEPC). The JR instruction is

used to jump back to the return address contained in the EPC register. In case of a debug exception,

the DERET instruction is used to jump back to the return address contained in the DEPC register.

The instruction set can be divided into the groupings shown in Figure 2-7.

CPU Architecture Overview

2-8

Load and Store

Computational

Jump and Branch

Coprocessor

System Coprocessor (CP0)

Special

Load Instructions

Store Instructions

SYNC Instruction

Jump Instructions

ALU Immediate Instructions

Branch Instructions

Register-Register Instructions

Shift Instructions

Branch-Likely Instructions

Multiply and Divide Instructions

Multiply-Add Instructions

Load and Store

Computational

Jump and Branch

Special

Load Instructions

Store Instructions

Jump Instructions

ALU Immediate Instructions

Branch Instructions

Register-Register Instructions

Shift Instructions

Multiply and Divide Instructions

��
��
��
��
��

32-Bit ISA

��
��
��
��
��

16-Bit ISA

Signed, Unsigned Signed

Figure 2-7 32-Bit and 16-Bit Instructions

All the instructions in the 32-bit ISA, as the name suggests, consist of 32 bits. All the instructions in

the 16-bit ISA consist of 16 bits with the exception of JAL and JALX which are 32-bits wide. The

EXTEND instruction for the 16-bit mode is 16-bits wide; it contains only an opcode and an

immediate value. EXTEND does not generate a MIPS machine instruction on its own, but instead

contributes the 11-bit immediate to be concatenated with the immediate data carried in the

following 16-bit instruction. This way, EXTEND extends a 16-bit instruction to 32 bits, providing

large immediate values.

Generally, each 16-bit instruction corresponds to exactly one 32-bit instruction. The 16-bit

instructions fetched from main memory or an instruction cache are translated to 32-bit instructions

on the fly by relatively simple translation hardware called decompressor. This is done serially as a

preprocessor before the standard instruction decoder. Note that there are a few 16-bit instructions

whose functions are slightly different from the 32-bit equivalents. Appendix B shows the mapping

of the instruction format between 16-bit and 32-bit modes. Appendix B also provides supplemental

remarks about instructions’ functional differences, if any, between 16-bit and 32-bit modes.

CPU Architecture Overview

2-9

2.4 Coprocessors

Coprocessors are secondary processors used to speed up operations by handling some of workload

of the main CPU. The TX19 can operate with up to four coprocessors, CP0, CP1, CP2 and CP3.

CP0 is the system control coprocessor, which handles system configuration, exception handling and

memory management. CP0 is an integral part of the TX19. The basic capabilities of CP0 is

incorporated into the processor core and the extended capabilities into the memory management unit

(MMU).

CP1, CP2 and CP3 are put outside of the processor core and are responsible for performing

complicated and time-consuming tasks like floating-point mathematical functions. CP1, CP2 and

CP3 are implementation-dependent; so they will be described in individual processor data sheets.

The CU[0] bit in the Status register controls the usability of CP0 instructions in User mode.

Attempts by a User-mode program to execute a CP0 instruction when the CU[0] bit is cleared

causes a Coprocessor Unusable exception. Kernel-mode programs can execute all CP0 instructions,

regardless of the setting of the CU[0] bit.

The CU[3:1] bits in the Status register control accesses to the respective coprocessors whether in

User mode or in Kernel mode. Attempted execution of a coprocessor instruction causes a

Coprocessor Unusable exception when its CU bit is cleared.

The TX19 provides support for each of the four coprocessors to have up to 64 32-bit registers. The

system control coprocessor (CP0) provides 32 registers of which nine registers are visible to the

user. Chapter 8 gives a complete description of them.

2.5 Pipeline Architecture

The TX19 has a five-stage pipeline. That is, the execution of each instruction consists of five

primary stages. Each stage takes approximately one clock cycle; thus the execution of each

instruction takes at least five cycles. (The JAL and JALX instructions in the 16-bit ISA mode take

longer.) The five-stage pipeline divides the execution of each instruction into five discrete portions

and executes up to five instructions simultaneously, as shown in Figure 2-8. The five pipe stages are

Fetch (F), Decode (D), Execute (E), Memory Access (M) and Register Write-back (W). The TX19

achieves an instruction execution rate approaching one instruction per clock cycle.

F D E M W

Instruction

Fetch
Decode Execute

Memory

Access

Register

Write-back

#1 F D E M W

#2 F D E M W

#3 F D E M W

#4 F D E M W

#5 F D E M W

Time

1 Clock Cycle

Current CPU Cycle

Figure 2-8 TX19 Pipeline

CPU Architecture Overview

2-10

2.6 Memory Management Summary

The TX19 has two modes of operation, User mode and Kernel mode. The TX19 enters Kernel mode

whenever an exception is taken. Since a reset exception occurs when a system is reset, the TX19

wakes up in Kernel mode. The processor switches to User mode when the RFE (Restore From

Exception) or DERET (Debug Exception Return) instruction is executed.

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

User Mode

• Application Programs

Kernel Mode

• System Programs

• Operating System Routines

• General Exception Handlers

• Debug Exception Handlers, etc.

Exception

Return from Exception

• RFE + JR instructions

• DERET instruction

(Debug Processing)

Figure 2-9 Operating Modes

The operating mode determines the addresses, registers and instructions that are available to a

program. Kernel mode has higher privileges than User mode. Kernel-mode programs are permitted

to use all addresses, registers and instructions, but a User-mode program’s use of them is restricted.

Operating system routines, general exception handlers and debug exception handlers are executed in

Kernel mode. This scheme allows the kernel to protect system resources from uncontrolled access.

The TX19 does not contain a translation lookaside buffer (TLB). Instead, the memory management

unit (MMU) of the TX19 uses the direct segment mapping method. The mapping of virtual

addresses to physical addresses is shown in Figure 2-10. The virtual address space is partitioned into

four, fixed-size segments. kuseg is designed to be used by User-mode programs while it is

accessible in Kernel mode. The other three segments, kseg0, kseg1 and kseg2, are available only to

Kernel-mode programs. Chapter 6 describes the MMU in greater details.

CPU Architecture Overview

2-11

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Physical Address SpaceVirtual Address Space

16 MB Reserved

Kernel Segment 2

Kseg2

Kernel Segment 1

Kseg1

Kernel Segment 0

Kseg0

Kernel/User Segment

Kuseg

16 MB Reserved

Kernel Segment 2

Kseg2 (1 GB)

Kernel/User Segment

Kuseg (2 GB)
16 MB Reserved

16 MB Reserved

0xFFFF_FFFF

0xC000_0000

0xA000_0000

0x8000_0000

0x0000_0000

0xFFFF_FFFF

0xC000_0000

0x4000_0000

0x2000_0000

0x0000_0000

512 MB

��
��
��
��

Unavailable

Figure 2-10 Virtual-to-Physical Address Mapping

CPU Architecture Overview

2-12

32-Bit ISA Summary and Programming Tips

3-1

Chapter 3 32-Bit ISA Summary and Programming Tips

This chapter gives an overview of the instructions and addressing modes supported by the TX19 in

32-bit ISA mode. This chapter also presents many programming tips using 32-bit instructions.

Instructions are grouped into the following categories:

• Load and store instructions

• Computational instructions

• Jump, branch and branch-likely instructions

• Coprocessor instructions

• Special instructions

3.1 Instruction Formats

All TX19 instructions for the 32-bit ISA mode are 32-bits wide. There are three instruction formats

as shown in Figure 3-1. Limiting instruction formats to these three dramatically simplifies

instruction decoding. More complex instructions are synthesized by the compiler. All the 32-bit

instructions must be aligned on a word boundary.

32-Bit ISA Summary and Programming Tips

3-2

I-Type (Immediate)
31 2625 2120 16 15 0

op rs rt immediate

J-Type (Jump)
31 26 25 0

op target

R-Type (Register)
31 2625 2120 1615 11 10 6 5 0

op rs rt rd shamt funct

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target register or branch condition

immediate 16-bit immediate, or branch or address displacement (offset)

target 26-bit jump target address

rd 5-bit destination register specifier

shamt 5-bit shift amount

funct 6-bit function code

Figure 3-1 Instruction Formats

3.2 Load and Store Instructions

Load and store instructions move data between memory and CPU general registers. Load and store

instructions can only load from memory into registers or store registers into memory locations.

There is no direct way of doing arithmetic or logical operations between registers and the contents

of memory.

3.2.1 Load and Store Address Calculation

In 32-bit ISA mode, all load and store instructions are encoded as I-type instructions. They generate

effective addresses using register indirect with offset addressing mode, as shown in Figure 3-2. The

16-bit immediate is sign-extended to 32 bits and added to the contents of a general-purpose register

to generate the effective address. For example, in the instruction

LW r9,4(r8)

4 (binary 0100) is the offset, r8 is a general-purpose register containing the base address, and r9 is

the target register.

This addressing mode can be used to implement immediate addressing using r0 as the base register

or register direct addressing using an offset value of zero.

32-Bit ISA Summary and Programming Tips

3-3

Memory

16-Bit Offset

16-Bit

Sign Extension

Base Register

32-Bit Address

+

Figure 3-2 Register Indirect with Offset Addressing

3.2.2 Load and Store Instructions for Aligned Accesses

Table 3-1 gives the load and store instructions to perform byte, halfword and word accesses. The LB

and LH instructions sign-extend the loaded byte and halfword. The LBU and LHU instructions,

which have the “U” (unsigned) suffix, zero-extend the loaded byte and halfword.

Table 3-1 Load and Store Instructions for Aligned Accesses

Data Type Unsigned Load Signed Load Store

Byte LBU LB SB

Halfword LHU LH SH

Word LW — SW

3.2.3 Load and Store Instructions for Misaligned Accesses

An Address Error exception occurs when an attempt is made to load or store halfword or word that

is not aligned on the natural alignment boundary. Table 3-2 gives the instructions to perform loads

and stores when the bytes in a word cross the natural boundary between two words. The LWL (Load

Word Left) and LWR (Load Word Right) instructions are used in combination. Likewise, the SWL

(Store Word Left) and SWR (Store Word Right) instructions are used in combination. These

instructions provide a more efficient way of dealing with misaligned data than is possible using a

sequence of load/store and shift operations. They are useful for compatibility with old programs

written for 8- and 16-bit machines.

Table 3-2 Load and Store Instructions for Misaligned Accesses

Signed Load Store

Left (Upper Bytes) LWL SWL

Right (Lower Bytes) LWR SWR

32-Bit ISA Summary and Programming Tips

3-4

3.2.4 Memory Synchronization Instruction

The memory synchronization instruction, SYNC, guarantees the sequence of memory references by

interlocking the instruction pipeline until loads, stores and instruction fetches performed prior to the

present instruction are completed before loads, stores or cache refills after this instruction are

allowed to start. See Chapter 5, CPU Pipeline, for more on this.

3.2.5 32-Bit Address Generation

In 32-bit ISA mode, load and store instructions can only take a 16-bit signed immediate as an offset.

Setting aside the most-significant bit for the sign leaves a total of 15 bits for the magnitude. This

gives a range of -32768 to +32767. If the offset is outside this range, you must put it in a general

register prior to the load or store instruction. Three examples are given below.

• Example 1: Base address + 32-bit offset

In the example below, the ADDU instruction is used to add the offset held in register r5 to the

base address in register r4. The result is placed back into r4. Then the LW instruction uses r4 as

the base register to address a memory location.

ADDU r4,r4,r5

LW r6,0(r4)

• Example 2: Base address + 32-bit offset

In the example below, the LUI (Load Upper Immediate) instruction loads the 16-bit immediate

(in this case, the upper 16 bits of the offset) into the upper 16 bits of register r5. The lower 16

bits of r5 are filled with zeros. Then ADDU (Add Unsigned) instruction is used to add r5 to the

base address in r4. This way, the LW instruction can address a desired memory location by only

using the lower 16 bits of the offset.

LUI r5,0x12

ADDU r4,r4,r5

LW r6,0x3454(r4)

• Example 3: Arbitrary 32-bit absolute address

In the example below, the LUI (Load Upper Immediate) instruction loads the 16-bit immediate

into the upper 16 bits of register r4. The ADDIU (Add Immediate Unsigned) instructions adds r4

to the lower 16 bits of the offset, 0x3456. The LW instruction can then use r4 to directly address

the desired memory location, with an offset of zero.

LUI r4,0x12

ADDIU r4,r4,0x3456

LW r6,0(r4)
LUI r4,0x12

ADDIU

0 0 1 2 0 0 0 0

0 0 0 0 3 4 5 6

0 0 1 2 3 4 5 6

32-Bit ISA Summary and Programming Tips

3-5

3.3 Computational Instructions

This section describes the computational instructions available in the 32-bit ISA. Section 3.3.1

provides an category of computational instructions. Section 3.3.2 discusses computations that

involve the use of 32-bit constants. Section 3.3.3 gives program examples to illustrate how to

perform 64-bit addition and subtraction. In Section 3.3.4, we will observe how the integer overflow

is trapped using software routines. In Section 3.3.5, we will look at ways to execute a 64-bit x 64-bit

multiply operation. The 32-bit ISA has no rotate instructions; Section 3.3.6 describes how to

implement rotate operations using available instructions.

3.3.1 Overview of Computational Instructions

Computational instructions in the 32-bit ISA are categorized into five groups shown in Table 3-3.

They consist of arithmetic, compare, logical, shift, multiply, divide and multiply-and-add

instructions. Computational instructions use I-type format in which one operand is a 16-bit

immediate or R-type format which take three register operands.

Table 3-3 Computational Instructions

Category Instruction Opcode

ALU Immediate Add ADDI, ADDIU

Set On Less Than SLTI, SLTIU

Logical AND ANDI

Logical OR ORI

Logical XOR XORI

Load Upper Immediate LUI

3-Operand Register-

Type
Add ADD, ADDU

Subtract SUB, SUBU

Set On Less Than SLT, SLTU

Logical AND AND

Logical OR OR

Logical XOR XOR

Logical NOR NOR

Shift Logical Shift SLL, SLLV, SRL, SRLV

Arithmetic Shift SRA, SRAV

Multiply and Divide Multiply MULT, MULTU

Divide DIV, DIVU

Move From/To HI/LO MFHI, MFLO, MTHI, MTLO

Multiply-and-Add MADD, MADDU

32-Bit ISA Summary and Programming Tips

3-6

In ALU immediate instructions, the source operands are a general-purpose register and a 16-bit

signed immediate. For example, the Add Immediate instruction, "ADDI rd, rs, immediate," adds the

contents of the source register (rs) and the sign-extended immediate and places the result into the

destination register (rd).

Three-operand Register-type instructions manipulate the values held in two general-purpose

registers and place the result into a general-purpose register.

Shift instructions shift the contents of a general-purpose register right or left by the specified

number of bits. There are two kinds of shift: logical and arithmetic. The Shift Variable instructions

(SLLV, SRLV, SRAV) do not have the shift amount (shamt) field; instead they specify a general-

purpose register containing the desired shift amount.

Multiply and divide instructions operate on integer values in two general-purpose registers and

place the result into special registers HI and LO. Generally, CPU instructions do not have access to

the HI and LO registers. In the MIPS architecture, the MFHI, MFLO, MTHI and MTLO instructions

are always required to move data between a general-purpose register and the HI or LO register.

However, the TX19 provides an extension to the MIPS architecture to allow the lower 32 bits of the

product to be placed into both the LO register and a general-purpose register at a time. Section 3.3.5,

64-Bit x 64-Bit Multiplication, presents an application example of this extension.

Multiply-and-add instructions are extended instructions implemented in the TX19. They multiply

two 32-bit numbers, followed by the addition/subtraction of this product to/from the 64-bit value in

the HO/LO registers. The lower 32 bits of the result can be optionally copied into a general-purpose

register simultaneously. The MAC unit executes the integer multiply-and-add operations at an

accelerated speed. It is designed to provide a common set of digital signal processing (DSP)

operations.

3.3.2 32-Bit Constants

The immediate field in the I-type instructions is only 16-bits long. If the immediate value is greater

than 16 bits, you need to use two instructions to create a 32-bit constant and put it in a general

register temporarily. In the example below, the LUI (Load Upper Immediate) instruction loads the

immediate value into the upper 16 bits of r4 and fills the lower 16 bits with zeros. The ORI (OR

Immediate) instruction zero-extends the immediate value, logical-ORs it with the contents of r4 and

places the result back into r4.

LUI r4,0x12

ORI r4,r4,0x3456
LUI r4,0x12

ORI

0 0 1 2 0 0 0 0

0 0 0 0 3 4 5 6

0 0 1 2 3 4 5 6

The following is an example of adding a 32-bit constant to the contents of a general register. The

LUI instruction loads the upper 16 bits of r5 with 0x1234 and sets the lower 16 bits to 0x0000.

Adding it to 0x5678 gives 0x12345678, which is placed back into r5. Finally, the ADDU (Add

Unsigned) instruction adds the contents of r4 and r5 together and puts the result in r6.

32-Bit ISA Summary and Programming Tips

3-7

LUI r5,0x1234

ADDIU r5,r5,0x5678

ADDU r6,r4,r5

Note: The ADDI and SLTI instructions sign-extend the immediate value to 32 bits.

Although ADDIU and SLTIU stand for Add Immediate Unsigned and Set On Less

Than Immediate Unsigned, they also sign-extend the immediate value to 32 bits.

The only difference between the ADDI and ADDIU instructions is that ADDIU

never causes an overflow exception. Therefore, you can use the ADDIU

instruction to add a negative number to the contents of a general register without

being worried about a possible overflow. It is useful since there is no Subtract

Immediate instruction in the instruction set. The only difference between the SLTI

and SLTIU instructions is that SLTI compares two values (rs and sign-extended

immediate) as signed integers while SLTIU compares two values (rs and sign-

extended immediate) as unsigned integers.

Note: Typically, the assembler accepts immediate values longer than 16 bits. For

example, when you write this instruction:

ADDI r3,r2,0x12345678

the assembler automatically breaks it into a sequence of multiple instructions, as

shown below:

LUI r1,0x1234

ORI r1,r1,0x5678

ADD r3,r2,r1

This assembler capability eases your programming. As demonstrated by this

example, register r1 is reserved for use by the assembler. Don’t use it in your

assembly-language program.

3.3.3 64-Bit Addition and Subtraction

In some cases, the numbers being added or subtracted can be more than 32-bits long. Since general-

purpose registers are only 32-bits wide, it is the job of the programmer (or the compiler) to write the

code to break down large numbers into smaller chunks to be processed by the CPU. Figure 3–3

illustrates this. In Figure 3–3, r3 contains the upper 32 bits of a 64-bit constant, and r2 contains the

lower 32 bits of that 64-bit constant. Likewise, r5 and r4 together contain a 64-bit constant.

r3 r2 ± r5 r4 r11 r10

Figure 3-3 64-Bit Addition and Subtraction

Add with Carry

Below is an example of code to add two 64-bit constants together:

ADDU r10,r2,r4 # r10 ← r2 + r4

SLTU r11,r10,r2 # r11=1 if r10 (sum) is less than r2

ADD(U) r11,r11,r3 # r11 ← r11 (carry) + r3

32-Bit ISA Summary and Programming Tips

3-8

ADD(U) r11,r11,r5 # r11 ← r11 + r5

The first ADDU instruction adds the lower 32 bits of two constants together and puts the result in

r10. The TX19 architecture does not provide a flag bit to indicate whether an arithmetic operation

results in a carry-out. Therefore, it is necessary to somehow record an occurrence of a carry-out

resulting from an addition. For the sake of discussion, let’s assume that the two operands are

positive values. Then, based on the fact that if the sum is less than one of the operands added, a

carry-out occurred, the next SLTU (Set on Less Than Unsigned) instruction sets r11 to 1 if r10 is

less than r2. The following two ADD(U) instructions add the carry-out bit (1 or 0) and the upper 32

bits of the two 64-bit constants.

The last two instructions can be either ADD or ADDU. The only difference between these two

instructions is that ADDU (Add Unsigned) never causes an integer overflow exception. When you

use the ADDU instruction, you need to write the code to explicitly test for an occurrence of the

overflow condition. This is discussed in the next section.

Subtract with Borrow

In 64-bit subtraction, the code must take care of the borrow of the lower operand. The technique for

performing subtract-with-borrow is quite similar to add-with-carry. Below is an example of code to

subtract a 64-bit constant from a 64-bit constant.

SLTU r8,r2,r4 # r8=1 if r2 is less than r4

SUBU r10,r2,r4 # r10 ← r2 – r4

SUB(U) r11,r3,r5 # r11 ← r3 – r5

SUB(U) r11,r11,r8 # r11 ← r11 - r8 (borrow)

First of all, the SLTU instruction checks if r2 (minuend) is smaller than r4 (subtrahend). If it is, r8 is

set to 1. That is, if there is a borrow resulting from the subtraction of the lower 32 bits, its

occurrence is recorded in r8. The content of r8 is subtracted in the last SUB(U) instruction.

Again, the only difference between the SUB and SUBU instructions is that SUBU (Subtract

Unsigned) never causes an integer overflow exception.

3.3.4 Testing for an Integer Overflow

As explained in the previous section, the signed add and subtract instructions, ADD and SUB, trap

(i.e., generate an overflow exception) if the addition/subtraction resulted in a two’s-complement

overflow. On the other hand, the unsigned add and subtract instructions, ADDU and SUBU, never

cause an overflow exception. If it is necessary to detect signed overflow without using traps or to

detect overflow for unsigned operations, you need to write a software routine to check for overflow.

It should be observed that, during addition, overflow occurs if the signs of the operands are the same

and the sign of the sum is different. Below is an example of code that checks for overflow resulting

from signed addition:

ADDU r2,r3,r4 # r2 ← r3 + r4, no trap

XOR r5,r3,r4 # Compare signs of r3 and r4; if different,

overflow never occurs (r5 < 0)

BLTZ r5, No_Ov # Branch on less than zero

XOR r5,r2,r3 # Compare signs of sum and operand; if different,

overflow occurred (r5 < 0)

BLTZ r5,Ov # Branch on less than zero

32-Bit ISA Summary and Programming Tips

3-9

No_Ov:

During subtraction, overflow occurs if the signs of the operands are not the same and the sign of the

remainder is not the same as the sign of the minuend. Below is an example of code that checks for

overflow resulting from signed subtraction:

SUBU r2,r3,r4 # r2 ← r3 – r4

XOR r5,r3,r4 # Compare signs of r3 and r4; if same, r5 => 0

(overflow never occurs)

BGEZ r5,No_Ov # Branch on greater than or equal to zero

XOR r5,r2,r3 # Compare signs of remainder and minuend; if

different, overflow occurred (r5 < 0)

BLTZ r5,Ov # Branch on less than zero

No_Ov:

3.3.5 64-Bit x 64-Bit Multiplication

To multiply two integer numbers in the TX19, they must be in general-purpose registers. In

doubleword-by-doubleword multiplication, each 64-bit operand take two registers since all general-

purpose registers are only 32-bits wide.

In Figure 3-4, the upper 32 bits of the multiplicand is placed in r3 and the lower 32 bits of it is in r2.

Likewise, the multiplier is put in r5 and r4.

r3 r2 × r5 r4 r11 r10

×

r2r3

r4r5

r4 × r2 (Low)

r11 r10

r4 × r3 (High)

r5 × r2 (High)

r5 × r3 (High) r5 × r3 (Low)

r4 × r2 (High)

r4 × r3 (Low)

r5 × r2 (Low)

Figure 3-4 64-Bit x 64-Bit Multiplication

The following shows an example of code that performs 64-bit by 64-bit multiplication. Although

the product can be a maximum of 128-bits long, the code below only deals with the lower two

words of the product for the sake of simplicity.

MULTU r10,r2,r4 # r4 x r2, Copy low word of product to r10

MFHI r11 # Copy high word of product to r11

MULTU r9,r3,r4 # r3 x r4, Copy low word of product to r9

ADDU r11,r11,r9 # r11 ← r11 + r9

MULTU r9,r2,r5 # r5 x r2, Copy low word of product to r9

32-Bit ISA Summary and Programming Tips

3-10

ADDU r11,r11,r9 # r11 ← r11 + r9

Note that there is a slight difference in the functionality of the MULTU (Multiply Unsigned)

instruction between the MIPS and the TX19 architectures. In the MIPS processor, MULTU is a two-

operand instruction that specifies two source registers holding the multiplicand and the multiplier.

The 64-bit doubleword product is placed into the HI and LO registers. In the TX19, however, the

MULTU instruction can take a third operand. In the TX19, MULTU can optionally copy the low-

order word of the product to a general-purpose register. This eliminates the need to use the MFLO

(Move From LO) instruction to move the contents of the LO register to a general register.

The MFHI (Move From HI) instruction moves the contents of the HI register, i.e., the high-order

word of the product, to a general register.

3.3.6 Rotate Instructions

In the TX19, there are no rotate instructions at the machine level (although assemblers may have

macro instructions that perform rotate left and rotate right). In rotate left, for example, as bits are

shifted from right to left, they exit from the left end (MSB) and enter the right end (LSB). In shift

left, bits that exit the left end are discarded and zeros are supplied to the vacated bits on the right.

In the TX19, a rotate operation must be implemented using shift and logical-OR instructions. Figure

3-5 illustrates how to do this.

SLL r9,r8,6

SRL r8,r8,(32-6)

OR r8,r8,r9

r8

r9

r8

00 0000

��
��

���
���

0000 0000 0000 0000 0000 0000 00

��
��

Rotate left six bits

r8

Figure 3-5 Rotate Left by 6 Bits

In Figure 3-5, the SLL (Shift Left Logical) instruction shifts the contents of r8 left by six bits and

puts the result in r9. The low-order bits are filled with zeros. Next, the SRL (Shift Right Logical)

instruction is used to shift r8 right by 26 (32-6) bits. Finally, the OR instruction logical-ORs the

contents of r8 and r9 and puts the result back in r8. The outcome is equivalent to rotating r8 by six

bits.

3.4 Jump, Branch and Branch-Likely Instructions

It is often necessary to transfer program control to a different location in the sequence of

instructions. There are many instructions to achieve this. The TX19 provides jump, branch and

branch-likely instructions. Section 3.4.1 overviews these instructions. Section 3.4.2 describes the

addressing modes supported by the jump, branch and branch-likely instructions. Section 3.4.3

explains how to switch from 32-bit ISA mode to 16-bit ISA mode, or vice versa. In Section 3.4.5,

32-Bit ISA Summary and Programming Tips

3-11

the differences between regular branch instructions and branch-likely instructions are explained.

Section 3.4.6 provides programming tips for branching on arithmetic comparisons. Section 3.4.6

describes a technique for jumping to 32-bit addresses. Section 3.4.7 describes subroutine calls and

returns.

3.4.1 Overview of Jump, Branch and Branch-Likely Instructions

In the TX19, jump instructions are used to unconditionally transfer program control to the target

location whereas branch and branch-likely instructions are what many microprocessors call

conditional jumps and are used to transfer control to a new location only when a certain condition is

met. Table 3-4 and Table 3-5 show the opcodes of the jump, branch and branch-likely instructions in

the 32-bit ISA.

Table 3-4 Jump Instructions (32-Bit ISA)

Opcode Name Addressing Format

J Jump Paged absolute I-type

JAL Jump And Link Paged absolute I-type

JALX Jump And Link eXchange Paged absolute I-type

JR Jump Register Register indirect R-type

JALR Jump And Link Register Register indirect R-type

Table 3-5 Branch and Branch-Likely Instructions (32-Bit ISA)

Opcode Name Condition Addressing Format

BEQ(L) Branch On Equal (Likely) rs = rt PC-relative I-type

BNE(L) Branch On Not Equal (Likely) rs ≠ rt PC-relative I-type

BGTZ(L) Branch On Greater Than Zero (Likely) rs > 0 PC-relative I-type

BGEZ(L) Branch On Greater Than or Equal To Zero (Likely) rs ≥ 0 PC-relative I-type

BLTZ(L) Branch On Less Than Zero (Likely) rs < 0 PC-relative I-type

BLEZ(L) Branch On Less Than or Equal To Zero (Likely) rs ≤ 0 PC-relative I-type

BLTZAL(L) Branch On Less Than Zero And Link (Likely) rs < 0 PC-relative I-type

BGEZAL(L)
Branch On Greater Than or Equal To Zero And

Link (Likely)
rs ≥ 0 PC-relative I-type

Jump-and-link instructions and branch-and-link instructions save a return address in register r31.

They are typically used for subroutine calls.

With all the jump and regular branch, the instruction immediately following the jump or branch is

always executed while the target instruction is being fetched from memory. This is true to all regular

branch instructions regardless of whether the branch is to be taken or not. On the other hand,

branch-likely instructions execute the instruction in the delay slot only when the branch is taken; if

the branch is not taken, the instruction in the delay slot is nullified. For the jump and branch delay

slots, see Chapter 5, CPU Pipeline. Branch-likely instructions are detailed in Section 3.4.4.

32-Bit ISA Summary and Programming Tips

3-12

3.4.2 Jump and Branch Address Calculation

As shown in Table 3-4 and Table 3-5, jump, branch and branch-likely instructions compute the

effective address of the next instruction using the following addressing modes:

• Paged absolute

• Register indirect

• PC-relative with offset

Paged Absolute Addressing

The J, JAL and JALX instructions unconditionally transfer program control to a target address using

paged absolute addressing. They generate the next instruction address by shifting the 26-bit

immediate operand by two bits and merging the resultant value with the four most-significant bits of

the program counter (PC). Figure 3-6 shows how the jump target address is generated by paged

absolute addressing. As shown in Figure 3-6, the target address for a jump is computed from the

address of the instruction immediately following the jump instruction, i.e., the address of the jump

delay slot. The four most-significant bits of the PC indicate a specific page in a 16-page address

space.

Jump Target Address

Jump Instruction

Jump Delay slot

26-Bit Immediate

4 Bits

0026-Bit Immediate

Figure 3-6 Paged Absolute Addressing (32-Bit ISA Mode)

Register Indirect Addressing

The JR and JALR instructions unconditionally transfer program control to a target address using a

32-bit absolute address held in a general-purpose register. The effective address is generated by

clearing the least-significant bit of the specified target register to zero. Since instructions must be

word-aligned, the JR and JALR instructions must specify a target register whose two least-

significant bits are zero.

Jump Target AddressTarget Register 0

Figure 3-7 Register Indirect Addressing (32-Bit ISA Mode)

PC-Relative with Offset Addressing

All the branch and branch-likely instructions transfer program control to a target address using a

PC-relative address. They generate the next instruction address by sign-extending and appending

b’00 to the 16-bit immediate displacement (offset) operand, and adding the resultant value to the

32-Bit ISA Summary and Programming Tips

3-13

contents of the program counter (PC). Figure 3-8 shows how the branch target address is generated

using PC-relative with offset addressing. As shown in Figure 3-8, the target address for a branch is

computed from the address of the instruction immediately following the branch instruction, i.e., the

address of the branch delay slot.

00

16-Bit Offset

16-Bit Offset

Branch Target Address

Branch Instruction

Branch Delay Slot
Program Counter (PC)

+Sign Extension

Figure 3-8 PC-Relative with Offset Addressing (32-Bit ISA Mode)

3.4.3 Run-Time Switching of the ISA Modes

The TX19 has two ISA modes, 16-bit ISA and 32-bit ISA. The TX19 provides for efficient run-time

switching between 16-bit and 32-bit ISA modes through the JALX, JR and JALR instructions. The

least-significant bit of the program counter (PC) is the ISA mode bit: 0 for the 32-bit ISA and 1 for

the 16-bit ISA. The JALX instruction unconditionally toggles the ISA mode bit (the least-significant

bit) of the PC to switch to the other ISA. The JR and JALR instructions set the ISA mode bit from

the least-significant bit of the register containing the jump address; a jump address is generated by

masking off the ISA mode bit to zero.

In 32-bit ISA mode, instructions must be word-aligned. Thus, when switching from 16-bit ISA

mode to 32-bit ISA mode, the JR and JALR instructions must specify a target register whose two

least-significant bits are zero. If these bits are not zero, an Address Error exception will occur when

the jump target instruction is fetched.

In a jump delay slot of the JRLX, JR or JALR instruction, the instruction in the previous ISA mode

is executed.

Link instructions save the return address in either register r31 (ra) or another destination register (rd)

specified. Its least-significant bit keeps the ISA mode in which processing resumes after a

subroutine has been executed.

3.4.4 Branch-Likely Instructions

All the jump and branch instructions occur with a delay of two instructions before the program flow

can change because the processor must calculate the effective destination of the jump or branch and

fetch that instruction. This delay is called jump or branch delay. The TX19 architecture gives

responsibility of dealing with delay slots to software. The compiler or the assembler makes an

attempt to reorder instructions to execute the instruction immediately following the jump or branch

while the target instruction is being fetched from memory.

There is no problem in the case of jump instructions since jumps "always" transfer program control

to the target instruction; the instruction immediately following the jump can always fill the delay

32-Bit ISA Summary and Programming Tips

3-14

slot. However, with branch instructions, the processor never knows whether the branch will be taken

or not; so the instruction in the delay slot must be the one that logically precedes the branch

instruction. If the delay slot can not be filled with any useful instruction, a NOP (No Operation)

instruction must be inserted to keep the instruction pipeline filled. (NOP is a pseudoinstruction

accepted by the assembler; the assembler actually turns it into a shift instruction with a shift amount

of zero as described in Chapter 1.)

The code in Figure 3-9 implements the task of setting register r2 to 1 or 0, depending on whether the

value of r8 is equal to 0 or not. Because the ADDI instruction can not logically precede the BEQ

instruction, a NOP instruction is required immediately following BEQ.

Branch Not TakenBranch Taken

1

2

3

4

1

2

3

4

5

6

BEQ r8,r0,L0

NOP

ADDI r2,r0,1

J L1

NOP

L0:

ADD r2,r0,0

L1:

Figure 3-9 Regular Branch Instruction

Contrast this to the code in Figure 3-10 in which the branch-likely version of Branch On Equal

(BEQL) is used instead of BEQ. If a branch-likely is taken, the instruction in the delay slot is

executed. If a branch-likely is not taken, the instruction in the delay slot is nullified, or killed. This

eliminates the need to insert a NOP instruction in the delay slot, and thus helps to reduce code size

and speed up branch processing.

Branch Not TakenBranch Taken

1

2

3

1

2

3

BEQL r8,r0,L0

ADDI r2,r0,0

ADDI r2,r0,1

L0:

Figure 3-10 Branch-Likely Instruction

3.4.5 Branching on Arithmetic Comparisons

The Branch On Equal (BEQ) and Branch On Not Equal (BNE) instructions, and their branch-likely

versions (BEQL/BNEL) are the only branch instructions that execute a branch based on the

magnitude of two values in registers. For example,

32-Bit ISA Summary and Programming Tips

3-15

BEQ r2,r3,Equal

compares the contents of registers r2 and r3 and branches to Equal if they are equal. However, there

is no instruction to branch based on whether r2 is greater than r3. To perform such an arithmetic

comparison on a pair of registers or between a register and an immediate value, you must use a

sequence of two instructions. Three examples are given below. (Some assemblers provide macro

instructions for branching on arithmetic comparisons. The assembler expands macro instructions

into a sequence of machine instructions.)

• Example 1: Branch if r6 ≥ r7

The following sequence of instructions checks if the contents of r6 is equal to or greater than the

contents of r7. If r6 is less than r7, the SLT (Set On Less Than) instruction sets r24 to 1.

Otherwise, r24 is set to 0. The BEQ instruction branches to Label if r24 is 0 (Remember r0 is

hardwired to a constant value of zero).

SLT r24,r6,r7

BEQ r24,r0,Label

• Example 2: Branch if r7 ≥ 0x1234

The following sequence of instructions checks if the contents of r7 is equal to or greater than

0x1234 or not. In this example, the SLTI (Set On Less Than Immediate) instruction is used to

compare the contents of a register against an immediate value.

SLTI r24,r7,0x1234

BEQ r24,r0,Label

• Example 3: Branch if r7 ≠ 0x1234

The following sequence of instructions checks the equality of the contents of a register and an

immediate value. In this example, the ORI (OR Immediate) instruction temporarily loads r10

with 0x1234. Then the BEQ instruction checks if the contents of r10 is equal to the contents of

r7.

ORI r10,r0,0x1234

BEQ r10,r7,Label

3.4.6 Jumping to 32-Bit Addresses

As explained in Section 3.4.2, in paged absolute addressing, the J, JAL and JALX instructions can

only take a 26-bit immediate. Since it is shifted left by two bits, the address of the target must be

within a 2
28

-byte segment. To jump to an arbitrary 32-bit address, load the desired address into a

register by using a sequence of the LUI and ORI instructions and then use the JR (Jump Register)

instruction. The following code transfers program control to address 0x76543210.

LUI r8,0x7654

ORI r8,0x3210

JR r8

3.4.7 Subroutine Calls

In the 32-bit ISA, there are Jump-And-Link (JAL, JALX, JALR), Branch-And-Link (BLTZAL,

BGEZAL) and Branch-Likely-And-Link (BLTZALL, BGEZALL) instructions. These are typically

used as subroutine calls, where the subroutine return address is stored into register r31 (ra). The

JALR (Jump-And-Link Register) instruction can use any general-purpose register (rd) as the link

register.

32-Bit ISA Summary and Programming Tips

3-16

All the above instructions unconditionally place the address of the instruction following the delay

slot into r31 (ra) or rd. Jump-And-Link instructions set the ISA mode in the least-significant bit of

r31 or rd.

To return from a subroutine, use the JR instruction. The ISA mode bit (i.e., the least-significant bit

of the PC) is restored from the least-significant bit of the link register.

When subroutines are nested, the calling subroutine must save the return address in the link register

onto the stack before making the call so that it can be overwritten by the callee.

③
②

Running Program

JR r31

Subroutine

r31

PC①

④

⑥

⑤

Subroutine Call

Delay Slot

Return Point

Entry Address

Return Address

Return from Subroutine

Figure 3-11 Subroutine Calls and Returns

Jump, branch and branch-likely instructions with link except JAL and JALX have a source register

(rs) field. For example, in the instruction

BGEZAL r8,PSUB

r8 is the source register; BGEZAL checks if the value in r8 is greater than or equal to zero.

An exception or interrupt could prevent the completion of a legal instruction in the jump or branch

delay slot. If that happens, the jump, branch or branch-likely instruction that precedes it is set to the

Exception Program Counter (EPC) register. After the exception handler routine has been executed,

processing restarts with the jump, branch or branch-likely instruction and the instruction in the delay

slot. Because jump, branch and branch-likely instructions can be restarted after exceptions or

interrupts, they must be restartable. Therefore, r31 (ra) must not be used as a source register. See

Chapter 9 for the exception handling mechanism.

3.5 Coprocessor Instructions

The TX19 can operate with up to four coprocessors, CP0, CP1, CP2 and CP3. Instructions

categorized under coprocessor instructions perform operations on CP1 to CP3. Coprocessor load

and store instructions are I-type. Coprocessor computational instructions have coprocessor-

dependent formats.

The CU[3:1] bits in the Status register control accesses to the respective coprocessors whether in

User mode or in Kernel mode. Attempted execution of a coprocessor instruction causes a

Coprocessor Unusable exception when its CU bit is cleared.

32-Bit ISA Summary and Programming Tips

3-17

Table 3-6 shows the coprocessor instructions other than CP0 instructions (where z is the

coprocessor number).

Table 3-6 Coprocessor Instructions (32-Bit ISA)

Name Opcode

Move To/From Coprocessor MTCz, MFCz

Move Control To/From Coprocessor CTCz, CFCz

Coprocessor Operation COPz

Branch on Coprocessor z True/False BCzT, BCzF

Branch on Coprocessor z True/False Likely BCzTL, BCzFL

The Load Word To Coprocessor (LWCz) and Store Word From Coprocessor (SWCz) instructions

available with the MIPS R3000A are not supported by the TX19. Attempts to execute these

load/store instructions cause a Reserved Instruction exception.

System control coprocessor (CP0) instructions perform operations on the CP0 registers to

manipulate the system configuration, memory management and exception handling. Therefore, CP0

is given somewhat protected status. The CU[0] bit in the Status register controls the usability of

CP0 instructions in User mode. Attempts by a User-mode program to execute a CP0 instruction

when the CU[0] bit is cleared causes a Coprocessor Unusable exception. Kernel-mode programs can

execute all CP0 instructions, regardless of the setting of the CU[0] bit. Table 3-7 shows the CP0

instructions.

Table 3-7 System Control Coprocessor (CP0) Instructions

Name Opcode

Move To/From CP0 MTC0, MFC0

Restore From Exception RFE

Debug Exception Return DERET

Cache Operation CACHE

The TX19 performs direct segment mapping of virtual to physical addresses. It does not provide

support for a table lookaside buffer (TLB).

3.6 Special Instructions

Special instructions allow software to initiate traps, i.e., to test for a particular condition in a

running program. All special instructions are R-type. The 32-bit ISA has three special instructions,

SYSCALL (System Call), BREAK (Breakpoint) and SDBBP (Software Debug Breakpoint).

SDBBP is an extension implemented in the TX19; it is not part of the MIPS R3000A architecture.

Special instructions transfer program control to an appropriate exception handler. For details on

exception processing, see Chapter 6.

32-Bit ISA Summary and Programming Tips

3-18

3.7 Instruction Summary

This section provides an overview of the instructions in the 32-bit ISA.

Notational Conventions

In this section, all variable fields in an instruction format are shown in italicized lowercase letters,

like rt, rs, rd, immediate and sa (shift amount). For the sake of clarity, an alias is sometimes used to

refer to a field in the formats of specific instructions. For example, base and offset are used instead

of rs and immediate in the formats of load and store instructions. HI and LO are the special registers

that hold the results of integer multiply and divide operations.

Extensions

There are several instructions implemented in the TX19 that are not part of the TX39 or MIPS

R3000A architecture. For a complete list of differences in the instruction set between the TX19, the

TX39 and the MIPS R3000A, see Appendix D.

Table 3-8 Load and Store Instructions (32-Bit ISA)

Instruction Format Operation

Load Byte LB rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The byte in memory addressed by the EA is signed-

extended and loaded into rt.

Load Byte

Unsigned

LBU rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The byte in memory addressed by the EA is zero-

extended and loaded into rt.

Load Halfword LH rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The halfword in memory addressed by the EA is

signed-extended and loaded into rt.

Load Halfword

Unsigned

LHU rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The halfword in memory addressed by the EA is zero-

extended and loaded into rt.

Load Word LW rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The word in memory addressed by the EA is loaded

into rt.

Load Word Left LWL rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The left portion of rt is loaded with the appropriate

part of the high-order word in memory addressed by the EA.

Load Word Right LWR rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The right portion of rt is loaded with the appropriate

part of the low-order word in memory addressed by the EA.

Store Byte SB rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The least-significant byte in rt is stored in memory

addressed by the EA.

Store Halfword SH rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The low-order halfword in rt is stored in memory

addressed by the EA.

Store Word SW rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is

sign-extended. rt is stored in memory addressed by the EA.

32-Bit ISA Summary and Programming Tips

3-19

Instruction Format Operation

Store Word Left SWL rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The left portion of rt is stored into the appropriate part

of high-order word of memory addressed by the EA.

Store Word Right SWR rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The right portion of rt is stored into the appropriate

part of low-order word of memory addressed by the EA.

Sync SYNC This instruction is an extension to the R3000A architecture.
The instruction pipeline is interlocked until any load or store fetched

before the current instruction is completed.

Table 3-9 ALU Immediate Instructions (32-Bit ISA)

Instruction Format Operation

Add Immediate ADDI rt, rs, immediate The sum rs + immediate is placed into rt. The 16-bit immediate is

sign-extended. Traps on 2’s-complement overflow.

Add Immediate

Unsigned

ADDIU rt, rs, immediate The sum rs + immediate is placed into rt. The 16-bit immediate is

sign-extended. Does not trap on 2’s-complement overflow.

Set On Less Than

Immediate

SLTI rt, rs, immediate rt = 1 if rs is less than immediate; otherwise rt = 0. The 16-bit

immediate is sign-extended. Two values are compared as signed

integers.

Set On Less Than

Immediate

Unsigned

SLTIU rt, rs, immediate rt = 1 if rs is less than immediate; otherwise rt = 0. The 16-bit

immediate is sign-extended. Two values are compared as unsigned

integers.

AND Immediate ANDI rt, rs, immediate The contents of rs is ANDed with immediate and the result is placed

into rt. The 16-bit immediate is zero-extended.

OR Immediate ORI rt, rs, immediate The contents of rs is ORed with immediate and the result is placed

into rt. The 16-bit immediate is zero-extended.

Exclusive-OR

Immediate

XORI rt, rs, immediate The contents of rs is exclusive-ORed with immediate and the result is

placed into rt. The 16-bit immediate is zero-extended.

Load Upper

Immediate

LUI rt, immediate The 16-bit immediate is shifted left by 16 bits and concatenated to 16

bits of zeros. The result is placed into rt.

32-Bit ISA Summary and Programming Tips

3-20

Table 3-10 Three-Operand Register-Type Instructions (32-Bit ISA)

Instruction Format Operation

Add ADD rd, rs, rt The sum rs + rt is placed into rd. Traps on 2’s-complement overflow.

Add Unsigned ADDU rd, rs, rt The sum rs + rt is placed into rd. Does not trap on 2’s-complement

overflow.

Subtract SUB rd, rs, rt The remainder rs - rt is placed into rd. Traps on 2’s-complement

overflow.

Subtract Unsigned SUBU rd, rs, rt The remainder rs - rt is placed into rd. Does not trap on 2’s-

complement overflow.

Set On Less Than SLT rd, rs, rt rd = 1 if rs is less than rt; otherwise rd = 0. Two values are compared

as signed integers.

Set On Less Than

Unsigned

SLTU rd, rs, rt rd = 1 if rs is less than rt; otherwise rd = 0. Two values are compared

as unsigned integers.

AND AND rd, rs, rt The contents of rs is ANDed with the contents of rt and the result is

placed into rd.

OR OR rd, rs, rt The contents of rs is ORed with the contents of rt and the result is

placed into rd.

Exclusive-OR XOR rd, rs, rt The contents of rs is exclusive-ORed with the contents of rt and the

result is placed into rd.

NOR NOR rd, rs, rt The contents of rs is NORed with the contents of rt and the result is

placed into rd.

Table 3-11 Shift Instructions (32-Bit ISA)

Instruction Format Operation

Shift Left Logical SLL rd, rt, sa The contents of rt is shifted left by sa bits. Zeros are supplied to the

vacated positions on the right. The result is placed into rd.

Shift Left Logical

Variable

SLLV rd, rt, rs The contents of rt is shifted left the number of bits specified by the

five least-significant bits of rs. Zeros are supplied to the vacated

positions on the right. The result is placed into rd.

Shift Right Logical SRL rd, rt, sa The contents of rt is shifted right by sa bits. Zeros are supplied to the

vacated positions on the left. The result is placed into rd.

Shift Right Logical

Variable

SRLV rd, rt, rs The contents of rt is shifted right the number of bits specified by the

five least-significant bits of rs. Zeros are supplied to the vacated

positions on the left. The result is placed into rd.

Shift Right

Arithmetic

SRA rd, rt, sa The contents of rt is shifted right by sa bits. The sign bit is copied to

the vacated positions on the left. The result is placed into rd.

Shift Right

Arithmetic Variable

SRAV rd, rt, rs The contents of rt is shifted right the number of bits specified by the

five least-significant bits of rs. The sign bit is copied to the vacated

positions on the left. The result is placed into rd.

32-Bit ISA Summary and Programming Tips

3-21

Table 3-12 Multiply and Divide Instructions (32-Bit ISA)

Instruction Format Operation

Multiply MULT (rd,) rs, rt The rd operand is an extension to the R3000A architecture.
The multiplicand is the signed value of rs. The multiplier is the signed

value of rt. The 64-bit product rs * rt is placed into registers HI and

LO. The low-order 32 bits of the product can be optionally copied into

rd.

Multiply Unsigned MULTU (rd,) rs, rt The rd operand is an extension to the R3000A architecture.
The multiplicand is the unsigned value of rs. The multiplier is the

unsigned value of rt. The 64-bit product rs * rt is placed into registers

HI and LO. The low-order 32 bits of the product can be optionally

copied into rd.

Divide DIV rs, rt The dividend is the signed value of rs. The divisor is the signed value

of rt. The quotient is placed into register LO and the remainder is

placed into register HI.

Divide Unsigned DIVU rs, rt The dividend is the unsigned value of rs. The divisor is the unsigned

value of rt. The quotient is placed into register LO and the remainder

is placed into register HI.

Move From HI MFHI rd The contents of register HI is copied to rd.

Move From LO MFLO rd The contents of register LO is copied to rd.

Move To HI MTHI rs The contents of rs is copied to register HI.

Move To LO MTLO rs The contents of rs is copied to register LO.

Table 3-13 Multiply-and-Add Instructions (32-Bit ISA)

Instruction Format Operation

Multiply-and-Add MADD (rd,) rs, rt This instruction is an extension to the R3000A architecture.
The multiplicand is the signed value of rs. The multiplier is the signed

value of rt. The 64-bit product rs * rt is added to the contents of

registers HI and LO and the result is placed back into HI and LO. The

low-order 32 bits of the result can be optionally copied to rd.

Multiply-and-Add

Unsigned

MADDU (rd,) rs, rt This instruction is an extension to the R3000A architecture.
The multiplicand is the unsigned value of rs. The multiplier is the

unsigned value of rt. The 64-bit product rs * rt is added to the

contents of registers HI and LO and the result is placed back into HI

and LO. The low-order 32 bits of the result can be optionally copied

to rd.

32-Bit ISA Summary and Programming Tips

3-22

Table 3-14 Jump Instructions (32-Bit ISA)

Instruction Format Operation

Jump J target A jump is taken to the address computed using paged absolute

addressing, i.e., by shifting the 26-bit target left by two bits and

combining it with the four most-significant bits of PC + 4.

Jump And Link JAL target A jump is taken to the address computed using paged absolute

addressing, i.e., by shifting the 26-bit target left by two bits and

combining it with the four most-significant bits of PC + 4. The

address of the instruction following the delay slot is saved in r31.

Jump And Link

eXchange

JALX target This instruction is an extension to the TX39 and R3000A

architectures.
A jump is taken to the address using paged absolute addressing, i.e.,

by shifting the 26-bit target left by two bits and combining it with the

four most-significant bits of PC + 4. The address of the instruction

following the delay slot is saved in r31. The ISA mode bit in the PC

toggles.

Jump Register JR rs A jump is taken to the address specified by the upper 31 bits of rs.

The least-significant bit of rs is interpreted as the ISA mode specifier.

Jump And Link

Register

JALR (rd,) rs A jump is taken to the address specified by the upper 31 bits of rs.

The least-significant bit of rs is interpreted as the ISA mode specifier.

The address of the instruction following the delay slot is saved in rd.

If rd is omitted, the default is r31.

32-Bit ISA Summary and Programming Tips

3-23

Table 3-15 Branch and Branch-Likely Instructions (32-Bit ISA)

Instruction Format Operation

Branch On Equal

(Likely)

BEQ(L) rs, rt, offset BEQL is an extension to the R3000A architecture.
If rs = rt, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

Branch On Not

Equal (Likely)

BNE(L) rs, rt, offset BNEL is an extension to the R3000A architecture.

If rs ≠ rt, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

Branch On Greater

Than Zero (Likely)

BGTZ(L) rs, offset BGTZL is an extension to the R3000A architecture.
If rs > 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

Branch On Greater

Than or Equal to

Zero (Likely)

BGEZ(L) rs, offset BGEZL is an extension to the R3000A architecture.

If rs ≥ 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

Branch On Less

Than Zero (Likely)

BLTZ(L) rs, offset BLTZL is an extension to the R3000A architecture.
If rs < 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

Branch On Less

Than or Equal to

Zero (Likely)

BLEZ(L) rs, offset BLEZL is an extension to the R3000A architecture.

If rs ≤ 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

Branch On Less

Than Zero And Link

(Likely)

BLTZAL(L) rs, offset BLTZALL is an extension to the R3000A architecture.
If rs < 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

The address of the instruction following the delay slot is saved in r31.

Branch On Greater

Than or Equal To

Zero And Link

(Likely)

BGEZAL(L) rs, offset BGEZALL is an extension to the R3000A architecture.

If rs ≥ 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 4 (i.e., the address of the branch delay slot).

The address of the instruction following the delay slot is saved in r31.

✝ The "L" suffix in the opcodes indicates a branch-likely instruction.

32-Bit ISA Summary and Programming Tips

3-24

Table 3-16 Coprocessor Instructions (32-Bit ISA)

Instruction Format Operation

Move To

Coprocessor

MTCz rt, rd The contents of general register rd is copied into coprocessor

register rt of coprocessor unit z.

Move From

Coprocessor

MFCz rt, rd The contents of coprocessor register rd of coprocessor unit z is

copied into general register rt.

Move Control To

Coprocessor

CTCz rt, rd The contents of general register rt is copied into coprocessor control

register rd of coprocessor unit z.

Move Control From

Coprocessor

CFCz rt, rd The contents of coprocessor control register rd of coprocessor unit z

is copied into general register rt.

Coprocessor

Operation

COPz cofun Coprocessor unit z performs the operation specified by cofun.

Branch On

Coprocessor z True

(Likely)

BCzT(L) offset If the coprocessor unit z condition line is true, a branch is taken to

the target address specified as a 16-bit offset relative to PC + 4 (i.e.,

the address of the branch delay slot).

Branch On

Coprocessor z
False (Likely)

BCzF(L) offset If the coprocessor unit z condition line is false, a branch is taken to

the target address specified as a 16-bit offset relative to PC + 4 (i.e.,

the address of the branch delay slot).

✝ The "L" suffix in the opcodes indicates a branch-likely instruction.

Table 3-17 System Control Coprocessor (CP0) Instructions (32-Bit ISA)

Instruction Format Operation

Move To CP0 MTC0 rt, rd This is an extension to the R3000A architecture.
The contents of general register rt is copied into CP0 register rd.

Move From CP0 MFC0 rt, rd This is an extension to the R3000A architecture.
The contents of CP0 register rt is copied into general register rd.

Restore From

Exception

RFE This is an extension to the R3000A architecture.
The old status bits (interrupt enable and operating mode) of the

Status register are restored into the previous status bits, and the

previous status bits are restored into the current status bits.

Additionally, the previous interrupt mask level field is restored to the

current mask level field.

Debug Exception

Return

DERET This is an extension to the R3000A architecture.
Program control is transferred back to a User program from a debug

exception handler. The return address in the DEPC register is

restored into the PC.

Cache CACHE op, offset(base) This is an extension to the R3000A architecture.
A virtual address is formed by adding offset and base and this virtual

address is translated into a physical address. op specifies a cache

operation for this address.

32-Bit ISA Summary and Programming Tips

3-25

Table 3-18 Special Instructions (32-Bit ISA)

Instruction Format Operation

System Call SYSCALL code A system call exception occurs, immediately and unconditionally

transferring control to the exception handler.

Breakpoint BREAK code A breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler.

Software Debug

Breakpoint

Exception

SDBBP code This is an extension to the R3000A architecture.
A debug breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler.

32-Bit ISA Summary and Programming Tips

3-26

16-Bit ISA Summary and Programming Tips

4-1

Chapter 4 16-Bit ISA Summary and Programming Tips

This chapter gives an overview of the instructions and addressing modes supported by the TX19 in

16-bit ISA mode. This chapter also presents many programming tips using 16-bit instructions.

Instructions are grouped into the following categories. Branch-likely and coprocessor instructions

are not supported by the 16-bit ISA.

• Load and store instructions

• Computational instructions

• Jump and branch instructions

• Special instructions

Doubleword instructions available in the MIPS16 ASE are not implemented in the TX19.

To the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to

r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, the 16-bit

ISA includes MOVE instructions to copy values between the eight 16-bit-ISA registers and the

remaining 24 registers of the full 32-bit architecture. Additionally, certain instructions implicitly use

r24 (t8), r29 (sp) and r31 (ra). r24 serves as a special condition register for handling compare results.

r29 maintains the program stack pointer. r31 is the link register. Multiply and divide instructions use

the special registers HI and LO.

4.1 Instruction Formats

The TX19 instructions for the 16-bit ISA mode are all 16-bits wide, except JAL and JALX which

are 32-bits wide. Basically, there are ten instruction formats for 16-bit instructions as shown in

Figure 4-1. The 32-bit JAL and JALX instructions use the JAL/JALX format shown in Figure 4-2.

To fit within the 16-bit limit, immediate fields in the 16-bit instructions are only 4 to 11 bits. The

16-bit ISA provides a way to extend its shorter immediates into the full width of immediates in the

32-bit ISA mode. The EXTEND instruction in the 16-bit ISA is not really an instruction and does

not generate a machine instruction on its own. It provides a 2- to 8-bit prefix to be prepended to any

16-bit instruction with an address or immediate field. Therefore, EXTENDing typical 16-bit

instructions to 32 bits gives several more instruction formats, as shown in Figure 4-2. For example,

the EXTENDed version of the I-type format is called EXT-I.

16-Bit ISA Summary and Programming Tips

4-2

<< 16-Bit Instructions >>

I Type 15 11 10 0

op imm

(op: B)

RI Type 15 11 10 8 7 0

op rx imm

(op: ADDIU8, ADDIUPC, ADDIUSP, BEQZ, BNEZ, CMPI, LI, LWPC, LWSP, SLTI, SLTIU SWSP)

RR Type 15 11 10 8 7 5 4 0

RR rx ry F

RRI Type 15 11 10 8 7 5 4 0

op rx ry imm

(op: LB, LBU, LH, LHU, LW, SB, SH, SW)

RRR Type 15 11 10 8 7 5 4 2 1 0

RRR rx ry rz F

RRI-A Type 15 11 10 8 7 5 3 0

RRI-A rx ry F imm

SHIFT Type 15 11 10 8 7 5 4 2 1 0

SHIFT rx ry SA F

SA: The 3-bit sa field can specify a shift amount in the range of 1 to 8. The 16-bit ISA defines the value

0 in the sa field to mean a shift of 8 bits.

I8 Type 15 11 10 8 7 0

I8 F imm

I8_MOVR32 Type 15 11 10 8 7 5 4 0

I8 F ry r32[4:0]

F: BTEQZ, BTNEZ, SWRASP, ADJSP, MOV32R, MOVR32

I8_MOV32R Type 15 11 10 8 7 3 2 0

I8 F r32[2:0, 4:3] rz

r32: The r32 field uses special bit encoding. For example, encoding of register r7 (00111) is 11100 in the

r32 field.

op 5-bit operation code

rx 3-bit source/destination register specifier

ry 3-bit source/destination register specifier

immediate or imm 4-, 5-, 8- or 11-bit immediate, or branch or address displacement (offset)

rz 3-bit source/destination register specifier

F 1-, 2-, 3- or 5-bit function code

r32 32-bit ISA general-purpose register specifier

Figure 4-1 16-Bit Instruction Formats

16-Bit ISA Summary and Programming Tips

4-3

<< 32-Bit Instructions >>

JAL and JALX Type

31 27 26 25 21 20 16 15 0

JAL X TAR[20:16] TAR[25:21] TAR[15:0]

X=0: JAL instruction, AX=1: JALX instruction

EXT-I Type

31 27 26 21 20 16 15 11 10 9 8 7 6 5 4 0

EXTEND imm[10:5] imm[15:11] op 0 0 0 0 0 0 imm[4:0]

EXT-RI Type

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0

EXTEND imm[10:5] imm[15:11] op rx 0 0 0 imm[4:0]

EXT-RRI Type

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND imm[10:5] imm[15:11] op rx ry imm[4:0]

EXT-RRI-A Type

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0

EXTEND imm[10:4] imm[14:11] RRI-A rx ry F imm[3:0]

EXT-SHIFT Type

31 27 26 22 21 20 19 18 17 16 15 11 10 8 7 5 4 3 2 1 0

EXTEND SA[4:0] 0 0 0 0 0 0 SHIFT rx ry 0 0 0 F

EXT-I8 Type

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0

EXTEND imm[10:5] imm[15:11] I8 F 0 0 0 imm[4:0]

Figure 4-2 32-Bit Instruction Formats

4.2 Load and Store Instructions

In the 16-bit ISA, there are no load/store instructions for misaligned data and the SYNC instruction

for memory synchronization. In the 16-bit ISA, the biggest saving in the instruction length comes

from restrictions on the size of immediate values expressible. All 16-bit load and store instructions

are restricted to 5 or 8 bits of unsigned values. To overcome this restriction, the 16-bit ISA contains

a mechanism to EXTEND instructions with an address or offset field to 16 bits. For details on the

EXTEND instruction, see Section 4.5, Special Instructions. To further address the supply of

constants, the 16-bit ISA has a new addressing mode.

Section 4.2.1 describes the addressing modes supported by the 16-bit load and store instructions.

Section 4.2.2 gives an overview of the load and store instructions. Section 4.2.3 explains how to get

32-bit addresses using a new addressing mode.

4.2.1 Load and Store Address Calculation

In the 16-bit ISA, there are three addressing modes supported by load and store instructions:

16-Bit ISA Summary and Programming Tips

4-4

• Register indirect with offset

• SP-relative with offset

• PC-relative with offset

Register Indirect with Offset Addressing

In 16-bit ISA mode, most load and store instructions use register indirect with offset addressing.

Instructions using this addressing mode is the RRI (register-register-immediate) type and include a

base register and an unsigned 5-bit offset field. These instructions generate the target address by

zero-extending the 5-bit offset and adding it to the contents of the base register. The base register

can be any of the general-purpose registers visible to the 16-bit ISA (r2 to r7, r16, r17). In the 16-bit

ISA, load and store offsets are shifted left until they are aligned to the data type being loaded or

stored. This is done to provide a greater offset range. In the case of word accesses, the offset is

shifted by two bits. In the case of halfword accesses, the offset is shifted by one bit.

5-Bit Offset

Shifted left by 1 or 2 bits

Zero Extension

Base Register

32-Bit Address

Memory

Effective Address

+0

00

Figure 4-3 Register Indirect with Offset Addressing (16-Bit ISA)

SP-Relative with Offset Addressing

In the 32-bit ISA, there is no hardware-designated stack pointer. Although r29 is conventionally

used to maintain the program stack pointer, any general-purpose register (except r0) can be used

from the point of view of hardware. In the 16-bit ISA, however, one of the general-purpose registers,

r29, serves as a special stack pointer and is called sp. The 16-bit ISA refers to it implicitly through

special function codes, thereby eliminating the base register field. This made it possible to expand

the offset field to eight bits. The instruction format is the RI (register-immediate) type. In SP-

relative addressing, the effective address is formed from a eight-bit offset (shifted left by two bits)

relative to the SP register. The Load Word (LW) and Store Word (SW) instructions can use this

addressing mode. These instructions can address a range of 1 Kbytes (210) of memory without the

need to EXTEND the instruction.

16-Bit ISA Summary and Programming Tips

4-5

Memory

Effective Address

8-Bit Offset

Shifted left by 2 bits

00Zero Extension

Stack Pointer Resister (sp)

32-Bit Address

+

Figure 4-4 SP-Relative Addressing (16-Bit ISA)

PC-Relative with Offset Addressing

PC-relative with offset addressing is supported by the Load Word (LW) instruction. In PC-relative

with offset addressing, the effective address is formed by shifting the eight-bit offset left by two bits

and adding the resultamt value to the PC with the lower two bits cleared. A 32-bit constant is then

loaded into a register from the addressed memory location. 32-bit constants can be embedded in the

code segment to get the maximum benefit from this addressing mode.

Memory

Effective Address

8-Bit Offset

Shifted left by 2 bits

00Zero Extension

Program Counter (PC)

+

Figure 4-5 PC-Relative with Offset Addressing (16-Bit ISA)

4.2.2 Overview of Load and Store Instructions

Table 4-1 and Table 4-2 give the load and store instructions to perform byte, halfword and word

accesses. The LB and LH instructions sign-extend the loaded byte and halfword respectively. The

LBU and LHU instructions, which have the “U” (unsigned) suffix, zero-extend the loaded byte and

halfword respectively.

Byte and halfword loads and stores use register indirect with offset addressing. Word loads and

stores support all the addressing modes described in the previous section, with one exception that

SW does not support PC-relative addressing.

16-Bit ISA Summary and Programming Tips

4-6

Table 4-1 Load Instructions

Data Type Unsigned Load Signed Load Addressing

Byte LBU LB Register Indirect

Halfword LHU LH Register Indirect

Word LW — Register-indirect

SP-relative

PC-relative

Table 4-2 Store Instructions

Data Type Opcode Addressing

Byte SB Register Indirect

Halfword SH Register Indirect

Word SW Register Indirect

SP-relative

4.2.3 32-Bit Address Generation

In 16-bit ISA mode, the offset field is restricted to only 5 or 8 bits. However, EXTENDing an

instruction to 32 bits allows the same order of offset value magnitude as is available in the 32-bit

ISA (-32768 to 32767). If the offset is outside this range, you must put it in a general register prior

to the load or store instruction. Alternatively, for word loads, you can use PC-relative with offset

addressing. Three examples are given below.

• Example 1: Base address + 32-bit offset

In the example below, the ADDU instruction is used to add the offset held in register r5 to the

base address in register r4. The result is placed back into r4. Then the LW instruction uses r4 as

the base register to address a memory location.

ADDU r4,r4,r5

LW r6,0(r4)

• Example 2: Base address + 32-bit offset

For offsets greater than 16 bits, the 32-bit ISA uses the LUI (Load Upper Immediate) instruction

to load the upper 16 bits of a register, followed by an addition of an immediate value into the

lower 16 bits. However, the 16-bit ISA does not have the LUI instruction. Instead, the 16-bit

ISA has PC-relative addressing. In the example below, the memory location addressed by the

first LW instruction contains a 32-bit offset value. It loads the offset value into r5. The ADDU

instruction then adds it to the base address held in r4 to form the effective address. This way, the

last LW instruction can use r4 to address the desired memory location, with an offset of zero.

LW r5,16(pc)

ADDU r4,r4,r5

LW r6,0(r4)

• Example 3: Arbitrary 32-bit absolute address

In the example below, the first LW instruction loads a 32-bit absolute address from memory

using PC-relative addressing. The second LW instruction can address a desired memory location,

with an offset of zero.

16-Bit ISA Summary and Programming Tips

4-7

LW r4,16(pc)

LW r6,0(r4)

4.3 Computational Instructions

This section describes the computational instructions available in the 16-bit ISA. Section 4.3.1

provides a category of computational instructions and an overview of the differences between the

16-bit ISA and the 32-bit ISA. Section 4.3.2 discusses computations that involve the use of 32-bit

constants. For 64-bit arithmetic and rotate operations, see Chapter 3, 32-Bit ISA Summary and

Programming Tips, since the same instructions can be used to implement them in both the 32-bit

and 16-bit ISA modes.

4.3.1 Overview of Computational Instructions

Computational instructions in the 16-bit ISA are categorized into four groups shown in Table 4-3.

They consist of arithmetic, compare, logical, shift, multiply and divide. Multiply-and-add

instructions are not available in the 16-bit ISA. The 16-bit ISA does not support MIPS16

instructions for 64-bit, doubleword arithmetic and shift operations.

Table 4-3 Computational Instructions

Category Instruction Opcode

ALU Immediate Add ADDIU

Set On Less Than SLTI, SLTIU

Compare CMPI

Load Immediate LI

Register-Type Add ADDU

Subtract SUBU

Set On Less Than SLT, SLTU

Compare CMP

Negate NEG

Logical AND AND

Logical OR OR

Logical XOR XOR

Not NOT

Move MOVE

Shift Logical Shift SLL, SLLV, SRL, SRLV

Arithmetic Shift SRA, SRAV

Multiply and Divide Multiply MULT, MULTU

Divide DIV, DIVU

Move From/To HI/LO MFHI, MFLO

16-Bit ISA Summary and Programming Tips

4-8

In ALU immediate instructions, the source operands are a general-purpose register and a 5- or 8-bit

immediate. The 16-bit ISA did away with immediate logical instructions such as ANDI, ORI and

XORI. However, the 16-bit ISA has a new instruction, CMPI, for compare operations; it exclusive-

ORs the contents of a general register (rs) with the zero-extended immediate and puts the result in

register t8 (r24). The LI instruction loads a register with the zero-extended immediate.

Except for the ADDIU instruction, the 5- and 8-bit immediates in the ALU immediate instructions

are zero-extended. However, when EXTEND is prepended to these instructions, they use the

conventional signed 16-bit immediate of 32-bit ISA mode.

Register-type instructions manipulate the values held in two general-purpose registers and place the

result into a general-purpose register. There are two-operand (RR-type) and three-operand (RRR-

type) instructions. The 16-bit ISA dropped arithmetic instructions that can trap in order to save

opcode space. Instead, the 16-bit ISA provides the CMP, NEG and NOT instructions. CMP

compares the values in two registers. NEG performs two’s complement of a value in a register. The

NOT instruction performs one’s complement of a value in a register. Additionally, the 16-bit ISA

has the MOVE instruction to copy values between the eight registers visible to the 16-bit ISA and

the remaining 24 registers of the full 32-bit architecture.

Load Immediate (LI), Negate (NEG) and Not (NOT) were added to the 16-bit ISA since these

operations could no longer be synthesized from other instructions using r0 as a source. Compare

instructions (CMP, CMPI) and set-on-less-than instructions (SLTI, SLTIU, SLT, SLTU) implicitly

use register t8 (r24) as the destination.

The 16-bit ISA provides the same set of shift instructions as the 32-bit ISA. In the 16-bit ISA,

however, the sa field is only 3-bits wide; thus the shift amount is restricted to 1 to 8 (000 is defined

as a shift of 8 bits). EXTEND extends the 3-bit sa fields into 5-bit fields for shifts.

Multiply and divide instructions in the 16-bit ISA perform the same functions as those in the 32-bit

ISA, except that, in the 16-bit ISA, MULT and MULTU do not have an extension to place the lower

32 bits of the product into a general-purpose register. In addition, with the multiply-and-add

instructions gone, the Move To HI/LO instructions (MTHI, MTLO) were left out.

4.3.2 32-Bit Constants

Even EXTEND can extend immediate fields in computational instructions to only 16 bits. For

immediates greater than 16 bits, you can not use the sequence of the LUI and ORI instructions as in

32-bit ISA mode because there is neither the LUI nor ORI instruction in the 16-bit ISA. Instead, in

16-bit ISA mode, 32-bit constants can be embedded in the code segment, typically between

subroutine bodies. Then the LW instruction can reference those 32-bit constants using PC-relative

addressing. Even with the overhead of the constant storage, this is more compact than the two 32-bit

instructions required by the 32-bit ISA.

The following is an example of adding a 32-bit constant to the contents of a general register. The

LW instruction loads a 32-bit constant into r5 from memory. The ADDU instruction adds the

contents of r4 and r5 together and puts the result in r6.

LW r5,offset(pc)

ADDU r6,r4,r5

Zero Value

Generally, the 16-bit ISA does not have direct access to r0. When a value of zero is necessary, use

16-Bit ISA Summary and Programming Tips

4-9

the LI (Load Immediate) instruction as follows:

LI rx,0

which zero-extends and loads the immediate value (0) into rx.

Alternatively, you can use the MOVE instruction to get a value of zero. Since the MOVE instruction

can move values between the eight registers visible to the 16-bit ISA and the remaining 24 registers

of the full 32-bit architecture, the following gives you a value of zero:

MOVE ry,r0

4.4 Jump and Branch Instructions

This section describes the jump and branch instructions available in the 16-bit ISA, focusing on the

differences from the 32-bit instructions. Section 4.4.1 gives an overview of jump and branch

instructions. Section 4.4.2 provides programming tips for branching on arithmetic comparisons.

Section 4.4.3 describes a technique to jump to 32-bit addresses.

4.4.1 Overview of Jump and Branch Instructions

The 16-bit ISA discarded all branch instructions that compare two registers and then branch, such as

BEQ, BNE, BGEZ, BGTZ, BLEZ and BLTZ. To compensate for the loss of these instructions, the

16-bit ISA included compare instructions (CMP, CMPI) to test if two registers or a register and an

immediate are equal. Since these compare instructions and all set-on-less-than instructions set

register t8, the 16-bit ISA has branch instructions to test t8 and branch based on the zero or non-zero

state of t8. The 16-bit ISA did away with branch-and-link instructions.

Even in 16-bit ISA mode, the JAL and JALX instructions are 32-bit wide to provide a large enough

address field to jump to far procedures.

16-Bit ISA Summary and Programming Tips

4-10

Table 4-4 and Table 4-5 show the opcodes of the jump and branch instructions in the 16-bit ISA.

Table 4-4 Jump Instructions (16-Bit ISA)

Opcode Name Addressing

JAL Jump And Link Paged Absolute

JALX Jump And Link eXchange Paged Absolute

JR Jump Register Register Indirect

JALR Jump And Link Register Register Indirect

Table 4-5 Branch Instructions (16-Bit ISA)

Opcode Name Condition Addressing

BEQZ Branch On Equal to Zero rx = 0 PC-relative

BNEZ Branch On Not Equal To Zero rx ≠ 0 PC-relative

BTEQZ Branch On T8 Equal To Zero t8 = 0 PC-relative

BTNEZ Branch On T8 Not Equal To Zero t8 ≠ 0 PC-relative

B Branch Unconditional — PC-relative

Jump-and-link instructions save a return address in register r31. They are typically used for

subroutine calls.

Branch instructions in the 16-bit ISA use the same addressing mode as those in the 32-bit ISA.

However, since instructions are 16-bits wide, the branch address is shifted by one bit instead of by

two bits.

Although the B instruction is an unconditional branch, it is grouped under the branch instruction

category, not the jump. This is because the B instruction is translated into a 32-bit BEQ instruction

comparing r0 and r0.

Delayed Branch

In the 16-bit ISA, there is no delayed branch. Branches always take effect before the next instruction.

Therefore, there is no restriction on the instructions that follow a branch instruction. Instructions

following a branch are executed only when the branch is not taken.

Jumps still have a two-slot delay in the 16-bit ISA mode as in the 32-bit ISA mode.

Run-Time Switching of the ISA Modes

As shown in Table 4-1, the 16-bit ISA includes the JALX, JR and JALR instructions as in the 32-bit

ISA. These instructions can still be used in 16-bit ISA mode to toggle the ISA mode bit in the PC

and switch to the other ISA mode. See Section 3.4.3, Run-Time Switching of the ISA Modes, for

details on this.

16-Bit ISA Summary and Programming Tips

4-11

Subroutine Calls

The 16-bit ISA has only jump-and-link instructions (JALX, JALR). There are no branch-and-link or

branch-and-link-likely instructions. See Section 3.4.7, Subroutine Calls, for details on subroutine

calls.

4.4.2 Branching on Arithmetic Comparisons

As mentioned in the previous section, the 16-bit ISA did away with instructions that compare two

registers and branch, like "BEQ r10, r7, Equal". Also, set-on-less-than instructions (SLT, SLTU) in

the 16-bit ISA are two-register instructions instead of three. In the 16-bit ISA, the SLT and SLTU

instructions implicitly set register t8 based on the equality of the values in two registers. Because of

this, the 16-bit ISA has new instructions, BTEQZ and BTNEZ, to test the t8 register to see if it is

zero or not.

As explained in Section 3.4.5, Branching on Arithmetic Comparisons, in 32-bit ISA mode, ORI and

BEQ (or BNE) are used in pair to compare the contents of a register and an immediate:

ORI r10,r0,0x1234

BEQ r10,r7,Label

However, the 16-bit ISA has no logical immediate instructions like ORI and no access to r0. To

compensate for this, the 16-bit ISA provides a new instruction, CMPI, to compare a register and an

immediate and set t8 based on their equality.

The following gives three examples of compare and branch in 16-bit ISA mode.

• Example 1: Branch if r6 ≥ r7

The following sequence of instructions checks if the contents of r6 is equal to or greater than the

contents of r7. If r6 is less than r7, the SLT (Set On Less Than) instruction sets t8 to one.

Otherwise, t8 is set to zero. The BTEQZ instruction branches to Label if t8 is zero.

SLT r6,r7

BTEQZ Label

• Example 2: Branch if r7 ≥ 0x1234

The following sequence of instructions checks if the contents of r7 is equal to or greater than

0x1234. In this example, the SLTI (Set On Less Than Immediate) instruction implicitly sets t8

based on the magnitude of r7 and 0x1234. Then the BTEQZ instruction branches to Label if t8

is equal to zero.

SLTI r7,0x1234

BTEQZ Label

• Example 3: Branch if r7 > 0x1234

The following sequence of instructions checks the equality of the contents of a register and an

immediate value. In this example, the CMPI (Compare Immediate) instruction compares the

contents of r7 to 0x1234 and sets t8 to 0 if they are equal. (CMPI actually exclusive-ORs two

values.)

CMPI r7,0x1234

BTEQZ Label

16-Bit ISA Summary and Programming Tips

4-12

4.4.3 Jumping to 32-Bit Addresses

In the 16-bit ISA, the sequence of LUI and ORI can not create a 32-bit address due to the loss of the

these instructions. However, in 16-bit ISA mode, 32-bit constants can be included in code. Given

the new addressing mode, PC-relative, the LW instruction can be used to load a 32-bit constant from

memory. For example:

LW r4,0(pc)

JR r4

There is also an instruction (ADDIU, rx, pc, immediate) to calculate a PC-relative address and place

it in a register.

4.5 Special Instructions

Special instructions include the BREAK (Breakpoint) and SDBBP (Software Debug Breakpoint)

instructions. There is not the SYSCALL (System Call) instruction in the 16-bit ISA.

Additionally, the 16-bit ISA has a new instruction called EXTEND. EXTEND is not really an

instruction that generates a machine instruction on its own. EXTEND provides a way to extend a

short immediate in a 16-bit instruction to the full 16 bits. EXTEND consists of a 5-bit opcode and a

11-bit immediate field. Prepended to a 16-bit instruction with an immediate, EXTEND contributes

its immediate to be merged with the short immediate in the following instruction. Table 4-6 shows

the length of the immediate field in instructions before and after they are EXTENDed.

Table 4-6 EXTENDable Instructions

Immediate Bit Size
16-Bit Instruction

Before EXTENDed After EXTENDed

LB, LBU 5 16

LH, LHU 5 16

LW 5 (or 8) 16

SB 5 16

SH 5 16

L
o

a
d

/S
to

re

SW 5 (or 8) 16

4 15ADDIU

8 16

SLTI, SLTIU 8 16

CMPI 8 16

LI 8 16

SLL 3 5

SRL 3 5

C
o

m
p

u
ta

tio
n

a
l

SRA 3 5

BEQZ 8 16

BNEZ 8 16

BTEQZ 8 16

BTNEZ 8 16

B
ra

n
c
h

B 11 16

EXTEND does not need to start on a word boundary. There is one restriction on the use of

16-Bit ISA Summary and Programming Tips

4-13

EXTEND; it may not be placed in a jump delay slot; the outcome of doing otherwise is undefined.

You do not need to explicitly place EXTEND before a 16-bit instruction with an immediate field. If

you specify an immediate longer than permitted in the 16-bit ISA, the assembler will automatically

break it down to smaller immediates using EXTEND. For example, ADDIU is an RI (register-

immediate) type instruction, with a 8-bit immediate field. Therefore, the instruction:

ADDIU r3,0x1234

is EXTENDed to 32 bits using the EXT-RI instruction format. This is illustrated in Figure 4-6.

RI Type

15 11 10 8 7 0

ADDIU8

01001

rx

011 imm

EXT-RI Type

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110

imm[10:5]

01000

imm[15:11]

00010

ADDIU8

01001

rx

011 000

imm[4:0]

10010

Figure 4-6 RI Format vs. EXT-RI Format

EXTEND extends the immediate fields in the ALU immediate instructions to 16 bits, with one

exception. "ADDIU, ry, rx, immediate" has a 4-bit immediate field, but since EXTEND can only

supply 11 more bits, the wider immediate is limited to 15 bits.

4.6 Instruction Summary

This section provides an overview of the instructions in the 16-bit ISA.

Notational Conventions

In this section, all variable fields in an instruction format are shown in italicized lowercase letters,

like rx, ry, rz, immediate and sa (shift amount). For the sake of clarity, an alias is sometimes used to

refer to a field in the formats of specific instructions. For example, base and offset are used instead

of rx and immediate in the formats of load and store instructions. Certain instructions can use r24

(t8), r29 (sp) and r31 (ra) for specific purposes. These registers are shown as t8, sp and ra. HI and

LO are the special registers that hold the results of integer multiply and divide operations.

Instructions Not Implemented in the TX19

The TX19 does not provide support for the MIPS16 instructions that manipulate 64-bit doubleword

operands. See Appendix D for a complete list of comparisons between the TX19 and the MIPS16.

16-Bit ISA Summary and Programming Tips

4-14

Table 4-7 Load and Store Instructions (16-Bit ISA)

Instruction Format Operation

Load Byte LB ry, offset(base) The 5-bit offset is zero-extended and added to base to form an

effective address. The byte in memory addressed by the EA is sign-

extended and loaded into ry.

Load Byte

Unsigned

LBU ry, offset(base) The 5-bit offset is zero-extended and added to base to form an

effective address. The byte in memory addressed by the EA is zero-

extended and loaded into ry.

Load Halfword LH ry, offset(base) The 5-bit offset is shifted left by one bit, zero-extended and added to

base to form an effective address. The halfword in memory

addressed by the EA is sign-extended and loaded into ry.

Load Halfword

Unsigned

LHU ry, offset(base) The 5-bit offset is shifted left by one bit, zero-extended and added to

base to form an effective address. The halfword in memory

addressed by the EA is zero-extended and loaded into ry.

Load Word LW ry, offset(base) The 5-bit offset is shifted left by two bits, zero-extended and added to

base to form an effective address. The word in memory addressed by

the EA is loaded into ry.

LW ry, offset(pc) The 8-bit offset is shifted left by two bits, zero-extended and added to

the masked PC value (i.e., PC value with the lower two bits cleared)

to form an effective address. The word in memory addressed by the

EA is loaded into ry.

LW ry, offset(sp) The 8-bit offset is shifted left by two bits, zero-extended and added to

sp to form an effective address. The word in memory addressed by

the EA is loaded into ry.

Store Byte SB ry, offset(base) The 5-bit offset is zero-extended and added to base to form an

effective address. The least-significant byte in ry is stored in memory

addressed by the EA.

Store Halfword SH ry, offset(base) The 5-bit offset is shifted left by one bit, zero-extended and added to

base to form an effective address. The low-order halfword in ry is

stored in memory addressed by the EA.

Store Word SW ry, offset(base) The 5-bit offset is shifted left by two bits, zero-extended and added to

base to form an effective address. ry is stored in memory addressed

by the EA.

SW rx, offset(sp) The 8-bit offset is shifted left by two bits, zero-extended and added to

sp to form an effective address. rx is stored in memory addressed by

the EA.

SW ra, offset(sp) The 8-bit offset is shifted left by two bits, zero-extended and added to

sp to form an effective address. ra is stored in memory addressed by

the EA.

16-Bit ISA Summary and Programming Tips

4-15

Table 4-8 ALU Immediate Instructions (16-Bit ISA)

Instruction Format Operation

Add Immediate ADDIU ry, rx, immediate The 4-bit immediate is sign-extended and added to rx. The result is

placed into ry. Does not trap on 2’s-complement overflow.

ADDIU rx, immediate The 8-bit immediate is sign-extended and added to rx. The result is

placed back into rx. Does not trap on 2’s-complement overflow.

ADDIU sp, immediate The 8-bit immediate is shifted left by three bits and sign-extended.

The resultant value is added to sp and the sum is placed back into

sp. Does not trap on 2’s-complement overflow.

ADDIU rx, pc, immediate The 8-bit immediate is shifted left by two bits and sign-extended.

The resultant value is added to the masked PC value (i.e., PC value

with the lower two bits cleared) and the sum is placed into rx. Does

not trap on 2’s-complement overflow.

ADDIU rx, sp, immediate The 8-bit immediate is shifted left by two bits and sign-extended.

The resultant value is added to sp and the sum is placed into rx.

Does not trap on 2’s-complement overflow.

Set On Less Than

Immediate

SLTI rx, immediate t8 = 1 if rx is less than immediate; otherwise t8 = 0. The 8-bit

immediate is zero-extended. Two values are compared as signed

integers.

Set On Less Than

Immediate

Unsigned

SLTIU rx, immediate t8 = 1 if rx is less than immediate; otherwise t8 = 0. The 8-bit

immediate is zero-extended. Two values are compared as unsigned

integers.

Compare

Immediate
CMPI rx, immediate

t8 = 0 if rx = immediate; otherwise t8 ≠ 0. The 8-bit immediate is

zero-extended.

Load Immediate LI rx, immediate The 8-bit immediate is zero-extended and loaded into rx.

16-Bit ISA Summary and Programming Tips

4-16

Table 4-9 Register-Type Instructions (16-Bit ISA)

Instruction Format Operation

Add Unsigned ADDU rz, rx, ry The sum rx + ry is placed into rz. Does not trap on 2’s-complement

overflow.

Subtract Unsigned SUBU rz, rx, ry The remainder rx - ry is placed into rz. Does not trap on 2’s-

complement overflow.

Set On Less Than SLT rx, ry t8 = 1 if rx is less than ry; otherwise t8 = 0. Two values are compared

as signed integers.

Set On Less Than

Unsigned

SLTU rx, ry t8 = 1 if rx is less than ry; otherwise t8 = 0. Two values are compared

as unsigned integers.

Compare CMP rx, ry t8 = 0 if rx is equal to ry; otherwise t8 = 0.

Negate NEG rx, ry rx = 0 - rt (2’s-complement)

AND AND rx, ry The contents of rx is ANDed with the contents of ry and the result is

placed back into rx.

OR OR rx, ry The contents of rx is ORed with the contents of ry and the result is

placed back into rx.

Exclusive-R XOR rx, ry The contents of rx is exclusive-ORed with the contents of ry and the

result is placed back into rx.

Not NOT rx, ry ry is inverted bitwise and the result is placed into rx. (1’s-

complement)

MOVE ry, r32 The contents of r32 is copied into ry.Move

MOVE r32, rz The contents of rz is copied into r32.

Table 4-10 Shift Instructions (16-Bit ISA)

Instruction Format Operation

Shift Left Logical SLL rx, ry, sa The contents of ry is shifted left by sa bits. Zeros are supplied to the

vacated positions on the right. The 32-bit result is placed into rx.

Shift Left Logical

Variable

SLLV ry, rx The contents of ry is shifted left the number of bits specified by the

five least-significant bits of rx. Zeros are supplied to the vacated

positions on the right.

Shift Right Logical SRL rx, ry, sa The contents of ry is shifted right by sa bits. Zeros are supplied to the

vacated positions on the left. The 32-bit result is placed into rx.

Shift Right Logical

Variable

SRLV ry, rx The contents of ry is shifted right the number of bits specified by the

five least-significant bits of rx.

Shift Right

Arithmetic

SRA rx, ry, sa The contents of ry is shifted right by sa bits. The sign bit is copied to

the vacated positions on the left. The 32-bit result is placed into rx.

Shift Right

Arithmetic Variable

SRAV ry, rx The contents of ry is shifted right the number of bits specified by the

five least-significant bits of rx. The sign bit is copied to the vacated

positions on the left.

16-Bit ISA Summary and Programming Tips

4-17

Table 4-11 Multiply and Divide Instructions (16-Bit ISA)

Instruction Format Operation

Multiply MULT rx, ry The multiplicand is the signed value of rx. The multiplier is the signed

value of ry. The 64-bit product rx * ry is placed into registers HI and

LO.

Multiply Unsigned MULTU rx, ry The multiplicand is the unsigned value of rx. The multiplier is the

unsigned value of ry. The 64-bit product rx * ry is placed into

registers HI and LO.

Divide DIV rx, ry The dividend is the signed value of rx. The divisor is the signed value

of ry. The quotient is placed into register LO and the remainder is

placed into register HI.

Divide Unsigned DIVU rx, ry The dividend is the unsigned value of rx. The divisor is the unsigned

value of ry. The quotient is placed into register LO and the remainder

is placed into register HI.

Move From HI MFHI rx The contents of register HI is copied to rx.

Move From LO MFLO rx The contents of register LO is copied to rx.

Table 4-12 Jump Instructions (16-Bit ISA)

Instruction Format Operation

Jump And Link JAL target A jump is taken to the address computed using paged absolute

addressing, i.e., by shifting the 26-bit target left by two bits and

combining it with the four most-significant bits of PC + 2. The

address of the instruction following the delay slot is saved in r31.

Jump And Link

eXchange

JALX target A jump is taken to to the address using paged absolute addressing,

i.e., by shifting the 26-bit target left by two bits and combining it with

the four most-significant bits of PC + 2. The address of the instruction

following the delay slot is saved in r31. The ISA mode bit in the PC

toggles.

JR rx A jump is taken to to the address specified by the upper 31 bits of rx.

The least-significant bit of rx is interpreted as the ISA mode specifier.

Jump Register

JR ra A jump is taken to to the address specified by the upper 31 bits of ra.

The least-significant bit of ra is interpreted as the ISA mode specifier.

Jump And Link

Register

JALR ra, rx A jump is taken to to the address specified by the upper 31 bits of rx.

The least-significant bit of rx is interpreted as the ISA mode specifier.

The address of the instruction following the delay slot is saved in ra.

16-Bit ISA Summary and Programming Tips

4-18

Table 4-13 Branch Instructions (16-Bit ISA)

Instruction Format Operation

Branch On Equal

To Zero

BEQZ rx, offset If rx = 0, a branch is taken to the target address specified as a 8-bit

offset relative to PC + 2.

Branch On Not

Equal To Zero

BNEZ rx, offset If rx ≠ 0, a branch is taken to the target address specified as a 8-bit

offset relative to PC + 2.

Branch On T8

Equal To Zero

BTEQZ offset If t8 = 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 2.

Branch On T8 Not

Equal to Zero

BTNEZ offset If t8 ≠ 0, a branch is taken to the target address specified as a 16-bit

offset relative to PC + 2.

Branch

Unconditional

B offset An unconditionally branch is taken to the target address specified as

a 16-bit offset relative to PC + 2.

Table 4-14 Special Instructions (16-Bit ISA)

Instruction Format Operation

Breakpoint BREAK code A breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler.

Software Debug

Breakpoint

Exception

SDBBP code A debug breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler.

Extend EXTEND immediate The immediate is concatenated to the immediate field of the following

instruction.

CPU Pipeline

5-1

Chapter 5 CPU Pipeline

5.1 Architecture Overview

As described in Section 2.5, Pipeline Architecture, the processing of an instruction is broken down

into a sequence of simpler suboperations. Because tasks required to process an instruction are

fragmented, an instruction does not need the entire hardware resources of the execution unit. Each

suboperation is performed by a separate hardware section called a stage, and each stage passes its

result to a succeeding stage. The TX19 pipeline has five stages, Fetch (F), Decode (D), Execute (E),

Memory Access (M) and Register Write-back (W). For example, after an instruction completes the

D stage, it can proceed to the E stage while the subsequent instruction can advance into the D stage.

Each of the five pipe stages require approximately one clock cycle. Therefore, once the pipeline has

been filled, the execution of five instructions is overlapped at a time, as shown in Figure 5-1.

F D E M W

Instruction

Fetch
Decode Execute

Memory

Access

Register

Write-back

#1 F D E M W

#2 F D E M W

#3 F D E M W

#4 F D E M W

#5 F D E M W

Time

1 Clock Cycle

Current CPU Cycle

Figure 5-1 Five CPU Pipeline Stages

The following paragraphs describe the operations in each stage that occur for the most-commonly

used instructions.

Instruction Fetch (F): In this stage, the instruction is fetched from the instruction memory

subsystem (i.e., instruction ROM or instruction RAM). Instructions are

fetched in one-word units, whether in 16-bit or 32-bit ISA mode.

CPU Pipeline

5-2

Decode (D): During this stage, the instruction is decoded and required operands are

read from the on-chip register file.

Execute (E): In this stage, one of the following occurs:

• The arithmetic logic unit (ALU) starts the integer arithmetic, logical

or shift operation.

• For load and store instructions, the ALU calculates the effective

address by adding the offset value to the contents of the base register.

• For jump instructions, the ALU calculates the jump target address.

• For branch and branch-likely instructions, the ALU determines

whether the branch condition is true and calculates the branch target

address.

Memory Access (M): For loads and stores, data memory is accessed.

Register Write-back (W): In this stage, one of the following occurs:

• The results of the ALU operation during the E stage is written back to

the on-chip register file.

• If the instruction is a jump-and-link, branch-and-link or branch-likely-

and-link, the return address is written to register r31 (ra).

In a pipelined machine like the TX19, there are certain instructions that can potentially disrupt the

smooth advance through the pipeline. This problem is referred to as pipeline hazards. The sections

that follow describe when pipeline hazards occur and how they are handled by hardware and

software.

5.2 Load, Store and SYNC Instructions

The performance of software systems is drastically affected by how well software designers,

especially assembly-language programmers, understand the basic hardware technologies at work in

the processor. This section describes load delays, nonblocking loads, shared memory

synchronization and so on from the view of the CPU pipeline.

5.2.1 Load Delays

Figure 5-2 illustrates how the load instruction advances through the CPU pipeline.

F D E M W

Instruction

Fetch
Decode

Effective

Address

Calculation

Memory

Access

Register

Write-back

Figure 5-2 Load Instruction

Load instructions read an operand from memory into a CPU register for subsequent operation by

other instructions. In the case of loads from the on-chip fast memory, operand becomes available

after completion of the Memory Access (M) stage of the load instruction because it is internally

forwarded at the M stage before the Register Write-back (W) stage. Still, the operand is not

immediately usable for the Execute (E) cycle of the subsequent instruction, as shown in Figure 5-3.

CPU Pipeline

5-3

This is called data dependency. In Figure 5-3, the TX19 handles data dependency by inserting a wait

(or "stall") cycle into the E stage of the next instruction. Figure 5-3 depicts a delay (or latency) of

one cycle. The instruction that immediately follows the load instruction is said to be in the load

delay slot. Loads from external memory incur additional stall cycles.

LW r3,0(r1) F D E M W

ADD r8,r9,r3 F D Es E M W

Load Delay SlotStall Cycle

r3

Figure 5-3 Data Dependency Resulting from a Load Instruction

However, this is not a very efficient use of the pipeline. The optimizer, which is executed as part of

the compiler or assembler, can rearrange the code to ensure that the instruction in the load delay slot

does not require the operand loaded by the previous load instruction. Figure 5-4 gives an example of

re-ordering instructions to remove data dependency. This is part of the code to swap the contents of

two memory locations.

• There is data dependency

LW r9,0(r8)

LW r10,1(r8)

SW r10,0(r8) ← Load delay slot

SW r9,1(r8)

• There is no data dependency

LW r9,0(r8)

LW r10,1(r8)

SW r9,0(r8) ← Load delay slot

SW r10,1(r8)

Figure 5-4 Re-ordering Instructions to Remove Data Dependency

In the rearranged code, the first SW instruction does not depend on the availability of data from the

immediately preceding LW instruction. Therefore, the instruction "SW r9, 0(r8)" in the load delay

slot for "LW r10, 1(r8)" does not cause a pipeline stall.

5.2.2 Nonblocking Loads

If the instruction that immediately follows a load instruction does not access the target register (rt)

of the load instruction, data dependency does not occur. The TX19 recognizes the presence of data

dependency, and if there is no data dependency, it continues to execute subsequent instructions. This

is called nonblocking loads. By virtue of nonblocking loads, external memory accesses do not stall

the CPU pipeline. All the other parts of the pipeline can continue to work on non-dependent

instructions while external memory is being accessed.

In Figure 5-5 below, the TX19 does not stall on the external memory access resulting from the LW

instruction; instead it continues to execute independent instructions (ADD, r6, r4, r2 and ADD r7, r5,

r2), and defers execution of a dependent instruction (ADD, r8, r9, r3) until the data has been

returned.

CPU Pipeline

5-4

LW r3,0(r1) F D E M R R R R W

ADD r6,r4,r2 F D E M W

ADD r7,r5,r2 F D E M W

ADD r8,r9,r3 F D Es Es Es E M W

Memory Read Cycles

Stall Cycles

r3

Figure 5-5 Nonblocking Loads

The nonblocking load capability of the TX19 allows the optimizing compiler to rearrange the code

to "prefetch" data from memory before a need actually arises to reference it. Selective use of

prefetches by the compiler can yield significant performance improvement.

In nonblocking loads, the Register Write-back (W) stage of the load instruction and a later

instruction could attempt to access the on-chip register file simultaneously, causing a resource

conflict. In that case, the TX19 inserts a stall cycle into the W stage of the later instruction.

5.2.3 Store Instructions

Figure 5-6 illustrates how the store instruction advances through the CPU pipeline.

F D E M W

Instruction

Fetch
Decode

Effective

Address

Calculation

Memory

Access

Register

Write-back

SW r3,4(r2) F D E M W

ADD r7,r3,r2 F D E M W

ADD r9,r8,r7 F D E M W

Figure 5-6 Store Instruction

Stores to the on-chip fast memory occur during the Memory Access (M) stage, and no operation

occurs in the Register Write-back (W) stage. Stores to external memory takes more than one cycle.

5.2.4 SYNC Instruction (32-Bit ISA)

Load and store instructions initiate memory accesses during the M stage. In the meantime, the TX19

continues to execute other instructions in parallel.

The SYNC instruction in the 32-bit ISA provides an ordering function for the effects of load/store

and subsequent instructions. Appended to a load or store instruction, the SYNC instruction ensures

that all loads and stores initiated prior to this instruction are completed before any instruction after

CPU Pipeline

5-5

this instruction is allowed to start. To enforce in-order execution, stall cycles are inserted into the M

stage until the previously initiated loads and stores are completed.

Load F D E M …… W

Next Instruction F D E M W

Load F D E M …… W

SYNC F D Es Es …… E M W

Next Instruction F Ds Ds …… D E M W

Store F D E M W

SYNC F D Es Es …… E M W

Next Instruction F Ds Ds …… D E M W

Memory Read Completed

Memory Read Completed
Read Cycles

Read Cycles

Memory Write Completed
Write Cycles

Figure 5-7 SYNC Instruction (32-Bit ISA)

5.3 Jump, Branch and Branch-Likely Instructions

Jump and branch instructions involve a delay or latency of two instructions. This section explains

how this latency is reduced to one cycle by software intervention. This section also describes how

branch-likely instructions are processed through the pipeline.

5.3.1 Jump and Regular Branch Instructions (32-Bit ISA)

Figure 5-8 shows how jump and branch instructions advance through the CPU pipeline.

F D E M W

Instruction

Fetch
Decode

Target Address Calculation

Branch Condition Test

PC Update

No Operation
Register Write-

back

Figure 5-8 Jump and Branch Instructions

For jump and branch instructions, one of the following occurs in the Execute (E) stage:

• For jump instructions, the ALU calculates the jump target address.

• For branch and branch-likely instructions, the ALU determines whether the branch condition

is true and calculates the branch target address.

No operation is performed in the M stage. If the instruction is a jump-and-link or a branch-and-link,

a return address is written to register r31 (ra) in the Register Write-back (W) stage.

CPU Pipeline

5-6

The jump or branch target address becomes available during the E stage; so it is impossible to

perform the fetch of the target instruction without delaying the pipeline. Figure 5-9 show that a

jump or branch occurs with a delay of two instructions. In Figure 5-9, the jump or branch delay slot

is filled with a useful instruction, thereby reducing the pipeline stall to one cycle. With jump and

regular branch instructions, the instruction in the delay slot is always executed prior to the

jump/branch taking effect (regardless of whether the branch is taken or not). It is the responsibility

of the compiler to rearrange the code to fill a jump or branch delay slot with a useful instruction. If

there is no useful instruction, the compiler must fill the delay slot with a NOP.

Jump or Branch F D E M W

Delay slot F D E M W

Jump/Branch Target F D E M W

Figure 5-9 Jump and Branch Delay Slots

A jump or branch instruction must not be placed in a jump or branch delay slot. Hardware operation

is undefined if that is done.

5.3.2 Branch-Likely Instructions (32-Bit ISA)

A regular branch instruction causes the TX19 to always execute the instruction in a branch delay

slot, regardless of whether the branch is to be taken or not. Therefore, the instruction in the branch

delay slot must logically precede the branch instruction.

On the other hand, a branch-likely instruction causes the TX19 to nullify the instruction in the delay

slot at the Execute (E) stage if the branch is not taken. If a branch is taken, the instruction in the

delay slot is executed. This approach allows the compiler to fill a branch delay slot with the branch

target instruction (see Figure 5-10).

CPU Pipeline

5-7

 Regular Branch Branch-Likely

Branch

Taken

Branch Not

Taken

Branch

Taken

Branch Not

Taken

Branch Instruction ➀ ➀ ➀ ➀
Branch Delay Slot ➁ ➁ ➁ ×

× ➂ × ➁

Branch Destination ➂ ➂

Branch-Likely F D E M W

Delay Slot F D (E) (M) (W)

Next Instruction F D E M W

False Condition

Nullified

When a Branch-Likely is Not Taken

…

…

…

… …

…

Figure 5-10 Branch-Likely Instruction

5.3.3 Jump Instructions (16-Bit ISA)

The JAL and JALX instructions in the 16-bit ISA are still 32-bits wide; so in 16-bit ISA mode, the

TX19 needs to executes a jump instruction in two steps as shown below. The TX19 performs no

operation during the first D and E stages. Instead it waits for the second half of the instruction code

to come in order to calculate the effective address of the jump destination. This address calculation

occurs in the E stage of the second half of the jump instruction. As a consequence, jump instructions

in the 16-bit ISA occur with a two-instruction delay.

It is prohibited to place a jump, branch or EXTENDed instruction in the jump delay slot.

Jump Instruction (1st Half) F (D) (E) (M) (W)

Jump Instruction (2nd Half) F D E M W

Delay Slot F D E M W

Jump Target F D E M W

Figure 5-11 Jump Instruction (16-Bit ISA)

5.3.4 Branch Instructions (16-Bit ISA)

Unlike the 32-bit ISA, the 16-bit ISA has no delayed branches (see Figure 5-12). The branches take

effect before the next instruction. Thus if the branch is taken, the following instructions are not

executed. For this reason, any instruction can be placed immediately after a branch instruction.

CPU Pipeline

5-8

32-bit ISA 16-Bit ISA

Branch

Taken

Branch Not

Taken

Branch

Taken

Branch Not

Taken

Branch Instruction ➀ ➀ Branch Instruction ➀ ➀
Branch Delay Slot ➁ ② Next Instruction × ➁

×
➂

× ➂

Branch

Destination
➂

Branch

Destination
②

Branch F D E M W

Next Instruction F D (E) (M) (W)

Branch Destination F D E M W

True Condition

Nullified

When the Branch is Taken

…
…

…
…

…

…

…

…

Figure 5-12 Branch Instruction (16-Bit ISA)

5.4 Divide Instructions

Any integer divide instruction is transferred to the dedicated divide unit as remaining instructions

continue through the pipeline. The divide unit keeps running even when delay cycles and exceptions

occur. The quotient and the remainder of the divide instruction are saved in the LO and HI registers.

The TX19 starts a divide operation in the E stage; it takes 35 cycles for the divide operation to

complete, independent of the magnitude and sign of the operands. If the divide instruction is

followed by an MFHI, MFLO, MADD or MADDU instruction before the quotient and the

remainder are available, the pipeline stalls until they do become available.

F D E M W

Instruction

Fetch
Decode Execute

No

Operation

No

Operation

DIV r5,r1 F D E M W

E1 E2 …… E35

MFLO r4 F D Es …… Es E M W

The contents of LO is read here.

35 Cycles

Latency = 35 Cycles

The result is written to HI and LO.

Pipeline Stalls

Figure 5-13 Divide Instructions

CPU Pipeline

5-9

5.5 Multiply and Multiply-and-Add Instructions

Any integer multiply and multiply-add instructions are transferred to the dedicated MAC unit as

remaining instructions continue through the pipeline. It takes only a single cycle for a multiply or

multiply-and-add instruction to complete.

Because it takes only one cycle for a multiply or a multiply-and-add instruction to complete the E

stage, multiple multiply and multiply-and-add instructions can be executed back-to-back without

causing pipeline stalls.

MADD r5,r1 F D E M W

MADD r6,r2 F D E M W

Figure 5-14 Back-to-Back Multiply-and-Add Instructions

The MFHI and MFLO instructions read the contents of the HI and LO registers. Multiply and

multiply-and-add instructions can be followed by an MFHI or MFLO instruction without causing

pipeline stalls.

MULT r5,r6 F D E M W

 MFLO r4 F D E M W

Figure 5-15 Multiply Instruction Followed by an MFLO Instruction

Remember that the result of the multiply and multiply-and-add instructions becomes available after

completion of the M stage instead of the E stage. If the multiply or multiply-and-add instruction

specifies a general-purpose register as a destination register (rd), subsequent instructions should not

access that register until the result is saved in rd. Otherwise, the pipeline stalls at the D stage until it

does become available.

MADD r3,r2,r1 F D E M W

ADD r5,r4,r3 F Ds D E M W

Stall Cycle

Figure 5-16 Structural Hazard Involving a Multiply Instruction

CPU Pipeline

5-10

5.6 EXTENDed Instructions (16-Bit ISA)

The EXTEND prefix turns 16-bit instructions in the 16-bit ISA into 32 bits. The machine code of an

EXTENDed instruction consists of an 16-bit EXTEND code and the 16-bit instruction code that is

to be EXTENDed. In 16-bit ISA mode, the TX19 executes any EXTENDed instruction in two steps

as shown in Figure 5-17.

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0

11110 imm

[10:4]

imm

[14:11]

01000 rs rt 0 imm

[3:0]

F (D) (E) (M) (W)

F D E M W

EXTEND Code EXTENDed Instruction Code

Execution

EXTEND Code

EXTENDed Instruction Code

Figure 5-17 EXTENDed Instruction (16-Bit ISA)

Memory Management

6-1

Chapter 6 Memory Management

This chapter describes the operating modes of the TX19 processor, the virtual and physical address

spaces and how they are mapped.

6.1 Operating Modes

The TX19 has two modes of operation, User mode and Kernel mode. The TX19 enters Kernel mode

whenever an exception is taken. Since a Reset exception occurs when a system is reset, the TX19

wakes up in Kernel mode. The processor switches to User mode when the RFE (Restore From

Exception) or DERET (Debug Exception Return) instruction is executed.

User Mode

The operating mode determines the addresses, registers and instructions that are available to a

program. A User-mode program’s use of them is restricted. While the processor is operating in User

mode, it is permitted to access a linear address space of 2 GB (kuseg) starting at virtual address 0.

The CP0 registers are accessible only when the CU[0] bit in the Status register is 1.

Kernel Mode

Kernel mode has higher privileges than User mode. Kernel-mode programs are permitted to use all

addresses, registers and instructions. Operating system routines, general exception handlers and

debug exception handlers are executed in Kernel mode.

6.2 Virtual Address Segments

Figure 6-1 shows the virtual address segments available in User and Kernel modes. While the

processor is operating in User mode, a single, uniform virtual address space (kuseg) of 2 GB is

available. While the processor is operating is Kernel mode, four distinct virtual address segments,

kuseg, kseg0, kseg1 and kseg2, are simultaneously available. Each segment is architecturally

predefined as cached or uncached; however, because the TX19 does not have a cache on-chip,

cacheability has no meaning.

Memory Management

6-2

kseg0

Cached

0xA000_0000

0x7FFF_FFFF

0x8000_0000

0xC000_ 0000

Kernel ModeUser Mode

16 MB Reserved

kseg2

Cached

kseg1

Uncached

kuseg

Cached

0xFFFF_FFFF

0x0000_0000

kuseg

Cached

16 MB Reserved0x7FFF_FFFF

0x0000_ 0000

Uncached

Uncached

16 MB Reserved

Figure 6-2 Virtual Address Segments

Kuseg (Kernel/User Segment)

Kuseg is a 2-GB segment designed to be used by User-mode programs while providing accessibility

in Kernel mode. This virtual address space begins at address 0x0000_0000 and runs up to 0x7FFF_

FFFF; so all valid User-mode virtual addresses have the most-significant bit cleared to 0. A User-

program attempt to reference a Kernel address with the most-significant bit set to 1 causes an

Address Error exception. The upper 16 MB of kuseg should not be used. This region is reserved for

on-chip resources which map to these virtual addresses.

Kseg0, kseg1 and kseg2 (Kernel Segments)

The Kernel virtual address space consists of three distinct segments called kseg0, kseg1 and kseg2,

which total 2 GB in size. The Kernel segments start at virtual address 0x8000_0000 and run up to

0xFFFF_ FFFF.

• Kseg0 is a 512-MB segment, beginning at virtual address 0x8000_0000; all references through

this segment are cacheable.

• Kseg1 is also a 512-MB segment, beginning at virtual address 0xA000_0000, but unlike kseg0,

all references through this segment are uncacheable.

• Kseg2 is a 1-GB linear address space, beginning at virtual address 0xC000_0000. The upper

16 MB of kseg2 should not be used. This region is reserved for on-chip resources which map

to these virtual addresses; 2-MB addresses from 0xFF20_0000 to 0xFF3F_FFFF are reserved

for debugging. While the upper 16 MB is uncacheable, the remaining region of kseg2 is

cacheable.

Memory Management

6-3

6.3 Address Translation

The virtual-to-physical address translation is done through a direct segment mapping, which allows

Kernel-mode software to be protected from User-mode accesses without requiring virtual page

management software. Direct segment mapping of virtual to physical addresses is illustrated in

Figure 6-3.

���
���
���

��� ���
�

��
��� ���

�
��
��� ��Inaccessible

16 MB Reserved

kseg2

Cached

��
��
��

kseg1

Uncached

���
���
���512 MB

��
��
��

kseg0

Cached

kuseg

Cached

Physical Address SpaceVirtual Address Space

16 MB Reserved

1 GB

2 GB

16 MB Reserved

16 MB Reserved

0xFFFF_FFFF

0xC000_ 0000

0xA000_0000

0x8000_0000

0x0000_0000

0xFFFF_FFFF

0xC000_0000

0x4000_0000

0x2000_0000

0x0000_0000

Uncached

Uncached

Figure 6-3 Virtual to Physical Address Translation

Figure 6-4 shows the virtual address format used by the TX19. The three highest bits represent

segment numbers; only these three bits are involved in virtual-to-physical address translation.

31 30 29 0

0 x x kuseg

1 0 0 kseg0

1 0 1 kseg1

1 1 x kseg2

Figure 6-4 Virtual Address Format

• Kuseg is mapped to a contiguous 2-GB region of the physical address space starting at

0x4000_0000. The physical address is constructed by replacing "0x" in the two highest-order

bits with "01."

• Virtual addresses in both kseg0 and kseg1 are mapped to the 512-MB physical address space

starting at address 0. When the three highest-order bits of the virtual address are "100," that

virtual address resides in kseg0. When the three highest-order bits of the virtual address are

"101," that virtual address resides in kseg1. The physical address is constructed by replacing

these three bits with "000."

• Virtual addresses in kseg2 are directly output as physical addresses.

Memory Management

6-4

Table 6-1 Segment Mapping from Virtual to Physical Addresses

Segment Virtual Addresses Physical Addresses Cacheability
Operating

Mode

Reserved 0xFF20_0000 - 0xFFFF_FFFF 0xFF00_0000 - 0xFFFF_FFFF Uncacheable Kernelkseg2

Free 0xC000_0000 - 0xFEFF_FFFF 0xC000_0000 - 0xFEFF_FFFF Cacheable Kernel

kseg1 0xA000_0000 - 0xBFFF_FFFF 0x0000_0000 - 0x1FFF_FFFF Uncacheable Kernel

kseg0 0x8000_0000 - 0x9FFF_FFFF 0x0000_0000 - 0x1FFF_FFFF Cacheable Kernel

Reserved 0x7F00_0000 - 0x7FFF_FFFF 0xBF00_0000 - 0xBFFF_FFFF Uncacheable Kernel / Userkuseg

Free 0x0000_0000 - 0x7EFF_FFFF 0x4000_0000 - 0xBEFF_FFFF Cacheable Kernel / User

It is prohibited to place programs across two segments. Jumps and branches must not transfer

program control outside the current segment.

Chapter 7 Internal I/O Bus Operation

7-1

Chapter 7 Internal I/O Bus Operation

7.1 Internal Memory Interface

Figure 7-1 shows the bus interface inside the TX19 core. To maximize performance, the TX19

implements a Harvard architecture, wherein there are two separate sets of address and data buses for

code (instructions) and data (operands). Additionally, the TX19 allows very fast access to the on-

chip memory – one word of data per clock cycle. Consequently, an execution rate of one instruction

for each clock cycle is achieved.

Chapter 7 Internal I/O Bus Operation

7-2

D (Instruction)
CPU Core

Instruction

BIU

Operand

BIU

Address

Decoder
ACK

GBIF

A (Instruction)

A (Operand)

D (Operand)

ACK

Bgnt-I

Breq

Bgnt-O

Data RAM

Instruction ROM

G-Bus

Figure 7-1 General Internal Memory Interface

Chapter 7 Internal I/O Bus Operation

7-3

7.2 Operand Read and Instruction Fetch Operations

Figure 7-2 and Figure 7-3 show the bus cycle timing for operand reads and instruction fetches. The

TX19 core features pipelined addressing where it allows up to two outstanding bus cycles at any

given time. While the TX19 core waits for the data for the first bus cycle, the address for a second

bus cycle is issued. Using pipelined addressing, the TX19 provides support for zero-wait-state reads

even for relatively slow memories like flash.

ADRS1

R

CLK

ADRS

DATA

BSTART

AS

WRITE*

CS

ACK

The dotted circles indicate sampling points.

Figure 7-2 Memory Read Timing (Zero-Wait State)

CLK

ADRS

DATA

BSTART

AS

WRITE*

CS

ACK

The dotted circles indicate sampling points.

ADRS3

R

Figure 7-3 Memory Read Timing (1 Wait State for ADRS3)

Chapter 7 Internal I/O Bus Operation

7-4

7.3 Write Operation

Basically, memory write cycles use much the same protocol as memory read cycles. The TX19 core

drives out a memory address on the falling edge of the system clock. At the same time, Byte Enable,

Bus Start (BSTART*), Address Strobe (AS*), Write (WRITE*), etc. are also asserted.

The TX19 core samples the Acknowledge (ACK*) signal on the next falling edge of the system

clock after the address is placed on ADRS. If an ACK* is detected, the TX19 goes ahead and issues

the address for the next bus cycle. Unless an ACK* is detected, the TX19 inserts a wait state to

continue the current bus cycle.

Memory and I/O modules should latch data on the next rising edge of the system clock following

the sampling of ACK*.

CLK

ADRS

DATA

BSTART*

AS*

WRITE*

CS*

ACK*

The dotted circles indicate sampling points.

W

ADRS1

Figure 7-4 Write Timing (Zero-Wait State)

Chapter 7 Internal I/O Bus Operation

7-5

CLK

ADRS

DATA

BSTART*

AS*

WRITE*

CS*

ACK*

The dotted circles indicate sampling points.

W

ADRS3

Figure 7-5 Write Timing (1 Wait State for ADR3)

Chapter 7 Internal I/O Bus Operation

7-6

System Control Coprocessor (CP0) Registers

8-1

Chapter 8 System Control Coprocessor (CP0)

Registers

This chapter describes the system control coprocessor (CP0) registers used for system configuration,

memory management and exception processing.

When the processor is in Kernel mode, the system control coprocessor instructions can always use

the CP0 registers. When the processor is in User mode, the CP0 registers are accessible only when

the CU[0] bit in the Status register is set.

8.1 Overview

Table 8-1 provides a brief description of each of the CP0 registers. Register numbers are used by

software when issuing the Move From CP0 (MFC0) and Move To CP0 (MTC0) instructions.

Table 8-1 CP0 Registers

Category Register Name
Register

Number
Description

System

Configuration

Config 3 Specifies various configuration options for the TX19 processor.

BadVAddr 8 Displays the most recent virtual address that caused a virtual-to-physical

address translation error. Read-only.

Status 12 Contains operating mode (User/Kernel), interrupt enabling and other

states of the processor.

Cause 13 Displays the cause of the last exception.

EPC 14 Contains the address of the instruction that caused an exception, from

which point processing resumes after the exception has been serviced.

Also saves the ISA mode bit that was in effect before the exception

occurred.

PRId 15 Contains the revision identifier of the TX19 processor. Read-only.

General

Exception

Handling

IE 31 Manipulates the interrupt enable/disable bit in the Status register.

Debug 16 Displays the cause and the current status of a Debug exception.Debug

Exception

Handling
DEPC 17 Contains the address of the instruction that caused a Debug exception,

from which point processing resumes after a Debug exception has been

serviced.

System Control Coprocessor (CP0) Registers

8-2

The sections in this chapter describe the CP0 register organization and how data is represented in

these registers. The number following a register name in the headings as in "8.2.1 Config Register

(3)" indicates the register number.

8.2 System Configuration Register

The Config register programs various system configuration options for the TX19 processor. It

contains the bits for power saving modes (Halt / Doze), reduced frequency modes, data cache enable,

instruction cache enable, etc. The TX19 has no on-chip cache; the cache enable bits in the Config

register are meaningless. The subsection that follow describes the Config register.

8.2.1 Config Register (3)

Figure 8-1 shows the format of the Config register. Table 8-1 describes the bits in the Config

register.

31 1615 1211 10 9 8

Mnemonic 0 0 RF Doze Halt

Access R R RW RW RW

Reset 0 0 00 0 0

Halt Halt Mode

0 Wake up from Halt mode

1 Enter Halt mode

Doze Doze Mode

0 Wake up from Doze mode

1 Enter Doze mode

RF[1:0] Reduced Frequency

00 Full clock speed

01 Processor clock frequency divided by

2

10 Processor clock frequency divided by

4

11 Processor clock frequency divided by

8

7 6 5 4

Mnemonic Lock 0 ICE DCE

Access RW R RW RW

Reset 0 0 0 0

DCE Data Cache Enable

0 Disable

1 Enable

ICE Instruction Cache Enable

0 Disable

1 Enable

Lock Config Register Locking

0 Unlock

1 Lock

Figure 8-1 Config Register

System Control Coprocessor (CP0) Registers

8-3

Table 8-2 Config Register Definition

Mnemonic Name
Reset

Value
Description Access

RF Reduced

Frequency

00 The value programmed into this field is driven to processor output pins,

which are supplied to a clock generator to indicate a clock divisor. See

Chapter 10 for details on the reduced frequency modes.

RW

Doze Doze Mode 0 Enables/disables the Doze mode capability of the TX19.

1 Enter Doze mode.

0 Wake up from Doze mode

When set to 1, the CPU freezes the instruction pipeline. Assertion of the

reset signal (which initiates a Reset exception), the nonmaskable

interrupt signal or the hardware interrupt signal clears this bit, bringing

the processor out of Doze mode. (The processor recognizes the interrupt

signal even if the interrupt is masked.) See Chapter 10 for details on

Doze mode.

RW

Halt Halt Mode 0 Enables/disables the Halt mode capability of the TX19.

1 Enter Halt mode.

0 Wake up from Halt mode.

When set to 1, the CPU freezes the instruction pipeline and ignores any

external snoop requests. Assertion of the reset signal (which initiates a

Reset exception), the nonmaskable interrupt signal or the hardware

interrupt signal clears this bit, bringing the processor out of Halt mode.

(The processor recognizes the interrupt signal even if the interrupt is

masked.) See Chapter 10 for details on Halt mode.

RW

Lock Config Register

Locking

0 When set to 1, locks the Config register and denies any subsequent

write access to it. A Reset exception clears this bit. A Debug exception

handler can alter the Config register regardless of the value of the Lock

bit if the DM bit in the Debug register is set. Every value carried in an

MTC0 instruction is valid, regardless of the value of the Lock bit.

RW

ICE Instruction

Cache Enable

0 Enables/disables the on-chip instruction cache.

1 Enable

0 Disable

RW

DCE Data Cache

Enable

0 Enables/disables the on-chip data cache.

1 Enable

0 Disable

RW

0 Reserved – The reserved bits are ignored on write, and read as zero. R

✝ The operation is undefined if both the Doze and Halt bits are set simultaneously.

System Control Coprocessor (CP0) Registers

8-4

8.3 General Exception Handling Registers

This section describes the CP0 registers that are used in general exception processing. The

remaining CP0 registers are used for program debug and described in the next section.

8.3.1 BadVAddr Register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that displays the most recent

virtual address that caused a virtual-to-physical address translation error. When a translation error

occurs, the processor takes an Address Error exception (AdEL or AdES). Figure 8-2 shows the

format of the BadVAddr register.

31 0

Bad Virtual Address

Figure 8-2 BadVAddr Register

8.3.2 Status Register (12)

The Status register contains a three-level stack (current, previous and old) for the Kernel/User mode

and interrupt enable bits, and a two-level stack (current and previous) for the interrupt mask level

field. The stack is pushed each time an exception is taken and popped by the Restore From

Exception (RFE) instruction. The mechanism of these stacks is detailed in Chapter 9, Exception

Handling. The Status register also contains the bits for coprocessor usability, software interrupt

mask and so on. Figure 8-3 shows the format of the Status register. Table 8-3 describes the bits in

the Status register.

System Control Coprocessor (CP0) Registers

8-5

31 28 27 26 25 24 23 22 21 20 19

Mnemonic CU 0 RE 0 BEV 0 NmI 0

Access RW R RW R RW R RW R

Reset X 0 X 0 1 0 0 0

Note: X signifies undefined.

NmI Nonmaskable Interrupt

0 Cleared

1 Triggered

BEV Bootstrap Exception Vector

0 Normal mode: External extended

memory mode

1 Alternative mode: On-chip ROM

mode

RE Reserved

0 Must be written as zero

CU[3:0] Coprocessor Usability

0 Unusable

1 Usable

18 16 15 13 12 11 8 7 6 5 4 3 2 1 0

Mnemonic PMask CMask 0 SwiMask 0 KUo IEo KUp IEp KUc IEc

Access RW RW R RW R RW RW RW RW RW RW

Reset X 7 0 X 0 X X X X 0 0

IEc Interrupt Enable, Current

0 Disable

1 Enable

KUc Kernel/User Mode, Current

0 Kernel

1 User

IEp Interrupt Enable, Previous

0 Disable

1 Enable

KUp Kernel/User Mode, PreviousPMask[2:0]

Previous Interrupt Mask Level 0 Kernel

0∼7 8-level value 1 User

KUo Interrupt Enable, OldCMask[2:0]

Current Interrupt Mask Level 0 Disable

0∼7 8-level value 1 Enable

KUo Kernel/User Mode, OldSwiMask[3:0]

Software Interrupt Mask 0 Kernel

0 Disable 1 User

1 Enable

Figure 8-3 Status Register

System Control Coprocessor (CP0) Registers

8-6

Table 8-3 Status Register Defintion

Mnemonic Name
Reset

Value
Description Access

CU[3:0] Coprocessor

Usability

X Controls the usability of coprocessors units 3 to 0.

The CU[3:1] bits control accesses to the respective coprocessors

whether in User mode or in Kernel mode. Attempted execution of a

coprocessor instruction causes a Coprocessor Unusable exception

when its CU bit is cleared.

The CU[0] bit controls the usability of CP0 instructions in User mode.

Attempts by a User-mode program to execute a CP0 instruction

when the CU[0] bit is cleared causes a Coprocessor Unusable

exception. Kernel-mode programs can execute all CP0 instructions,

regardless of the setting of the CU[0] bit.

RW

RE Reserved X Must be written as zero. When read, zeros are returned. R

BEV Bootstrap

Exception Vector

1 Set by hardware when the processor is reset. When BEV=1, all

exception vectors reside in uncacheable kseg1 space. Typically, this

is used to allow diagnostic tests to occur before the functionality of

the cache is validated. The BEV bit can be set or cleared by

software. When BVE=0, Reset, Nonmaskable Interrupt and Debug

exception vectors reside in uncacheable kseg1 space; all the other

exception vectors reside in cacheable kseg0 space. See Chapter 9,

Exception Handling, for details.

RW

Nml Nonmaskable

Interrupt

0 Set when a nonmaskable interrupt signal is asserted low. This bit is

cleared by writing a 1.

RW

PMask[2:0]

CMask[2:0]

Interrupt Mask

Level

(Previous /

Current)

X7 The Current Interrupt Mask Level field, CMask[2:0], defines the

highest priority level that the TX19 ignores. When an interrupt

request has a priority higher than the mask level, the TX19 takes an

interrupt exception unless the IEc bit is cleared.

CMask[2:0] is set to the highest 7 on hardware reset when a Reset

exception is initiated. Each time an interrupt exception is taken, the

contents of CMask[2:0] is copied into the PMask[2:0] field. When the

Restore From Exception (RFE) instruction is executed, the

PMask[2:0] value is restored to CMask[2:0]. See Chapter 9,

Exception Handling, for details.

RW

SwiMask[3:0] Software

Interrupt Mask

X Used by software to individually enable/disable the four software

interrupts. There are four corresponding bits in the Cause register

used to generate a software interrupt.

RW

KUo / KUp /

KUc

Kernel/User

Mode

(Old / Previous /

Current)

XX0 The KUc bit indicates the current operating mode of the processor,

0=Kernel mode and 1=User mode. The KUo, KUp and KUc bits are a

three-level stack (old, previous and current) for the Kernel/User

mode. The KUc bit is cleared on hardware reset and when an

exception is taken, placing the processor in Kernel mode.

Each time an exception is taken, the contents of KUc is pushed to

the KUp bit, and the KUp bit is pushed to the KUo bit. When the

Restore From Exception (RFT) instruction is executed, the contents

of the KUo bit is popped to the KUp bit and the Kup bit is popped to

the Kuc bit. The KUo bit remains unchanged. See Chapter 9,

Exception Handling, for details.

RW

System Control Coprocessor (CP0) Registers

8-7

Mnemonic Name
Reset

Value
Description Access

IEo / IEp / IEc Interrupt Enable

(Old / Previous /

Current)

XX0 The IEc bit indicates whether maskable interrupts (hardware and

software) are currently enabled or not, 1=enabled and 0=disabled.

The IEo, IEp and IEc bits are a three-level stack (old, previous and

current) for interrupt enabling. The IEc bit is cleared on hardware

reset and when an exception is taken. The IE register can also be

used to globally enable or disable interrupts.

When an exception is taken, the contents of IEc is pushed to the IEp

bit, and the IEp bit is pushed to the IEo bit. When the Restore From

Exception (RFT) instruction is executed, the contents of the IEo bit is

popped to the IEp bit and the IEp bit is popped to the IEc bit. The IEo

bit remains unchanged. See Chapter 9, Exception Handling, for

details.

RW

0 Reserved 0 The reserved bits are ignored on write, and read as zero. R

System Control Coprocessor (CP0) Registers

8-8

8.3.3 Cause Register (13)

The Cause register displays the cause of the last exception. The TX19 recognizes four software

interrupts; the Sw[3:0] bits are used by software to set or clear a particular software interrupt. Each

of the four software interrupts are vectored to different predetermined locations (see 9.1.3,

Exception Vector Addresses).

Figure 8-4 shows the format of the Cause register. Table 8-4 describes the bits in the Cause register.

31 30 29 28 27 16 15 13 12 11 8 7 6 2 1 0

Mnemonic BD 0 CE 0 IL 0 Sw 0 ExcCode 0

Access R R R R R R RW R R R

Reset X 0 X 0 X 0 X 0 X 0

Note:

X signifies undefined.

ExcCode Exception Code

0 Int Maskable Interrupt

(software / hardware)

4 AdEL Address Error Exception

(load / instruction fetch)

5 AdES Address Error Exception (store)

6 IBE Bus Error Exception

(instruction fetch)

7 DBE Bus Error Exception (load /

store)

8 Sys System Call Exception

9 Bp Breakpoint Exception

10 RI Reserved Instruction Exception

11 CpU Coprocessor Unusable

Exception

12 Ov Integer Overflow Exception

10-31 (Reserved)

Sw[3:0] Maskable Software Interrupt

0 Clear the interrupt condition.

1 Initiate an interrupt.

IL[2:0] Maskable Hardware Interrupt Level

0∼7 8-level value

CE[1:0] Coprocessor Error

00 Coprocessor 0

01 Coprocessor 1

10 Coprocessor 2

11 Coprocessor 3

BD Branch Delay

1 Last exception occurred in a jump or

branch delay slot

Figure 8-4 Cause Register

System Control Coprocessor (CP0) Registers

8-9

Table 8-4 Cause Register Definition

Mnemonic Name
Reset

Value
Description Access

BD Branch Delay X Set when an exception is taken while the processor is executing

an instruction in a jump or branch delay slot.

R

CE[1:0] Coprocessor Error X Indicates the coprocessor unit number referenced when a

Coprocessor Unusable exception was taken.

R

IL[2:0] Interrupt Level X Indicates the maskable hardware interrupt priority level. The 3-bit

interrupt request signal applied to the processor represents the

interrupt priority level and is captured into the IL[2:0] bits

irrespective of the interrupt mask level set in the Status register.

When an interrupt request has a priority higher than the mask

level, the TX19 takes an interrupt exception unless the IEc bit in

the Status register is cleared. The IL[2:0] bits are cleared when no

interrupt is pending.

R

Sw[3:0] Maskable Software

Interrupt

X Used by software to set or clear a software interrupt. The TX19

recognizes four software interrupts. There are corresponding

interrupt mask bits in the Status register for these interrupts.

R

ExcCode Exception Code X Indicates the cause of the last exception. See Figure 8-4. RW

0 Reserved – The reserved bits are ignored on write, and read as zero. R

8.3.4 EPC Register (14)

The Exception Program Counter (EPC) register saves the contents of the program counter (PC)

when an exception is taken. When the instruction is in a jump or branch delay slot, the EPC register

is rolled back to point to the jump or branch instruction so that it can be re-executed, and the BD bit

in the Cause register is set. As is the case with the PC, the least-significant bit in the EPC register

indicates the ISA mode that was in effect when the exception was taken. Figure 8-5 shows the

format of the EPC register.

31 0

Exception Program Counter

Figure 8-5 EPC Register

8.3.5 PRId Register (15)

The Product Revision Identifier (PRId) register is a read-only register that contains the revision

identifier of the processor. Figure 8-6 shows the format of the PRId register. Table 8-5 describes the

bits in the PRId register.

31 16 15 8 7 0

Mnemonic 0 Imp Rev

Access R R R

Reset 0 0x2C *

Figure 8-6 PRId Register

System Control Coprocessor (CP0) Registers

8-10

Table 8-5 PRId Register Definition

Mnemonic Name
Reset

Value
Description Access

Imp[7:0] Implementation

Number

0x2C Contains the execution engine implementation code. The TX19

processor core’s implementation code is 0x2C.

R

Rev[7:0] Revision Number – Contains the revision level for this implementation. See hardware

user’s manuals for the revision number.

R

0 Reserved – The reserved bits are ignored on write and read as zero. R

8.3.6 IE Register (31)

The Interrupt Enable (IE) register is used to set or clear the IEc bit in the Status register to enable or

disable interrupts. Writing a zero to the IE register causes the IEc bit in the Status register to be

cleared; writing a non-zero value to the IE register causes the IEc bit to be set. Use the instruction

"MTC0 r0, IE" to disable interrupts. Use a register that contains a non-zero value as the target

register (rt) like "MTC0 $sp, IE" to enable interrupts. Figure 8-7 shows the format of the IE register.

31 0

Interrupt Enable

Figure 8-7 IE Register

You can also set or clear the IEc (Interrupt Enable) bit of the Status register directly. However, to do

this, you need to use a sequence of several instructions as shown below:

MFC0 r26,C0_STATUS

NOP

OR r26,r26,SR_IEC

MTC r26,C0_STATUS

where, C0_STATUS represents the Status register and SR_IEC a constant (0x0000_0001). (These

are typically defined in a header file for the assembler.) In contrast to executing the above code, the

IE register provides for fast enabling/disabling of interrupts.

8.4 Debug Exception Handling Registers

The TX19 allows program instruction execution to arbitrarily stop to handle debugging events. The

TX19 incorporates extra hardware-based features to enhance program debug.

System Control Coprocessor (CP0) Registers

8-11

8.4.1 Debug Register (16)

As a debugging aid, the Debug register reflects conditions that were in effect at the time the Debug

exception occurred. It also allows you to initiate debug processing. Code execution breakpoints can

be generated by embedding Software Debug Breakpoint (SDBBP) instructions in the code.

Additionally, the single-step feature may be enabled by setting the SSt bit in the Debug register.

Figure 8-8 shows the format of the Debug register. Table 8-6 describes the bit in the Debug register.

31 30 29 15 14 13 12 11 10 9 8 7 6 5 2 1 0

Mnemonic DBD DM 0 NIS - OES TLF BsF 0 SSt 0 - DBp DSS

Access R R R R - R R RW R RW R - R R

Reset X 0 0 X - X X X 0 0 0 - X X

DSS Debug Single-step

1 Set on exception

DBp Debug Breakpoint

1 Set on exception

SSt Single-step

0 Disabled

1 Enabled

BsF Bus Error Exception Flag

0 Flag cleared

1 Set on exception

OES Other Exception Status

1 Set on exception

NIS Nonmaskable Interrupt Status

1 Set on exception

DM Debug Mode

1 Debug exception being serviced

DBD Debug Branch Delay

1 Last exception occurred in a jump or

branch delay slot

Figure 8-8 Debug Register

Note:

X signifies undefined.

System Control Coprocessor (CP0) Registers

8-12

Table 8-6 Debug Register Definition

Mnemonic Name
Reset

Value
Description Access

DBD Debug Branch

Delay

X Set when a Debug exception is taken while the processor is

executing an instruction in a jump or branch delay slot.

R

DM Debug Mode 0 Set while the Debug exception is being serviced. Cleared by the

Debug Exception Return (DERET) instruction.

R

NIS Nonmaskable

Interrupt Status

X Set if a Debug exception and a Nonmaskable Interrupt exception

occurred simultaneously. At this point, the Status, Cause, EPC and

BadVAddr registers reflect conditions after the Nonmaskable

Interrupt exception was taken, but the DEPC register is not loaded

with the vector address of the Nonmaskable Interrupt exception

(0xBFC0_0000) yet.

R

OES Other Exception

Status

X Set if a Debug Exception and a general exception other than the

Reset and Nonmaskable Interrupt exceptions occurred

simultaneously. At this point, the Status, Cause, EPC and BadVAddr

registers reflect conditions after the general exception was taken, but

the DEPC register is not loaded with the general exception vector

address yet.

R

BsF Bus Error

Exception Flag

X Set if a Bus Error exception occurred while the Debug exception was

being serviced. Writing a zero clears this bit.

RW

SSt Single-step 0 Enables/disables single-step execution. Once set, a Single-step

Exception occurs after the next instruction completes execution. The

DM bit, when set, overrides this bit setting.

RW

DBp Debug

Breakpoint

X Set if a Debug Breakpoint exception occurred. R

DDS Debug Single-

step

X Set if a Single-step exception occurred. R

0 Reserved 0 The reserved bits are ignored on write, and read as zero. R

– Reserved X Reserved for future use. R

TLF Reserved X Reserved for future use. R

8.4.2 DEPC Register (17)

The Debug Exception Program Counter (DEPC) saves the contents of the program counter (PC)

when a Debug exception is taken. When the instruction is in a jump or branch delay slot, the DEPC

is rolled back to point to the jump or branch instruction so that it can be re-executed, and the DBD

bit in the Debug register is set. The least-significant bit in the DEPC register indicates the ISA mode

that was in effect when the exception was taken. Figure 8-9 shows the format of the DEPC register.

31 0

Debug Exception Program Counter

Figure 8-9 DEPC Register

Exception Handling

9-1

Chapter 9 Exception Handling

This chapter discusses system resources related to exception and exception processing sequence.

The main sections in this chapter are:

• General Exceptions

• Interrupts

• Debug Exceptions

9.1 General Exceptions

Exceptions in the TX19 are referred to as either general exceptions or debug exceptions. This

section explains all types of exceptions other than debug exceptions which are used exclusively for

program debug. It provides details concerning sources of specific exceptions, how each arises and

how each is processed.

9.1.1 How General Exception Processing Works

Exceptions are any conditions that alter the normal sequence of instructions as a result of external

interrupt signals, errors or unusual conditions arising in the execution of instructions. When

exceptions occur, the processor saves information about the state of the processor, enters Kernel

mode, and transfers control to a predefined address. This predefined location is called exception

vector, which directly indicates the start of the actual exception handler routine.

For all exceptions other than a Reset exception, exception processing occurs in the sequence shown

in Figure 9-1.

Exception Handling

9-2

Running Program

E
x
c
e

p
tio

n
 C

o
n
d

itio
n

Exception Processing

Cause

PC[0]

PC[31:1]

EPC

BadVAddr

Status

Exception Handler

Routine
Capture cause of

exception

Set exception return

address

Set exception vector address

RFE instruction

③Save / change

 processor state

Change ISA mode to 32-bit
JR instruction

Figure 9-1 Exception Operation

The following paragraph numbers are keyed to the call-out numbers in Figure 9-1.

1. The currently executing instruction and any subsequent instructions in the pipeline are aborted.

2. The Cause register captures information about the cause of the exception. Although multiple

exception conditions map to a single exception vector, a more specific condition can be

determined by examining the Cause register.

The EPC register captures the virtual address of the instruction that caused an exception, from

which point processing resumes after the exception has been serviced. When the instruction is

in a jump or branch delay slot, the EPC is rolled back to point to the jump or branch

instruction so that it can be re-executed, and the BD bit in the Cause register is set. The least-

significant bit of the EPC register is the ISA mode bit that indicates the ISA mode that was in

effect when the exception occurred.

If the exception is an Address Error, the BadVAddr register captures the virtual address that

caused a virtual-to-physical address translation error.

3. The Status register captures information about the current operating state of the processor and

then causes the processor to enter Kernel mode for exception processing and turn off all

interrupts.

4. If the exception occurred in 16-bit ISA mode, the least-significant bit (i.e., the ISA mode bit)

of the Program Counter (PC) is set to zero, bringing the processor into 32-bit ISA mode.

5. The PC is loaded with the exception vector address to jump to the starting location of the

exception handler.

6. After the exception has been serviced, the Jump Register (JR) instruction is used to jump back

to the return address.

7. At the end of the exception handler routine is the Restore From Exception (RFE) instruction to

Exception Handling

9-3

restore the system context to the state that existed before the exception. The RFE instruction is

actually executed in the jump delay slot prior to the JR instruction.

8. Processing resumes from the point where the processor left off when the exception occurred.

9.1.2 General Exception Types

Figure 9-1 gives the types of general exceptions that can occur in the TX19 processor. The ExcCode

field in the Cause register indicates the cause of the most recent exception. Later subsections

describe each of these exceptions in greater details in this order.

Table 9-1 General Exception Types

ExcCode Exception Type Mnemonic Description

0 Maskable Interrupt Int A Maskable Interrupt exception occurs when the interrupt signal

with a priority level higher than the value of the CMask[2:0] field

in the Status register is delivered or one of the Sw[3:0] bits in the

Cause register is set by software.

– Nonmaskable Interrupt Nml A Nonmaskable Interrupt exception occurs when the NMI* signal

is asserted low.

4 Address Error (Load) AdEL

5 Address Error (Store) AdES

An Address Error exception is caused by the following events:

• Loads from unaligned addresses

• Stores to unaligned addresses

• 32-bit instruction fetches from addresses not on word

boundaries

• User-mode accesses to the privileged Kernel address spaces

6 Bus Error

(Instruction Fetch)

IBE

7 Bus Error (Data) DBE

A Bus Error exception occurs when the bus error signal is

asserted during bus cycles.

8 System Call Sys A System Call exception occurs when a SYSCALL instruction is

executed.

9 Breakpoint Bp A Breakpoint exception occurs when a BREAK instruction is

executed.

10 Reserved Instruction RI A Reserved Instruction exception occurs when execution of an

instruction is attempted with an undefined or reserved major or

minor opcode.

11 Coprocessor Unusable CpU A Coprocessor Unusable exception occurs when an attempt is

made to execute a coprocessor instruction in User mode when

the corresponding CU bit in the Status register is cleared.

12 Integer Overflow Ov An Integer Overflow exception is caused by an add or subtract

instruction on 2’s-complement overflow.

– Reset Reset A Reset exception occurs when the reset signal is asserted and

then deasserted.

– Debug – See 9.3, Debug Exceptions.

† The mnemonic for the Debug exception is not defined.

Exception Handling

9-4

9.1.3 Exception Vector Addresses

An exception vector is the entry address of a routine that handles an exception. The Reset and

Nonmaskable Interrupt exceptions are always vectored to virtual address 0xBFC0_0000. The Debug

exception is always vectored to virtual address 0xBFC0_200. Values of the other vectors depend on

the BEV (Bootstrap Exception Vector) bit of the Status register. Table 9-2 shows the exception

vector addresses.

Table 9-2 Exception Vector Addresses

Vector Address

BEV=0 BEV=1Exception Type

Virtual Physical Virtual Physical

Reset

Nonmaskable Interrupt
0xBFC0_0000 0x1FC0_0000 0xBFC0_0000 0x1FC0_0000

Debug 0xBFC0_0200 0x1FC0_0200 0xBFC0_0200 0x1FC0_0200

Software Interrupt Swi0 0x8000_0110 0x0000_0110 0xBFC0_0210 0x1FC0_0210

Software Interrupt Swi1 0x8000_0120 0x0000_0120 0xBFC0_0220 0x1FC0_0220

Software Interrupt Swi2 0x8000_0130 0x0000_0130 0xBFC0_0230 0x1FC0_0230

Software Interrupt Swi3 0x8000_0140 0x0000_0140 0xBFC0_0240 0x1FC0_0240M
a

s
k
a

b
le

In
te

rr
u

p
ts

Hardware Interrupt 0x8000_0160 0x0000_0160 0xBFC0_0260 0x1FC0_0260

General Exceptions 0x8000_0080 0x0000_0080 0xBFC0_0180 0x1FC0_0180

The BEV bit in the Status register is set by hardware when the processor is reset. When BEV=1, all

exception vectors reside in uncacheable kseg1 space. Typically, this is used to allow diagnostic tests

to occur before the functionality of the cache is validated. The BEV bit can be set or cleared by

software. When BVE=0, Reset, Nonmaskable Interrupt and Debug exception vectors reside in

uncacheable kseg1 space, but all the other exception vectors reside in cacheable kseg0 space.

9.1.4 General Exception Priorities

While more than one exception can occur at a time, the TX19 reports only one exception with the

priority order shown in Table 9-3.

Exception Handling

9-5

Table 9-3 Exception Priorities

Priority Exception Type Mnemonic

Highest Reset Reset

Bus Error (Instruction Fetch) IBE

Bus Error (Data Access) DBE

Nonmaskable Interrupt Nml

Address Error (Instruction Fetch) AdEL

Coprocessor Unusable CpU

Integer Overflow, System Call, Breakpoint, Reserved

Instruction

Ov, Sys, Bp,

RI

Address Error (Load) AdEL

Address Error (Store) AdES

Lowest Maskable Interrupt Int

9.1.5 Saving and Restoring Processor Context

The Status register contains a three-level stack (current, previous and old) for the Kernel/User Mode

and Interrupt Enable bits. The KUc bit indicates the current operating mode of the processor,

0=Kernel mode and 1=User mode. The IEc bit indicates whether maskable interrupts, both hardware

and software, are currently enabled or not, 1=enabled and 0=disabled.

When an exception occurs, the KUc and IEc bits are pushed to the "previous" bits (KUp/IEp) and

the Kup and IEp bits are pushed to the "old" bits (KUo/KEo). The "current" bits (KUc/IEc) are

cleared so the processor enters Kernel mode and disables all interrupts.

This three-level stack within the Status register allows the processor to respond to two levels of

exceptions before software must save the contents of the Status register to a general-purpose register

or stack in memory.

After an exception has been serviced, processor context must be restored to the state that existed

prior to the exception. The RFE instruction is used to do this. When the RFE instruction is executed,

the contents of the "old" bits (KUo/IEo) are popped to the "previous" bits (KUp/IEp) and the

"previous" bits (KUp/IEp) are popped to the "current" bits (KUc/IEc). The "old" bits (KUo/IEo)

remain unchanged.

Additionally, the Status register provides a two-level stack for the Interrupt Mask Level field

(previous and current). The three-bit CMask[2:0] field defines the highest priority level that the

processor ignores. When an interrupt request has a priority higher than the mask level, the processor

takes an interrupt exception. When an exception is taken, the contents of the CMask[2:0] field is

pushed to the "previous" field, PMask[2:0]. The RFT instruction restores the PMask[2:0] value to

CMask[2:0].

Figure 9-2 shows how the processor manipulates the Status register during exception recognition

and how the Status register bits are restored by the RFT instruction after exception processing.

Exception Handling

9-6

Status Register

(a) Exception Recognition
(Save Processor Context)

(b) RFE Instruction
(Restore Processor Context)

Previous

Level

CMaskPMask KUo IEo KUp IEp KUc IEc

CMaskPMask KUo IEo KUp IEp KUc IEc

CMaskPMask KUo IEo KUp IEp KUc IEc

Current

Level
Old Mode

Previous

Mode

Current

Mode

0 0

18 16 15 13 5 4 3 2 1 0

Figure 9-2 Kernel and Interrupt Enable Bits

When an exception occurs, the EPC register captures the virtual address of the instruction that

caused an exception. When the instruction was in a jump or branch delay slot, the EPC register is

rolled back to point to the jump or branch instruction so that it can be re-executed. The least-

significant bit in the EPC register saves the ISA mode that was in effect prior to the exception.

Typically, exception handlers saves the Cause, Status, BadVAddr and EPC registers in general

registers or onto stack in memory to preserve processor context. This does have the advantage that

interrupts can be re-enabled while the original exception is being handled, thus allowing a priority

interrupt model to be built. When the processor takes an exception, subsequent interrupts are

automatically disabled; so it is possible to execute an exception handler, leaving the processor

context in the CP0 registers. However, in this case, care must be taken to ensure that the execution

of the exception handler does not generate any other exception.

After the exception has been serviced, the JR instruction is used to jump to the address at which the

exception occurred. Since the JR instruction takes only a general-purpose register as its operand, the

return address must be set into a general-purpose register before execution of a JR instruction. The

JR instruction restores both the return address and ISA mode bit into the PC.

EPC

PC

(a) Exception

Save the return address

and ISA mode bit

(b) JR Instruction

Restore the return address

and ISA mode bit

ISA Mode BitReturn Address

Figure 9-3 Saving and Restoring ISA Mode

Exception Handling

9-7

9.1.6 Maskable Interrupt Exception

Cause

This exception occurs when one of the maskable interrupt conditions (software or hardware) occurs.

Section 9.2 Interrupts, describes how the processor recognizes interrupts.

Handling

Figure 9-4 highlights the CP0 register fields that are used to handle this exception.

IL

6 2

31

BD ExcCodeCause Register

EPC Register

Sw

Config Register Doze

9

Halt

8

0

11 815 1331

Figure 9-4 Maskable Interrupt Exception

1. The Int code (0) is set into the ExcCode field in the Cause register.

2. If external hardware generated the interrupt, the IL field in the Cause register shows its priority

level. If software generated the interrupt, the Sw field shows which of the software interrupts

are pending; more than one interrupts may be pending at a time.

3. If the interrupt is hardware-generated, the Halt and Doze bits in the Config register are cleared.

4. The EPC register stores the program counter (PC) on the interrupt. If the interrupt-causing

instruction is in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

5. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

6. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

7. If the interrupt is hardware-generated, the processor jumps to the exception handler located at

address 0x8000_0160. If the interrupt is generated by software, the processor jumps to the

corresponding exception vector address.

8. If the interrupt is hardware-generated, the exception handler should access the interrupt vector

register in the peripheral interrupt controller to determine the source of the interrupt and

transfer control to an appropriate interrupt service routine. At this time, the interrupt request

level is set to the CMask field in the Status register. If the interrupt request changes to a lower

level before the interrupt vector register is read, the interrupt might not be processed properly.

If software generates the interrupt, clear the interrupt condition by setting the corresponding Sw bit

in the Cause register. If external hardware generates the interrupt, clear the interrupt condition by

removing the conditions that caused the processor’s interrupt pin to be asserted.

Exception Handling

9-8

9.1.7 Nonmaskable Interrupt Exception

Cause

This exception occurs when the processor’s nonmaskable interrupt pin is asserted.

Handling

Figure 9-5 highlights the CP0 register fields that are used to handle this exception.

0

6 2

31

BD ExcCode

31

Cause Register

Status Register

EPC Register

CE

29 28

NmI

20

Config Register Doze

9

Halt

8

Figure 9-5 Nonmaskable Interrupt Exception

1. The Exception Code (ExeCode) and Coprocessor Error (CE) bits in the Cause register are set

to X.

2. The Nonmaskable Interrupt (Nml) bit in the Cause register is set.

3. The Halt and Doze bits in the Config register are cleared.

4. The EPC register stores the program counter (PC) on the interrupt. If the processor is

executing an instruction in a jump or branch delay slot, the EPC register points at the

preceding jump or branch instruction, and the BD bit in the Cause register is set. The least-

significant bit in the EPC register saves the ISA mode that was in effect prior to the exception.

5. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

6. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

7. The processor jumps to the exception handler located at address 0xBFC0_0000.

When a nonmaskable interrupt request is generated during a bus cycle, the processor recognizes the

request at the end of the current bus cycle, as is the case with all the other exceptions but the Reset

exception.

Exception Handling

9-9

9.1.8 Address Error Exception

Cause

This exception occurs when an attempt is made to:

• fetch a 32-bit ISA instruction that is not aligned on a word boundary

• fetch a 16-bit ISA instruction that is not aligned on a halfword boundary

• load or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

• reference a Kernel-mode address space (kseg0, kseg1 or kseg2) in User mode

During instruction fetches, any instruction can generate an Address Error exception. The LB, LBU,

LH, LHU, LW, LWL, LWR, SB, SH, SW, SWL and SWR instructions can generate an Address

Error exception due to one of the other causes.

Handling

Figure 9-6 highlights the CP0 register fields that are used to handle this exception.

6 2

31

BD ExcCode

31

Cause Register

BadVAddr Register

0

EPC Register

31

0

Figure 9-6 Address Error Exception

1. The AdEL code (4) or the AdES code (5) is set into the ExcCode field in the Cause register,

depending on whether the exception occurred during an instruction fetch or a load operation

(AdEL), or a store operation (AdES).

2. The EPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

3. The BadVAddr register stores the virtual address that is not properly aligned or the virtual

address that improperly addressed a Kernel-segment address while in User mode.

4. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

5. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

6. The processor jumps to the exception handler located at address 0x8000_0080.

Exception Handling

9-10

9.1.9 Bus Error Exception

Cause

This exception occurs when an assertion of the bus error signal is acknowledged during memory bus

cycles.

During instruction fetches, any instruction can generate a Bus Error exception. The LB, LBU, LH,

LHU, LW, LWL, LWR, SB, SH, SW, SWL and SWR instructions can generate a Bus Error

exception during a load or store operation.

Handling

Figure 9-7 highlights the CP0 register fields that are used to handle this exception.

6 2

0

BD ExcCode

31

Cause Register

EPC Register

31

Figure 9-7 Bus Error Exception

1. The IBE code (6) or the DBE code (7) is set into the ExcCode field in the Cause register,

depending on whether the exception occurred during an instruction fetch (IBE), or a data load

or store operation (DBE).

2. The EPC register saves the program counter on the exception for the following cases:

• a load instruction is followed by a SYNC instruction

• the instruction immediately following a load has dependency on the loaded data

In such cases, the pipeline stalls until the load is complete; so the EPC register displays the

address of the instruction immediately following the load instruction.

For all the other cases such as bus time-outs and backplane bus parity errors, the EPC register

is set to X. If there is a need to know the address of the exception-causing instruction, external

hardware must provide a mechanism to save it.

3. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

4. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

5. The processor jumps to the exception handler located at address 0x8000_0080.

Bus error signaling causes the ongoing memory bus cycle to be aborted immediately. In the event

that a bus error occurs during a burst refill, any subsequent cache block refills are discontinued.

The TX19 processor core recognizes bus error signaling during bus cycles of its own; thus when a

write buffer unit is used to write data to external memory, the processor never takes a Bus Error

Exception Handling

9-11

exception. In that case, external hardware must suspend the erroneous bus operation by delivering

the interrupt signal.

When a bus error occurs during a load, the contents of the processor’s destination register is set to X.

9.1.10 System Call Exception

Cause

This exception occurs when a SYSCALL instruction is executed.

Handling

Figure 9-8 highlights the CP0 register fields that are used to handle this exception.

6 2

0

BD ExcCode

31

Cause Register

EPC Register

31

Figure 9-8 System Call Exception

1. The Sys code (8) is set into the ExcCode field in the Cause register.

2. The EPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

3. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

4. The processor jumps to the exception handler located at address 0x8000_0080.

When a System Call exception occurs, control is transferred to an exception handler. The unused

bits (bits 25-6) in a SYSCALL instruction are available for use as software parameters to pass

additional information. To examine these bits, load the contents of the instruction at which the EPC

register points. If the instruction is in a jump or branch delay slot (i.e., the BD bit in the Cause

register is set), add four to the contents of the EPC register to locate the instruction.

To resume execution after the exception has been serviced, alter the contents of the EPC register by

adding four so that the SYSCALL instruction is not re-executed. If the SYSCALL instruction is in a

jump or branch delay slot (i.e., the BD bit in the Cause register is set), the instruction at the return

address is a jump or branch instruction. In that case, the jump or branch instruction must be

interpreted to set the EPC register before resuming execution.

Exception Handling

9-12

9.1.11 Breakpoint Exception

Cause

This exception occurs when a BREAK instruction is executed.

Handling

Figure 9-9 highlights the CP0 register fields that are used to handle this exception.

6 2

0

BD ExcCode

31

Cause Register

EPC Register

31

Figure 9-9 Breakpoint Exception

1. The Bp code (9) is set into the ExcCode field in the Cause register.

2. The EPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

3. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

4. The processor jumps to the exception handler located at address 0x8000_0080.

When a Breakpoint exception occurs, control is transferred to an exception handler. The unused bits

(bits 25-6 in the 32-bit instruction, bits 10-5 in the 16-bit instruction) in a BREAK instruction are

available for use as software parameters to pass additional information. To examine these bits, load

the contents of the instruction at which the EPC register points. If the instruction is in a jump or

branch delay slot (i.e., the BD bit in the Cause register is set), add four to the contents of the EPC

register to locate the instruction.

To resume execution after the exception has been serviced, alter the contents of the EPC register by

adding four (in 32-bit ISA mode) or two (in 16-bit ISA mode) so that the BREAK instruction is not

re-executed. If the BREAK instruction is in a jump or branch delay slot (i.e., the BD bit in the Cause

register is set), the instruction at the return address is a jump or branch instruction. In that case, the

jump or branch instruction must be interpreted to set the EPC register before resuming execution.

Exception Handling

9-13

9.1.12 Reserved Instruction Exception

Cause

In 32-bit ISA mode, this exception occurs when an attempt is made to:

• execute an instruction with an undefined major opcode (bits 31-26) or a Special instruction

with an undefined minor opcode (bits 5-0)

• execute an unimplemented instruction (LWCz, SWCz)

In 16-bit ISA mode, this exception occurs when an attempt is made to:

• execute an instruction with an undefined instruction code 1110_1xxx_yyy0_1001, 1110_1xxx_

yyy1_0001, 1110_1xxx_yyy1_0101, 1100_100i_iiii_iiii or 0110_0110_iiii_iiii

• execute an unimplemented instruction (LWU, LD, SD, DADDU, DSUBU, DADDIU, DMULT,

DMULTU, DDIV, DDIVU, DSLL, DSRL, DSRA, DSLLV, DSRLV, DSRAV)

• EXTEND an instruction that can not be EXTENDed

Handling

Figure 9-10 highlights the CP0 register fields that are used to handle this exception.

6 2

0

BD ExcCode

31

EPC Register

Cause Register

31

Figure 9-10 Reserved Instruction Exception

1. The RI code (10) is set into the ExcCode field in the Cause register.

2. The EPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

3. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

4. If the exception occurs while the processor was in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

5. The processor jumps to the exception handler located at address 0x8000_0080.

The TX19 performs direct segment mapping of virtual to physical addresses; it does not have an on-

chip table lookaside buffer (TLB). If TLB instructions are encountered, the processor turns them

into NOPs (No Operations) instead of generating a Reserved Instruction exception.

Exception Handling

9-14

9.1.13 Coprocessor Unusable Exception

Cause

This exception occurs when an attempt is made to:

• execute a coprocessor instruction when the corresponding coprocessor unit is marked unusable

in the CU[z] bit in the Status register (where z is the coprocessor unit number, 0 to 3)

• execute a CP0 instruction in User mode when the CU[0] bit in the Status register is cleared

The coprocessor instructions, LWCz, SWCz, MTCz, MFCz, CTCz, CFCz, COPz, BCzT, BCzF,

BCzTL and BCzFL, and the system control coprocessor (CP0) instructions, MTC0, MFC0, RFE and

COP0, can generate this exception.

Kernel-mode execution of CP0 instructions never causes this exception regardless of the setting of

the CU[0] bit in the Status register.

Handling

Figure 9-11 highlights the CP0 register fields that are used to handle this exception.

6 2

 0

BD ExcCode

31

Cause Register

EPC Register

CE

29 28

31

Figure 9-11 Coprocessor Unusable Exception

1. The CpU code (11) is set into the ExcCode field in the Cause register.

2. The CE field in the Cause register shows which of the four coprocessor units was referenced

when an exception occurred.

3. The EPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

4. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

5. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

6. The processor jumps to the exception handler located at address 0x8000_0080.

Exception Handling

9-15

9.1.14 Integer Overflow Exception

Cause

This exception occurs when the ADD, ADDI or SUB instruction results in two’s-complement

overflow.

Handling

Figure 9-12 highlights the CP0 register fields that are used to handle this exception.

6 2

0

BD ExcCode

31

Cause Register

EPC Register

31

Figure 9-12 Integer Overflow Exception

1. The Ov code (12) is set into the ExcCode field in the Cause register.

2. The EPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the EPC register points at the preceding jump or

branch instruction, and the BD bit in the Cause register is set. The least-significant bit in the

EPC register saves the ISA mode that was in effect prior to the exception.

3. Processor context in the Status register is stacked, and the KUc and IEc bits are cleared to

enter Kernel mode and disable all interrupts (see 9.1.5, Saving and Restoring Processor

Context).

4. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

5. The processor jumps to the exception handler located at address 0x8000_0080.

9.1.15 Reset Exception

Cause

This exception occurs when the processor’s the reset signal is asserted and then deasserted.

Handling

1. All the CP0 registers are initialized as shown in Chapter 8.

2. The processor jumps to the exception handler located at address 0XBFC0_0000.

If a Reset exception occurs during processor bus cycles, the processor immediately discontinues the

ongoing bus cycle and takes a Reset exception.

Exception Handling

9-16

9.2 Interrupts

The TX19 provides a nonmaskable interrupt and maskable hardware and software interrupts. This

section describes the types of interrupts, how interrupts are prioritized and how interrupts are

recognized by the processor.

9.2.1 Interrupt Types

The TX19 recognizes a nonmaskable interrupt, 7 levels of maskable hardware interrupts and 4

maskable software interrupts. Interrupt exceptions are processed by hardware and then serviced by

software (interrupt service routines). See 9.1.6, Maskable Interrupt Exception, and 9.1.7,

Nonmaskable Interrupt Exception, for how interrupt exceptions are handled by processor hardware.

Sources of nonmaskable interrupts can be an assertion of the processor’s NMI* input or on-chip

peripherals such as watchdog timers. See individual hardware user’s manuals for possible on-chip

sources of nonmaskable interrupts. Nonmaskable interrupts are for implementation of critical

interrupt routines and can not be masked (disabled) by software; they are always recognized and

forces the processor to restart at 0xBFC0_0000.

Maskable hardware interrupts are detected with the processor’s 3-bit interrupt port. Interrupt

requests originate from external or on-chip hardware resources. Typically, they are submitted to the

interrupt controller, which then turns them into a 3-bit priority level for input to the TX19 processor

core. The processor compares its current interrupt mask level (i.e., the CMask[2:0] field in the

Status register) with the interrupt request priority to determine whether to service the interrupt

immediately or to delay service. The interrupt is serviced immediately if its priority is higher than

the mask level. The mask level is updated during interrupt recognition.

There are four software interrupts, Swi0 to Swi3. Software interrupts can be generated by setting the

corresponding bit in the Cause register. The application program may use these bits to request

interrupt service. There are corresponding bits in the Status register to mask respective software

interrupts.

The Current Interrupt Enable bit, IEc, in the Status register globally controls the enabling of all

maskable interrupts.

9.2.2 Maskable Interrupt Priorities

The TX19 allows a priority model to be built for maskable interrupts. The processor’s maskable

interrupt port is 3-bit wide, allowing eight levels of hardware interrupts to be defined, from the

highest 7 (binary 111) to the lowest 0 (binary 000). A priority-0 interrupt would never successfully

stop execution of a program of any priority. Interrupt priorities for various interrupt sources are to be

defined by the interrupt mode control register within the interrupt controller.

Software interrupts Swi0 to Swi2 have a priority level of 1, and Swi3 has a priority level of 4.

Although Swi0, Swi1 and Swi2 have an equal priority level, Swi2 has a higher priority than Swi1

and Swi1 has a higher priority than Swi0 when more than one software interrupt requests are made

simultaneously.

Exception Handling

9-17

9.2.3 Maskable Interrupt Vectors

The four software interrupts are vectored to distinct service routines as shown in Table 9-2,

Exception Vector Addresses. When a hardware interrupt occurs, the processor jumps to the default

address (0x8000_0160); the interrupt service routine must then check the interrupt controller in

order to determine the source of the interrupt, read the corresponding vector address and transfer

control to it.

9.2.4 Maskable Interrupt Recognition

Maskable interrupts are taken when all of the following conditions are met:

• Interrupts are enabled (The IEc bit in the Status register is set).

• The interrupt request priority is higher than the current mask level set in the CMask[2:0] field

in the Status register.

• If the interrupt is software-generated, the corresponding mask bit (SwiMask[3:0]) in the Status

register is cleared.

In the event that both hardware- and software-requested interrupts are posted at the same level, the

hardware interrupt is delivered first while the software interrupt is left pending.

Resolve hardware interrupt priority

Interrupt Controller

Software Interrupt

(Cause Register: Sw←1)

Processor Core

Resolve interrupt priority

Check interrupt enable conditions

Accept an interrupt

Hardware Interrupt Level

Source #1
Source #2

Source #3

Figure 9-13 Maskable Interrupt Recognition

9.2.5 Interrupt Mask Level

Whenever the processor accepts an interrupt, it automatically saves its request level in the Interrupt

Mask field, CMask[2:0], in the Status register. This allows all equal- and lower-priority interrupts to

be left pending while the interrupt is being serviced. If the interrupt is software-generated, the mask

is saved immediately on interrupt recognition. If the interrupt is hardware-generated, the mask is

saved at the time the processor reads out its interrupt vector.

The processor continuously compares the processor’s mask level to the priorities of requested

interrupts. Thus, before the writing of the CMask[2:0] field, the processor can accept a higher-

priority interrupt.

Exception Handling

9-18

The Status register has a two-level stack for the interrupt mask level. When the processor accepts an

interrupt, the contents of the Current Interrupt Mask field, CMask[2:0], is saved to the Previous

Interrupt Mask field, PMask[2:0]. Returning from an interrupt routine is made through the Restore

From Exception (RFE) instruction. When the RFE instruction is executed at completion of an

interrupt service routine, the mask level is restored to what it was before the interrupt was

recognized. This is done by popping the PMask[2:0] value to CMask[2:0].

When the processor takes an interrupt exception, it automatically clears the IEc (Interrupt Enable,

Current) bit to turn off all interrupts. Once the mask level for the current interrupt is set, the IEc bit

can be changed to allow higher-priority interrupts.

9.3 Debug Exceptions

There are Single-step and Debug Breakpoint exceptions in the TX19. This section provides details

concerning sources of specific debug exceptions, how each arises and how each processed.

9.3.1 How Debug Exception Processing Work

The TX19 allows program instruction execution to arbitrarily stop to handle debugging events.

Code execution breakpoints can be generated by the Software Debug Breakpoint (SDBBP)

instruction. The single-step feature may be enabled by setting the SSt bit in the Debug register.

Debug exception processing occurs in the sequence shown in Figure 9-14.

Running Program

D
e

b
u

g
 E

x
c
e
p

tio
n
 C

o
n

d
itio

n

Debug Exception Processing

Debug

PC

DEPC

Debug Exception

Handler ②Capture cause and

current state of exception

Set exception return

DERET

Instruction

Change ISA mode to 32-bit

Set exception vector

address

Debugger

Command

Figure 9-14 Exception Operation

1. The currently executing instruction and any subsequent instructions in the pipeline are aborted.

2. The debug exception registers save information about the debugging event.

• The Debug register shows the cause of the debug exception and whether it is currently

being serviced.

Exception Handling

9-19

• The DEPC register captures the virtual address of the instruction that caused a debug

exception. When the instruction is in a jump or branch delay slot, the DEPC register is

rolled back to point to the jump or branch instruction so that it can be re-executed, and the

DBD bit in the Debug register is set. The least-significant bit of the DEPC register is the

ISA mode bit that indicates the ISA mode that was in effect when the exception occurred.

3. The processor enters Kernel mode and turns off all interrupts, independent of the setting of the

Status register. If the exception occurs in 16-bit ISA mode, the least-significant bit (i.e., the

ISA mode bit) of the PC is set to zero, bringing the processor into 32-bit ISA mode.

4. The PC is loaded with the Debug exception vector address to jump to the starting location of

the debug exception handler.

5. At completion of the debug exception handler, the DERET instruction is executed to jump

back to the return address saved in the DEPC register.

6. Processing resumes from the point where the processor left off when the exception occurred.

9.3.2 Debug Exception Types

Table 9-4 gives the types of debug exceptions that can occur in the TX19 processor.

Table 9-4 Debug Exception Types

Exception Type Description

Single-step A Single-step exception occurs before the next instruction starts execution when

the SSt bit in the Debug register is set.

Debug Breakpoint A Debug Breakpoint exception provides a code execution breakpoint, and occurs

when an SDBBP instruction is executed. If the SSt bit in the Debug register is set, a

Single-step exception takes precedence over a Debug Breakpoint exception. The

operation of the SDBBP instruction is undefined if a debug exception is being

serviced (i.e., the DM bit in the Debug register is set).

9.3.3 Debug Exception Priorities

Single-step and Debug Breakpoint exceptions do not occur at the same time; the Single-step

exception has higher priority than the Debug Breakpoint exception.

A debug exception and a general exception may occur simultaneously. In that case, the processor

first services the debug exception; however, at this point, the Status, Cause, EPC and/or BadVAddr

registers are updated with information about the pending general exception. Additionally, the NIS or

OES bit in the Debug register is set to indicate that a Nonmaskable Interrupt exception or another

general exception occurred.

Debug and general exceptions should be serviced in the sequence shown in Figure 9-15.

Exception Handling

9-20

Running Program

D
e
b
u
g
 a

n
d
 G

e
n

e
ra

l E
x
c
e
p
tio

n
 C

o
n
d
itio

n
s

Debug Exception Handler

DEPC

General Exception

Handler

• Check for other exception

• Set exception vector address for

simultaneously-occurring general

exception

• DERET Instruction

JR Instruction

RFE Instruction

Debug Command

Processing

Figure 9-15 Debug Exception Priorities

On a debug exception, the DEPC register saves the address of the exception-causing instruction. So

that a simultaneously-occurring general exception will be serviced after completion of the debug

exception processing, the debug exception handler must check the Debug and Cause registers to

determine which type of general exception occurred, if any, and loads the DEPC register with the

exception vector address accordingly. This way, execution of the DERET instruction at the end of

the debug exception handler directly transfers control to the general exception handler.

A Single-step exception may coincide with an Address Error exception during an instruction fetch,

but not with any other type of general exceptions. In cases where an Address Error exception occurs

during an instruction fetch, that instruction is never executed; so a Debug Breakpoint exception is

not generated at the same time.

Table 9-5 gives the general exception vector address that should be loaded into the DEPC register

by the debug exception handler.

Exception Handling

9-21

Table 9-5 General Exception Vector Addresses

Debug Register Cause Register

NIS OES ExcCode IL[2:0] Sw[3:0]

Simultaneous General

Exception

Exception Vector

(Required DEPC

Register Value)

1 0 x x x Nonmaskable Interrupt 0xBFC0_0000

x x Other than Reset,

Nonmaskable Interrupt or

Maskable Interrupt

0x8000_0080 (BEV=0)

0xBFC0_0180 (BEV=1)

≠0

≥4 x Hardware Interrupt 0x8000_0160 (BEV=0)

0xBFC0_0260 (BEV=1)

1xxx Software Interrupt Swi3 0x8000_0140 (BEV=0)

0xBFC0_0240 (BEV=1)

0xxx Hardware Interrupt 0x8000_0160 (BEV=0)

0xBFC0_0260 (BEV=1)
1-3

1xxx Software Interrupt Swi3 0x8000_0140 (BEV=0)

0xBFC0_0240 (BEV=1)

01xx Software Interrupt Swi2 0x8000_0130 (BEV=0)

0xBFC0_0230 (BEV=1)

001x Software Interrupt Swi1 0x8000_0120 (BEV=0)

0xBFC0_0220 (BEV=1)

0 1

=0

0

0001 Software Interrupt Swi0 0x8000_0110 (BEV=0)

0xBFC0_0210 (BEV=1)

Note: x signifies a "don’t care."

9.3.4 Exception Masking

While a debug exception is being serviced, the processor masks all the other exceptions. This is

accomplished as follows:

• When a Bus Error event occurs, the BsF bit in the Debug register is set to flag its occurrence.

• All maskable interrupts are turned off while a debug exception is being serviced. (Maskable

interrupts are unmasked by the execution of a DERET instruction.)

• A nonmaskable interrupt is left pending until a return from a debug exception is made through

the DERET instruction.

• The processor operation is undefined if any other exception occurs during debug exception

processing.

9.3.5 Executing a Debug Exception Handler

A debug exception handler should operate the processor under controlled conditions for program

debug. It should check the DSS and DBp bits in the Debug register to determine whether to perform

single-step execution or code-execution breakpoint operations.

Exception Handling

9-22

9.3.6 Returning from Debug Exceptions

Returning from the debug exception handler is made through the DERET instruction, which

performs the following:

1. Restores the return address in the DEPC register into the program counter (PC) so that the

processor resumes processing from the point where a debug exception occurred. If the

instruction that caused an exception is in a jump or branch delay slot, the PC points at the

preceding jump or branch instruction so that it can be re-executed. The ISA mode bit of the

PC is restored from bit 0 of the DEPC register to enter ISA mode that was in effect before the

exception occurred.

2. Clears the Debug Mode (DM) bit in the Debug register.

3. Gets out of the forced "Kernel mode, interrupt-disabled" state and makes the Status register’s

KUc and IEc bits valid again.

9.3.7 Single-step Exception

Cause

This exception occurs when the SSt bit in the Debug register is set.

Handling

A Single-step exception takes place before executing the next instruction. Figure 9-16 highlights the

CP0 register fields that are used to handle this exception.

DBD

31

Debug Register

DEPC Register

DM

30 14

OES

12

BsF

10

DSS

0

NIS

31 0

Figure 9-16 Single-step Exception

1. The DM and DSS bits in the Debug register are set. In the event that a general exception event

occurred simultaneously, the NIS or OES bit is set. That a Single-step exception occurred

means the SSt bit had been set.

2. The DEPC register stores the program counter on the exception. The least-significant bit in the

DEPC register saves the ISA mode that was in effect prior to the exception.

3. The processor enters Kernel mode and turns off all interrupts, independent of the setting of the

Status register.

4. The processor jumps to the exception handler located at address 0xBFC0_0200.

The processor does not take a Single-step exception for the following cases:

• the instruction in a jump or branch delay slot

• the first instruction on returning from a debug instruction through the DERET instruction (see

Exception Handling

9-23

Figure 9-17)

• a debug exception is being serviced (i.e., the DM bit in the Debug register is set)

• the instruction immediately following an EXTENDed instruction (see Figure 9-18)

DERET

NOP

#1 after the return

#2 after the return

#3 after the return

#4 after the return

#1 in debug exception handler

The DEPC register points at instruction #2 after the return from the exception.

F ED M W

F ED M W

F D

F

F ED M W

Executed

Executed

Executed

Single-step exception

Nullified

Not fetched

Exception handler’s

starting instruction

F ED M W

Figure 9-17 CPU Pipeline Operation After the DERET Instruction

Extended instruction

Extended instruction

Next instruction #1

Next instruction #2

Next instruction #3

#1 in debug exception handler

The DEPC register saves the address of next instruction #1.

F ED M W

F D

F

F ED M W

Executed

Executed

Single-step exception

Nullified

Not fetched

Exception handler’s

starting instruction

F ED M W

Figure 9-18 CPU Pipeline Operation After an EXTENDed Instruction

Exception Handling

9-24

9.3.8 Debug Breakpoint Exception

Cause

This exception occurs when an SDBBP instruction is executed.

Handling

Figure 9-19 highlights the CP0 register fields that are used to handle this exception.

31

Debug Register

DEPC Register

DBD DM

30

NIS

14

OES

12

BsF

10

DBP

1

31 0

Figure 9-19 Debug Breakpoint Exception

1. The DM and DBP bits in the Debug register are set. In the event that a general exception event

occurred simultaneously, the NIS or OES bit is set. That a Debug Breakpoint exception

occurred means the SSt bit had been cleared.

2. The DEPC register stores the program counter on the exception. If the processor is executing

an instruction in a jump or branch delay slot, the DEPC register points at the preceding jump

or branch instruction, and the DBD bit in the Debug register is set. The least-significant bit in

the DEPC register saves the ISA mode that was in effect prior to the exception.

3. The processor enters Kernel mode and turns off all interrupts, independent of the setting of the

Status register.

4. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to

32-bit ISA mode.

5. The processor jumps to the exception handler located at address 0xBFC0_0200.

The unused bits (bits 25-6 in the 32-bit ISA, bits 10-5 in the 16-bit ISA) in an SDBBP instruction

are available for use as software parameters to pass additional information an exception handler. To

examine these bits, load the contents of the instruction at which the DEPC register points. If the

instruction is in a jump or branch delay slot (i.e., the DBD bit in the Debug register is set), add four

to the contents of the DEPC register to locate the instruction.

To resume execution after the exception has been serviced, alter the contents of the DEPC register

by adding four (in 32-bit ISA mode) or two (in 16-bit ISA mode) so that the SDBBP instruction is

not re-executed. If the SDBBP instruction is in a jump or branch delay slot (i.e., the DBD bit in the

Debug register is set), the instruction at the return address is a jump or branch instruction. In that

case, the jump or branch instruction must be interpreted to set the DEPC register before resuming

execution.

Power Consumption Management

10-1

Chapter 10 Power Consumption Management

The TX19 provides hardware support for many levels of power reduction. The Halt and Doze

modes are invoked by register programming, and the Reduced Frequency mode is invoked by a

cooperation between register programming and a clock generator. This chapter describes the power

management features and capabilities provided by the TX19.

10.1 Power-Saving Modes

Figure 10-1 illustrates the power-saving modes provided by the TX19.

Free-Running ClockClock Stopped

Standby

CPU Freezed

Doze

 (CPU bus requests

monitored)

Halt

(CPU bus requests

disabled)

Normal Operation

(Full-On mode)

Reduced Frequency

(RF)

CPU Operating

Figure 10-1 Power-Saving Modes

Power Consumption Management

10-2

The TX19 has many methods of dynamically controlling power consumption during operation.

Table 10-1 describes the available power-saving modes.

Table 10-1 Power-Saving Modes

Mode Description

Standby Mode For lowest power operation, the processor clock can be removed altogerher. There

are two levels of power savings achieved through Standby mode.

1. In one mode, both the processor and the oscillator circuitry are disabled

altogether.

2. In the other mode, the oscillator circuitry continues to run, but the clock input to

the processor is disabled.

For details on Standby mode, see respective hardware user’s manuals.

Halt Mode In Halt mode, all activities of the processor stop, and the CPU bus monitoring is

disabled. The TX19 processor assumes bus mastership. Halt mode can be entered

by programming the Config register.

Doze Mode In Doze mode, all activities of the processor stop except for the CPU bus monitor,

which continues to operate and recognizes bus requests. Doze mode can be

entered by programming the Config register.

Reduced Frequency (RF)

Mode

The processor clock can be programmed to run at fc/2, fc/4 or fc/8 to reduce power

consumption, where fc is the full-speed frequency of the processor. RF mode can

be entered by programming the Config register.

Normal Mode (Full-On Mode) This is the default power state of the TX19 following a hardware reset, with the

processor fully powered and operating at full clock speed.

Other Modes There are components having additional power-saving capabilities, e.g., a very-low-

speed mode in which the clock runs at 32.768 kHz for time-of-day clocks. For

additional power modes, see respective hardware user’s manuals.

Power Consumption Management

10-3

10.2 Halt Mode

Figure 10-2 depicts how Halt mode can be entered.

Standby
Halt

(Disabled Bus Monitoring)

Full-On

Reduced Frequency

(RF)

Config Register: Halt ← 1

Exception

(Reset / Nonmaskable Interrupt / Hardware Interrupt)

(Config Register: RF=0)

Exception

(Reset / Nonmaskable Interrupt / Hardware Interrupt)

(Config Register: RF≠0)

Clock Restarted

Clock Stopped

Figure 10-2 Halt Mode

Halt mode freezes the "processor core," preserving the pipeline state. In Halt mode, the processor

ignores any external bus requests, so it monopolizes mastership of the bus.

In Halt mode, the on-chip write buffer unit (if any) continues to operate until all entries in it have

been written to external memory.

The processor enters Halt mode when software writes a 1 to the Halt bit in the Config register while

in Full-On or RF mode. A wakeup from Halt mode can be achieved by causing a Reset,

Nonmaskable Interrupt or Maskable Hardware Interrupt exception. Any of such exceptions causes

clearing of the Halt bit, followed by processing of that exception.

Maskable interrupts are recognized even if they are masked in the Status register. In that case, after a

wakeup, normal processing resumes with all register contents intact, i.e., the processor continues

execution from the address following the instruction that brought the processor into Halt mode.

In Halt mode, the processor may have its clock input shut down for additional power savings. The

oscillator and/or clock stop causes the processor to enter Standby mode. Restarting the clock to the

processor initiates a wakeup.

Power Consumption Management

10-4

10.3 Doze Mode

Figure 10-3 depicts how Doze mode can be entered.

Doze

(Enabled Bus

Monitoring)

Full-On

Reduced Frequency

(RF)

Exception

(Reset / Nonmaskable Interrupt / Hardware Interrupt)

(Config Register: RF=0)

Config Register: Doze ← 1

Exception

(Reset / Nonmaskable Interrupt / Hardware Interrupt)

(Config Register: RF≠0)

Config Register:

RF ← 1, 2, 3

Figure 10-3 Doze Mode

Like Halt mode, Doze mode freezes the "processor core," preserving the pipeline state, but in Doze

mode, the processor recognizes external bus requests.

In Doze mode, the on-chip write buffer unit (if any) continues to operate until all entries in it have

been written to external memory.

The processor enters Doze mode when software writes a 1 to the Doze bit in the Config register

while in Full-On or RF mode. A wakeup from Doze mode can be achieved by causing a Reset,

Nonmaskable Interrupt or Maskable Hardware Interrupt exception. Any of such exceptions causes

clearing of the Doze bit, followed by processing of that exception.

Maskable interrupts are recognized even if they are masked in the Status register. In that case, after a

wakeup, normal processing resumes with all register contents intact, i.e., the processor continues

execution from the address following the instruction that brought the processor into Doze mode.

Power Consumption Management

10-5

10.4 Reduced Frequency (RF) Mode

The processor clock can be programmed to run at fc/2, fc/4 or fc/8 to reduce power consumption,

where fc is the full-speed frequency of the processor. The division is by a power-of-2, as

programmed in the RF[1:0] bits in the Config register. The value of the RF[1:0] field in the Config

register is driven to the processor output, which in turn is used as input to the on-chip clock

generator to indicate the clock divisor. The processor is brought back to full speed by resetting the

RF[1:0] bits to zero.

If the Halt or Doze bit in the Config register is set while the processor is operating in RF mode, the

processor enter Halt or Doze mode accordingly. A Reset, Nonmaskable Interrupt or Maskable

Hardware Interrupt exception brings the processor back into RF mode.

Power Consumption Management

10-6

32-Bit ISA Details

A-1

Appendix A 32-Bit ISA Details

This appendix presents detailed information concerning each instruction in the 32-bit ISA, including

assembler syntax, instruction format, operation and exceptions that may occur due to the execution

of the instruction. Each instruction is listed alphabetically by mnemonic. For the variations of

instruction formats, see Section 3.1, Instruction Formats.

32-Bit ISA Details

A-2

ADD rd, rs, rt
Add

Operation

rd ⇐ rs + rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is added to the contents of general-purpose register rt,

and the result is placed into general-purpose register rd.

An Integer Overflow exception is taken on 2’s-complement overflow, which occurs if the signs of

the addends are the same and the sign of the sum is different. The destination register (rd) is not

altered when an Integer Overflow exception occurs.

Exceptions

Interger Overflow exception

Examples

1. Assume that registers r2 and r3 contain 0x0200_0000 and 0x0123_4567 respectively. Then,

executing the instruction:

ADD r4,r2,r3

places the sum (0x0323_4567) into r4.

2. Assume that registers r2 and r3 contain 0x7FFF_FFFF and 0x0000_0001 respectively. Then, the

addition of r2 and r3 gives the result 0x8000_0000, which is a negative number, indicating a

2’s-complement overflow. Thus executing the instruction:

ADD r4,r2,r3

causes an Integer Overflow exception. Register r4 is not modified as a result of this instruction.

32-Bit ISA Details

A-3

ADDI rt, rs, immediate
Add Immediate

Operation

rt ⇐ rs + immediate

Instruction Encoding

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs. The

result is placed into general-purpose register rt.

An Integer Overflow exception is taken on 2’s-complement overflow. The destination register (rt) is

not altered when an Integer Overflow exception occurs.

The immediate field is 16 bits in length. This gives a range of -32768 to +32767. If a number is

outside this range, you need to put it in a general-purpose register and use the ADD or ADDU

instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions

Integer Overflow exception

Example

Assume that register r2 contains 0x0200_F000. Then, executing the instruction:

ADDI r3,r2,0x1234

places the sum 0x0201_0234 into r3.

+

0 2 0 0 F 0 0 0

0 2 0 1 0 2 3 4

0 0 0 0 1 2 3 4

r2

r4

Sign-Extended

32-Bit ISA Details

A-4

ADDIU rt, rs, immediate
Add Immediate Unsigned

Operation

rt ⇐ rs + immediate

Instruction Encoding

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Description

Although the opcode stands for "Add Immediate Unsigned," the 16-bit immediate is sign-extended

and added to the contents of general-purpose register rs. The result is placed into general-purpose

register rt.

The only difference between this instruction and the ADDI instruction is that this instruction never

causes an Integer Overflow exception.

Exceptions

None

32-Bit ISA Details

A-5

ADDU rd, rs, rt
Add Unsigned

Operation

rd ⇐ rs + rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is added to the contents of general-purpose register rt,

and the result is placed into general-purpose register rd.

The only difference between this instruction and the ADD instruction is that this instruction never

causes an Integer Overflow exception.

Exceptions

None

32-Bit ISA Details

A-6

AND rd, rs, rt
AND

Operation

rd ⇐ rs AND rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

Description

The contents of general-purpose register rs is ANDed with the contents of general-purpose register

rt, and the result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that registers r2 and r3 contain 0x8000_7350 and 0x0000_3456 respectively. Then, the

instruction:

AND r4,r2,r3

performs the logical AND between r2 and r3 and puts the result (0x0000_3050) in r4, as shown

below.

AND

1000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0011 0000 0101 0000

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

32-Bit ISA Details

A-7

ANDI rt, rs, immediate
Logical AND Immediate

Operation

rt ⇐ rs AND immediate

Instruction Encoding

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

Description

The 16-bit immediate is zero-extended and ANDed with the contents of general-purpose register rs.

The result is placed into general-purpose register rt.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it

in a general-purpose register and use the AND instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions

None

Example

Assume that register r2 contains 0x0000_7350. Then, the instruction:

ANDI r3,r2,0x1234

performs the logical AND between 0x0000_7350 and 0x0000_1234 and puts the result

(0x0000_1210) in r3, as shown below.

AND

0000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0001 0010 0001 0000

0000 0000 0000 0000 0001 0010 0011 0100

r2

r3

Zero-Extended

32-Bit ISA Details

A-8

BCzF offset
Branch On Coprocessor z False

Operation

if coprocessor z’s condition signal is false

then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

COPz

0100zz(*)

BC

01000

BCF

00000
offset

6 5 5 16

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 26 25 21 20 16 0

BC0F 010000 01000 00000

BC1F 010001 01000 00000

BC2F 010010 01000 00000

BC3F 010011 01000 00000

Opcode BC Subcode

Opcode

Branch Condition

Description

If the coprocessor unit z’s condition signal (CPCOND), as sampled during execution of the previous

instruction, is false, then the program branches to the target address with a delay of one instruction

(i.e., two instruction cycles). The target address is computed relative to the address of the instruction

in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended

and added to PC+4 to form the target address. If the coprocessor unit z’s condition signal

(CPCOND) is true, the program just continues to the next instruction.

Exceptions

Coprocessor Unusable exception

Example

BC1F SFALSE

32-Bit ISA Details

A-9

Assume that this branch instruction resides at address 0x2000 and that label SFALSE points to

absolute address 0x2404. Then the assembler/linker turns this label into relative offset 0x0100 (see

the figure below).

If the coprocessor unit 1’s condition signal (CPCOND) is false, the processor transfers program

control to address 0x2404. The branch takes effect after the instruction in the branch delay slot is

executed.

0x0400

The offset, 0x0100, is shifted left

by 2 bits and sign-extended.

BC1F SFALSE

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

32-Bit ISA Details

A-10

BCzFL offset
Branch On Coprocessor z False Likely

Operation

if coprocessor z’s condition signal is false

then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

COPz

0100zz(*)

BC

01000

BCFL

00010
offset

6 5 5 16

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 26 25 21 20 16 0

BC0FL 010000 01000 00010

BC1FL 010001 01000 00010

BC2FL 010010 01000 00010

BC3FL 010011 01000 00010

Opcode BC Subcode

Opcode

Branch Condition

Description

If the coprocessor unit z’s condition signal (CPCOND), as sampled during execution of the previous

instruction, is false, then the program branches to the target address with a delay of one instruction

(i.e., two instruction cycles). The target address is computed relative to the address of the instruction

in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended

and added to PC+4 to form the target address. If the coprocessor unit z’s condition signal

(CPCOND) is true, the instruction in the branch delay slot is nullified.

Exceptions

Coprocessor Unusable exception

Example

BC1FL SFALSE

32-Bit ISA Details

A-11

Assume that this branch instruction resides at address 0x2000 and that label SFALSE points to

absolute address 0x2404. Then the assembler/linker turns this label into relative offset 0x0100 (see

the figure below).

If the coprocessor unit 1’s condition signal (CPCOND) is false, the processor transfers program

control to address 0x2404. The branch takes effect after the instruction in the branch delay slot is

executed. When the branch is not taken, the instruction in the branch delay slot is nullified.

0x0400

The offset, 0x0100, is shifted left

by 2 bits and sign-extended.

BC1FL SFALSE

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

32-Bit ISA Details

A-12

BCzT offset
Branch On Coprocessor z True

Operation

if coprocessor z’s condition signal is true

then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

COPz

0100zz(*)

BC

01000

BCT

00001
offset

6 5 5 16

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 26 25 21 20 16 0

BC0T 010000 01000 00001

BC1T 010001 01000 00001

BC2T 010010 01000 00001

BC3T 010011 01000 00001

Opcode BC Subcode

Opcode

Branch Condition

Description

If the coprocessor unit z’s condition signal (CPCOND), as sampled during execution of the previous

instruction, is true, then the program branches to the target address with a delay of one instruction

(i.e., two instruction cycles). The target address is computed relative to the address of the instruction

in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended

and added to PC+4 to form the target address. If the coprocessor unit z’s condition signal

(CPCOND) is false, the program just continues to the next instruction.

Exceptions

Coprocessor Unusable exception

Example

BC1T STRUE

32-Bit ISA Details

A-13

Assume that this branch instruction resides at address 0x2000 and that label STRUE points to

absolute address 0x1C04. Then the assembler/linker turns this label into relative offset 0xFF00 (see

the figure below).

If the coprocessor unit 1’s condition signal (CPCOND) is true, the processor transfers program

control to address 0x1C04. The branch takes effect after the instruction in the branch delay slot is

executed.

0xFFFF_FC00

The offset, 0xFF00, is shifted left

by 2 bits and sign-extended.

BC1T STRUE

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

32-Bit ISA Details

A-14

BCzTL offset
Branch On Coprocessor z True Likely

Operation

if coprocessor z’s condition signal is true

then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

COPz

0100zz(*)

BC

01000

BCTL

00011
offset

6 5 5 16

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 26 25 21 20 16 0

BC0TL 010000 01000 00011

BC1TL 010001 01000 00011

BC2TL 010010 01000 00011

BC3TL 010011 01000 00011

Opcode BC Subcode

Opcode

Branch Condition

Description

If the coprocessor unit z’s condition signal (CPCOND), as sampled during execution of the previous

instruction, is true, then the program branches to the target address with a delay of one instruction

(i.e., two instruction cycles). The target address is computed relative to the address of the instruction

in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended

and added to PC+4 to form the target address. If the coprocessor unit z’s condition signal

(CPCOND) is false, the instruction in the branch delay slot is nullified.

Exceptions

Coprocessor Unusable exception

Example

BC1TL STRUE

32-Bit ISA Details

A-15

Assume that this branch instruction resides at address 0x2000 and that label STRUE points to

absolute address 0x1C04. Then the assembler/linker turns this label into relative offset 0xFF00 (see

the figure below).

If the coprocessor unit 1’s condition signal (CPCOND) is true, the processor transfers program

control to address 0x1C04. The branch takes effect after the instruction in the branch delay slot is

executed. When the branch is not taken, the instruction in the branch delay slot is nullified.

0xFFFF_FC00

The offset, 0xFF00, is shifted left

by 2 bits and sign-extended.

BC1TL STRUE

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

32-Bit ISA Details

A-16

BEQ rs, rt, offset
Branch On Equal

Operation

if rs = rt then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register

rt. If the two registers are equal, then the program branches to the target address with a delay of one

instruction (i.e., two instruction cycles). The target address is computed relative to the address of the

instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits,

sign-extended and added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-17

BEQL rs, rt, offset
Branch On Equal Likely

Operation

if rs = rt then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register

rt. If the two registers are equal, then the program branches to the target address with a delay of one

instruction (i.e., two instruction cycles). If the branch is not taken, the instruction in the branch

delay slot is nullified. The target address is computed relative to the address of the instruction in the

branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and

added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-18

BGEZ rs, offset
Branch On Greater Than Or Equal To Zero

Operation

if rs ≥ 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZ

00001
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program

branches to the target address with a delay of one instruction (i.e., two instruction cycles). The target

address is computed relative to the address of the instruction in the branch delay slot (PC+4); the

16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the

target address.

Exceptions

None

Example

BGEZ r8,SGEZERO

Assume that this branch instruction resides at address 0x2000 and that label SGEZERO points to

absolute address 0x1C04. Then the assembler/linker turns this label into a relative offset 0xFF00

(see the figure below).

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor

transfers program control to address 0x1C04. The branch takes effect after the instruction in the

branch delay slot is executed.

32-Bit ISA Details

A-19

0xFFFF_FC00

The offset, 0xFF00, is shifted left

by 2 bits and sign-extended.

BGEZ r8, SGEZREO

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

32-Bit ISA Details

A-20

BGEZAL rs, offset
Branch On Greater Than or Equal To Zero And Link

Operation

r31 ⇐ pc +8; if rs ≥ 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZAL

10001
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program

branches to the target address with a delay of one instruction (i.e., two instruction cycles), and saves

the address of the instruction following the branch delay slot (PC+8) in the link register, r31. The

target address is computed relative to the address of the instruction in the branch delay slot (PC+4);

the 16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the

target address.

General-purpose register rs may not be r31 because such an instruction is not restartable, with the

contents of rs altered by the return address. An exception or interrupt could prevent the completion

of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has

been executed, processing must restart with the branch instruction.

Exceptions

None

Example

BGEZAL r8,PSUB

Assume that this branch instruction resides at address 0x2000 and that label PSUB points to

absolute address 0x2404. Then the assembler/linker turns this label into relative offset 0x0100 (see

the figure below).

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor

transfers program control to address 0x2404. The branch takes effect after the instruction in the

branch delay slot is executed.

The JR instruction is used at the end of the called subroutine to return control to the instruction after

the branch delay slot (PC+8).

32-Bit ISA Details

A-21

JR r31

Subroutine

0x0400

The offset, 0x0100, is shifted left

by 2 bits and sign-extended.

BGEZAL r8, PSUB

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

PC+8 is saved in r31.
0x2008

JR r31

0x0000 2008r31

PC+8 is restored from r31.

32-Bit ISA Details

A-22

BGEZALL rs, offset
Branch On Greater Than Or Equal To Zero And Link Likely

Operation

r31 ⇐ pc +8; if rs ≥ 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZALL

10011
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program

branches to the target address with a delay of one instruction (i.e., two instruction cycles), and saves

the address of the instruction following the branch delay slot (PC+8) in the link register, r31. If the

branch is not taken, the instruction in the branch delay slot is nullified. The target address is

computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit

immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target

address.

General-purpose register rs may not be r31 because such an instruction is not restartable, with the

contents of rs altered by the return address. An exception or interrupt could prevent the completion

of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has

been executed, processing must restart with the branch instruction.

Exceptions

None

Example

BGEZALL r8,PSUB

Assume that this branch instruction resides at address 0x2000 and that label PSUB points to

absolute address 0x2404. Then the assembler/linker turns this label into relative offset 0x0100.

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor

transfers program control to address 0x2404. The branch takes effect after the instruction in the

branch delay slot is executed. When the branch is not taken, the instruction in the branch delay not

is nullified.

32-Bit ISA Details

A-23

The JR instruction is used at the end of the called subroutine to return control to the instruction after

the branch delay slot (i.e., PC+8).

JR r31

Subroutine

0x0400

The offset, 0x0100, is shifted left

by 2 bits and sign-extended.

BGEZALL r8, PSUB

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

PC+8 is saved in r31.
0x2008

JR r31

0x0000 2008r31

PC+8 is restored from r31.

32-Bit ISA Details

A-24

BGEZL rs, offset
Branch On Greater Than Or Equal To Zero Likely

Operation

if rs ≥ 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZL

00011
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program

branches to the target address with a delay of one instruction (i.e., two instruction cycles). If the

branch is not taken, the instruction in the branch delay slot is nullified and the program continues to

the next instruction. The target address is computed relative to the address of the instruction in the

branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and

added to PC+4 to form the target address.

Exceptions

None

Example

BGEZL r8,SGEZERO

Assume that this branch instruction resides at address 0x2000 and that label SGEZERO points to

absolute address 0x1C04. Then the assembler/linker turns this label into relative offset 0xFF00 (see

the figure below).

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor

transfers program control to address 0x1C04. The branch takes effect after the instruction in the

branch delay slot is executed. When the branch is not taken, the instruction in the branch delay slot

is nullified.

32-Bit ISA Details

A-25

0xFFFF_FC00

The offset, 0xFF00, is shifted left

by 2 bits and sign-extended.

BGEZ r8, SGEZERO

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

32-Bit ISA Details

A-26

BGTZ rs, offset
Branch On Greater Than Zero

Operation

if rs > 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). The target address is

computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit

immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target

address.

Exceptions

None

32-Bit ISA Details

A-27

BGTZL rs, offset
Branch On Greater Than Zero Likely

Operation

if rs > 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). If the branch is not taken,

the instruction in the branch delay slot is nullified. The target address is computed relative to the

address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left

by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-28

BLEZ rs, offset
Branch On Less Than Or Equal To Zero

Operation

if rs ≤ 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than or equal to zero, then the program branches

to the target address with a delay of one instruction (i.e., two instruction cycles). The target address

is computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit

immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target

address.

Exceptions

None

32-Bit ISA Details

A-29

BLEZL rs, offset
Branch On Less Than Or Equal To Zero Likely

Operation

if rs ≤ 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than or equal to zero, then the program branches

to the target address with a delay of one instruction (i.e., two instruction cycles). If the branch is not

taken, the instruction in the branch delay slot is nullified. The target address is computed relative to

the address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted

left by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-30

BLTZ rs, offset
Branch On Less Than Zero

Operation

if rs < 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZ

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). The target address is

computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit

immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target

address.

Exceptions

None

32-Bit ISA Details

A-31

BLTZAL rs, offset
Branch On Less Than Zero And Link

Operation

r31 ⇐ pc +8; if rs < 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZAL

10000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). The target address is

computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit

immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target

address. The address of the instruction following the branch delay slot (PC+8) is unconditionally

saved in the link register, r31.

General-purpose register rs may not be r31 because such an instruction is not restartable, with the

contents of rs altered by the return address. An exception or interrupt could prevent the completion

of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has

been executed, processing must restart with the branch instruction.

Exceptions

None

32-Bit ISA Details

A-32

BLTZALL rs, offset
Branch On Less Than Zero And Link Likely

Operation

r31 ⇐ pc +8; if rs < 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZALL

10010
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles), and saves the address of

the instruction following the branch delay slot (PC+8) in the link register, r31. If the branch is not

taken, the instruction in the branch delay slot is nullified. The target address is computed relative to

the address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted

left by two bits, sign-extended and added to PC+4 to form the target address.

General-purpose register rs may not be r31 because such an instruction is not restartable, with the

contents of rs altered by the return address. An exception or interrupt could prevent the completion

of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has

been executed, processing must restart with the branch instruction.

Exceptions

None

32-Bit ISA Details

A-33

BLTZL rs, offset
Branch On Less Than Zero Likely

Operation

if rs < 0 then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZL

00010
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). If the branch is not taken,

the instruction in the branch delay slot is nullified. The target address is computed relative to the

address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left

by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-34

BNE rs, rt, offset
Branch On Not Equal

Operation

if rs ≠ rt then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register

rt. If the two registers are not equal, then the program branches to the target address with a delay of

one instruction (i.e., two instruction cycles). The target address is computed relative to the address

of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two

bits, sign-extended and added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-35

BNEL rs, rt, offset
Branch On Not Equal Likely

Operation

if rs ≠ rt then pc ⇐ pc + offset

Instruction Encoding

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register

rt. If the two registers are not equal, then the program branches to the target address with a delay of

one instruction (i.e., two instruction cycles). If the branch is not taken, the instruction in the branch

delay slot is nullified. The target address is computed relative to the address of the instruction in the

branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and

added to PC+4 to form the target address.

Exceptions

None

32-Bit ISA Details

A-36

BREAK code
Breakpoint Exception

Operation

Breakpoint exception

Instruction Encoding

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Description

When this instruction is executed, a breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler.

The code field in the BREAK instruction is available for use as software parameters to pass

additional information. The exception handler can retrieve it by loading the contents of the memory

word containing the instruction. For more on this, see Section 9.1.11, Breakpoint Exception.

Exceptions

Breakpoint exception

32-Bit ISA Details

A-37

CACHE op, offset (base)
Cache Operation

Operation

Cache operation

Instruction Encoding

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form a virtual address. The virtual address is translated to a physical address. The 5-bit sub-

opcode (bits 20-16) specifies a cache operation for that address.

Attempts by a User-mode program to execute the CACHE instruction when the CU[0] bit in the

Status register is cleared causes a Coprocessor Unusable exception. Kernel-mode programs can

always execute the CACHE instruction. The operation of this instruction is undefined if cache is not

available.

Bits 20 to 18 and bits 17-16 of the instruction specify the operation and cache as follows.

Code[17:16] Name Cache

00 I Instruction

01 D Data

1x - Reserved

Code[20:18] Code[17:16] Name Operation

000 00/01 Index Invalidate Clears the Valid bit in all tags for the index specified by the

physical address, irrespective of a cache hit or a cache miss.

This operation is valid only when the cache is marked

"disabled" in the ICE or DCE bit of the Config register.

001 00/01 Index LRU Bit

Clear

Clears the LRU bit in all tags for the index specified by the

physical address.

010 00/01 Index Lock Bit

Clear

Clears the Lock bit in all tags for the index specified by the

physical address.

100 00/01 Hit Invalidate In the case of a cache hit, clears the Valid bit of only the

matching tag for the index.

20 19 18

Sub-Opcode

17 16

Operation Cache

32-Bit ISA Details

A-38

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-39

CFCz rt, rd
Move Control From Coprocessor z

Operation

rt ⇐ coprocessor control register rd of coprocessor unit z

Instruction Encoding

31 26 25 21 20 16 15 11 10 0

COPz

0100zz(*)

CF

00010
rt rd

0

000 0000 0000

6 5 5 5 11

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 28 27 26 25 21 0

CFC1 0100 01 00010

CFC2 0100 10 00010

CFC3 0100 11 00010

Opcode Coprocessor

Sub-Opcode

Coprocessor

Unit Number

Description

The contents of coprocessor control register rd of coprocessor unit z is loaded into general-purpose

register rt.

This instruction is not valid for CP0.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-40

COPz cofun
Coprocessor z Operation

Operation

Coprocessor operation (z, cofun)

Instruction Encoding

31 26 25 24 0

COPz

0100zz(*)

CO

1
cofun

6 1 25

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 28 27 26 25 0

COP1 0100 00 1

COP2 0100 01 1

COP3 0100 10 1

COP4 0100 11 1

Opcode Coprocessor Operation Sub-Opcode

Coprocessor

Unit Number

Description

A coprocessor operation specified by cofun is performed on coprocessor unit z.

The operation may specify or reference internal coprocessor registers and may change the state of

the coprocessor condition signal (CPCOND), but does not alter the internal state of the processor or

the cache/memory system.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-41

CTCz rt, rd
Move Control To Coprocessor z

Operation

Coprocessor control register rd of coprocessor unit z ⇐ rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 0

COPz

0100zz(*)

CT

00110
rt rd

0

000 0000 0000

6 5 5 5 11

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 28 27 26 25 21 0

CFC1 0100 01 00110

CFC2 0100 10 00110

CFC3 0100 11 00110

Opcode Coprocessor

Sub-Opcode

Coprocessor

Unit Number

Description

The contents of general-purpose register rt is loaded into coprocessor control register rd of

coprocessor unit z.

This instruction is not valid for CP0.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-42

DERET
Debug Exception Return

Operation

pc ⇐ DEPC

Instruction Encoding

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Description

The DERET instruction is used to return control from a debug exception handler to a user program.

This is accomplished by loading the contents of the DEPC register into the program counter (PC).

See Section 9.3.6, Returning from Debug Exceptions, for details.

Like branch instructions, the DERET instruction has a branch delay slot and is executed with a

delay of one instruction (i.e., two instruction cycles).

The DERET instruction restores the ISA mode bit (bit 0) of the PC from bit 0 of the DEPC register,

bringing the processor into the ISA mode that had been in effect before the Debug exception was

taken.

The NOP instruction must be inserted in the delay slot following the DERET instruction. Also, the

DERET instruction may not be in a jump or branch delay slot.

The operation of the DERET instruction is undefined if the processor is not in a debug mode (i.e., if

the DM bit in the Debug register is cleared).

Typically, the DEPC register automatically captures the address of the exception-causing instruction

on a Debug exception. If you want to use the MTC0 instruction to load the DEPC register with a

return address, the debug exception handler must execute at least two instructions before issuing the

DERET instruction. It is strictly prohibited to execute a DERET instruction immediately after the

MTC0 instruction that writes to the Debug register. Otherwise, the contents of the Debug register

would become undefined. Additionally, it is strictly prohibited to execute a DERET instruction

immediately after the MFC0 instruction that reads from the Debug register. Otherwise, the contents

of the Debug register would become undefined.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-43

DIV rs, rt
Divide

Operation

LO ⇐ rs ÷ rt;

HI ⇐ rs MOD rt

Instruction Encoding

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010

6 5 5 10 6

Description

The contents of general-purpose register rs is divided by the contents of general-purpose register rt.

Both operands are treated as signed integers. The quotient is placed into register LO and the

remainder is placed into register HI. The DIV instruction never causes integer overflow exceptions.

The result of the DIV instruction is undefined if the divisor is zero. Typically, it is necessary to

check for a zero divisor and an overflow condition after a DIV instruction.

Any divide instruction is transferred to the dedicated divide unit as remaining instructions continue

through the pipeline. The divide unit keeps running even when cache misses, delay cycles and

exceptions occur.

If the DIV instruction is followed by an MFHI, MFLO, MADD or MADDU instruction before the

quotient and the remainder are available, the pipeline stalls until they do become available (see

Section 5.4, Divide Instructions).

Exceptions

None

32-Bit ISA Details

A-44

DIVU rs, rt
Divide Unsigned

Operation

LO ⇐ rs ÷ rt;

HI ⇐ rs MOD rt

Instruction Encoding

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Description

The contents of general-purpose register rs is divided by the contents of general-purpose register rt.

The quotient is placed into register LO and the remainder is placed into register HI. The DIVU

instruction never causes integer overflow exceptions. The only difference between the DIV

instruction and this instruction is that this instruction treats both operands as unsigned integers.

Exceptions

None

32-Bit ISA Details

A-45

J target
Jump

Operation

pc ⇐ pc[31:28] || target || 00

Instruction Encoding

31 26 25 0

J

000010
target

6 26

Description

The program unconditionally jumps to the target address with a delay of one instruction (i.e., two

instruction cycles). The target address is computed relative to the address of the instruction in the

jump delay slot (PC+4). The 26-bit target is shifted left by two bits and combined with the four

most-significant bits of PC+4 to form the target address.

With the J instruction, the address of the target must be within a 2
28

-byte segment. To jump to an

arbitrary 32-bit address, load the desired address into a register and use the JR instruction (see

Section 3.4.6, Jumping to 32-Bit Addresses).

Exceptions

None

Example

J SJUMP

Assume that this jump instruction resides at address 0x2000 and that label SJUMP points to

absolute address 0x2_4000. Then the assembler/linker turns this label into target operand 0x1_2000

(see the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes

effect after the instruction in the jump delay slot is executed.

32-Bit ISA Details

A-46

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

J SJUMP

+

0x2004

0x2000

0x2_4000

Jump Delay Slot

Jump Destination

0x0 (Four MSBs of the Delay Slot Address)

32-Bit ISA Details

A-47

JAL target
Jump And Link

Operation

r31 ⇐ pc + 8; pc ⇐ pc[31:28] || target || 00

Instruction Encoding

31 26 25 0

JAL

000011
target

6 26

Description

The program unconditionally jumps to the target address with a delay of one instruction (i.e., two

instruction cycles). The target address is computed relative to the address of the instruction in the

jump delay slot (PC+4). The 26-bit target is shifted left by two bits and combined with the four

most-significant bits of PC+4 to form the target address. The JAL instruction never toggles the ISA

mode bit of the program counter (PC).

The address of the instruction after the jump delay slot is saved in the link register, r31 (ra). The

least-significant bit of r31 stores the ISA mode bit that was in effect before the jump.

With the JAL instruction, the address of the target must be within a 2
28

-byte segment. To jump to an

arbitrary 32-bit address, load the desired address into a register and use the JALR instruction (see

Section 3.4.6, Jumping to 32-Bit Addresses).

Exceptions

None

Example

JAL PSUB

Assume that this jump instruction resides at address 0x2000 and that label PSUB points to absolute

address 0x2_4000. Then the assembler/linker turns this label into target operand 0x1_2000 (see the

figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes

effect after the instruction in the jump delay slot is executed. The address of the instruction after the

jump delay slot is saved in the link register, r31.

32-Bit ISA Details

A-48

0

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JAL PSAB

+

0x2004

0x2000

0x2_4000

Jump Delay Slot

Jump Destination

0x2008

0x0 (Four MSBs of the Delay Slot Address)

32-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 100r31

0
32-Bit ISA Mode

32-Bit ISA Details

A-49

JALR (rd,) rs
Jump And Link Register

Operation

rd or r31 ⇐ pc + 8; pc ⇐ rs

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd

0

00000

JALR

001001

6 5 5 5 5 6

Description

The program unconditionally jumps to the address contained in general-purpose register rs, with the

least-significant bit cleared, with a delay of one instruction (i.e., two instruction cycles). The least-

significant bit of rs is interpreted as the ISA mode specifier. The address of the instruction after the

jump delay slot is saved in general-purpose register rd. If rd is omitted, the default is r31 (ra).

Register rd may not be the same one as register rs because such an instruction is not restartable,

with the contents of rs altered by the return address. An exception or interrupt could prevent the

completion of a legal instruction in the jump delay slot. If that happens, after the exception handler

routine has been executed, processing must restart with the jump instruction.

In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping

to a 32-bit routine, the two low-order bits of the target register (rs) must be zero. If these low-order

bits are not zero, an Address Error exception will occur when the processor fetches the instruction at

the jump destination.

Exceptions

None

Example

Assume that register r2 contains 0x0012_3457 and that the following jump instruction resides at

address 0x0000_2000. Then, executing the instruction:

JALR r2

transfers program control to address 0x0012_3456, with the least-significant bit of 0x0012_3457

cleared. The jump takes effect after the instruction in the jump delay slot is executed. Since register

r2 has the least-significant bit set to 1, the ISA mode bit toggles to 1 after the jump, bringing the

processor into 16-bit ISA mode. The return address, 0x0000_2008, is saved in the link register, r31,

together with the ISA mode bit.

32-Bit ISA Details

A-50

0

JALR r2

0x2004

0x2000

0x12_3456

Jump Delay Slot

Jump Destination

0x2008

32-Bit ISA Mode

16-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 100r31

0
32-Bit ISA Mode

32-Bit ISA Details

A-51

JALX target
Jump And Link eXchange

Operation

r31 ⇐ pc + 8; pc[31:1] ⇐ pc[31:28] || target || 00; pc[0] ⇐ NOT pc[0]

Instruction Encoding

31 26 25 0

JALX

011101
target

6 26

Description

The program unconditionally jumps to the target address with a delay of one instruction (i.e., two

instruction cycles). The target address is computed relative to the address of the instruction in the

jump delay slot (PC+4). The 26-bit target is shifted left by two bits and combined with the four

most-significant bits of PC+4 to form the target address. The JALX instruction unconditionally

toggles the ISA mode bit of the program counter (PC).

The address of the instruction after the jump delay slot is saved in the link register, r31 (ra). The

least-significant bit of r31 stores the ISA mode bit that was in effect before the jump.

Exceptions

None

Example

JALX PSUB

Assume that this jump instruction resides at address 0x0000_2000 and that label PSUB points to

absolute address 0x2_4000. Then, the assembler/linker turns this label into target operand 0x1_2000

(see the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes

effect after the instruction in the jump delay slot is executed. The ISA mode bit unconditionally

toggles, bringing the processor into 16-bit ISA mode. The return address, 0x0000_2008, is saved in

the link register, r31, together with the ISA mode bit.

32-Bit ISA Details

A-52

0

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JALX PSUB

+

0x2004

0x2000

0x2_4000

Jump Delay Slot

Jump Destination

0x2008

0x0 (Four MSBs of the Delay Slot Address)

32-Bit ISA Mode

16-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 100r31

0
32-Bit ISA Mode

32-Bit ISA Details

A-53

JR rs
Jump Register

Operation

pc ⇐ rs

Instruction Code

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

JR

001000

6 5 15 6

Description

The program unconditionally jumps to the address contained in general-purpose register rs, with the

least-significant bit cleared, with a delay of one instruction (i.e., two instruction cycles). The least-

significant bit of rs is interpreted as the ISA mode specifier.

In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping

to a 32-bit routine, the two low-order bits of the target register (rs) must be zero. If these low-order

bits are not zero, an Address Error exception will occur when the processor fetches the instruction at

the jump destination.

Exceptions

None

Example

In the following example, the JALR instruction in a 16-bit routine transfers control to a 32-bit

routine. At the end of the 32-bit routine, the JR instruction restores the return address into the

program counter (PC) from the link register, r31 (ra). Since the JALR instruction saves the ISA

mode specifier in the least-significant bit of ra, executing the JR instruction at the end of the 32-bit

routine restores it into the PC, causing the processor to revert to 16-bit ISA mode.

32-Bit ISA Details

A-54

1

JALR ra, r2

0x2004

0x2000

0x12_3458

Jump Delay Slot

Return Point

Jump Destination

0x2008

16-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 100ra

1
16-Bit ISA Mode

JR ra

Jump to a 32-bit

routine through the

JALR instruction

Return to the 16-bit

routine through the

JR instruction

32-Bit ISA Details

A-55

LB rt, offset (base)
Load Byte

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LB

100000
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The byte in memory addressed by EA is sign-extended and

loaded into general-purpose register rt.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory location at address 0x404

contains 0xF2. Then, executing the instruction:

LB r9,4(r8)

loads register r9 with 0xFFFF_FFF2.

Load (Sign-Extend)

r8 0x0000_0400

Memory

11110010

0x400

0x401

0x402

0x403

0x404

+4

Byte

1 Byte

Sign-Extended

Memory

CPU

Register
r9 0xFFFF_FFF2

32-Bit ISA Details

A-56

LBU rt, offset (base)
Load Byte Unsigned

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The byte in memory addressed by EA is zero-extended and

loaded into general-purpose register rt.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory location at address 0x404

contains 0xF2. Then, executing the instruction:

LBU r9,4(r8)

loads register r9 with 0x0000_00F2.

Load (Zero-Extend)

r8 0x0000_0400

Memory

11110010

0x400

0x401

0x402

0x403

0x404

+4

Byte

1 Byte

Zero-Extended

Memory

CPU

Register
r9 0x0000_00F2

32-Bit ISA Details

A-57

LH rt, offset (base)
Load Halfword

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The halfword in memory addressed by EA is sign-extended

and loaded into general-purpose register rt.

If the least-significant bit of the effective address is not zero (i.e., the effective address is not on a

halfword boundary), an Address Error exception occurs.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x404

and 0x405 contain 0xFF and 0x02 respectively. Then, executing the instruction:

LH r9,4(r8)

loads register r9 with 0xFFFF_FF02 in big-endian mode and with 0x0000_02FF in little-endian

mode.

Executing the instruction:

LH r9,3(r8)

causes an Address Error exception since 0x403 is not on a halfword boundary.

32-Bit ISA Details

A-58

Load (Sign-Extend)

r8 0x0000_0400

Memory

11111111

0x400

0x401

0x402

0x403

0x404

+4

Byte

Halfword

Sign-Extended

Memory

CPU

Register

r9 0xFFFF_FF02

r9 0x0000_02FF

Big-endian

Little-endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

000000100x405

32-Bit ISA Details

A-59

LHU rt, offset (base)
Load Halfword Unsigned

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The halfword in memory addressed by EA is zero-extended

and loaded into general-purpose register rt.

If the least-significant bit of the effective address is not zero (i.e., the effective address is not on a

halfword boundary), an Address Error exception occurs.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x404

and 0x405 contain 0xFF and 0x02 respectively. Then, executing the instruction:

LHU r9,4(r8)

loads register r9 with 0x0000_FF02 in big-endian mode and with 0x0000_02FF in little-endian

mode.

Executing the instruction:

LH r9,3(r8)

causes an Address Error exception since 0x403 is not on a halfword boundary.

32-Bit ISA Details

A-60

Load (Zero-Extend)

r8 0x0000_0400

Memory

11111111

0x400

0x401

0x402

0x403

0x404

+4

Byte

Halfword

Zero-Extended

Memory

CPU

Register

r9 0x0000_FF02

r9 0x0000_02FF

Big-endian

Little-endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

00000010
0x405

32-Bit ISA Details

A-61

LUI rt, immediate
Load Upper Immediate

Operation

rt ⇐ immediate || 0x0000

Instruction Encoding

31 26 25 21 20 16 15 0

LUI

001111

0

00000
rt immediate

6 5 5 16

Description

The 16-bit immediate is shifted left by 16 bits and concatenated to 16 bits of zeros. The result is

placed into general-purpose register rt.

Exceptions

None

Example

The instruction:

LUI r9,0x1234

loads register r9 with 0x1234_0000.

32-Bit ISA Details

A-62

LW rt, offset (base)
Load Word

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The word in memory addressed by EA is loaded into

general-purpose register rt.

If the two low-order bits of the effective address are not zero (i.e., the effective address is not on a

word boundary), an Address Error exception occurs.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x404 to

0x407 contain 0x01, 0x23, 0x45 and 0x67 respectively. Then, executing the instruction:

LW r9,4(r8)

loads register r9 with 0x0123_4567 in big-endian mode and with 0x6745_2301 in little-endian

mode.

Executing the instruction:

LW r9,5(r8)

causes an Address Error exception since 0x405 is not on a word boundary.

32-Bit ISA Details

A-63

Load

r8 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

Byte

r9 0x0123_4567

r9 0x6745_2301

Big-endian

Little-endian

Word Boundary

Word Boundary

0x230x405

0x450x406

0x670x407

32-Bit ISA Details

A-64

LWL rt, offset (base)
Load Word Left

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The appropriate high-order part of the word in memory

addressed by EA that crosses a natural word boundary is loaded into the left portion of general-

purpose register rt.

No Address Error exception occurs due to misalignment.

An immediately preceding load instruction and the following LWL instruction can specify the same

general-purpose register as rt. The contents of general-purpose register rt is internally bypassed (or

forwarded) within the processor so that no NOP instruction is needed between the two instructions.

The LWL and LWR instructions are used in combination to load a misaligned word from memory

into a general-purpose register.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x402 to

0x405 contains 0x01, 0x23, 0x45 and 0x67 respectively.

r8 0x0000_0400

0x01

0x400

0x401

0x402

0x403

0x404

+2

Byte

Word Boundary
0x23

0x405

0x45

0x67
+5

32-Bit ISA Details

A-65

• Big-endian mode

The instruction:

LWL r9,2(r8)

starts at address 0x402 and loads that byte into the leftmost byte of register r9. Then it loads

bytes from memory to r9, going in the higher-address direction, until it reaches a word

boundary in memory. The operation of this LWL instruction is as follows.

 r9

 r9 AA

After

Before

BB CC DD

01 23 CC DD

(a) Big-endian

• Little-endian mode

The instruction:

LWL r9,5(r8)

starts at address 0x405 and loads that byte into the leftmost byte of register r9. Then it loads

bytes from memory to r9, going in the lower-address direction, until it reaches a word

boundary in memory. The operation of this LWL instruction is as follows.

 r9

 r9 AA

After

Before

BB CC DD

67 45 CC DD

(b) Little-endian

32-Bit ISA Details

A-66

LWR rt, offset (base)
Load Word Right

Operation

rt ⇐ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The appropriate low-order part of the word in memory

addressed by EA that crosses a natural word boundary is loaded into the right portion of general-

purpose register rt.

No Address Error exception occurs due to misalignment.

An immediately preceding load instruction and the following LWR instruction can specify the same

general-purpose register as rt. The contents of general-purpose register rt is internally bypassed (or

forwarded) within the processor so that no NOP instruction is needed between the two instructions.

The LWL and LWR instructions are used in combination to load a misaligned word from memory

into a general-purpose register.

Exceptions

Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x402 to

0x405 contains 0x01, 0x23, 0x45 and 0x67 respectively.

r8 0x0000_0400

0x01

0x400

0x401

0x402

0x403

0x404

+2

Byte

Word Boundary
0x23

0x405

0x45

0x67
+5

32-Bit ISA Details

A-67

• Big-endian mode

The instruction:

LWR r9,5(r8)

starts at address 0x405 and loads that byte into the rightmost byte of register r9. Then it loads

bytes from memory to r9, going in the lower-address direction, until it reaches a word

boundary in memory. The operation of this LWR instruction is as follows.

 r9

 r9 01

After

Before

23 CC DD

01 23 45 67

(a) Big-endian

After execution of "LWL r9, 2(r8)"

• Little-endian mode

The instruction:

LWR r9,2(r8)

starts at address 0x402 and loads that byte into the rightmost byte of register r9. Then it loads

bytes from memory to r9, going in the higher-address direction, until it reaches a word

boundary in memory. The operation of this LWR instruction is as follows.

 r9

 r9 67

After

Before

45 CC DD

67 45 23 01

(b) Little-endian

After execution of "LWL r9, 5(r8)"

32-Bit ISA Details

A-68

MADD (rd,) rs, rt
Multiply and Add

Operation

HI ⇐ high-order word of {(HI || LO) + (rs × rt)};

LO ⇐ low-order word of {(HI || LO) + (rs × rt)};

rd ⇐ low-order word of {(HI || LO) + (rs × rt)}

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

MADD/

MADDU/

011100

rs rt rd
0

00000

MADD

000000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register

rt, and then the product is added to the 64-bit, doubleword contents of the HI and LO registers. Both

rs and rt are treated as signed integers. The high-order word of the result is placed into the HI

register, and the low-order word of the result is placed into the LO register. If destination register rd

is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0, causing the copy of the low-order word into a general-purpose

register to be discarded.

No integer overflow exception occurs under any circumstances.

Exceptions

None

32-Bit ISA Details

A-69

Example

Assume that the HI and LO registers contain 0x0000_0000 and 0xFFFF_FFFF respectively and that

general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF respectively. Then,

the instruction:

MADD r4,r2,r3

evaluates:

0x0000_0000_FFFF_FFFF + (0x0123_4567 × 0x89AB_CDEF)

= 0x0000_0000_FFFF_FFFF + 0xFF79_5E36_C94E_4629

= 0xFF79_5E37_C94E_4628

Hence, the high-order word of the result, 0xFF79_5E37, is placed into the HI register, and the low-

order word of the result, 0xC94E_4628, is placed into the LO and r4 registers.

32-Bit ISA Details

A-70

MADDU (rd,) rs, rt
Multiply and Add Unsigned

Operation

HI ⇐ high-order word of {(HI || LO) + (rs × rt)};

LO ⇐ low-order word of {(HI || LO) + (rs × rt)};

rd ⇐ low-order word of {(HI || LO) + (rs × rt)}

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

MADD/

MADDU/

011100

rs rt rd
0

00000

MADDU

000001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register

rt, and then the product is added to the 64-bit, doubleword contents of the HI and LO registers. Both

rs and rt are treated as unsigned integers. The high-order word of the result is placed into the HI

register, and the low-order word of the result is placed into the LO register. If destination register rd

is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0, causing the copy of the low-order word into a general-purpose

register to be discarded.

No integer overflow exception occurs under any circumstances.

Exceptions

None

32-Bit ISA Details

A-71

Example

Assume that the HI and LO registers contain 0x_0000_0000 and 0xFFFF_FFFF respectively and

that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF respectively.

Then, the instruction:

MADDU r4,r2,r3

evaluates:

0x0000_0000_FFFF_FFFF + (0x0123_4567 × 0x89AB_CDEF)

= 0x0000_0000_FFFF_FFFF + 0x009C_A39D_C94E_4629

= 0x009C_A39E_C94E_4628

Hence, the high-order word of the result, 0x009C_A39E, is placed into the HI register, and the low-

order word of the result, 0xC94E_4628, is placed into the LO and r4 registers.

32-Bit ISA Details

A-72

MFC0 rt, rd
Move From System Control Coprocessor (CP0)

Operation

rt ⇐ coprocessor register rd of CP0

Instruction Encoding

31 26 25 21 20 16 15 11 10 0

COP0

010000

MF

00000
rt rd

0

000 0000 0000

6 5 5 5 11

Description

The contents of CP0 register rd is loaded into general-purpose register rt.

The MFC0 instruction may not attempt to read the contents of the Status register immediately

before the RFE instruction. Otherwise, the contents of the Status register become undefined.

Likewise, the MFC0 instruction may not attempt to read the contents of the Debug register

immediately before the DERET instruction. Otherwise, the contents of the Debug register become

undefined.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-73

MFCz rt, rd
Move From Coprocessor z

Operation

rt ⇐ coprocessor register rd of coprocessor unit z

Instruction Encoding

31 26 25 21 20 16 15 11 10 0

COPz

0100zz(*)

MF

00000
rt rd

0

000 0000 0000

6 5 5 5 11

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 28 27 26 25 21 0

MFC1 0100 01 00000

MFC2 0100 10 00000

MFC3 0100 11 00000

Opcode Coprocessor

Sub-Opcode

Coprocessor

Unit Number

Description

The contents of coprocessor register rd of coprocessor unit z is loaded into general-purpose register

rt.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-74

MFHI rd
Move From HI

Operation

rd ⇐ HI

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Description

The contents of the HI register is loaded into general-purpose register rd.

Exceptions

None

32-Bit ISA Details

A-75

MFLO rd
Move From LO

Operation

rd ⇐ LO

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010

6 10 5 5 6

Description

The contents of the LO register is loaded into general-purpose register rd.

Exceptions

None

32-Bit ISA Details

A-76

MTC0 rt, rd
Move To System Control Coprocessor (CP0)

Operation

Coprocessor register rd of CP0 ⇐ rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 0

COP0

010000

MT

00100
rt rd

0

000 0000 0000

6 5 5 5 11

Description

The contents of general-purpose register rt is loaded into CP0 register rd.

The MTC0 instruction may not attempt to write to the Status register immediately before the RFE

instruction. Otherwise, the contents of the Status register become undefined.

Likewise, the MTC0 instruction may not attempt to write to the Debug register immediately before

the DERET instruction. Otherwise, the contents of the Debug register become undefined.

Because this instruction may alter the state of the virtual address translation system, the operation of

load and store instructions immediately before and after this instruction is undefined.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-77

MTCz rt, rd
Move To Coprocessor z

Operation

rt ⇐ coprocessor register rd of coprocessor unit z

Instruction Encoding

31 26 25 21 20 16 15 11 10 0

COPz

0100zz(*)

MT

00100
rt rd

0

000 0000 0000

6 5 5 5 11

The following shows the opcode bit encoding. The two low-order bits in the opcode field signify the

coprocessor unit number.

Mnemonic 31 28 27 26 25 21 0

MTC1 0100 01 00100

MTC2 0100 10 00100

MTC3 0100 11 00100

Opcode Coprocessor

Sub-Opcode

Coprocessor

Unit Number

Description

The contents of general-purpose register rt is loaded into coprocessor register rd of coprocessor unit

z.

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-78

MTHI rs
Move To HI

Operation

HI ⇐ rs

Instruction Encoding

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Description

The contents of general-purpose register rs is loaded into the HI register.

Exceptions

None

32-Bit ISA Details

A-79

MTLO rs
Move To LO

Operation

LO ⇐ rs

Instruction Encoding

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Description

The contents of general-purpose register rs is loaded into the LO register.

Exceptions

None

32-Bit ISA Details

A-80

MULT (rd,) rs, rt
Multiply

Operation

HI ⇐ high-order word of (rs × rt);

LO ⇐ low-order word of (rs × rt);

rd ⇐ low-order word of (rs × rt)

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MULT

011000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register

rt. Both rs and rt are treated as signed integers. The high-order word of the result is placed into the

HI register, and the low-order word of the result is placed into the LO register. If destination register

rd is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0, causing the copy of the low-order word into a general-purpose

register to be discarded.

No integer overflow exception occurs under any circumstances.

Exceptions

None

Example

Assume that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF

respectively. Then, the instruction:

MULT r4,r2,r3

evaluates:

(0x0123_4567 × 0x89AB_CDEF)

= 0xFF79_5E36_C94E_4629

Hence, the high-order word of the result, 0xFF79_5E36, is placed into the HI register, and the low-

order word of the result, 0xC94E_4629, is placed into the LO and r4 registers.

32-Bit ISA Details

A-81

MULTU (rd,) rs, rt
Multiply Unsigned

Operation

HI ⇐ high-order word of (rs × rt);

LO ⇐ low-order word of (rs × rt);

rd ⇐ low-order word of (rs × rt)

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MULTU

011001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register

rt. Both rs and rt are treated as unsigned integers. The high-order word of the result is placed into

the HI register, and the low-order word of the result is placed into the LO register. If destination

register rd is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0, causing the copy of the low-order word into a general-purpose

register to be discarded.

No integer overflow exception occurs under any circumstances.

Exceptions

None

Example

Assume that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF

respectively. Then, the instruction:

MULTU r4,r2,r3

evaluates:

(0x0123_4567 × 0x89AB_CDEF)

= 0x009C_A39D_C94E_4629

Hence, the high-order word of the result, 0x009C_A39D, is placed into the HI register, and the low-

order word of the result, 0xC94E_4629, is placed into the LO and r4 registers.

32-Bit ISA Details

A-82

NOR rd, rs, rt
NOR

Operation

rd ⇐ rs NOR rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Description

The contents of general-purpose register rs is NORed with the contents of general-purpose register

rt, and the result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that registers r2 and r3 contain 0x8000_7350 and 0x0000_3456 respectively. Then, the

instruction:

NOR r4,r2,r3

performs the logical NOR between r2 and r3 and puts the result (0x7FFF_88A9) in r4, as shown

below.

NOR

1000 0000 0000 0000 0111 0011 0101 0000

0111 1111 1111 1111 1000 1000 1010 1001

0000 0000 0000 0000 0011 0100 0101 0110

r1

r2

r3

32-Bit ISA Details

A-83

OR rd, rs, rt
OR

Operation

rd ⇐ rs OR rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

CR

100101

6 5 5 5 5 6

Description

The contents of general-purpose register rs is ORed with the contents of general-purpose register rt,

and the result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that registers r2 and r3 contain 0x8000_7350 and 0x0000_3456 respectively. Then, the

instruction:

OR r4,r2,r3

performs the logical OR between r2 and r3 and puts the result (0x8000_7756) in r4, as shown below.

OR

1000 0000 0000 0000 0111 0011 0101 0000

1000 0000 0000 0000 0111 0111 0101 0110

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

32-Bit ISA Details

A-84

ORI rt, rs, immediate
OR Immediate

Operation

rt ⇐ rs OR immediate

Instruction Encoding

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Description

The 16-bit immediate is zero-extended and ORed with the contents of general-purpose register rs.

The result is placed into general-purpose register rt.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it

in a general-purpose register and use the OR instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions

None

Example

Assume that register r2 contains 0x0000_7350. Then, the instruction:

ORI r3,r2,0x1234

performs the logical OR between 0x0000_7350 and 0x0000_1234 and puts the result

(0x0000_7374) in r3, as shown below.

OR

0000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0111 0011 0111 0100

0000 0000 0000 0000 0001 0010 0011 0100

r2

r3

Zero-Extended

32-Bit ISA Details

A-85

RFE
Restore From Exception

Operation

Status ⇐ Status[31:16] || Status[18:16] || Status[12:4] || Status[5:2]

Instruction Encoding

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

RFE

010000

6 1 19 6

Description

RFE is an instruction for returning from an exception. The processor context in the Status register is

restored to what it was before an exception was taken. The contents of the "old" Kernel Mode and

Interrupt Enable bits (KUo/IEo) are popped to the "previous" bits (KUp/IEp), and the "previous"

bits (KUp/IEp) are popped to the "current" bits (KUc/IEc). The "old" bits (KUo/IEo) remain

unchanged. Additionally, the contents of the Previous Interrupt Mask Level field, PMask[2:0], is

popped to the "current" field, CMask[2:0]. The PMask[2:0] field remains unchanged.

Typically, the RFE instruction is used in the jump delay slot of the JR instruction that restores the

program counter (PC); it works elsewhere, however.

It is strictly prohibited to execute the RFE instruction immediately after an MTC0 instruction that

writes to the Status register or immediately after an MFC0 instruction that reads from the Status

register. Otherwise, the contents of the Status register become undefined.

The contents of the Status register become unpredictable if an interrupt occurs during execution of

the RFE instruction. Therefore, all interrupts must be disabled prior to issuing the RFE instruction.

5 4 3 2

Status Register
Discarded

1 0

CurrentPreviousOld Kernel Mode and

Old Interrupt Enable Bits

18 16

CurrentPrevious Interrupt

Mask Level Field

15 13

Exceptions

Coprocessor Unusable exception

32-Bit ISA Details

A-86

SB rt, offset (base)
Store Byte

Operation

rt ⇒ {offset (base)}

Instruction encoding

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The least-significant byte in general-purpose register rt is

stored at the memory location addressed by EA.

The three high-order bytes in rt are simply ignored; so there is no distinction between signed and

unsigned stores.

Exceptions

Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 0x0123_4567 respectively. Then,

executing the instruction:

SB r9,4(r8)

stores 0x67 to the memory location at address 0x404.

Store

r8 0x0000_0400

Memory

0x67

0x400

0x401

0x402

0x403

0x404

+4

Byte

1 ByteMemory

CPU

Register

r9 0x0123_4567

32-Bit ISA Details

A-87

SDBBP code
Software Debug Breakpoint Exception

Operation

Software debug breakpoint exception

Instruction Encoding

31 26 25 6 5 0

SPECIAL

000000
code

SDBBP

001110

6 20 6

Description

A debug breakpoint occurs, immediately and unconditionally transferring control to the exception

handler.

The code field in the SDBBP instruction is available for use as software parameters to pass

additional information. The exception handler can retrieve it by loading the contents of the memory

word containing the instruction. See Section 9.3, Debug Exceptions, for details.

The SDBBP instruction may not be used while a Debug exception is being serviced (i.e., the DM bit

in the Debug register is set). The operation of the SDBBP instruction is undefined when DM=1.

The SDBBP instruction may not be used within the user’s program; it is intended for use by

development systems.

Exceptions

Debug Breakpoint exception

32-Bit ISA Details

A-88

SH rt, offset (base)
Store Halfword

Operation

rt ⇒ {offset (base)}

Instruction encoding

31 26 25 21 20 16 15 0

SH

101001
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The least-significant halfword in general-purpose register rt

is stored at the memory location addressed by EA.

The higher-order halfword in rt is simply ignored; so there is no distinction between signed and

unsigned stores.

If the least-significant bit of the effective address is not zero (i.e., the effective address is not on a

halfword boundary), an Address Error exception occurs.

Exceptions

Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 0x0123_4567 respectively. In big-endian

mode, executing the instruction:

SH r9,4(r8)

stores 0x45 and 0x67 to the memory locations at addresses 0x404 and 0x405 respectively. In little-

endian mode, this instruction stores 0x67 and 0x45 to the memory locations at addresses 0x404 and

0x405 respectively.

Executing the instruction:

SH r9,3(r8)

causes an Address Error exception since 0x403 is not on a halfword boundary.

32-Bit ISA Details

A-89

Store

r8 0x0000_0400

Memory

0x45

0x400

0x401

0x402

0x403

0x404

+4

Byte

HalfwordMemory

CPU

Register

r9 0x0123_4567

0x405

Big-endian

0x67

Byte

Little-endian

0x67 0x45

Halfword Boundary

Halfword Boundary

Halfword Boundary

32-Bit ISA Details

A-90

SLL rd, rt, sa
Shift Left Logical

Operation

rd ⇐ rt << sa

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

000000
rt rd sa

SLL

000000

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register rt is shifted left by sa bits. Zeros are supplied to the

vacated positions on the right. The result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that register r2 contains 0x2170_ADC5. Then, executing the instruction:

SLL r3,r2,4

places 0x170A_DC50 in register r3, as shown below.

Shifted left

by 4 bits

r2 0000

r3

Padded with zeros

00000001 0111 0000 1010 1101 1100 0101

0001 0111 0000 1010 1101 1100 0101

32-Bit ISA Details

A-91

SLLV rd, rt, rs
Shift Left Logical Variable

Operation

rd ⇐ rt << 5 LSBs of rs

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

000000

SLLV

000100

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register rt is shifted left the number of bits specified by the

five least-significant bits of general-purpose register rs. Zeros are supplied to the vacated positions

on the right. The result is placed into general-purpose register rd.

Exceptions

None

32-Bit ISA Details

A-92

SLT rd, rs, rt
Set On Less Than

Operation

if rs < rt then rd ⇐ 1; else rd ⇐ 0

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

000000

SLT

101010

6 5 5 5 5 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register

rt. Both rs and rt are treated as signed integers. If rs is less than rt, general-purpose register rd is set

to one. Otherwise, rd is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

Exceptions

None

32-Bit ISA Details

A-93

SLTI rt, rs, immediate
Set On Less Than Immediate

Operation

if rs < immediate then rt ⇐ 1; else rt ⇐ 0

Instruction Encoding

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.

The immediate and rs are compared as signed integers. If rs is less than the immediate, general-

purpose register rt is set to one. Otherwise, rt is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

The immediate field is 16 bits in length. This gives a range of -32768 to +32767. If a number is

outside this range, you need to put it in a general-purpose register and use the SLT instruction (see

Section 3.3.2, 32-Bit Constants).

Exceptions

None

32-Bit ISA Details

A-94

SLTIU rt, rs, immediate
Set On Less Than Immediate Unsigned

Operation

if rs < immediate then rt ⇐ 1; else rt ⇐ 0

Instruction Encoding

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.

The immediate and rs are compared as unsigned integers. If rs is less than the immediate, general-

purpose register rt is set to one. Otherwise, rt is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

The immediate field is 16 bits in length. If a number is outside this range, you need to put it in a

general-purpose register and use the SLTU instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions

None

32-Bit ISA Details

A-95

SLTU rd, rs, rt
Set On Less Than Unsigned

Operation

if rs < rt then rd ⇐ 1; else rd ⇐ 0

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register

rt. Both rs and rt are treated as unsigned integers. If rs is less than rt, general-purpose register rd is

set to one. Otherwise, rd is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

Exceptions

None

32-Bit ISA Details

A-96

SRA rd, rt, sa
Shift Right Arithmetic

Operand

rd ⇐ rt >> sa

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd sa

SRA

000011

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register rt is shifted right by sa bits. The sign bit is copied to

the vacated positions on the left. The result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRA r3,r2,16

places 0xFFFF_B521 into r3, as shown below.

r2

r3

Sign Bit Shifted right by 16 bits

1 011 0101 0010 0001 0100 1100 0101 1110

1011 0101 0010 00011111 1111 1111 1111

32-Bit ISA Details

A-97

SRAV rd, rt, rs
Shift Right Arithmetic Variable

Operation

rd ⇐ rt >> 5 LSBs of rs

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register rt is shifted right the number of bits specified by the

five least-significant bits of general-purpose register rs. The sign bit is copied to the vacated

positions on the left. The result is placed into general-purpose register rd.

Exceptions

None

32-Bit ISA Details

A-98

SRL rd, rt, sa
Shift Right Logical

Operation

rd ⇐ rt >> sa

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRL

000010

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register rt is shifted left by sa bits. Zeros are supplied to the

vacated positions on the left. The result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRL r3,r2,16

places 0x0000_B521 in register r3, as shown below.

r2

r3

Padded with zeros Shifted right by 16 bits

0100 1100 0101 1110

1011 0101 0010 00010000 0000 0000 0000

1011 0101 0010 0001

32-Bit ISA Details

A-99

SRLV rd, rt, rs
Shift Right Logical Variable

Operation

rd ⇐ rt >> 5 LSBs of rs

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRLV

000110

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register rt is shifted right the number of bits specified by the

five least-significant bits of general-purpose register rs. Zeros are supplied to the vacated positions

on the left. The result is placed into general-purpose register rd.

Exceptions

None

32-Bit ISA Details

A-100

SUB rd, rs, rt
Subtract

Operation

rd ⇐ rs – rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Description

The contents of general-purpose register rt is subtracted from the contents of general-purpose

register rs. Both rs and rt are treated as signed integers. The remainder is placed into general-

purpose register rd.

An Integer Overflow exception is taken on 2’s-complement overflow, which occurs if the signs of

the operands are not the same and the sign of the remainder is not the same as the sign of the

minuend (rs). The destination register (rd) is not altered when an Integer Overflow exception occurs.

Exceptions

Interger Overflow exception

Examples

1. Assume that registers r2 and r3 contain 0x7654_3210 and 0x5000_0000 respectively. Then,

executing the instruction:

SUB r4,r2,r3

places the remainder (0x2654_3210) into r4.

2. Assume that registers r2 and r3 contain 0x7FFF_FFFF and 0x8FFF_FFFF respectively. Then,

the subtraction of r3 from r2 gives the result 0xF000_0000. So, the signs of r2 and r3 are

different, and the signs of r2 and the remainder are also different. This indicates a 2’s-

complement overflow. Thus executing the instruction:

SUB r4,r2,r3

causes an Integer Overflow exception. Register r4 is not modified as a result of this instruction.

32-Bit ISA Details

A-101

SUBU rd, rs, rt
Subtract Unsigned

Operation

rd ⇐ rs – rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Description

The contents of general-purpose register rt is subtracted from the contents of general-purpose

register rs. The remainder is placed into general-purpose register rd.

The only difference between this instruction and the SUB instruction is that this instruction never

causes an Integer Overflow exception.

Exceptions

None

32-Bit ISA Details

A-102

SW rt, offset (base)
Store Word

Operation

rt ⇒ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The contents of general-purpose register rt is stored at the

memory location addressed by EA.

If the two least-significant bits of the effective address are not zero (i.e., the effective address is not

on a word boundary), an Address Error exception occurs.

Exceptions

Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 0x0123_4567 respectively. In big-endian

mode, executing the instruction:

SW r9,4(r8)

stores 0x12, 0x23, 0x45 and 0x67 to the memory locations at addresses 0x404 to 0x407 respectively.

In little-endian mode, this instruction stores 0x67, 0x45, 0x23 and 0x01 to the memory locations at

addresses 0x404 to 0x407 respectively.

Executing the instruction:

SW r9,5(r8)

causes an Address Error exception since 0x405 is not on a halfword boundary.

32-Bit ISA Details

A-103

Store

r8 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

Byte

r9 0x0123_4567

0x405

Big-endian

0x67

Byte

Little-endian

0x23 0x45

Word Boundary

Word Boundary

0x45

0x67

0x23

0x01

0x406

0x407

32-Bit ISA Details

A-104

SWL rt, offset (base)
Store Word Left

Operation

rt ⇒ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The left portion of general-purpose register rt is stored into

the appropriate high-order part of the word at the memory locations addressed by EA that cross a

natural word boundary.

No Address Error exception occurs due to misalignment.

The SWL and SWR instructions are used in combination to store a word into memory locations that

are not on a natural word boundary.

Exceptions

Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 00123_4567 respectively.

 r9 0x0123_4567

32-Bit ISA Details

A-105

• Big-endian mode

The instruction:

SWL r9,2(r8)

starts at the leftmost byte in register r9 and stores that byte at address 0x0402. Then it stores

bytes in register r9, going in the higher-address direction, until it reaches a word boundary in

memory. The operation of this SWL instruction is as follows.

0xCC

0x01

0xDD

0x23

Memory

0xAA0x402

0x403

0x404

0x405

Byte

Before

0xCC

Byte

After

Word

Boundary

0xBB

0xDD

(a) Big-endian

• Little-endian mode

The instruction:

SWL r9,5(r8)

starts at the leftmost byte in register r9 and stores that byte at address 0x0405. Then it stores

bytes in register r9, going in the lower-address direction, until it reaches a word boundary in

memory. The operation of this SWL instruction is as follows.

0x23

0x01

0xCC

0xAA

0xDD

0xBB

Memory

0xAA0x402

0x403

0x404

0x405

Byte

Before

Byte

After

Word

Boundary

0xBB

(b) Little-endian

32-Bit ISA Details

A-106

SWR rt, offset (base)
Store Word Right

Operation

rt ⇒ {offset (base)}

Instruction Encoding

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register

base to form an effective address (EA). The right-portion of general-purpose register rt is stored into

the appropriate low-order part of the word at the memory locations addressed by EA that cross a

natural word boundary.

No Address Error exception occurs due to misalignment.

The SWL and SWR instructions are used in combination to store a word into memory locations that

are not on a natural word boundary.

Exceptions

Address Error exception

Example

Assume register r9 contains 0x123_4567.

 r9 0x0123_4567

The following shows how to store the right portion of a general-purpose register after storing the left

portion as described on the previous SWL pages.

32-Bit ISA Details

A-107

• Big-endian mode

The instruction:

SWR r9,5(r8)

starts at the rightmost byte in register r9 and stores that byte at address 0x0405. Then it stores

bytes in register r9, going in the lower-address direction, until it reaches a word boundary in

memory. The operation of this SWR instruction is as follows.

After execution of "SWL r9, 2(r8)"

0x45

0x67

0x01

0x23

0xCC

0x01

0xDD

0x23

0x402

0x403

0x404

0x405

Before

Byte

After

Word

Boundary

(a) Big-endian

• Little-endian mode

The instruction:

SWR r9,2(r8)

starts at the rightmost byte in register r9 and stores that byte at address 0x0402. Then it stores

bytes in register r9, going in the higher-address direction, until it reaches a word boundary in

memory. The operation of this SWR instruction is as follows.

0x23

0x01

After execution of "SWL r9, 5(r8)"

0x23

0x01

0xAA

0xBB

0x67

0x45

0x402

0x403

0x404

0x405

Before

Byte

After

Word

Boundary

(b) Little-endian

32-Bit ISA Details

A-108

SYNC
Synchronize

Operation

Synchornize operation

Instruction Encoding

31 26 25 6 5 0

SPECIAL

000000

0

0000 0000 0000 0000

SYNC

001111

6 20 6

Description

The SYNC instruction interlocks the instruction pipeline until loads and stores performed prior to

the present instruction are completed before loads or stores before any instructions after this

instruction are allowed to start. See Section 5.2.4, SYNC Instruction (32-Bit ISA).

If there is no data dependency, the TX19 continues to execute subsequent instructions. This is called

nonblocking loads. All the other parts of the pipeline can continue to work on non-dependent

instructions.

The SYNC instruction is allowed in User mode.

Exceptions

None

32-Bit ISA Details

A-109

SYSCALL code
System Call

Operation

System call exception

Instruction Encoding

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

Description

A System Call exception occurs, immediately and unconditionally transferring control to the

exception handler.

The code field in a SYSCALL instruction is available for use as software parameters to pass

additional information. To examine these bits, load the contents of the instruction at which the EPC

register points. For details on System Call exceptions, see Section 9.1.10, System Call Exception.

Exceptions

System Call exception

32-Bit ISA Details

A-110

XOR rd, rs, rt
Exclusive OR

Operation

rd ⇐ rs XOR rt

Instruction Encoding

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Description

The contents of general-purpose register rs is exclusive-ORed with the contents of general-purpose

register rt. The result is placed into general-purpose register rd.

Exceptions

None

Example

Assume that registers r2 and r3 contain 0x1000_7350 and 0x0000_3456 respectively. Then,

executing the instruction:

XOR r4,r2,r3

places 0x1000_4706 in r4, as shown below.

XOR

0001 0000 0000 0000 0111 0011 0101 0000

0001 0000 0000 0000 0100 0111 0000 0110

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

32-Bit ISA Details

A-111

XORI rt, rs, immediate
Exclusive OR Immediate

Operation

rt ⇐ rs XOR immediate

Instruction Encoding

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Description

The 16-bit immediate is zero-extended and exclusive-ORed with the contents of general-purpose

register rs. The result is placed into general-purpose register rt.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it

in a general-purpose register and use the XOR instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions

None

Example

Assume that register r2 contains 0x0000_7350. Then, executing the instruction:

XORI r3,r2,0x1234

places 0x0000_6164 in register r3, as shown below.

XOR

0000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0110 0001 0110 0100

0000 0000 0000 0000 0001 0010 0011 0100

r2

r3

Zero-Extended

32-Bit ISA Details

A-112

16-Bit ISA Details

B-1

Appendix B 16-Bit ISA Details

This appendix presents detailed information concerning each instruction in the 16-bit ISA. Each

instruction is listed alphabetically by mnemonic. Each listing contains complete information about

assembler syntax, instruction format, operation and exceptions that may occur due to the execution

of the instruction. For the variations of instruction formats, see Section 4.1, Instruction Formats.

All the instructions in the 16-bit ISA consist of 16 bits with the exception of JAL and JALX which

are 32-bits wide. Generally, each 16-bit instruction corresponds to exactly one 32-bit instruction.

The 16-bit instructions fetched from the memory subsystem are translated to 32-bit instructions on

the fly by relatively simple translation hardware called MIPS16 decompressor. This is done serially

as a preprocessor before the standard instruction decoder. Remember that there are a few 16-bit

instructions whose functions are slightly different from the 32-bit equivalents. Each instruction page

in this appendix shows both the instruction codes before and after decompression.

To fit within the 16-bit limit, the register fields (rx, ry, rz and base) in the 16-bit instructions are

only 3 bits. Therefore, to the 16-bit instructions, only eight of the 32 general-purpose registers are

normally visible, r2 to r7, r16 and r17. These registers are encoded as follows.

Code Register Code Register

000 r16 100 r4

001 r17 101 r5

010 r2 110 r6

011 r3 111 r7

Additionally, certain instructions can use r24 (t8), r29 (sp) and r31 (ra). r24 serves as the condition

code register for handling compare results. r29 maintains the program stack pointer. r31 is the link

register to store the subroutine return address. These registers are implicitly referred to through

special function codes.

16-Bit ISA Details

B-2

ADDIU ry, rx, immediate
Add Immediate Unsigned

Operation

ry ⇐ rx + immediate

Instruction Encoding

15 11 10 8 7 5 4 3 0

PRI-A

01000
rx ry

A
D

D
IU

0

immediate

5 3 3 1 4

31 26 25 21 20 16 15 4 3 0

ADDIU

001001
trx try sign immediate

6 5 5 12 4

Description

Although the opcode stands for "Add Immediate Unsigned," the 4-bit immediate is sign-extended

and added to the contents of general-purpose register rx. The result is placed into general-purpose

register ry.

No Integer Overflow exception occurs under any circumstances.

The immediate field is 4 bits in length. This gives a range of -8 to +7. If the immediate is outside

this range, the instruction is EXTENDed. EXTEND extends the immediate field in the ALU

immediate instructions to 16 bits, with the exception of this instruction. ADDIU has a 4-bit

immediate field, but since EXTEND can only supply 11 more bits, the wider immediate is limited to

15 bits. Thus, the EXTENDEed immediate field allows a 15-bit signed immediate in the range of

-16384 to +16833. The EXTENDed instruction code is given below.

31 26 25 20 19 16 15 11 10 8 7 5 4 3 0

EXTEND

11110

imm[10:4] imm[14:11] PRI-A

01000

rx ry

A
D

D
IU

0

imm[3:0]

5 7 4 5 3 3 1 4

16-Bit ISA Details

B-3

Exceptions

None

Example

Assume that register r2 contains 0x0000_1234. Then, executing the instruction:

ADDIU r3,r2,-6

places the sum 0x0000_122E into r3.

+

0 0 0 0 1 2 3 4

0 0 0 0 1 2 2 E

F F F F F F F A

r2

r3

Sign-Extended

16-Bit ISA Details

B-4

ADDIU rx, immediate
Add Immediate Unsigned

Operation

rx ⇐ rx + immediate

Instruction Encoding

15 11 10 8 7 0

ADDIU8

01001
rx immediate

5 3 8

31 26 25 21 20 16 15 8 7 0

ADDIU

001001
trx trx sign immediate

6 5 5 8 8

Description

Although the opcode stands for "Add Immediate Unsigned," the 8-bit immediate is sign-extended

and added to the contents of general-purpose register rx. The result is placed back into general-

purpose register rx.

No Integer Overflow exception occurs under any circumstances.

The immediate field is 8 bits in length. This gives a range of -128 to +127. If the immediate is

outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate in the range

of -32768 to +32767.

Exceptions

None

16-Bit ISA Details

B-5

ADDIU sp, immediate
Add Immediate Unsigned

Operation

sp ⇐ sp + immediate

Instruction Encoding

15 11 10 8 7 0

I8

01100

ADJSP

011
immediate

5 3 8

31 26 25 21 20 16 15 11 10 3 2 0

ADDIU

001001

sp

11101

sp

11101
sign immediate

0

000

6 5 5 5 8 3

Description

Although the opcode stands for "Add Immediate Unsigned," the 8-bit immediate is shifted left by

three bits and sign-extended. The resultant value is added to the contents of stack pointer register sp

(r29).

No Integer Overflow exception occurs under any circumstances.

The immediate field is 8 bits in length. Shifted three bits, this gives a range of -1024 to +1016, in

increments of eight. If the immediate is outside this range, the instruction is EXTENDed to provide

a 16-bit signed immediate in the range of -32768 to +32767. When EXTENDed, the immediate

operand is not shifted at all.

Exceptions

None

Example

Assume stack pointer register sp contains 0x0000_2000. Then, the instruction:

ADDIU sp,8

places the result 0x0000_2008 in sp, as shown below.

16-Bit ISA Details

B-6

+

0 0 0 0 2

0 0 0

0 0 0 0 2

0 0 8

0 0 0 0 0

0 0 8

sp

sp

Sign-Extended

16-Bit ISA Details

B-7

ADDIU rx, pc, immediate
Add Immediate Unsigned

Operation

rx ⇐ Masked base PC + immediate

Instruction Encoding

15 11 10 8 7 0

ADDIUPC

00001
rx immediate

5 3 8

31 26 25 21 20 16 15 10 9 2 1 0

ADDIU

001001

0

00000
trx

0

000000
immediate

0

00

6 5 5 6 8 2

Description

The PC value used as the base for address calculation is called base PC value. The two low-order

bits of the base PC value are cleared to form a "masked base PC value." The 8-bit immediate is

shifted left by two bits, zero-extended and then added to the masked base PC value to form a virtual

address. This address is placed into general-purpose register rx. This instruction is used to calculate

the PC-relative address of an instruction or data in its proximity and place it in a register.

No Integer Overflow exception occurs under any circumstances.

Zeros fill in bits 25 to 21 as placeholders. The 32-bit PC-relative instruction is not a valid 32-bit

ISA instruction; thus the operation of this instruction differs from that of the ADDIU instruction in

the 32-bit ISA.

The immediate field is 8 bits in length. Shifted two bits, this gives a range of 0 to 1020, in

increments of four. If the immediate is outside this range, the instruction is EXTENDed to provide a

16-bit signed immediate in the range of -32768 to +32767. When EXTENDed, the immediate

operand is not shifted at all.

The base PC value differs as follows, depending on whether this instruction is in a delay slot or

prepended with an EXTEND prefix.

16-Bit ISA Details

B-8

ADDIUPC Base PC Value

Delay slot of a JR or JALR instruction Address of the JR or JALR instruction

Delay slot of a JAL or JALX instruction Address of the upper halfword of the JAL or JALX instruction

EXTENDed Address of the EXTEND instruction code

Not EXTENDed Address of the ADDIUPC instruction

Exceptions

None

Example

ADDIU r3,pc,16

Assume that this instruction is at address 0x0123_456A which is not a delay slot. Then, the masked

PC value of 0x0123_4568 is obtained by clearing its two low-order bits. Since the immediate value

is shifted left by two bits by the MIPS16 decompressor, the assembler turns the specified operand

(16) into a code of 4. Thus the instruction code for this ADDIU instruction becomes 0x0B04. The

offset is added to the masked PC value as shown below, and the result is placed in register r3.

Masked Base PC 0x0123_4568

Memory

The immediate value, 4, is

shifted left by two bits.

Word

r3 0x0123_4578

ADDIU r3, pc, 160x123_4568

0x123_456C

0x123_457C

0x123_4574

0x123_4578

0x123_457C

+16

16-Bit ISA Details

B-9

ADDIU rx, sp, immediate
Add Immediate Unsigned

Operation

rx ⇐ sp + immediate

Instruction Encoding

15 11 10 8 7 0

ADDIUSP

00000
rx immediate

5 3 8

31 26 25 21 20 16 15 10 9 2 1 0

ADDIU

001001

sp

11101
trx

0

000000
immediate

0

00

6 5 5 6 8 2

Description

In this instruction format, the 8-bit immediate is shifted left by two bits and zero-extended. The

resultant value is added to the contents of stack pointer register sp (r29), and the result is placed into

general-purpose register rx.

No Integer Overflow exception occurs under any circumstances.

The immediate field is 8 bits in length. Shifted two bits, this gives a range of 0 to 1020, in

increments of four. If the immediate is outside this range, the instruction is EXTENDed to provide a

16-bit signed immediate in the range of -32768 to +32767. When EXTENDed, the immediate

operand is not shifted at all.

Exceptions

None

16-Bit ISA Details

B-10

ADDU rz, rx, ry
Add Unsigned

Operation

rz ⇐ rx + ry

Instruction Encoding

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

ADDU

01

5 3 3 3 2

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try trz

0

00000

ADDU

100001

6 5 5 5 5 6

Description

The contents of general-purpose register rx is added to the contents of general-purpose register ry,

and the result is placed into general-purpose register rz. No Integer Overflow exception occurs

under any circumstances.

Exceptions

None

Example

Assume that registers r2 and r3 contain 0x0200_0000 and 0x0123_4567 respectively. Then,

executing the instruction:

ADD r4,r2,r3

places the sum (0x0323_4567) into r4.

16-Bit ISA Details

B-11

AND rx, ry
AND

Operation

rx ⇐ rx AND ry

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

AND

01100

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try trx

0

00000

AND

100100

6 5 5 5 5 6

Description

The contents of general-purpose register rx is ANDed with the contents of general-purpose register

ry, and the result is placed back into general-purpose register rx.

Exceptions

None

16-Bit ISA Details

B-12

B offset
Branch Unconditional

Operation

pc ⇐ pc + offset

Instruction Encoding

15 11 10 0

B

00010
offset

5 11

31 26 25 21 20 16 15 11 10 0

BEQ

000100

r0

00000

r0

00000
sign offset

6 5 5 5 11

Description

The program unconditionally branches to the target address with a delay of one instruction (i.e., two

instruction cycles). See Section 5.3.4, Branch Instructions (16-Bit ISA), for pipeline delays. The

target address is computed relative to the address of the immediately following instruction (PC+2);

the 11-bit immediate offset is shifted left by one bit, sign-extended and added to PC+2 to form the

target address.

This instruction is implemented as a 32-bit BEQ instruction that compares r0 and r0, causing an

unconditional branch. However, the operation of this instruction differs from that of the 32-bit BEQ

instruction in that the B instruction does not have a delay slot; i.e., the branch always takes effect

before the next instruction.

The offset field is 11 bits in length. This gives a range of -2048 to +2046. If the offset is outside this

range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range of -65536 to

+65534. Whether EXTENDed or not, the target adress is computed in the same manner.

Exceptions

None

Example

B SBRANCH

Assume that this branch instruction resides at address 0x2000 and that label SBRANCH points to

absolute address 0x1FFA. Then the assembler/linker turns this label into offset operand 0x7FC (see

the figure below). Thus the instruction code for this branch instruction becomes 0x17FC.

16-Bit ISA Details

B-13

The processor unconditionally transfers program control to address 0x1FFA. The instruction

following the B instruction is never executed.

0xFFFF_FFF8

The offset, 0x7FC, is shifted left

by one bit and sign-extended.

B SBRANCH

+

0x2002

0x2000

0x1FFA

Next Instruction

Branch Destination

16-Bit ISA Details

B-14

BEQZ rx, offset
Branch On Equal To Zero

Operation

if rx = 0 then pc ⇐ pc + offset

Instruction Encoding

15 11 10 8 7 0

BEQZ

00100
rx offset

5 3 8

31 26 25 21 20 16 15 8 7 0

BEQ

000100
trx

r0

00000
sign offset

6 5 5 8 8

Description

If the contents of general-purpose register rx is equal to zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). See Section 5.3.4, Branch

Instructions (16-Bit ISA), for pipeline delays. The target address is computed relative to the address

of the immediately following instruction (PC+2); the 8-bit immediate offset is shifted left by one bit,

sign-extended and added to PC+2 to form the target address.

The operation of this instruction differs from that of the corresponding 32-bit BEQ instruction in

that the 16-bit BEQZ instruction does not have a delay slot.

The offset field is 8 bits in length. This gives a range of -256 to +254. If the offset is outside this

range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range of -65536 to

+65534. Whether EXTENDed or not, the target address is computed in the same manner.

Exceptions

None

Example

BEQZ r2,SZERO

Assume that this branch instruction resides at address 0x2000 and that label SZERO points to

absolute address 0x1FFC. Then the assembler/linker turns this label into offset operand 0xFD (see

the figure below). Thus the instruction code for this branch instruction becomes 0x22FD.

If the contents of r2 is equal to zero, the processor transfers program control to address 0x1FFC.

16-Bit ISA Details

B-15

Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BEQZ r2, SZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

16-Bit ISA Details

B-16

BNEZ rx, offset
Branch On Not Equal To Zero

Operation

if rx ≠ 0 then pc ⇐ pc + offset

Instruction Encoding

15 11 10 8 7 0

BNEZ

00101
rx offset

5 3 8

31 26 25 21 20 16 15 8 7 0

BNE

000101
trx

r0

00000
sign offset

6 5 5 8 8

Description

If the contents of general-purpose register rx is not equal to zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). See Section 5.3.4, Branch

Instructions (16-Bit ISA), for pipeline delays. The target address is computed relative to the address

of the immediately following instruction (PC+2); the 8-bit immediate offset is shifted left by one bit,

sign-extended and added to PC+2 to form the target address.

The operation of this instruction differs from that of the corresponding 32-bit BNE instruction in

that the 16-bit BNEZ instruction does not have a delay slot.

The offset field is 8 bits in length. This gives a range of -256 to +254. If the offset is outside this

range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range of -65536 to

+65534. Whether EXTENDed or not, the target address is computed in the same manner.

Exceptions

None

Example

BNEZ r2,SNOTZERO

Assume that this branch instruction resides at address 0x2000 and that label SNOTZERO points to

absolute address 0x1FFC. Then the assembler/linker turns this label into offset operand 0xFD (see

the figure below). Thus the instruction code for this branch instruction becomes 0x2AFD.

If the contents of r2 is not equal to zero, the processor transfers program control to address 0x1FFC.

16-Bit ISA Details

B-17

Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BNEZ r2, SNOTZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

16-Bit ISA Details

B-18

BREAK code
Breakpoint Exception

Operation

Breakpoint exception

Instruction Encoding

15 11 10 5 4 0

RR

11101
code

BREAK

00101

5 6 5

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Description

When this instruction is executed, a breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler.

The code field in the BREAK instruction is available for use as software parameters to pass

additional information. The exception handler can retrieve it by loading the contents of the memory

halfword containing the instruction. For more on this, see Section 9.1.11, Breakpoint Exception.

Exceptions

None

16-Bit ISA Details

B-19

BTEQZ offset
Branch On T8 Equal To Zero

Operation

if t8 = 0 then pc ⇐ pc + offset

Instruction Encoding

15 11 10 8 7 0

I8

01100

BTEQZ

000
offset

5 3 8

31 26 25 21 20 16 15 8 7 0

BEQ

000100

r24

11000

r0

00000
sign offset

6 5 5 8 8

Description

If the contents of condition code register t8 (r24) is equal to zero, then the program branches to the

target address with a delay of one instruction (i.e., two instruction cycles). See Section 5.3.4, Branch

Instructions (16-Bit ISA), for pipeline delays. The target address is computed relative to the address

of the immediately following instruction (PC+2); the 8-bit immediate offset is shifted left by one bit,

sign-extended and added to PC+2 to form the target address.

The operation of this instruction differs from that of the corresponding 32-bit BEQ instruction in

that the 16-bit BTEQZ instruction does not have a delay slot.

The immediate field is 8 bits in length. This gives a range of -256 to +254. If the immediate is

outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range

of -65536 to +65534. Whether EXTENDed or not, the target address is computed in the same

manner.

Exceptions

None

Example

BTEQZ SZERO

Assume that this branch instruction resides at address 0x2000 and that label SZERO points to

absolute address 0x1FFC. Then the assembler/linker turns this label into offset operand 0xFD (see

the figure below). Thus the instruction code for this branch instruction becomes 0x60FD.

16-Bit ISA Details

B-20

If the contents of t8 is equal to zero, the processor transfers program control to address 0x1FFC.

Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BTEQZ SZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

16-Bit ISA Details

B-21

BTNEZ offset
Branch On T8 Not Equal To Zero

Operation

if t8 ≠ 0 then pc ⇐ pc + offset

Instruction Encoding

15 11 10 8 7 0

I8

01100

BTNEZ

001
offset

5 3 8

31 26 25 21 20 16 15 8 7 0

BNE

000101

r24

11000

r0

00000
sign offset

6 5 5 8 8

Description

If the contents of condition code register t8 (r24) is not equal to zero, then the program branches to

the target address with a delay of one instruction (i.e., two instruction cycles). See Section 5.3.4,

Branch Instructions (16-Bit ISA), for pipeline delays. The target address is computed relative to the

address of the immediately following instruction (PC+2); the 8-bit immediate offset is shifted left by

one bit, sign-extended and added to PC+2 to form the target address.

The operation of this instruction differs from that of the corresponding 32-bit BNE instruction in

that the 16-bit BTNEZ instruction does not have a delay slot.

The immediate field is 8 bits in length. This gives a range of -256 to +254. If the immediate is

outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range

of -65536 to +65534. Whether EXTENDed or not, the target adess is computed in the same manner.

Exceptions

None

Example

BTNEZ SNOTZERO

Assume that this branch instruction resides at address 0x2000 and that label SNOTZERO points to

absolute address 0x1FFC. Then the assembler/linker turns this label into offset operand 0xFD (see

the figure below). Thus the instruction code for this branch instruction becomes 0x61FD.

If the contents of t8 is equal to zero, the processor transfer program control to address 0x1FFC.

16-Bit ISA Details

B-22

Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BTNEZ SNOTZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

16-Bit ISA Details

B-23

CMP rx, ry
Compare

Operation

if rx = ry then t8 ⇐ 0; else t8 ⇐ non-zero value

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

CMP

01010

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try

r24

11000

0

00000

XOR

100110

6 5 5 5 5 6

Description

The contents of general-purpose register rx is exclusive-ORed with the contents of general-purpose

register ry. The result is placed into condition code register t8 (r24). In other words, if rx and ry are

equal, t8 is loaded with a value of zero.

Exceptions

None

16-Bit ISA Details

B-24

CMPI rx, immediate
Compare Immediate

Operation

if rx = immediate then t8 ⇐ 0; else t8 ⇐ non-zero value

Instruction Encoding

15 11 10 8 7 0

CMPI

01110
rx immediate

5 3 8

31 26 25 21 20 16 15 8 7 0

XORI

001110
trx

r24

11000

0

0000 0000
immediate

6 5 5 8 8

Description

The 8-bit immediate is zero-extended and exclusive-ORed with the contents of general-purpose

register rx. The result is placed into condition code register t8 (r24). In other words, if rx and

immediate are equal, t8 is loaded with a value of zero.

The immediate field is 8 bits in length. This gives a range of 0 to 255. If the immediate is larger than

255, the instruction is EXTENDed to provide a 16-bit unsigned immediate in the range of 0 to

65535.

Exceptions

None

16-Bit ISA Details

B-25

DIV rx, ry
Divide

Operation

LO ⇐ rx ÷ ry;

HI ⇐ rx MOD ry

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

DIV

11010

5 3 3 5

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
trx try

0

00 0000 0000

DIV

011010

6 5 5 10 6

Description

The contents of general-purpose register rx is divided by the contents of general-purpose register ry.

Both operands are treated as signed integers. The quotient is placed into register LO and the

remainder is placed into register HI. The DIV instruction never causes integer overflow exceptions.

The result of the DIV instruction is undefined if the divisor is zero. Typically, it is necessary to

check for a zero divisor and an overflow condition after a DIV instruction.

Any divide instruction is transferred to the dedicated divide unit as remaining instructions continue

through the pipeline. The divide unit keeps running even when cache misses, delay cycles and

exceptions occur.

If the divide instruction is followed by an MFHI, MFLO, MADD or MADDU instruction before the

quotient and the remainder are available, the pipeline stalls until they do become available (see

Section 5.4, Divide Instructions).

Exceptions

None

16-Bit ISA Details

B-26

DIVU rx, ry
Divide Unsigned

Operation

LO ⇐ rx ÷ ry;

HI ⇐ rx MOD ry

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

DIV

11011

5 3 3 5

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
trx try

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Description

The contents of general-purpose register rx is divided by the contents of general-purpose register ry.

Both operands are treated as unsigned integers. The quotient is placed into register LO and the

remainder is placed into register HI. The DIVU instruction never causes integer overflow exceptions.

The only difference between the DIV instruction and this instruction is that this instruction treats

both operands as unsigned integers.

Exceptions

None

16-Bit ISA Details

B-27

JAL target
Jump And Link

Operation

ra ⇐ pc + 7; pc ⇐ pc[31:28] || target || 00

Instruction Encoding

15 11 10 9 5 4 0

JAL

00011

x

0

target

[20:16]

target

[25:21]

5 1 5 5

15 0

target

[15:0]

16

31 26 25 0

JAL

000011
target

6 26

Description

Although this instruction is in the 16-bit ISA, it is 32-bits wide, causing the processor to perform the

fetch in two steps. The program unconditionally jumps to the target address with a delay of one

instruction (i.e., two instruction cycles). See Section 5.3.3, Jump Instructions (16-Bit ISA). The

target address is computed relative to the address of the instruction in the jump delay slot (PC+2).

The 26-bit target is shifted left by two bits and combined with the four most-significant bits of

PC+2 to form the target address. The JAL instruction never toggles the ISA mode bit of the program

counter (PC).

The address of the instruction after the jump delay slot is saved in the link register, ra (r31). The

ISA mode specifier (i.e., a 1 for the 16-bit ISA mode) is saved in the least-significant bit of ra.

Example

JAL PSUB

Assume that this jump instruction resides at address 0x2000 and that label PSUB points to absolute
address 0x2_4000. Then the assembler/linker turns this label into target operand 0x1_2000 (see the
figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes
effect after the instruction in the jump delay slot is executed. The address of the instruction after the
jump delay slot is saved in ra together with the ISA mode bit value; thus the ra value becomes
0x0000_2007.

16-Bit ISA Details

B-28

1

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JAL PSUB

+

0x2004

0x2002

0x2_4000

Jump Delay Slot

Jump Destination

0x2006

0 (Four MSBs of the Delay Slot Address)

16-Bit ISA Mode

16-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 001ra

1
16-Bit ISA Mode

0x2000

16-Bit ISA Details

B-29

JALR ra, rx
Jump And Link Register

Operation

ra ⇐ pc + 5; pc ⇐ rx

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx

010

JALR

00000

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx

0

00000

r31

11111

0

00000

JALR

001001

6 5 5 5 5 6

Description

The program unconditionally jumps to the address contained in general-purpose register rx, with the

least-significant bit cleared, with a delay of one instruction (i.e., two instruction cycles). The least-

significant bit of rx is interpreted as the ISA mode specifier. The address of the instruction after the

jump delay slot is saved in the link register, ra (r31), together with the value of the ISA mode that

was in effect before the jump.

In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping

to a 32-bit routine, the two low-order bits of the target register (rx) must be zero. If these low-order

bits are not zero, an Address Error exception will occur when the processor fetches the instruction at

the jump destination.

Exceptions

None

Example

Assume that register r2 contains 0x0012_3458 and that the following jump instruction resides at

address 0x0000_2000. Then, executing the instruction:

JALR ra,r2

transfers program control to address 0x0012_3458. The jump takes effect after the instruction in the

jump delay slot is executed. Since r2 has the least-significant bit cleared, the ISA mode bit toggles

to 0 after the jump, bringing the processor into 32-bit ISA mode. The address of the instruction after

16-Bit ISA Details

B-30

the jump delay slot is saved in ra together with the ISA mode bit value; thus the ra value becomes

0x0000_2005.

1

JALR ra, r2

0x2002

0x2000

0x12_3458

Jump Delay Slot

Jump Destination

0x2004

16-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 010ra

1
16-Bit ISA Mode

16-Bit ISA Details

B-31

JALX target
Jump And Link eXchange

Operation

ra ⇐ pc + 7; pc[31:1] ⇐ pc[31:28] || target || 00; pc[0] ⇐ NOT pc[0]

Instruction Encoding

15 11 10 9 5 4 0

JAL

00011

x

1

target

[20:16]

target

[25:21]

5 1 5 5

15 0

target

[15:0]

16

31 26 25 0

JALX

011101
target

6 26

Description

Although this instruction is in the 16-bit ISA, it is 32-bits wide, causing the processor to perform the

fetch in two steps. The program unconditionally jumps to the target address with a delay of one

instruction (i.e., two instruction cycles). See Section 5.3.3, Jump Instructions (16-Bit ISA). The

target address is computed relative to the address of the instruction in the jump delay slot (PC+2).

The 26-bit target is shifted left by two bits and combined with the four most-significant bits of

PC+2 to form the target address. The JALX instruction unconditionally toggles the ISA mode bit of

the program counter (PC).

The address of the instruction after the jump delay slot is saved in the link register, ra (r31). The

least-significant bit of ra stores the ISA mode bit that was in effect before the jump.

Exceptions

None

Example

JALX PSUB

16-Bit ISA Details

B-32

Assume that this jump instruction resides at address 0x0000_2000 and that label PSUB points to

absolute address 0x2_4000. Then, the assembler/linker turns this label into target operand 0x1_2000

(see the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes

effect after the instruction in the jump delay slot is executed. The ISA mode bit unconditionally

toggles, bringing the processor into 32-bit ISA mode. The address of the instruction after the jump

delay slot is saved in ra together with the ISA mode bit value; thus the ra value becomes

0x0000_2007.

1

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JALX PSUB

+

0x2004

0x2002

0x2_4000

Jump Delay Slot

Jump Destination

0x2006

0 (Four MSBs of the Delay Slot Address)

16-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 011ra

1
16-Bit ISA Mode

0x2000

16-Bit ISA Details

B-33

JR rx
Jump Register

Operation

pc ⇐ rx

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx

000

JR

00000

5 3 3 5

31 26 25 21 20 6 5 0

SPECIAL

000000
trx

0

000 0000 0000 0000

JR

001000

6 5 15 6

Description

The program unconditionally jumps to the address contained in general-purpose register rx, with the

least-significant bit cleared, with a delay of one instruction (i.e., two instruction cycles). The least-

significant bit of rx is interpreted as the ISA mode specifier.

In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping

to a 32-bit routine, the two low-order bits of the target register (rx) must be zero. If these low-order

bits are not zero, an Address Error exception will occur when the processor fetches the instruction at

the jump destination.

Exceptions

None

Example

Assume that register r2 contains 0x0012_3458. Then, executing the instruction:

JR r2

transfers program control to address 0x0012_3458. Since r2 has the least-significant bit cleared, the

processor switches to 32-bit ISA mode. The jump takes effect after the instruction in the jump delay

slot is executed.

16-Bit ISA Details

B-34

JR r2

0x2002

0x2000

0x12_3458

Jump Delay Slot

Jump Destination

0x2004

16it ISA Mode

32it ISA Mode

16-Bit ISA Details

B-35

JR ra
Jump Register

Operation

pc ⇐ ra

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101 000 001

JR

00000

5 3 3 5

31 26 25 21 20 6 5 0

SPECIAL

000000

r31

11111

0

000 0000 0000 0000

JR

001000

6 5 15 6

Description

The program unconditionally jumps to the address contained in the link register, ra (r31), with the

least-significant bit cleared, with a delay of one instruction (i.e., instruction cycles). The least-

significant bit of ra is interpreted as the ISA mode specifier.

Exceptions

None

Example

In the following example, the JALR instruction in a 32-bit routine transfers program control to a 16-

bit routine. At the end of the 16-bit routine, the JR instruction restores the return address into the

program counter (PC) from the link register, ra (r31). Since the ISA mode has been saved in the

least-significant bit of ra by the 32-bit JALR instruction, executing the JR instruction at the end of

the 16-bit routine restores it into the PC, causing the processor to revert to 32-bit ISA mode.

16-Bit ISA Details

B-36

0

JALR r2

0x2004

0x2000

0x12_3456

Jump Delay Slot

Return Point

Jump Destination

0x2008

32it ISA Mode

16it ISA Mode

0000 0000 0000 0000 0010 0000 0000 100ra

0
32it ISA Mode

JR ra

Jump to a 16-bit

routine through the

JALR instruction

Return to the 32-bit

routine through the

JR instruction

16-Bit ISA Details

B-37

LB ry, offset (base)
Load Byte

Operation

ry ⇐ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

LB

10000
base ry offset

5 3 3 5

31 26 25 21 20 16 15 5 4 0

LB

100000
base try

0

000 0000 0000
offset

6 5 5 11 5

Description

The 5-bit immediate offset is zero-extended and added to the contents of general-purpose register

base to form an effective address (EA). The byte in memory addressed by EA is sign-extended and

loaded into general-purpose register ry.

The offset field is 5 bits in length. This gives a range of 0 to 31. If the offset is outside this range, the

instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions

Address Error exception

Example

Assume that register r2 contains 0x_0000_0400 and that the memory location at address 0x404

contains 0xF2. Then, executing the instruction:

LB r3,4(r2)

loads register r3 with 0xFFFF_FFF2.

16-Bit ISA Details

B-38

Load (Sign-Extended)

r2 0x0000_0400

Memory

11110010

0x400

0x401

0x402

0x403

0x404

+4

Byte

1 Byte

Sign-Extended

Memory

CPU

Register
r3 0xFFFF_FFF2

16-Bit ISA Details

B-39

LBU ry, offset (base)
Load Byte Unsigned

Operation

ry ⇐ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

LBU

10100
base ry offset

5 3 3 5

31 26 25 21 20 16 15 5 4 0

LBU

100100
base ry

0

000 0000 0000
offset

6 5 5 11 5

Description

The 5-bit immediate offset is zero-extended and added to the contents of general-purpose register

base to form an effective address (EA). The byte in memory addressed by EA is zero-extended and

loaded into general-purpose register ry.

The offset field is 5 bits in length. This gives a range of 0 to 31. If the offset is outside this range, the

instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions

Address Error exception

Example

Assume that register r2 contains 0x0000_0400 and that the memory location at address 0x404

contains 0xF2. Then, executing the instruction:

LBU r3,4(r2)

loads register r3 with 0x0000_00F2.

16-Bit ISA Details

B-40

Load (Zero-Extended)

r2 0x0000_0400

Memory

11110010

0x400

0x401

0x402

0x403

0x404

+4

Byte

1 ByteMemory

CPU

Register
r3 0x0000_00F2

Zero-Extended

16-Bit ISA Details

B-41

LH ry, offset (base)
Load Halfword

Operation

ry ⇐ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

LH

10001
base ry offset

5 3 3 5

31 26 25 21 20 16 15 6 5 1 0

LH

100001
base try

0

00 0000 0000
offset 0

6 5 5 10 5 1

Description

The 5-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of

general-purpose register base to form an effective address (EA). The halfword in memory addressed

by EA is sign-extended and loaded into general-purpose register ry.

The offset field is 5 bits in length. Shifted one bit, this gives a range of 0 to 62, in increments of two.

If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate

in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions

Address Error exception

Example

LH r3,4(r2)

Assume that register r2 contains 0x0000_0400 and that the memory locations at addresses 0x404

and 0x405 contain 0xFF and 0x02 respectively. Since the offset value is shifted left by one bit by

the MIPS16 decompressor, the assembler/linker turns the specified offset (4 or binary 0100) into a

code of 2 (binary 0010). Thus the instruction code for this load instruction becomes 0x8A62.

This load instruction loads register r3 with 0xFFFF_FF02 in big-endian mode and with

0x0000_02FF in little-endian mode.

16-Bit ISA Details

B-42

Load (Sign-Extended)

r2 0x0000_0400

Memory

11111111

0x400

0x401

0x402

0x403

0x404

Byte

Halfword

Sign-Extended

Memory

CPU

Register

r3 0xFFFF_FF02

r3 0x0000_02FF

Big-endian

Little-endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

000000100x405

+4

The offset, 2, is

shifted left by 1 bit.

16-Bit ISA Details

B-43

LHU ry, offset (base)
Load Halfword Unsigned

Operation

ry ⇐ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

LHU

10101
base ry offset

5 3 3 5

31 26 25 21 20 16 15 6 5 1 0

LH

100101
base try

0

00 0000 0000
offset

0

0

6 5 5 10 5 1

Description

The 5-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of

general-purpose register base to form an effective address (EA). The halfword in memory addressed

by EA is zero-extended and loaded into general-purpose register ry.

The offset field is 5 bits in length. Shifted one bit, this gives a range of 0 to 62, in increments of two.

If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate

in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions

Address Error exception

Example

LHU r3,4(r2)

Assume that register r2 contains 0x0000_0400 and that the memory locations at addresses 0x404

and 0x405 contain 0xFF and 0x02 respectively. Since the offset value is shifted left by one bit by

the MIPS16 decompressor, the assembler/linker turns the specified offset (4 or binary 0100) into a

code of 2 (binary 0010). Thus the instruction code for this load instruction becomes 0xAA62.

This load instruction loads register r3 with 0x0000_FF02 in big-endian mode and with

0x0000_02FF in little-endian mode.

16-Bit ISA Details

B-44

Load (Zero-Extended)

r2 0x0000_0400

Memory

11111111

0x400

0x401

0x402

0x403

0x404

Byte

Halfword

Zero-Extended

Memory

CPU

Register

r3 0x0000_FF02

r3 0x0000_02FF

Big-endian

Little-endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

000000100x405

+4

The offset, 2, is

shifted left by 1 bit.

16-Bit ISA Details

B-45

LI rx, immediate
Load Immediate

Operation

rx ⇐ immediate

Instruction Encoding

15 11 10 8 7 0

LI

01101
rx immediate

5 3 8

31 26 25 21 20 16 15 8 7 0

ORI

001101

r0

00000
trx

0

0000 0000
immediate

6 5 5 8 8

Description

The 8-bit immediate is zero-extended and loaded into general-purpose register rx.

The immediate field is 8 bits in length. This gives a range of 0 to 255. If the immediate is outside

this range, the instruction is EXTENDed to provide a 16-bit unsigned immediate in the range of 0 to

65535.

Exceptions

None

Example

The instruction:

LI r3,0x12

loads register r3 with 0x0000_0012.

16-Bit ISA Details

B-46

LW ry, offset (base)
Load Word

Operation

ry ⇐ (offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

LW

10011
base ry offset

5 3 3 5

31 26 25 21 20 16 15 7 6 2 1 0

LW

100011
base try

0

0 0000 0000
offset

0

00

6 5 5 9 5 2

Description

The 5-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of

general-purpose register base to form an effective address (EA). The word in memory addressed by

EA is loaded into general-purpose register ry.

The offset field is 5 bits in length. Shifted two bits, this gives a range of 0 to 124, in increments of

four. If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed

immediate in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at

all.

Exceptions

Address Error exception

Example

LW r3,4(r2)

Assume that register r2 contains 0x0000_0400 and that the memory locations at addresses 0x404 to

0x407 contain 0x01, 0x23, 0x45 and 0x67 respectively. Since the offset value is shifted left by two

bits by the processor, the assembler/linker turns the specified offset (4 or binary 0100) into a code of

1 (binary 0001). Thus the instruction code for this load instruction becomes 0x9A61.

This load instruction loads register r3 with 0x0123_4567 in big-endian mode and with

0x6745_2301 in little-endian mode.

16-Bit ISA Details

B-47

Load

r2 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

The offset, 1, is shifted

left by two bits.

Byte

r3 0x0123_4567

r3 0x6745_2301

Big-endian

Little-endian

Word Boundary

Word Boundary

0x230x405

0x450x406

0x670x407

16-Bit ISA Details

B-48

LW rx, offset (pc)
Load Word

Operation

rx ⇐ {offset (Masked Base PC)}

Instruction Encoding

15 11 10 8 7 0

LWPC

10110
rx offset

5 3 8

31 26 25 21 20 16 15 10 9 2 1 0

LW

100011

0

00000
trx

0

000000
offset

0

00

6 5 5 6 8 2

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of the

program counter (PC) with the lower two bits cleared to form an effective address (EA). A 32-bit

constant in memory addressed by EA is then loaded into general-purpose register rx.

By virtue of this instruction, 32-bit constants can be embedded in the code segment. Instructions

within the nearby routines can reference this data with a single instruction.

Zeros are shown in the field of bits 25 to 21 as placeholders. Because the LW instruction in the 32-

bit ISA can not use the PC as the base register, the operation of this instruction differs from the LW

instruction in the 32-bit ISA.

The offset field is 8 bits in length. Shifted two bits, this gives a range of 0 to 1020, in increments of

four. If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed

immediate in the range of -32768 to +32767. Given the PC-relative addressing mode, there is also

an instruction (ADDIUPC) to calculate a PC-relative address and place it in a general-purpose

register.

Because the PC value is used as the base value, it is commonly referred to as the base PC value. The

base PC value with the lower two bits cleared is referred to as the masked base PC value. The base

PC value varies, depending on whether the instruction is in a delay slot and whether it is to be

EXTENDed.

16-Bit ISA Details

B-49

Base PC Value

Delay slot of the JR or JALR instruction Address of the JR or JALR instruction

Delay slot of the JAL or JALX instruction Address of the upper halfword of the JAL or JALX instruction

EXTENDed Address of the EXTEND code

Not EXTENDed (nor in a delay slot) Address of the LWPC instruction

Exceptions

Address error exception

Example

Assume that the masked base PC points at address 0x0123_4568 and that addresses 0x1234_5678

to 0x0123_457B contain 0x01, 0x23, 0x45 and 0x67 respectively. Given the instruction:

LW r3,16(pc)

the assembler turns the specified offset value (16 or binary 0001_0000) into a code of 4 (binary

0000_ 0100) since it is to be shifted left by two bits by the MIPS16 decompressor. Thus the

instruction code for the above load instruction becomes 0xB304. Executing the above instruction

loads register r3 with 0x0123_4567 in big-endian mode and with 0x6745_2301 in little-endian

mode.

Masked Base PC 0x0123_4568

Memory

+16

The offset, 4, is

shifted left by two

bits.

Word

r3 0x0123_4567

LW r3 16 (pc)

0x45 0x670x01 0x23

0x123_4568

0x123_456C

0x123_4570

0x123_4574

0x123_4578

0x123_457C

Big-Endian

r3 0x6745_2301

Little-Endian

Load

16-Bit ISA Details

B-50

LW rx, offset (sp)
Load Word

Operation

rx ⇐ {offset (sp)}

Instruction Encoding

15 11 10 8 7 0

LWSP

10010
rx offset

5 3 8

31 26 25 21 20 16 15 10 9 2 1 0

LW

100011

r29

11101
trx

0

000000
offset

0

00

6 5 5 6 8 2

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of

stack pointer register sp (r29) to form an effective address (EA). The word in memory addressed by

EA is loaded into general-purpose register rx.

The offset field is 8 bits in length. Shifted two bits, this gives a range of 0 to 1020, in increments of

four. If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed

immediate in the range of -32768 to +32767.

Exceptions

Address Error exception

Example

Assume that stack pointer register sp points at address 0x0000_0400 and that addresses 0x404 to

0x407 contain 0x01, 0x23, 0x45 and 0x67 respectively. Given the instruction:

LW r3,4(sp)

the assembler/linker turns the specified offset value (4 or binary 0100) into a code of 1 (binary

0001) since it is to be shifted left by two bits by the MIPS16 decompressor. Thus the instruction

code for the above load instruction becomes 0x9301. Executing the above instruction loads register

r3 with 0x0123_4567 in big-endian mode and with 0x6745_23_01 in little-endian mode.

16-Bit ISA Details

B-51

Load

sp 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

The offset, 1, is shifted

left by two bits.

Byte

r3 0x0123_4567

r3 0x6745_2301

Big-endian

Little-endian

0x230x405

0x450x406

0x670x407

16-Bit ISA Details

B-52

MFHI rx
Move From HI

Operation

rx ⇐ HI

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx

0

000

MFHI

10000

5 3 3 5

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
trx

0

00000

MFHI

010000

6 10 5 5 6

Description

The contents of the HI register is loaded into general-purpose register rx.

Exceptions

None

16-Bit ISA Details

B-53

MFLO rx
Move From LO

Operation

rx ⇐ LO

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx

0

000

MFLO

10010

5 3 3 5

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
trx

0

00000

MFLO

010010

6 10 5 5 6

Description

The contents of the LO register is loaded into general-purpose register rx.

Exceptions

None

16-Bit ISA Details

B-54

MOVE ry, r32
Move

Operation

ry ⇐ r32

Instruction Encoding

15 11 10 8 7 5 4 0

I8

01100

movr32

111
ry r32

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
r32

r0

00000
try

0

00000

OR

100101

6 5 5 5 5 6

Description

The contents of general-purpose register r32 is copied to general-purpose register ry, where r32 is

any of the 32 registers (r0 to r31) and ry is one of the eight registers visible to the 16-bit ISA.

To the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to

r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, the 16-bit

ISA includes the MOVE instructions to copy values between the eight 16-bit ISA registers and the

remaining 24 registers of the full processor architecture. By virtue of the MOVE instructions, 16-bit

routines can utilize all of the 32 general-purpose registers.

The encoding of the r32 field in the 16-bit instruction code is identical to that of the 32-bit

instructions; that is, 00000 is r0, 00001 is r1, 00010 is r2, 00011 is r3 and so on.

Exceptions

None

16-Bit ISA Details

B-55

MOVE r32, rz
Move

Operation

r32 ⇐ rz

Instruction Encoding

15 11 10 8 7 3 2 0

I8

01100

mov32r

101
r32 rz

5 3 5 3

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trz

r0

00000
r32

0

00000

OR

100101

6 5 5 5 5 6

Description

The contents of general-purpose register rz is copied to general-purpose register r32, where rz is one

of the eight registers visible to the 16-bit ISA and r32 is any of the 32 registers (r0 to r31).

To the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to

r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, the 16-bit

ISA includes the MOVE instructions to copy values between the eight 16-bit ISA registers and the

remaining 24 registers of the full processor architecture. By virtue of the MOVE instructions, 16-bit

routines can utilize all of the 32 general-purpose registers.

The encoding of the r32 field in this 16-bit instruction code differs from that of the 32-bit ISA. The

r32 field, encoded as [2:0][4:3], denotes a general-purpose register as shown below.

16-Bit ISA Details

B-56

Code Register Code Register

00000 r0 10000 r4

00001 r8 10001 r12

00010 r16 10010 r20

00011 r24 10011 r28

00100 r1 10100 r5

00101 r9 10101 r13

00110 r17 10110 r21

00111 r25 10111 r29

01000 r2 11000 r6

01001 r10 11001 r14

01010 r18 11010 r22

01011 r26 11011 r30

01100 r3 11100 r7

01101 r11 11101 r15

01110 r19 11110 r23

01111 r27 11111 r31

Exceptions

None

16-Bit ISA Details

B-57

MULT rx, ry
Multiply

Operation

HI ⇐ high-order word of (rx × ry);

LO ⇐ low-order word of (rx × ry);

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

MULT

11000

5 3 3 5

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
trx try

0

00 0000 0000

MULT

011000

6 5 5 10 6

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register

ry. Both rx and ry are treated as signed integers. The high-order word of the result is placed into the

HI register, and the low-order word of the result is placed into the LO register.

No integer overflow exception occurs under any circumstances.

Exceptions

None

Example

Assume that general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF

respectively. Then, the instruction:

MULT r3,r4

evaluates:

(0x0123_4567 × 0x89AB_CDEF)

= 0xFF79_5E36_C94E_4629

Hence, the high-order word of the result 0xFF79_5E36 is placed into the HI register, and the low-

order word of the result 0xC94E_4629 is placed into the LO register.

16-Bit ISA Details

B-58

MULTU rx, ry
Multiply Unsigned

Operation

HI ⇐ high-order word of (rx × ry);

LO ⇐ low-order word of (rx × ry);

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

MULTU

11001

5 3 3 5

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
trx try

0

00 0000 0000

MULTU

011001

6 5 5 10 6

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register

ry. Both rx and ry are treated as unsigned integers. The high-order word of the result is placed into

the HI register, and the low-order word of the result is placed into the LO register.

No integer overflow exception occurs under any circumstances.

Exceptions

None

Example

Assume that general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF

respectively. Then, the instruction:

MULTU r3,r4

evaluates:

(0x0123_4567 × 0x89AB_CDEF)

= 0x009C_A39D_C94E_4629

Hence, the high-order word of the result 0x009C_A39D is placed into the HI register, and the low-

order word of the result 0xC94E_4629 is placed into the LO register.

16-Bit ISA Details

B-59

NEG rx, ry
Negate

Operation

rx = 0 – ry

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

NEG

01011

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

r0

00000
try trx

0

00000

SUBU

100011

6 5 5 5 5 6

Description

This instruction performs 2’s complement of the contents of general-purpose register ry and places

the result into general-purpose register rx. It is implemented as the subtraction of ry from a value of

zero.

Exceptions

None

16-Bit ISA Details

B-60

NOT rx, ry
NOT

Operation

rx ⇐ ry NOR 0x0000_0000

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

NOT

01111

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

r0

00000
try trx

0

00000

NOT

100111

6 5 5 5 5 6

Description

This instruction performs 1’s complement of the contents of general-purpose register ry and places

the result into general-purpose register rx. Each bit in ry is inverted. It is implemented as the logical

NOR of ry and a value of zero.

Exceptions

None

16-Bit ISA Details

B-61

OR rx, ry
OR

Operation

rx ⇐ rx OR ry

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

OR

01101

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try trx

0

00000

OR

100101

6 5 5 5 5 6

Description

The contents of general-purpose register rx is ORed with the contents of general-purpose register ry,

and the result is placed back into general-purpose register rx.

Exceptions

None

16-Bit ISA Details

B-62

SB ry, offset (base)
Store Byte

Operation

ry ⇒ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

SB

11000
base ry offset

5 3 3 5

31 26 25 21 20 16 15 5 4 0

SB

101000
base try

0

000 0000 0000
offset

6 5 5 11 5

Description

The 5-bit immediate offset is zero-extended and added to the contents of general-purpose register

base to form an effective address (EA). The least-significant byte in general-purpose register ry is

stored at the memory location addressed by EA.

The three high-order bytes in ry is simply ignored; so there is no distinction between signed and

unsigned stores.

The offset field is 5 bits in length. This gives a range of 0 to 31. If the offset is outside this range, the

instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions

Address Error exception

Example

Assume that registers r2 and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Then,

executing the instruction:

SB r3,4(r2)

stores 0x67 to the memory location at address 0x404.

16-Bit ISA Details

B-63

Store

r2 0x0000_0400

Memory

0x67

0x400

0x401

0x402

0x403

0x404

+4

Byte

1 ByteMemory

CPU

Register

r3 0x0123_4567

16-Bit ISA Details

B-64

SDBBP code
Software Debug Breakpoint

Operation

Software debug breakpoint exception

Instruction Encoding

15 11 10 5 4 0

RR

11101
code

SDBBP

00001

5 6 5

31 26 25 6 5 0

SPECIAL

000000
code

SDBBP

001110

6 20 6

Description

A debug breakpoint occurs, immediately and unconditionally transferring control to the exception

handler.

The code field in the SDBBP instruction is available for use as software parameters to pass

additional information. The exception handler can retrieve it by loading the contents of the memory

word containing the instruction. See Section 9.3, Debug Exceptions, for details.

The SDBBP instruction may not be used while a Debug exception is being serviced (i.e., the DM bit

in the Debug register is set). The operation of the SDBBP instruction is undefined when DM=1.

The SDBBP instruction may not be used within the user’s program; it is intended for use by

development systems.

Exceptions

Debug Breakpoint exception

16-Bit ISA Details

B-65

SH ry, offset (base)
Store Halfword

Operation

ry ⇒ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

SH

11001
base ry offset

5 3 3 5

31 26 25 21 20 16 15 6 5 1 0

SH

101001
base try

0

00 0000 0000
offset

0

0

6 5 5 10 5 1

Description

The 5-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of

general-purpose register base to form an effective address (EA). The least-significant halfword in

general-purpose register ry is stored at the memory location addressed by EA.

The higher-order halfword in ry is simply ignored; so there is no distinction between signed and

unsigned stores.

The offset field is 5 bits in length. Shifted one bit, this gives a range of 0 to 62, in increments of two.

If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate

in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions

Address Error exception

Example

SH r3,4(r2)

Assume that registers r2 and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Since the

offset value is shifted left by one bit by the MIPS16 decompressor, the assembler/linker turns the

specified offset (4 or binary 0100) into a code of 2 (binary 0010). Thus the instruction code for this

store instruction becomes 0xCA62.

16-Bit ISA Details

B-66

In big-endian mode, this store instruction stores 0x45 and 0x67 to the memory locations at

addresses 0x404 and 0x405 respectively. In little-endian mode, the above instruction stores 0x67

and 0x45 to the memory locations at addresses 0x404 and 0x405 respectively.

Store

r2 0x0000_0400

Memory

0x45

0x400

0x401

0x402

0x403

0x404

+4

The offset, 1, is shifted

Byte

Halfword Memory

CPU

Register

r3 0x0123_4567

0x405

Big-endian

0x67

Byte

Little-endian

0x67 0x45

Halfword Boundary

Halfword Boundary

Halfword Boundary

16-Bit ISA Details

B-67

SLL rx, ry, sa
Shift Left Logical

Operation

rx ⇐ ry << sa

Instruction Encoding

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SLL

00

5 3 3 3 2

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
try trx sa

SLL

000000

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register ry is shifted left by sa bits. Zeros are supplied to the

vacated positions on the right. The result is placed back into general-purpose register rx. The sa

field is only 3-bits wide. Thus the shift amount is restricted to 1 to 8; 000 is defined as a shift of 8

bits.

If the shift amount does not fit in the sa field, the instruction is EXTENDed to provide a full 5-bit

field for a shift of 0 to 31.

Example

Assume that register r2 contains 0x2170_ADC5. Then, executing the instruction:

SLL r3,r2,4

places 0x170A_DC50 in register r3, as shown below.

Shifted left

by 4 bits

r2

r3

Padded with zeros

0001 0111 0000 1010 1101 1100 0101 0000

0010 0001 0111 0000 1010 1101 1100 0101

16-Bit ISA Details

B-68

SLLV ry, rx
Shift Left Logical Variable

Operation

ry << 5 LSBs of rx

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLLV

00100

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try try

0

00000

SLLV

000100

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register ry is shifted left the number of bits specified by the

five least-significant bits of general-purpose register rx. Zeros are supplied to the vacated positions

on the right. The result is placed back into general-purpose register ry.

Exceptions

None

16-Bit ISA Details

B-69

SLT rx, ry
Set On Less Than

Operation

if rx < ry then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLT

00010

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try

r24

11000

0

00000

SLT

101010

6 5 5 5 5 6

Description

The contents of general-purpose register rx is compared to the contents of general-purpose register

ry. Both rx and ry are treated as signed integers. If rx is less than ry, condition code register t8 (r24)

is set to one. Otherwise, t8 is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

Exceptions

None

16-Bit ISA Details

B-70

SLTI rx, immediate
Set On Less Than Immediate

Operation

if rx < immediate then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding

15 11 10 8 7 0

SLTI

01010
rx immediate

5 3 8

31 26 25 21 20 16 15 8 7 0

SLTI

001010
trx

r24

11000

0

00000000
immediate

6 5 5 8 8

Description

The 8-bit immediate is zero-extended and compared to the contents of general-purpose register rx.

The immediate and rx are compared as signed integers. If rx is less than the immediate, condition

code register t8 (r24) is set to 1. Otherwise, t8 is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

The immediate field is 8 bits in length. This gives a range of 0 to 255. If a number is outside this

range, the instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to

+32767.

Exceptions

None

16-Bit ISA Details

B-71

SLTIU rx, immediate
Set On Less Than Immediate Unsigned

Operation

if rx < immediate then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding

15 11 10 8 7 0

SLTIU

01011
rx immediate

5 3 8

31 26 25 21 20 16 15 8 7 0

SLTIU

001011
trx

r24

11000

0

00000000
immediate

6 5 5 8 8

Description

The 8-bit immediate is zero-extended and compared to the contents of general-purpose register rx.

The immediate and rx are compared as unsigned integers. If rx is less than the immediate, condition

code register t8 (r24) is set to one. Otherwise, t8 is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

The immediate field is 8 bits in length. This gives a range of 0 to 255. If a number is outside this

range, the instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to

+32767.

Exceptions

None

16-Bit ISA Details

B-72

SLTU rx, ry
Set On Less Than Unsigned

Operation

if rx < ry then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLTU

00011

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rx ry

r24

11000

0

00000

SLTU

101011

6 5 5 5 5 6

Description

The contents of general-purpose register rx is compared to the contents of general-purpose register

ry. Both rx and ry are treated as unsigned integers. If rx is less than ry, condition code register t8

(r24) is set to one. Otherwise, t8 is set to zero.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction performed for comparison results in overflow.

Exceptions

None

16-Bit ISA Details

B-73

SRA rx, ry, sa
Shift Right Arithmetic

Operation

rx ⇐ ry >> sa

Instruction Encoding

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
ry rx sa

SRA

11

5 3 3 3 2

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
try trx sa

SRA

000011

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register ry is shifted right by sa bits. The sign bit is copied to

the vacated positions on the left. The result is placed back into general-purpose register ry. The sa

field is only 3-bits wide. Thus the shift amount is restricted to 1 to 8; 000 is defined as a shift of 8

bits.

If the shift amount does not fit in the sa field, the instruction is EXTENDed to provide a full 5-bit

field for shift of 0 to 31.

Example

Assume that register r2 contains 0xB521_AE5E. Then, executing the instruction:

SRA r3,r2,8

places 0xFFB5_21AE in register r3, as shown below.

1 011 0101 0010 0001 1010 0101 1110

1111 1111 1011 0101 0010 0001 1010

r2

r3

Sign Bit Shifted right by 8 bits

16-Bit ISA Details

B-74

SRAV ry, rx
Shift Right Arithmetic Variable

Operation

ry >> 5 LSBs of rx

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

SRAV

00111

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try try

0

00000

SRAV

000111

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register ry is shifted right the number of bits specified by the

five least-significant bits of general-purpose register rx. The sign bit is copied to the vacated

positions on the left. The result is placed back into general-purpose register ry.

Exceptions

None

16-Bit ISA Details

B-75

SRL rx, ry, sa
Shift Right Logical

Operation

rx ⇐ ry >> sa

Instruction Encoding

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SRL

10

5 3 3 3 2

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
try trx sa

SRL

000010

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register ry is shifted right by sa bits. Zeros are supplied to

the vacated positions on the left. The result is placed back into general-purpose register rx. The sa

field is only 3-bits wide. Thus the shift amount is restricted to 1 to 8; 000 is defined as a shift of 8

bits.

If the shift amount does not fit in the sa field, the instruction is EXTENDed to provide a full 5-bit

field for a shift of 0 to 31.

Example

Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRL r3,r2,8

places 0x00B5_214C in register r3, as shown below.

1011 0101 0010 0001 1000 1100 0101 1110r2

r3

Padded with zeros Shifted right by 8 bits

0000 0000 1011 0101 0010 0001 0100 1100

16-Bit ISA Details

B-76

SRLV ry, rx
Shift Right Logical Variable

Operation

ry >> 5 LSBs of rx

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

SRLV

00110

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try try

0

00000

SRLV

000110

6 5 5 5 5 6

Description

The 32-bit contents of general-purpose register ry is shifted right the number of bits specified by the

five least-significant bits of general-purpose register rx. Zeros are supplied to the vacated positions

on the left. The result is placed back into general-purpose register ry.

Exceptions

None

16-Bit ISA Details

B-77

SUBU rz, rx, ry
Subtract Unsigned

Operation

rz ⇐ rx – ry

Instruction Encoding

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

SUBU

11

5 3 3 3 2

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try trz

0

00000

SUBU

100011

6 5 5 5 5 6

Description

The contents of general-purpose register ry is subtracted from the contents of general-purpose

register rx. The remainder is placed into general-purpose register rz.

No overflow exception occurs under any circumstances.

Exceptions

None

16-Bit ISA Details

B-78

SW ry, offset (base)
Store Word

Operation

ry ⇒ {offset (base)}

Instruction Encoding

15 11 10 8 7 5 4 0

SW

11011
base ry offset

5 3 3 5

31 26 25 21 20 16 15 7 6 2 1 0

SW

101011
base try

0

000000000
offset

0

00

6 5 5 9 5 2

Description

The 5-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of

general-purpose register base to form an effective address (EA). The word in general-purpose

register ry is stored at the memory location addressed by EA.

The offset field is 5 bits in length. Shifted two bits, this gives a range of 0 to 124, in increments of

four. If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed

immediate in the range of -32768 to +32767.

Exceptions

Address Error exception

Example

SW r3,4(r2)

Assume that registers r2 and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Since the

offset value is shifted left by two bits by the MIPS16 decompressor, the assembler/linker turns the

specified offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this

store instruction becomes 0xDAE1.

In big-endian mode, this store instruction stores 0x12, 0x23, 0x45 and 0x67 to the memory

locations at addresses 0x404 to 0x407 respectively. In little-endian mode, the above instruction

stores 0x67, 0x45, 0x23 and 0x01 at addresses 0x404 to 0x407 respectively.

16-Bit ISA Details

B-79

Store

r2 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

The offset, 1, is shifted

left by 2bits.

Byte

r3 0x0123_4567

0x405

Big-Endian

0x67

Byte

Little-Endian

0x23 0x45

Word Boundary

Word Boundary

0x45

0x67

0x23

0x01

0x406

0x407

16-Bit ISA Details

B-80

SW rx, offset (sp)
Store Word

Operation

rx ⇒ {offset (sp)}

Instruction Encoding

15 11 10 8 7 0

SWSP

11010
rx offset

5 3 8

31 26 25 21 20 16 15 10 9 2 1 0

SW

101011

r29

11101
rx

0

000000
offset

0

00

6 5 5 6 8 2

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of

stack pointer register sp (r29) to form an effective address (EA). The word in rx is stored at the

memory location addressed by EA.

The offset field is 8 bits in length. Shifted two bits, this gives a range of 0 to 1020, in increments of

four. If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed

immediate in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at

all.

Exceptions

Address Error exception

Example

SW r3,4(sp)

Assume that registers sp and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Since the

offset value is shifted left by two bits by the processor, the assembler/linker turns the specified

offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this store

instruction becomes 0xD301.

In big-endian mode, this store instruction stores 0x1234_4567 to the memory locations at addresses

0x404 to 0x407 respectively.

16-Bit ISA Details

B-81

sp 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

The offset, 1, is shifted

left by 2 bits.

Byte

r3 0x0123_4567

Big-endian

0x230x405

0x450x406

0x670x407

16-Bit ISA Details

B-82

SW ra, offset (sp)
Store Word

Operation

ra ⇒ {offset (sp)}

Instruction Encoding

15 11 10 8 7 0

I8

01100

SWRASP

010
offset

5 3 8

31 26 25 21 20 16 15 10 9 2 1 0

SW

101011

r29

11101

r31

11111

0

000000
offset

0

00

6 5 5 6 8 2

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of

stack pointer register sp (r29) to form an effective address (EA). The word in link register ra (r31) is

stored at the memory location addressed by EA.

The offset field is 8 bits in length. Shifted two bits, this gives a range of 0 to 1020, in increments of

four. If the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed

immediate in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at

all.

Exceptions

Address Error exception

Example

SW ra,4(sp)

Assume that registers sp and ra contain 0x0000_0400 and 0x0123_4567 respectively. Since the

offset value is shifted left by two bits by the processor, the assembler/linker turns the specified

offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this store

instruction becomes 0x3101.

In big-endian mode, this store instruction stores 0x1234_4567 to the memory locations at addresses

0x404 to 0x407 respectively.

16-Bit ISA Details

B-83

sp 0x0000_0400

Memory

0x01

0x400

0x401

0x402

0x403

0x404

+4

The offset, 1, is shifted

left by 2 bits.

Byte

ra 0x0123_4567

0x230x405

0x450x406

0x670x407

Big-endian

16-Bit ISA Details

B-84

XOR rx, ry
Exclusive OR

Operation

rx ⇐ rx XOR ry

Instruction Encoding

15 11 10 8 7 5 4 0

RR

11101
rx ry

XOR

01110

5 3 3 5

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
trx try trx

0

00000

XOR

100110

6 5 5 5 5 6

Description

The contents of general-purpose register rx is exclusive-ORed with the contents of general-purpose

register ry. The result is placed back into general-purpose register rx.

Exceptions

None

Programming Restrictions

C-1

Appendix C Programming Restrictions

In a pipelined machine like the TX19, there are certain instructions which due to the very pipeline

structure could disrupt the smooth operation of the pipeline. This appendix lists the restrictions that

need to be observed in writing assembly-language programs.

C.1 32-Bit ISA Restrictions

Table C-1 Load and Store Instructions

Instructions Restriction

LH rt, offset(base)

LHU rt, offset(base)

SH rt, offset(base)

The target address generated by these instructions must be on a halfword boundary;

i.e., it must have the least-significant bit cleared. Otherwise, an Address Error

exception occurs.

LW rt, offset(base)

LWU rt, offset(base)

SW rt, offset(base)

The target address generated by these instructions must be on a word boundary;

i.e., it must have the two least-significant bits cleared. Otherwise, an Address Error

exception occurs.

Table C-2 Jump Instructions

Instructions Restriction

JALR (rd,) rs • Register rd may not be the same one as register rs because such an instruction is

not restartable after the exception has been serviced.

• In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when

jumping to a 32-bit routine, the two least-significant bits of the target register (rs)

must be zero. Otherwise, an Address Error exception occurs when the processor

fetches the instruction at the jump destination.

JR rs In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when jumping

to a 32-bit routine, the two least-significant bits of the target register (rs) must be

zero. Otherwise, an Address Error exception occurs when the processor fetches the

instruction at the jump destination.

All jump instructions Any jump instruction may not be in a jump or branch delay slot. The operation of the

jump instruction is undefined if it is in a jump or branch delay slot.

Programming Restrictions

C-2

Table C-3 Branch and Branch-Likely Instructions

Instructions Restriction

BGEZAL(L) rs, offset

BLTZAL(L) rs, offset

Register rs may not be r31 because such an instruction is not restartable after the

exception has been serviced.

All branch instructions The branch instruction may not be in a jump or branch delay slot. The operation of

the branch instruction is undefined if it is in a jump or branch delay slot.

Table C-4 System Control Coprocessor (CP0) Instructions

Instructions Restriction

CACHE op, offset(base)

DERET

MTC0 rt, rd

MFC0 rt, rd

RFE

Attempts by a User-mode program to execute these instructions when the CU[0] bit

in the Status register is cleared causes a Coprocessor Unusable exception. Kernel-

mode programs can execute these instructions, regardless of the setting of the

CU[0] bit.

DERET • The NOP instruction must be inserted in the delay slot following this instruction.

• The operation of this instruction is undefined if the processor is not is in Debug

mode (i.e., when the DM bit in the Debug register is cleared).

• If you have used the MTC0 instruction to load the DEPC register with a return

address, the debug exception handler must execute at least two instructions

before issuing the DERET instruction.

• This instruction must not be executed immediately after the MTC0 instruction that

writes to the Debug register or immediately after the MFC0 instruction that reads

from the Debug register. Otherwise, the contents of the Debug register become

undefined.

MTC0 rt, rd • The MTC0 instruction may not attempt to write to the Status register immediately

before the RFE instruction. Otherwise, the contents of the Status register become

undefined.

• The MTC0 instruction may not attempt to write to the Debug register immediately

before the DERET instruction. Otherwise, the contents of the Debug register

become undefined.

MFC0 rt, rd • The MFC0 instruction may not attempt to read the Status register immediately

before the RFE instruction. Otherwise, the contents of the Status register become

undefined.

• The MFC0 instruction may not attempt to read the Debug register immediately

before the DERET instruction. Otherwise, the contents of the Debug register

become undefined.

• The MFC0 instruction has a delay slot.

RFE • This instruction may not be executed immediately after an MTC0 instruction that

writes to the Status register or immediately after an MFC0 instruction that reads

from the Status register. Otherwise, the contents of the Status register become

undefined.

• The contents of the Status register become unpredictable if an interrupt occurs

during execution of the RFE instruction. Therefore, all interrupts must be disabled

prior to the RFE instruction.

Programming Restrictions

C-3

Table C-5 Coprocessor Instructions

Instructions Restriction

BCzF(L) offset

BCzT(L) offset

CFCz rt, rd

CTCz rt, rd

COPz cofun

MFCz rt, rd

MTCz rt, rd

Attempted execution of these instructions causes a Coprocessor Unusable

exception when the corresponding CU bit in the Status register is cleared.

Table C-6 Special Instructions

Instructions Restriction

SDBBP This instruction may not be executed while a Debug exception is being serviced (i.e.,

the DM bit in the Debug register is set). The operation of the SDBBP instruction is

undefined when DM=1.

C.2 16-Bit ISA Restrictions

Table C-7 Load and Store Instructions

Instructions Restriction

LH ry, offset(base)

LHU ry, offset(base)

SH ry, offset(base)

The target address generated by these instructions must be on a halfword boundary;

i.e., it must have the least-significant bit cleared. Otherwise, an Address Error

exception occurs.

LW ry, offset(base)

SW ry, offset(base)

SW ry, offset(sp)

SW ra, offset(sp)

The target address generated by these instructions must be on a word boundary;

i.e., it must have the two least-significant bits cleared. Otherwise, an Address Error

exception occurs.

Programming Restrictions

C-4

Table C-8 Jump Instructions

Instructions Restriction

JALR ra, rx • Register rx may not be ra because such an instruction is not restartable after the

exception has been serviced.

• In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when

jumping to a 32-bit routine, the two least-significant bits of the target register (rx)

must be zero. Otherwise, an Address Error exception occurs when the processor

fetches the instruction at the jump destination.

JR rx In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when jumping

to a 32-bit routine, the two least-significant bits of the target register (rx) must be

zero. Otherwise, an Address Error exception occurs when the processor fetches the

instruction at the jump destination.

JR ra In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when jumping

to a 32-bit routine, the two least-significant bits of ra must be zero. Otherwise, an

Address Error exception occurs when the processor fetches the instruction at the

jump destination.

All jump instructions Any jump instruction may not be in a jump delay slot.

Table C-9 Branch Instructions

Instructions Restriction

All branch instructions The branch instruction may not be in a jump delay slot.

Table C-10 Special Instructions

Instructions Restriction

SDBBP This instruction may not be executed while a Debug exception is being serviced (i.e.,

the DM bit in the Debug register is set). The operation of the SDBBP instruction is

undefined when DM=1.

Table C-11 EXTENDed Instructions

Instructions Restriction

All EXTENDed instructions Any EXTENDed instruction may not be in a jump delay slot.

Compatibility Among TX19, TX39 and R3000A Architectures

D-1

Appendix D Compatibility Among TX19, TX39 and

R3000A Architectures

Table D-1 shows the differences between Toshiba’s TX19 and TX39.

Table D-1 Comparisons Between the TX19 and the TX39

Feature TX19 TX39

Application Low power, high code density High performance

32-Bit ISA 16-Bit ISAInstruction Set

• Object-code compatible

upward from the TX39

• 85 instructions, including

JALX for run-time

switching between ISA

modes

• Object-code compatible

with the MIPS16 ASE

except doubleword and

LWU instructions.

• 58 instructions

• 32-bit fixed instruction size

• 84 instructions

CPU Registers
• Same as for the TX39

• The least-significant bit of the PC determines the ISA

mode.

• 32 general-purpose registers

• Program counter (PC)

• 2 Multiply/Divide registers (HI/LO)

All CPU registers are 32-bits wide.

Compatibility Among TX19, TX39 and R3000A Architectures

D-2

Feature TX19 TX39

The new Interrupt Enable (IE) register provides for

single-instruction enabling/disabling of interrupts.

• 1 system configuration register

• 6 general exception handling

registers

• 2 debug exception handling

registers

All CP0 registers are 32-bits wide.

The definitions of the following register bits differ

between the TX19 and the TX39:

CP0 Registers

PRId[15:8] Implementation=0x2C

Cause[11:8] Sw

Cause[15:13] IL

Status[11:8] SWiMask

Status[15:13] CMask

Status[18:16] PMask

Status[25] Reserved

PRId[15:8]

Implementation=0x22

Cause[9:8] Sw

Cause[15:10] IP

Status[9:8] IntMask (Sw)

Status[15:10] IntMask (Int)

Status[18:16] 0

Status[25] RE

Instruction Pipeline 5-stage 5-stage

Multiply Instructions Latency / Execution = 2 / 1cycles Latency / Execution = 2 / 1 cycles

Divide Instructions Latency / Execution = 35 / 34 cycles

If the divide instruction is followed by a Move From

HI/LO instruction before the result is made available,

the pipeline stalls until the result does become

available.

Latency / Execution = 35 / 34 cycles

If the divide instruction is followed

by a Move From HI/LO instruction

before the result is made available,

the divide instruction is canceled.

Multiply-and-Add

Instructions
Latency / Execution = 2 / 1 cycles Latency / Execution = 2 / 1 cycles

Interrupt Response • Interrupt requests are processed by hardware.

• Exceptions and interrupts have distinct vector

addresses.

• The interrupt mask level is automatically updated

by hardware.

• Optional on-chip RAM provides for an interrupt

stack with a single-clock access.

• Interrupt requests are processed

by software.

• Exceptions and interrupts have a

common vector address.

• The interrupt mask level needs to

be updated under software

control.

Maskable Interrupts • 4 software interrupts

• 1 hardware interrupt from the interrupt controller (7

prioritized levels)

• 2 software interrupts

• 6 hardware interrupts

Virtual Address Space 4 Gbytes 4 Gbytes

Clock Rate 20 MHz (standard version),

A high-speed version is being planned.

70 MHz

Compatibility Among TX19, TX39 and R3000A Architectures

D-3

Table C-2 gives comparisons of the instruction sets for the TX19 (32-bit ISA), the TX39 and the

MIPS R3000A. Differences are highlighted in shaded boxes.

Table D-2 Instruction Sets of the TX19, the TX39 and the R3000A

Category Instruction TX19 32-Bit ISA TX39 R3000A

Load Byte LB rt, offset(base) LB rt, offset(base) LB rt, offset(base)

Load Byte Unsigned LBU rt, offset(base) LBU rt, offset(base) LBU rt, offset(base)

Load Halfword LH rt, offset(base) LH rt, offset(base) LH rt, offset(base)

Load Halfword Unsigned LHU rt, offset(base) LHU rt, offset(base) LHU rt, offset(base)

Load Word LW rt, offset(base) LW rt, offset(base) LW rt, offset(base)

Load Word Left LWL rt, offset(base) LWL rt, offset(base) LWL rt, offset(base)

Load Word Right LWR rt, offset(base) LWR rt, offset(base) LWR rt, offset(base)

Store Byte SB rt, offset(base) SB rt, offset(base) SB rt, offset(base)

Store Halfword SH rt, offset(base) SH rt, offset(base) SH rt, offset(base)

Store Word SW rt, offset(base) SW rt, offset(base) SW rt, offset(base)

Store Word Left SWL rt, offset(base) SWL rt, offset(base) SWL rt, offset(base)

Store Word Right SWR rt, offset(base) SWR rt, offset(base) SWR rt, offset(base)

Load/Store

Sync SYNC SYNC

Add Immediate ADDI rt, rs, immediate ADDI rt, rs, immediate ADDI rt, rs, immediate

Add Immediate Unsigned ADDIU rt, rs, immediate ADDIU rt, rs, immediate ADDIU rt, rs, immediate

Set On Less Than Immediate SLTI rt, rs, immediate SLTI rt, rs, immediate SLTI rt, rs, immediate

Set On Less Than Immediate

Unsigned

SLTIU rt, rs, immediate SLTIU rt, rs, immediate SLTIU rt, rs, immediate

AND Immediate ANDI rt, rs, immediate ANDI rt, rs, immediate ANDI rt, rs, immediate

OR Immediate ORI rt, rs, immediate ORI rt, rs, immediate ORI rt, rs, immediate

Exclusive-OR Immediate XORI rt, rs, immediate XORI rt, rs, immediate XORI rt, rs, immediate

ALU Immediate

Load Upper Immediate LUI rt, immediate LUI rt, immediate LUI rt, immediate

Add ADD rd, rs, rt ADD rd, rs, rt ADD rd, rs, rt

Add Unsigned ADDU rd, rs, rt ADDU rd, rs, rt ADDU rd, rs, rt

Subtract SUB rd, rs, rt SUB rd, rs, rt SUB rd, rs, rt

Subtract Unsigned SUBU rd, rs, rt SUBU rd, rs, rt SUBU rd, rs, rt

Set On Less Than SLT rd, rs, rt SLT rd, rs, rt SLT rd, rs, rt

Set On Less Than Unsigned SLTU rd, rs, rt SLTU rd, rs, rt SLTU rd, rs, rt

AND AND rd, rs, rt AND rd, rs, rt AND rd, rs, rt

OR OR rd, rs, rt OR rd, rs, rt OR rd, rs, rt

Exclusive-OR XOR rd, rs, rt XOR rd, rs, rt XOR rd, rs, rt

3-Operand

Register-Type

NOR NOR rd, rs, rt NOR rd, rs, rt NOR rd, rs, rt

Compatibility Among TX19, TX39 and R3000A Architectures

D-4

Category Instruction TX19 32-Bit ISA TX39 R3000A

Shift Left Logical SLL rd, rt, sa SLL rd, rt, sa SLL rd, rt, sa

Shift Left Logical Variable SLLV rd, rt, rs SLLV rd, rt, rs SLLV rd, rt, rs

Shift Right Logical SRL rd, rt, sa SRL rd, rt, sa SRL rd, rt, sa

Shift Right Logical Variable SRLV rd, rt, rs SRLV rd, rt, rs SRLV rd, rt, rs

Shift Right Arithmetic SRA rd, rt, sa SRA rd, rt, sa SRA rd, rt, sa

Shift

Shift Right Arithmetic

Variable

SRAV rd, rt, rs SRAV rd, rt, rs SRAV rd, rt, rs

MULT rs, rt MULT rs, rt MULT rs, rtMultiply

MULT rd, rs, rt MULT rd, rs, rt

MULTU rs, rt MULTU rs, rt MULTU rs, rtMultiply Unsigned

MULTU rd, rs, rt MULTU rd, rs, rt

Divide DIV rs, rt DIV rs, rt DIV rs, rt

Divide Unsigned DIVU rs, rt DIVU rs, rt DIVU rs, rt

Move From HI MFHI rd MFHI rd MFHI rd

Move From LO MFLO rd MFLO rd MFLO rd

Move To HI MTHI rd MTHI rd MTHI rd

Multiply and

Divide

Move To LO MTLO rd MTLO rd MTLO rd

MADD rs, rt MADD rs, rtMultiply-and-Add

MADD rd, rs, rt MADD rd, rs, rt

MADDU rs, rt MADDU rs, rt

Multiply-and-Add

Multiply-and-Add Unsigned

MADDU rd, rs, rt MADDU rd, rs, rt

Jump J target J target J target

Jump And Link JAL target JAL target JAL target

Jump And Link eXchange JALX target

Jump Register JR rs JR rs JR rs

Jump

Jump And Link Register JALR (rd,) rs JALR (rd,) rs JALR (rd,) rs

Branch On Equal BEQ rs, rt, offset BEQ rs, rt, offset BEQ rs, rt, offset

Branch On Not Equal BNE rs, rt, offset BNE rs, rt, offset BNE rs, rt, offset

Branch On Greater Than

Zero

BGTZ rs, offset BGTZ rs, offset BGTZ rs, offset

Branch On Greater Than or

Equal to Zero

BGEZ rs, offset BGEZ rs, offset BGEZ rs, offset

Branch On Less Than Zero BLTZ rs, offset BLTZ rs, offset BLTZ rs, offset

Branch On Less Than or

Equal to Zero

BLEZ rs, offset BLEZ rs, offset BLEZ rs, offset

Branch On Less Than Zero

And Link

BLTZAL rs, offset BLTZAL rs, offset BLTZAL rs, offset

Branch

Branch On Greater Than

Zero And Link

BGEZAL rs, offset BGEZAL rs, offset BGEZAL rs, offset

Compatibility Among TX19, TX39 and R3000A Architectures

D-5

Category Instruction TX19 32-Bit ISA TX39 R3000A

Branch On Equal Likely BEQL rs, rt, offset BEQL rs, rt, offset

Branch On Not Equal Likely BNEL rs, rt, offset BNEL rs, rt, offset

Branch On Greater Than

Zero Likely

BGTZL rs, offset BGTZL rs, offset

Branch On Greater Than or

Equal to Zero Likely

BGEZL rs, offset BGEZL rs, offset

Branch On Less Than Zero

Likely

BLTZL rs, offset BLTZL rs, offset

Branch On Less Than or

Equal to Zero Likely

BLEZL rs, offset BLEZL rs, offset

Branch On Less Than Zero

And Link Likely

BLTZALL rs, offset BLTZALL rs, offset

Branch-Likely

Branch On Greater Than

Zero And Link Likely

BGEZALL rs, offset BGEZALL rs, offset

Move To Coprocessor MTCz rt, rd MTCz rt, rd MTCz rt, rd

Move From Coprocessor MFCz rt, rd MFCz rt, rd MFCz rt, rd

Move Control To

Coprocessor

CTCz rt, rd CTCz rt, rd CTCz rt, rd

Move Control From

Coprocessor

CFCz rt, rd CFCz rt, rd CFCz rt, rd

Coprocessor Operation COPz cofun COPz cofun COPz cofun

Branch On Coprocessor z

True

BCzT offset BCzT offset BCzT offset

Branch On Coprocessor z

True Likely

BCzTL offset BCzTL offset BCzTL offset

Branch On Coprocessor z

False

BCzF offset BCzF offset BCzF offset

Branch On Coprocessor z

False Likely

BCzFL offset BCzFL offset BCzFL offset

Load Word To Coprocessor LWCz rt, offset(base)

Coprocessor

Store Word From Coprocessor SWCz rt, offset(base)

Move To CP0 MTC0 rt, rd MTC0 rt, rd

Move From CP0 MFC0 rt, rd MFC0 rt, rd

Restore From Exception RFE RFE

Debug Exception Return DERET DERET

Cache CACHE op, offset(base) CACHE op, offset(base)

Read Indexed TLB Entry† (TLBR) (TLBR) TLBR

Write Indexed TLB Entry† (TLBWI) (TLBWI) TLBWI

Write Random TLB Entry† (TLBWR) (TLBWR) TLBWR

System Control

Coprocessor

Probe TLB For Matching

Entry†

(TLBP) (TLBP) TLBP

Compatibility Among TX19, TX39 and R3000A Architectures

D-6

Category Instruction TX19 32-Bit ISA TX39 R3000A

System Call SYSCALL code SYSCALL code SYSCALL code

Breakpoint BREAK code BREAK code BREAK code

Special

Software Debug Breakpoint

Exception

SDBBP code SDBBP code

† No operation is performed in the TX19 and the TX39L.

Compatibility Among TX19, TX39 and R3000A Architectures

D-7

Table C-3 gives comparisons of the instruction sets supported by the TX19 16-bit ISA mode and the

MIPS16 ASE. The TX19 is object-code compatible with the MIPS16 ASE except that the

doubleword instructions plus the Load Word Unsigned (LWU) instruction are not implemented in

the TX19.

Table D-3 Instruction Sets of the TX19 16-bit ISA and the MIPS16 ASE

Category Instruction TX19 16-Bit ISA MIPS16 ASE

Load Byte LB ry, offset(base) LB ry, offset(base)

Load Byte Unsigned LBU ry, offset(base) LBU ry, offset(base)

Load Halfword LH ry, offset(base) LH ry, offset(base)

Load Halfword Unsigned LHU ry, offset(base) LHU ry, offset(base)

LW ry, offset(base) LW ry, offset(base)

LW ry, offset(pc) LW ry, offset(pc)

Load Word

LW ry, offset(sp) LW ry, offset(sp)

Load Word Unsigned LWU ry, offset(sp)

LD ry, offset(base)

LD ry, offset(pc)

Load Doubleword

LD ry, offset(sp)

Store Byte SB ry, offset(base) SB ry, offset(base)

Store Halfword SH ry, offset(base) SH ry, offset(base)

SW ry, offset(base) SW ry, offset(base)

SW ry, offset(pc) SW ry, offset(pc)

Store Word

SW ry, offset(sp) SW ry, offset(sp)

SD ry, offset(base)

SD ry, offset(pc)

Load and Store

Store Doubleword

SD ry, offset(sp)

ADDIU ry, rx, immediate ADDIU ry, rx, immediate

ADDIU rx, immediate ADDIU rx, immediate

ADDIU sp, immediate ADDIU sp, immediate

ADDIU rx, pc, immediate ADDIU rx, pc, immediate

Add Immediate

ADDIU rx, sp, immediate ADDIU rx, sp, immediate

DADDIU ry, rx, immediate

DADDIU ry, immediate

DADDIU ry, sp, immediate

DADDIU sp, immediate

Doubleword Add Immediate

DADDIU ry, pc, immediate

Set On Less Than Immediate SLTI rx, immediate SLTI rx, immediate

Set On Less Than Immediate Unsigned SLTIU rx, immediate SLTIU rx, immediate

Compare Immediate CMPI rx, immediate CMPI rx, immediate

ALU Immediate

Load Immediate LI rx, immediate LI rx, immediate

Compatibility Among TX19, TX39 and R3000A Architectures

D-8

Category Instruction TX19 16-Bit ISA MIPS16 ASE

Add Unsigned ADDU rz, rx, ry ADDU rz, rx, ry

Doubleword Add Unsigned DADDU rz, rx, ry

Subtract Unsigned SUBU rz, rx, ry SUBU rz, rx, ry

Doubleword Subtract Unsigned DSUBU rz, rx, ry

Set On Less Than SLT rx, ry SLT rx, ry

Set On Less Than Unsigned SLTU rx, ry SLTU rx, ry

Compare CMP rx, ry CMP rx, ry

Negate NEG rx, ry NEG rx, ry

AND AND rx, ry AND rx, ry

OR OR rx, ry OR rx, ry

Exclusive-R XOR rx, ry XOR rx, ry

Not NOT rx, ry NOT rx, ry

MOVE ry, r32 MOVE ry, r32

2/3-Operand Register-Type

Move

MOVE r32, rz MOVE r32, rz

Shift Left Logical SLL rx, ry, sa SLL rx, ry, sa

Shift Left Logical Variable SLLV ry, rx SLLV ry, rx

Shift Right Logical SRL rx, ry, sa SRL rx, ry, sa

Shift Right Logical Variable SRLV ry, rx SRLV ry, rx

Shift Right Arithmetic SRA rx, ry, sa SRA rx, ry, sa

Shift Right Arithmetic Variable SRAV ry, rx SRAV ry, rx

Doubleword Shift Left Logical DSLL rx, ry, sa

Doubleword Shift Left Logical Variable DSLLV ry, rx

Doubleword Shift Right Logical DSRL ry, sa

Doubleword Shift Right Logical Variable DSRLV ry, rx

Doubleword Shift Right Arithmetic DSRA ry, sa

Shift

Doubleword Shift Right Arithmetic Variable DSRAV ry, rx

Multiply MULT rx, ry MULT rx, ry

Multiply Unsigned MULTU rx, ry MULTU rx, ry

Doubleword Multiply DMULT rx, ry

Doubleword Multiply Unsigned DMULTU rx, ry

Divide DIV rx, ry DIV rx, ry

Divide Unsigned DIVU rx, ry DIVU rx, ry

Doubleword Divide DIV rx, ry DDIV rx, ry

Doubleword Divide Unsigned DIVU rx, ry DDIVU rx, ry

Move From HI MFHI rx MFHI rx

Multiply and Divide

Move From LO MFLO rx MFLO rx

Compatibility Among TX19, TX39 and R3000A Architectures

D-9

Category Instruction TX19 16-Bit ISA MIPS16 ASE

Jump And Link JAL target JAL target

Jump And Link eXchange JALX target JALX target

JR rx JR rxJump Register

JR ra JR ra

Jump

Jump And Link Register JALR ra, rx JALR ra, rx

Branch On Equal To Zero BEQZ rx, offset BEQZ rx, offset

Branch On Not Equal To Zero BNEZ rx, offset BNEZ rx, offset

Branch On T8 Equal To Zero BTEQZ offset BTEQZ offset

Branch On T8 Not Equal to Zero BTNEZ offset BTNEZ offset

Branch

Branch Unconditional B offset B offset

Breakpoint BREAK code BREAK code

Software Debug Breakpoint Exception SDBBP code SDBBP code

Special

Extend EXTEND immediate EXTEND immediate

Compatibility Among TX19, TX39 and R3000A Architectures

D-10

