

TB6642FG Usage Considerations

The TB6642FG is a full-bridge driver IC for a DC motor providing output transistors that employ a MOS structure.

Low ON-resistance MOSFETs and a PWM control help the TB6642FG exhibit lower heat generation thus efficient motor drive

Furthermore, the TB6642FG has two inputs, IN1 and IN2, which allow for selection of the four operation modes; forward (clockwise), reverse (counter-clockwise), short brake, and stop modes.

1. Power Supply Voltage

(1) Operating Power Supply Voltage Range

The absolute maximum voltage rating of the TB6642FG is 50 V. However, when it is actually used, the operating supply voltage must fall within the range between 10 V and 45 V.

(2) Power-ON/Power-OFF

Having a single VM as its power supply and the undervoltage lockout circuit, the TB6642FG has no special procedures for turning on and off itself. However, unstable power supplies result in abnormal IC operations. Therefore, it is recommended to run the motor after ensuring both the IN1 and IN2 are in Low states, and subsequently turn the IC on with the stable VM. Then the motor rotational direction should be controlled by switching the inputs.

It is likewise recommended to turn off the TB6642FG after the motor movement is completely stopped.

2. Output Current

Note that the absolute maximum output current rating of the TB6642FG varies with the VM. OUT1 and OUT2 must be kept under $4.5 \,\mathrm{A}$ when VM = $36 \,\mathrm{V}$; they must be kept under $4.0 \,\mathrm{A}$ when VM < $36 \,\mathrm{V}$.

Also, the usage conditions such as the ambient temperature, presence or absence of a heatsink, board layout and IC mount technique have effect on increase and decrease of the available average output current. The TB6642FG must be used with the absolute maximum output current rating of $4.0~\mathrm{A}$ when $T_j = 150$ °C or with the average output current of less than $4.5~\mathrm{A}$.

3. Control Inputs

Even if there are pulse inputs to IN1, IN2, PWM, they never seep into VM as long as when the VM power supply is turned off; therefore the TB6642FG will never be turned on.

Before releasing the TSD and ISD circuits, keep driving the IN1 and IN2 Low for more than 1 µs.

4. PWM Frequency

The PWM input through the PWM pin allows for the motor speed control.

(The PWM control is also accomplished by the PWM input through the IN1 and IN2 pins instead of the PWM pin.)

The motor controlled by the PWM frequency runs alternately in Normal mode and Short brake mode.

The TB6642FG internally generates the blank time when the upper and lower power transistors in the output circuit switch on and off so as to prevent the shoot-through current that occurs otherwise on overlap of the ON states of the upper and lower power transistors.

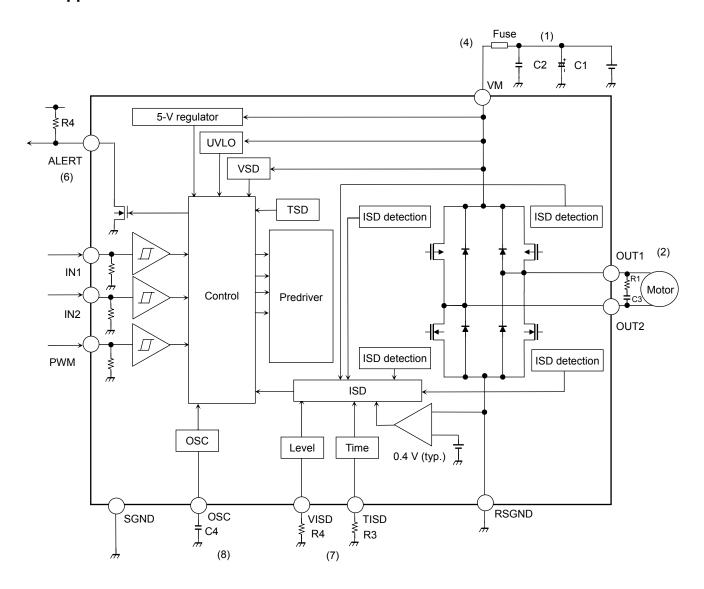

Therefore, the PWM control with the synchronous rectification is available without externally off time input.

In this document, the operational range of the PWM frequency is stated as 100 kHz. However, in actual operations, the output voltage will be distorted with respect to the input current even the TB6642FG runs within the stated operating range as shown in the switching characteristics below.

The TB6642FG can support the frequency of even over 100 kHz only as far as its output distortions with respect to the inputs and the duty gaps are taken into account when it is used.

Note that the values of the following switching characteristics are given as typical values. The TB6642FG must be used with a sufficient safety margin because they vary with power supply voltages, temperatures and IC variation.

Switching Characteristics



VM = 24 V Ta = 25°C

Characteristics	Value	Unit
t _{pLH}	650 (typ.)	
t _{pHL}	450 (typ.)	ns
t _r	90 (typ.)	113
t _f	130 (typ.)	

5. Application Circuit

(1) Capacitors Connected to the Power Supply Pin

Connect the capacitors between VM and GND as near the IC as possible.

Recommended Values

Characteristics	Symbol	Recommended Value	Remarks	
VM – GND	C1	10 μF to 100 μF	Electrolytic capacitor	
	C2	0.1 μF to 1 μF	Ceramic capacitor	

(2) Capacitor and Resistor Between the Outputs

Connect the R1 resistor and the C3 capacitor only for removing the brush noise of the motor. If so, limit the current by using R1 because the outputs momentarily move to the short circuit mode in conduction if C3 is not charged.

(3) Routing of VM, OUT1, OUT2 and RSGND

The motor causes a large current flow through the TB6642FG. Therefore, sufficient space must be secured on designing the IC wiring pattern. Particularly for RSGND and SGND, a space large enough for their connections to GND must be secured so as not to be affected by wiring impedance.

(4) Fuse

For preventing a continuous flow of a large current due to overcurrent or IC damages, an appropriate fuse must be placed in the power supply of the TB6642FG.

The TB6642FG may fail because of illegal use such as exceeding the absolute maximum ratings, incorrect wirings and abnormal pulse noise induced by wirings and loads. As a result, a large current continuously flows into the TB6642FG leads to smoking and ignition. To make these negative impacts as small as possible, appropriate control of the capacitance and weld time of the fuse as well as positioning of the fuse in the circuit is required.

The TB6642FG incorporates an overcurrent detection circuit (ISD). However, it does not necessarily protect the TB6642FG in any case. On activation of the ISD circuit, overcurrent conditions must be removed immediately. Depending on the usage and the use environment of the TB6642FG, like using it with the absolute maximum ratings being exceeded, the ISD circuit may not operate correctly; or the TB6642FG may be broken before the ISD circuit is activated. Even after the activation of the ISD circuit, the TB6642FG may be destroyed due to the IC heating if overcurrent continues flowing too long.

There is a concern that a secondary destruction of the IC due to continuous overcurrent may occur. Another concern is that the ISD circuit may not run due to its blank time, interacting with the output load conditions. Toshiba, therefore, describes in the specification that the ISD circuit does not necessarily run in any case as one of the usage considerations.

For instance, if a current that neither reaches the absolute maximum output current rating nor infringes the lower limit of the operating voltage of the ISD circuit continues flowing, the DMOS transistors in the output stage will be degraded. On the other hand, if once a current exceeding the absolute maximum output current rating flows into the DMOS transistors in the output stage, they are degraded as well. Therefore, even though the TB6642FG is not broken after a single overcurrent detection, it may be broken after two or three times of overcurrent detection because repeated detections will deepen the DMOS degradation.

Toshiba recommends the use of a fuse in the power supply to cope with such a secondary destruction.

(5) FIN

FIN plays a role as a heatsink. The heat protection must be considered when designing the board layout. (FIN is electrically connected to the rear surface of the chip; thus must be insulated or shorted to GND.)

(6) ALERT Pin

The ALERT pin behaves as an open-drain output that has a pull-up resistor in an external power source to send out the High state. When the Low state is sent out on the ALERT pin, the TB6642FG operates normally. The High state (High-impedance) on the ALERT pin indicates some failure of the TB6642FG operation (UVLO, TSD, VSD and/or ISD is running).

It is recommended to use a pull-up resistor of 10 k Ω to 100 k Ω .

(7) Resistor Controls of the VISD and TSID Pins

One ISD detection feature is provided for each of the four output power transistors.

The resistor control of the VISD pin enables the current threshold tuning. If any one of the four ISD detection runs over the ISD detection time (mask time), it turns off all the output power transistors (puts them in High-impedance state).

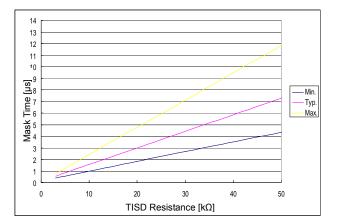
The resistor control of the TISD pin enables the ISD detection time (mask time) tuning.

Driving both the IN1 and IN2 pins Low releases the ISD detection and brings the TB6642FG back to the normal operation.

The changes of the external resistor values of the VISD pin with respect to the ISD current thresholds and those of the external resistor values of the TISD pin with respect to the ISD mask times are shown below in graph form as a guide.

The mask time must be controlled through the TISD pin so as to be long enough for preventing incorrect operations of the TB6642FG due to noises; and it must be controlled so as to be short enough for preventing the IC destruction upon overcurrent detection.

The resistors provided for the VISD and TISD pins must be controlled to be over $5~k\Omega$. When disabling the overcurrent detection feature, the TISD pin must be connected to GND.


4

External Resistor Value of the VISD Pin – ISD Current Thresholds Curves (given as a guide)

15.0 14.0 13.0 ₹12.0 11.0 Ontbut Current Threshold 5.0 4.0 3.0 1.0 Pch Typ Pch Min Pch Max Nch Typ Nch Min Nch Max 0.0 0 10 20 30 40 50 VISD Resistance

External Resistor Value of the TISD Pin – ISD Mask Time Curves (given as a guide)

Note: The complementary output circuit consists of N-channel and P-channel DMOS transistors, thus the ISD current thresholds show slight differences.

(8) OSC Pin

The IC operation resumes from modes of over current protection (ISD) and thermal shutdown (TSD) by setting OSC pin.

In case OSC pin is connected to the capacitor, ISD and TSD functions become invalid after their operations and the IC operation resumes automatically. (Automatic recovering type) OFF term is determined by setting the oscillation frequency with the capacitor connected to OSC pin.

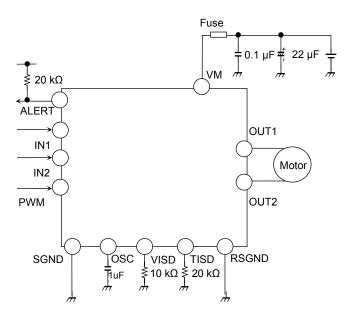
Example of calculation: OSC frequency: fosc = $8/(\cos [F] \times 10^6)$ [Hz] (typ,) OFF term: toff = $5.17/\cos [s]$ (typ.)

Example: When OSC is 1uF

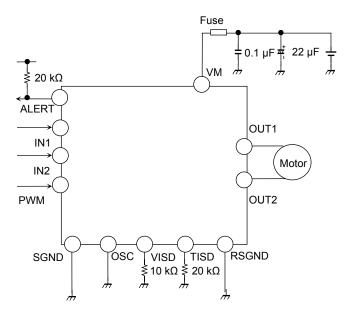
OSC frequency fosc = $8/(1uF \times 10^6) = 8[Hz]$ (typ.)

OFF term: toff = 5.17/8 = 0.646 [s] (typ.)

In case OSC pin is connected to the GND, OFF term is reset by outputting low for IN1 and IN2 or shutting down power supply. Then, the normal operation resumes. (Transitive recovering type)


5

2012/09/06



Application Circuit Example

• ISD and TSD: Automatic recovering type

· ISD and TSD: Transitive recovering type

6. Power Dissipation

The power loss of the TB6642FG can be roughly estimated by the following equations:

(1) When PWM Duty = 100%

$$P = VM \times I_{CC} + I_{O^2} \times R_{ON} (U + L)$$

For example, when VM = 24 V and the output current, $I_O = 0.5$ A (For I_{CC} and R_{ON} (U + L), refer to the electrical characteristics on the data sheet.)

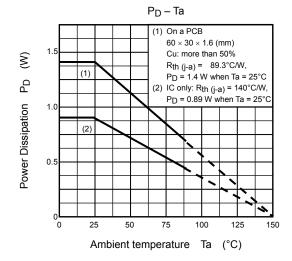
P (typ.) = 24 V × 2.5 mA (typ.) +
$$(0.5 \text{ A})^2 \times 0.55 \Omega$$
 (typ.) = 0.1975 W P (max) = 24 V × 8 mA (max) + $(0.5 \text{ A})^2 \times 0.9 \Omega$ (max) = 0.417 W

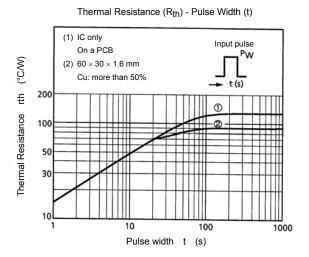
(2) When using the PWM control

The power dissipation when using the PWM control can be roughly calculated as follows: (Switching loss occurring actually is not considered.)

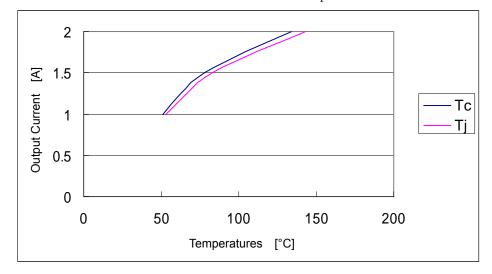
$$P = VM \times ICC + IO^2 \times RON (U + L) \times PWM duty$$

Mutual relationship of the ambient temperature, T_a , and the junction temperature, T_j , are roughly estimated by the following equation:

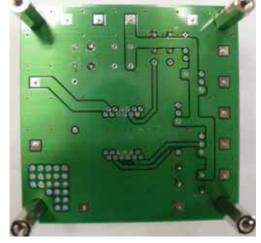

$$T_j = P \times R_{th} (j-a) + Ta$$


- *: Rth (j-a): Heat resistance between the junction and ambient temperatures
- *: Ta: Ambient temperature (Stable ambient temperature avoiding the affect of any heat radiation)

For example, when
$$R_{th}$$
 (j-a) = 89.3°C/W, T_a = 85°C, P (max) = 0.417 W, then T_j = 0.417 W × 89.3°C/W + 85°C = 122.24°C


Care must be taken for R_{th} (j-a) which is dependent on use conditions such as a board mount method. Higher the ambient temperature is, smaller will be the power dissipation.

Note that the equations described in this document are only the ways to find out rough estimation. A sufficient evaluation of the TB6642FG with the junction temperature less than 150°C is required for using the TB6642FG with a full safety margin.


The test curves of the package surface temperature, T_C [°C], and the junction temperature, T_j [°C], when $T_a = 25$ °C and current flows between the OUT1 and OUT2 outputs on a PCB are shown below:

Conditions: Ta = 25°C VM = 24 V IN2, PWM, RSGND = GND ,TISD, VISD; 20 k Ω , OSC = GND IN1 = -100 μ A (Diode voltage monitor circuit), on a PCB

Used PCB: Glass epoxy board $70 \times 70 \times 1.6$ (mm), a double-sided PCB, Cu 67%, Cu thickness 50 µm

Top View

Bottom View

The test curves shown above are only typical ones. They fluctuate depending on power supply voltages, temperatures and IC variation.

Also, the conditions such as board mount method and running motors affect the results; therefore the TB6642FG must be used after a sufficient evaluation and provided with a safety margin before used. Care must be taken for the junction temperature to be kept less than 150°C.

7. Pin Shorting

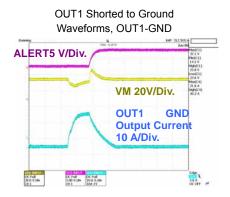
The results of evaluations performed by Toshiba are listed below.

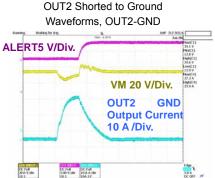
The TB6642FG has never been destroyed even when the following pairs of the pins are shorted together. However, amount of the current flow upon short depends on how the VISD and TISD pins are controlled.

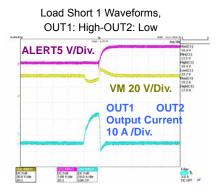
Also, power supply impedance and shorted wiring impedance affects amount of the current flow on short. Furthermore, whether or not the TB6642FG is destroyed depends on the power supply voltage, temperature and the IC variation. Therefore, a sufficient evaluation of the TB6642FG in your application and providing a safety margin are required.

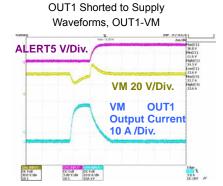
For example, if the TISD pin is connected to GND under the following conditions not to make the TB6642FG activate the ISD circuit, the output current continues flowing and finally would destroy the TB6642FG. Therefore, care must be taken not to break the TB6642FG.

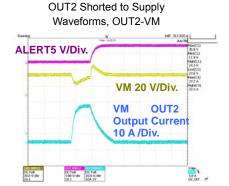
Adjacent Shorted Pin Numbers	Adjacent Shorted Pin Names	Condition of TB6642FG	Adjacent Shorted Pin Numbers	Adjacent Shorted Pin Names	Condition of TB6642FG
1 – 2	ALERT – OSC	Not destroyed	9 – 10	N.C – OUT2	Not destroyed
2 – 3	OSC - IN1	Not destroyed	10 – 11	OUT2 – N.C	Not destroyed
3 – 4	IN1 – SGND	Not destroyed	11 – 12	N.C – VM	Not destroyed
4 – FIN	SGND – FIN(GND)	Not destroyed	12 – FIN	VM – FIN(GND)	Not destroyed
FIN – 5	FIN(GND) – IN2	Not destroyed	FIN – 13	FIN(GND) – VISD	Not destroyed
5 – 6	IN2 – N.C	Not destroyed	13 – 14	VISD - TISD	Not destroyed
6 – 7	N.C – OUT1	Not destroyed	14 – 15	TISD – PWM	Not destroyed
7 – 8	OUT1 – RSGND	Not destroyed	15 – 16	PWM – N.C.	Not destroyed

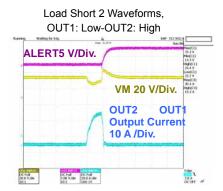

Conditions: VM = 24 V, Ta = 25°C, RSGND = GND, TISD, VISD = 20 k Ω Between VM and GND: Electrolytic capacitor of 10 μ F + ceramic capacitor of 0.1 μ F


16	15	14	13		12	11	10	9
N.C.	PWM	TISD	VISD	FIN	VM	N.C.	OUT2	N.C.
ALERT	osc	IN1	SGND	FIN	IN2	N.C.	OUT1	RSGND
1	2	3	4		5	6	7	8
		J						




Shorting Condition	Shorted Pin Names	Condition of TB6642FG
OUT1 to GND	OUT1 – GND	Not destroyed
OUT1 to Supply	OUT1 – VM	Not destroyed
OUT2 to GND	OUT2 – GND	Not destroyed
OUT2 to Supply	OUT2 – VM	Not destroyed
Load Short 1	OUT1: High – OUT2: Low	Not destroyed
Load Short 2	OUT1: Low – OUT2: High	Not destroyed


Conditions: VM = 24 V, Ta = 25°C, RSGND = GND, ALERT, TISD, VISD = 20 k Ω Between VM and GND: Electrolytic capacitor of 10 μ F + ceramic capacitor of 0.1 μ F



Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.

To shib does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations

Notes on Handling of ICs

- (1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
 Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
- (2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
- (3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.

 Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
- (4) Do not insert devices in the wrong orientation or incorrectly.
 - Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

11

In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

Points to Remember on Handling of ICs

(1) Over current Protection Circuit

Over current protection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all circumstances. If the Over current protection circuits operate against the over current, clear the over current status immediately.

Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the over current protection circuit to not operate properly or IC breakdown before operation. In addition, depending on the method of use and usage conditions, if over current continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.

(2) Thermal Shutdown Circuit

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately. Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.

(3) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (TJ) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

(4) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

13 2012/09/06