
TOSHIBA

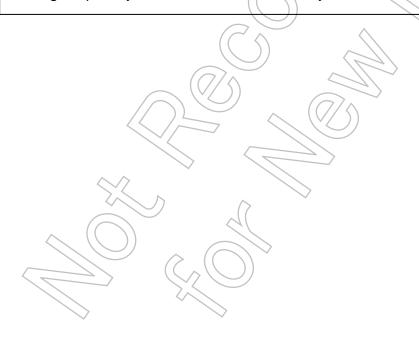
TOSHIBA Original CMOS 32-Bit Microcontroller

TLCS-900/H2 Series

TMP94C241CFG

TOSHIBA CORPORATION

Semiconductor Company


Preface

Thank you very much for making use of Toshiba microcomputer LSI. Before using this LSI, refer to section "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = ($\overline{\text{NMI}}$, INTO), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode (RUN is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 32-bit Microcontroller TMP94C241CFG

Outline and Device Characteristics

TMP94C241C is high-speed advanced 32-bit microcontroller developed for controlling equipment which processes mass data.

TMP94C241C is a microcontroller which has a high-performance CPU (900/H2 CPU) and various built-in I/Os. And TMP94C241C is enhanced memory interface functions.

TMP94C241CFG is housed in an 160-pin mini flat package.

Device characteristics are as follows:

(1) CPU: 32-bit CPU (900/H2 CPU)

- Compatible with TLCS-900, 900/L, 900/L1, 900/H's instruction code
- 16 Mbytes of linear address space
- General-purpose registers and register banks
- Micro DMA: 8 channels (250 ns/4 bytes at 20 MHz)
- (2) Minimum instruction execution time: 50 ns (at 20 MHz)
- (3) Internal memory

Internal RAM: 2 Kbytes (can use for code section)

Internal ROM: None

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as

set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations that
 regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring
 as a result of noncompliance with applicable laws and regulations.

- (4) External memory expansion
 - Expandable up to 16 Mbytes (shared program/data area)
 - Can simultaneously support 8-/16-bit width external data bus
- (5) Memory controller
 - Chip select output: 6 channels
- (6) DRAM controller: 2 channels

Direct interface (supported 8-/16-/32-bit external data bus)

- (7) 8-bit timer: 4 channels
- (8) 16-bit timer: 4 channels
- (9) Serial interface: 2 channels
- (10) 10-bit AD converter: 8 channels (with sample hold circuit)
- (11) 8-bit DA converter: 2 channels (with CMOS-AMP)
- (12) Watchdog timer
- (13) Interrupt controller

18 internal interrupts

10 external interrupts

(14) I/O port: 64 pins

(15) Package: 160-pin QFP (QFP160-P-2828-0.65A)

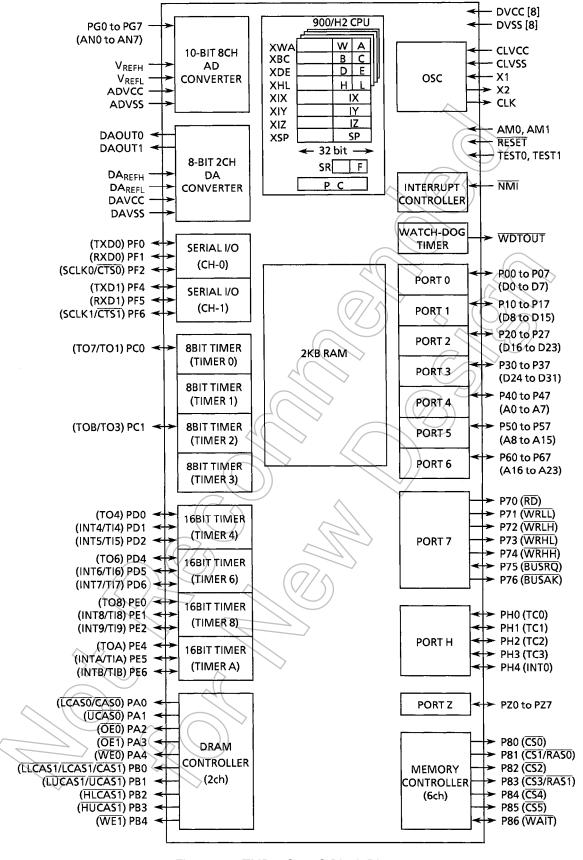


Figure 1.1 TMP94C241C Block Diagram

2. Pin Assignment and Functions

2.1 Pin Assignment (Top view)

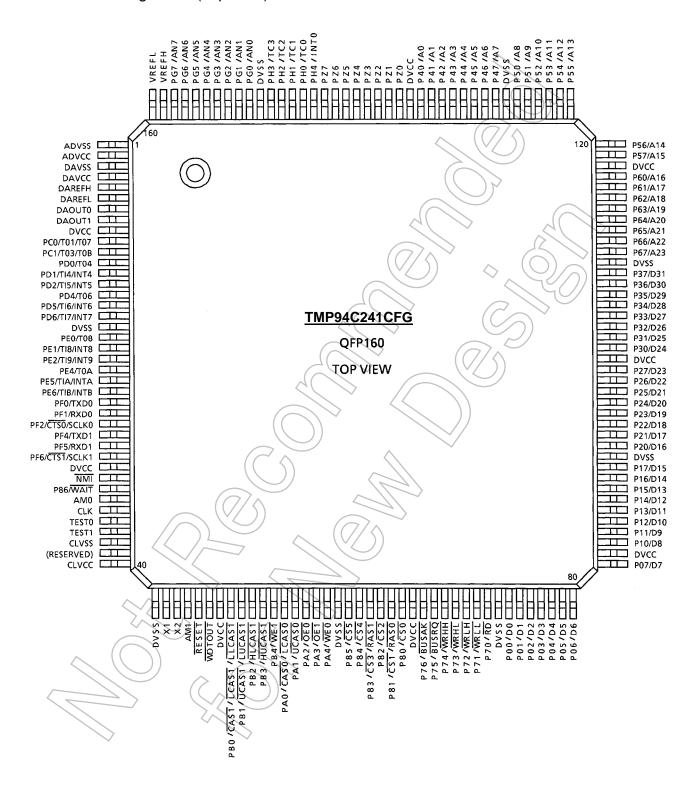


Figure 2.1 Pin Assignment

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Table 2.2.1 Pin Names and Functions (1/6)

Pin name	Number	I/O	Functions
	of pins		
P00 to P07	8	I/O	Port 0: I/O port
D0 to D7	(TTL)	I/O	Data: 0 to 7 for data bus
			TMP94C241C is external ROM type, these pins are initialized to this function.
			When TMP94C241C doesn't access external memories, these pins are put in the high-impedance state.
P10 to P17	8	I/O	Port 1: I/O port
D8 to D15	(TTL)	I/O	Data: 8 to 15 for data bus
			If TMP94C241C is external ROM type and is start with 16- or 32-bit data bus, these pins are initialized to this function.
			When TMP94C241C doesn't access external memories, these pins are put in the high-impedance state.
P20 to P27	8	I/O	Port 2: I/O port
D16 to D23	(TTL)	I/O	Data: 16 to 23 for data bus
			If TMP94C241C is external ROM type and is start with 32-bit data bus, these pins are initialized to this function.
			When TMP94C241C doesn't access external memories, these pins are put in the
			high-impedance state.
P30 to P37	8	I/O	Port 3: I/O port
D24 to D31	(TTL)	I/O	Data: 24 to 31 for data bus
			If TMP94C241C is external ROM type and is start with 32-bit data bus, these pins are initialized
			to this function.
			When TMP94C241C doesn't access external memories, these pins are put in the high-impedance state.
P40 to P47	8	I/O	Port 4: I/O port
A0 to A7		Output	Address: 0 to 7 for address bus
			TMP94C241C is external ROM type, these pins are initialized to this function.
			When TMP94C241C doesn't access external memories, these pins don't change.
P50 to P57	8	J/O	Port,5: I/O port
A8 to A15		Output	Address: 8 to 15 for address bus
	<		TMP94C241C is external ROM type, these pins are initialized to this function.
		///	When TMP94C241C doesn't access external memories, these pins don't change.
P60 to P67	8	I/O	Port 6: I/O port
A16 to A23	_ ^	Output	Address: 16 to 23 for address bus
			TMP94C241C is external ROM type, these pins are initialized to this function.
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\sim	When TMP94C241C doesn't access external memories, these pins don't change.
P70	1	Output	Port 70: Output port (output "high" when initialized)
RD 🔨	(()	Output	Read: Strobe signal for reading external memory
			When TMP94C241C doesn't access external memory, doesn't output strobe.
			TMP94C241C is external ROM type, these pins are initialized to this function.
P71	1/	Output	Port 71: Output port (output "high" when initialized)
WRLL		Output	Write LL: Strobe signal for writing data on pins D0 to D7
	V		When TMP94C241C doesn't access external memory, doesn't output strobe.

Table 2.2.2 Pin Names and Functions (2/6)

Pin name	Number of pins	I/O	Functions
P72 WRLH	1	Output Output	Port 72: Output port (output "high" when initialized) Write LH: Strobe signal for writing data on pins D8 to D15 When TMP94C241C doesn't access external memory, doesn't output strobe.
P73 WRHL	1	Output Output	Port 73: Output port (output "high" when initialized) Write HL: Strobe signal for writing data on pins D16 to D23 When TMP94C241C doesn't access external memory, doesn't output strobe.
P74 WRHH	1	Output Output	Port 74: Output port (output "high" when initialized) Write HH: Strobe signal for writing data on pins D24 to D31 When TMP94C241C doesn't access external memory, doesn't output strobe.
P75 BUSRQ	1	I/O Input	Port 75: I/O port Bus request: Signal used to request high impedance for memory interface signals. If these signals are used as port, there are not change. The memory interface signals are follows: A0 to A23, D0 to D31, /RD, /WRLL, /WRLH, /WRHL, /WRHH, The output signals of memory controller.
P76 BUSAK	1	Output Output	Port 76: Output port (output "high" when initialized) Bus acknowledge: Signal indicating that request of /BUSRQ signal is accepted.
P80 CS0	1	Output Output	Port 80: Output port (output "high" when initialized) Chip select 0: Outputs "low" if address is within specified address area.
P81 CS1 RAS0	1	Output	Port 81: Output port (output "high" when initialized) Chip select 1: Outputs "low" if address is within specified address area. Row address strobe 0: Outputs /RAS strobe for DRAM if address is within specified address area.
P82 CS2	1	Output Output	Port 82: Output port (output "high" when initialized) Chip select 2: Outputs "low" if address is within specified address area.
P83 CS3 RAS1	1	Output Output Output	Port 83: Output port (output "high" when initialized) Chip select 3: Outputs "low" if address is within specified address area. Row address strobe 1: Outputs /RAS strobe for DRAM if address is within specified address area
P84 CS4	1	Output Output	Port 84: Output port (output "high" when initialized) Chip select 4: Outputs "low" if address is within specified address area.
P85 CS5	1	Output Output	Port 85: Output port (output "high" when initialized) Chip select 5: Outputs "low" if address is within specified address area.
P86 WAIT		I/O Input	Port 86: I/O port Wait: Signal used to request CPU bus wait

Table 2.2.3 Pin Names and Functions (3/6)

Pin name	Number of pins	I/O	Functions
PA0 CAS0 LCAS0	1	Output Output Output	Port A0: Output port (output "high" when initialized) Column address strobe 0: Outputs /CAS strobe for DRAM if address is within specified address area. Lower column address strobe 0: Outputs lower /CAS strobe for DRAM if address is within specified address area.
PA1 UCASO	1	Output Output	Port A1: Output port (output "high" when initialized) Upper Column address strobe 0: Outputs upper /CAS strobe for DRAM if address is within specified address area.
PA2 OE0	1	Output Output	Port A2: Output port (output "high" when initialized) Output enable 0: Outputs read enable signal for DRAM.
PA3 OE1	1	Output Output	Port A3: Output port (output "high" when initialized) Output enable 1: Outputs read enable signal for DRAM.
PA4 WE0	1	Output Output	Port A4: Output port (output "high" when initialized) Write enable 0: Outputs write enable signal for DRAM.
PB0 CAS1 LCAS1 LLCAS1	1	Output	Port B0: Output port (output "high" when initialized) Column address strobe 1: Outputs /CAS strobe for DRAM if address is within specified address area. Lower column address strobe 1: Outputs lower /CAS strobe for DRAM if address is within specified address area. Lower lower column address strobe 1: Outputs lower lower /CAS strobe for DRAM if address is within specified address area.
PB1 UCAS1 LUCAS1	1	Output Output Output	Port B1: Output port (output "high" when initialized) Upper Column address strobe 1: Outputs upper /CAS strobe for DRAM if address is within specified address area. Lower upper column address strobe 1: Outputs lower upper /CAS strobe for DRAM if address is within specified address area.
PB2 HLCAS1	1	Output Output	Port B2: Output port (output "high" when initialized) Heighten lower column address strobe 1: Outputs heighten lower /CAS strobe for DRAM if address is within specified address area.
PB3 HUCAS1	1	Output Output	Port B3: Output port (output "high" when initialized) Heighten upper column address strobe 1: Outputs heighten upper /CAS strobe for DRAM if address is within specified address area.
PB4 WE1	1	Output Output	Port B4: Output port (output "high" when initialized) Write enable 1: Outputs write enable signal for DRAM.

Table 2.2.4 Pin Names and Functions (4/6)

Pin name	Number of pins	I/O	Functions
PC0 TO1 TO7	1	I/O Output Output	Port C0: I/O port Timer output 1: 8-bit timer 0 or 1 output Timer output 7: 16-bit timer 7 output
PC1 TO3 TOB	1	I/O Output Output	Port C1: I/O port Timer output 3: 8-bit timer 2 or 3 output Timer output B: 16-bit timer B output
PD0 TO4	1	I/O Output	Port D0: I/O port Timer output 4: 16-bit timer 4 output
PD1 TI4 INT4	1	I/O Input Input	Port D1: I/O port Timer input 4: 16-bit timer 4 input Interrupt request pin 4: Interrupt request pin with programmable rising / falling edge
PD2 TI5 INT5	1	I/O Input Input	Port D2: I/O port Timer input 5: 16-bit timer 4 input Interrupt request pin 5: Interrupt request pin with rising edge
PD4 TO6	1	I/O Output	Port D4: I/O port Timer output 6: 16-bit timer 6 output
PD5 TI6 INT6	1	I/O Input Input	Port D5: I/O port Timer input 6: 16-bit timer 6 input Interrupt request pin 6: Interrupt request pin with programmable rising / falling edge
PD6 TI7 INT7	1	I/O Input Input	Port D6: I/O port Timer input 7: 16-bit timer 6 input Interrupt request pin 7: Interrupt request pin with rising edge
PE0 TO8	1	I/O Output	Port E0: I/O port Timer output 8: 16-bit timer 8 output
PE1 TI8 INT8	1	I/O Input Input	Port E1: I/O port Timer input 8: 16-bit timer 8 input Interrupt request pin 8: Interrupt request pin with programmable rising / falling edge
PE2 TI9 INT9	1	I/O Input Input	Port E2: I/O port Timer input 9: 16-bit timer 8 input Interrupt request pin 9: Interrupt request pin with rising edge
PE4 TOA	\$	I/O Output	Port E4: I/O port Timer output A: 16-bit timer A output
PE5 TIA INTA		I/O Input Input	Port E5: I/O port Timer input A: 16-bit timer A input Interrupt request pin A: Interrupt request pin with programmable rising/falling edge
PE6 TIB INTB	1>	I/O Input Input	Port E6: I/O port Timer input B: 16-bit timer A input Interrupt request pin B: Interrupt request pin with rising edge

Table 2.2.5 Pin Names and Functions (5/6)

Pin name	Number of pins	I/O	Functions
PF0 TXD0	1	I/O Output	Port F0: I/O port Serial send data 0 (open drain output is available)
PF1 RXD0	1	I/O Input	Port F1: I/O port Serial receive data 0
PF2 CTS0 SCLK0	1	I/O Input I/O	Port F2: I/O port Serial data receive enable 0 Serial clock I/O 0
PF4 TXD1	1	I/O Output	Port F4: I/O port Serial send data 1 (open drain output is available)
PF5 RXD1	1	I/O Input	Port F5: I/O port Serial receive data 1
PF6 CTS1 SCLK1	1	I/O Input I/O	Port F6: I/O port Serial data receive enable 1 Serial clock I/O 1
PG0 to PG7 AN0 to AN7	8	Input Input	Port G: Input port Analog input: Input to 10-bit AD converter
DAOUT0	1	Output	DA output 0: Output from 8-bit DA converter 0
DAOUT1	1	Output	DA output 1: Output form 8-bit DA converter 1
PH0 TC0	1	I/O Output	Port H0: I/O port Terminal count 0: Outputs "high" strobe when counter value of micro-DMA channel 0 is "0".
PH1 TC1	1	I/O Output	Port H1: I/O port Terminal count 1: Outputs "high" strobe when counter value of micro-DMA channel Lis "0".
PH2 TC2	1	I/O Output	Port H2: I/O port Terminal count 2: Outputs "high" strobe when counter value of micro-DMA channel 2 is "0".
PH3 TC3	1	I/O Output	Port H3: I/O port Terminal count 3: Outputs "high" strobe when counter value of micro-DMA channel 3 is "0".
PH4 INT0	1	I/O Input	Port H4: I/O port (schmitt input) Interrupt request pin 0: Interrupt request pin with programmable level/rising edge. (schmitt input)
PZ0 to PZ7	8	70	Port Z: I/O port
NMI		Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program. (schmitt input)
TUOTOW		Output	Watchdog timer output pin

Table 2.2.6 Pin Names and Functions (6/6)

Pin name	Number of pins	I/O	Functions
AM0, 1	2	Input	Address mode: Selects external Data Bus width. AM1 = "low" AM0 = "low": Start with 8-bit external Data Bus AM1 = "low" AM0 = "high": Start with 16-bit external Data Bus AM1 = "high" AM0 = "low": Start with 32-bit external Data Bus AM1 = "high" AM0 = "high": Don't use this setting
TESTO, 1	2	Input	Test: Input "low" when using
CLK	1	Output	Clock output: Outputs system clock
X1/X2	2	I/O	Oscillator connecting pin
RESET	1	Input	Reset: Initializes LSI (with pull-up resistor) (schmitt input)
VREFH	1	Input	Pin for reference voltage input to AD converter ("high" level)
VREFL	1	Input	Pin for reference voltage input to AD converter ("low" level)
DAREFH	1	Input	Pin for reference voltage input to DA converter ("high" level)
DAREFL	1	Input	Pin for reference voltage input to DA converter ("low" level)
ADVCC	1		Power supply pin for 10-bit AD converter
ADVSS	1	<u> </u>	GND pin for 10-bit AD converter (0V)
DAVCC	1		Power supply pin for 8-bit DA converter
DAVSS	1		GND pin for 8-bit DA converter (0V)
CLVCC	1		Power supply pin for clock doubler
CLVSS	1		GND pin for clock doubler
DVCC	8		Power supply pin (+ 5V) (Connect all DVCC pins to +5V.)
DVSS	8		GND pin (0V) (Connect all DVSS pins to GND(0V).)

3. Operation

The following is a block-by-block description of the functions and basic operation of TMP94C241C.

3.1 CPU

TMP94C241C contains an advanced, high-speed 32-bit CPU (900/H2 CPU).

3.1.1 CPU Outline

900/H2 CPU is high-speed and high-performance CPU based on 900/H CPU. 900/H2 CPU has expanded 32-bit internal and external data bus to process instructions more quickly.

Outline of 900/H2 CPU are as follows:

	900/H2 CPU
Width of CPU Address Bus	24-bit
Width of CPU Data Bus	32-bit
Internal Operating Frequency	20 MHz
Minimum Bus Cycle	1-clock access (50ns @ 20 MHz)
Bus Sizing Function	8/16/32-bit
Internal RAM	32-bit 1-clock access
Internal I/O	8/16/32-bit 2-clock access
External Device	8/16/32-bit 2-clock access (can insert some waits)
Minimum Instruction Execution Cycle	1-clock
Conditional Jump	2-clock
Instruction Queue Buffer	12-byte
Instruction Set	No-MIN instruction No LDX instruction
CPU mode	No MIN (minimum) mode
Micro DMA	8-channel

3.1.2 Reset Operation

When resetting the TMP94C241C microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then set the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks (2 μ s at 10 MHz).

When the reset is accept, the CPU:

• Set the program counter (PC) to the reset vector stored at addresses FFFF00H to FFFF02H.

PC (7:0) ← Value at address FFFF00H PC (15:8) ← Value at address FFFF01H PC (23:16) ← Value at address FFFF02H

- Sets the stack pointer (XSP) to 00000000H
- Sets bits IFF2 to IFF0 of the status register (SR) to 111 (this sets the interrupt level mask register to level 7).
- Clears bits RFP1 to 0 of the status register (SR) to 00 (this sets the register banks to 0).

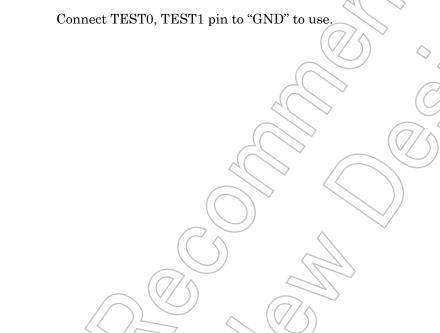
After reset is released, the CPU begins execution from the instruction at the location specified in the PC. Other than the changes described above, reset does not alter any internal CPU registers.

When reset is accepted, processing of the internal I/O, port, and other pins are as follows:

- Initializes the internal I/O registers as table of "Special Function Register" in section 5.
- Set ports pins to general-purpose input port mode.
- Set the WDTOUT pin to "Low". (However, when reset is released, sets to "High".)

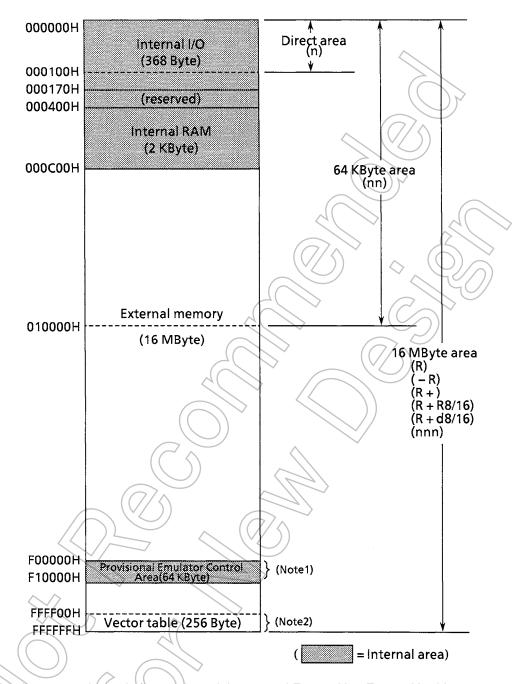
When external reset is released, built-in clock doubler begins operation and after the stable time (2¹⁴ external clock cycles: 1.6 ms at 10 MHz) elapse of the circuit, internal reset is released.

The operation of memory controller and DRAM controller cannot be insured until power supply becomes stable after power on reset. The external RAM data provided before turning on the TMP94C241C may be spoiled because the control signals are unstable until power supply becomes stable after power on reset.


3.1.3 Data bus size after reset release

The start data bus size is determined depending on the state of a AM1/AM0 pins just after reset release. Then, the external memory is accessed as follows.

AM1	AM0	Start mode
"0"	"0"	8 bit data bus (1wait)
"0"	"1"	16 bit data bus (1wait)
"1"	"0"	32 bit data bus (1wait)
"1"	"1"	Don't use this setting


For the details, refer to section 3.6 "Memory Controller".

3.1.4 Setting of TEST0, TEST1

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP94C241C.

Note 1: Emulator control area is for emulator, it is mapped F00000H to F10000H address.

Don't use this area. On emulator \overline{WR} signal and \overline{RD} signal are asserted, when this area is accessed. Be careful to use external memory.

Note 2: Don't use the last 16-byte area (FFFFF0H to FFFFFFH). This area is reserved.

Figure 3.2.1 Memory Map

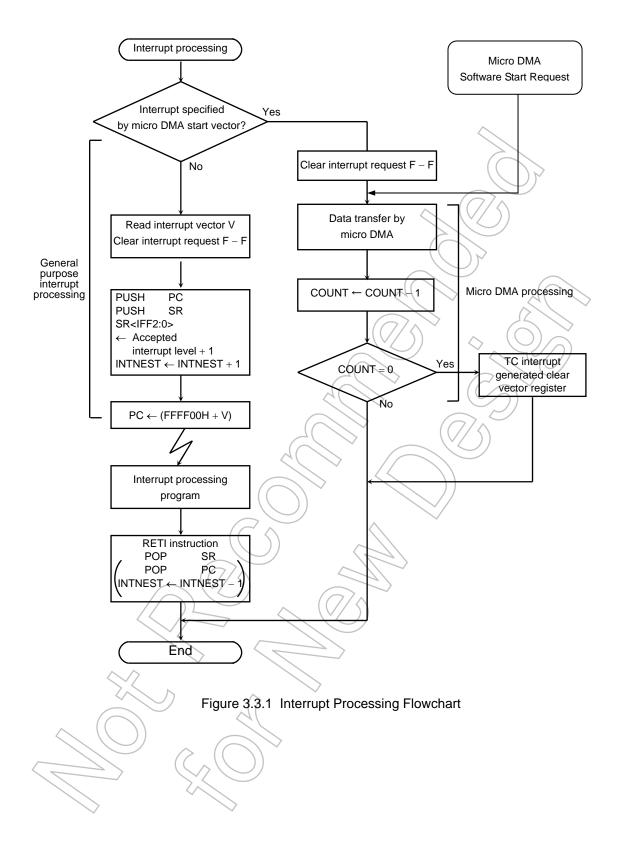
3.3 Interrupts

TLCS-900/H2 interrupts are controlled by the CPU interrupt mask flip-flops <IFF2:0> and the internal interrupt controller. Interrupts can come from a total of 38 sources:

- Interrupts from CPU itself: two (Software interrupt and illegal instructions)
- Interrupts from external pins (NMI, INTO, INT4 to INTB): 10
- Interrupts from internal I/O: 18
- Interrupts from micro DMA: 8

Individual interrupt vector numbers (fixed) are allocated to each interrupt source. Six levels of priority (variable) can be allocated to maskable interrupts. The priority of non-maskable interrupts is fixed at "7" (the highest priority).

When an interrupt is generated, the interrupt controller sends the priority value of that interrupt to the CPU. If more than one interrupt is generated simultaneously, the interrupt with the highest priority (7 non-maskable interrupts is the highest) is sent to the CPU.


The CPU compares the priority value with the value of the CPU interrupt mask register <IFF2:0>, and accepts the interrupt if the priority is higher or equal to the value in the CPU interrupt mask register. The value of the interrupt mask register <IFF2:0> can be modified using the EI instruction (EI num sets <IFF2:0> to num). For example, executing "EI 3" enables acceptance of non-maskable interrupts and maskable interrupts with a priority of 3 or higher set in the interrupt controller.

The DI instruction (sets <IFF2:0> to "7") is operationally the same as specifying "EI 7". As maskable interrupts have priorities in the range of 0 to 6, the DI instruction disables acceptance of maskable interrupts. The EI instruction is valid immediately after its execution.

In addition to the general purpose interrupt processing mode described above, there is also a micro DMA processing mode. The micro DMA is a mode used by the CPU to automatically transfer 1 byte, 2 bytes, and 4 bytes. It enables the CPU to transfer to the internal or external memories and the built-in I/O at high speed.

Furthermore, TMP94C241C has a software start function to request by software except that micro DMA is requested by interrupt sources.

Figure 3.3.1 is a flowchart showing overall interrupt processing.

3.3.1 General-purpose Interrupt Processing

When accepting an interrupt the CPU operates as follows, which is the same as it is in TLCS-900/L and TLCS-900/H.

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated simultaneously, the interrupt vectors in accordance with the default priority (which is fixed as follows: the smaller the vector value, the higher the priority), then clears the interrupt request.
- (2) The CPU pushes the program counter (PC) and the status register (SR) to the system stack area (Area indicated by the XSP).
- (3) The CPU sets a value in the CPU interrupt mask register <IFF2:0> that is higher by 1 than the value of the accepted interrupt level. However, if the value is 7, 7 is set without an increment.
- (4) The CPU sets the interrupt nesting counter (INTNEST) to +1.
- (5) The CPU jumps to address FFFF00H + interrupt vector, then starts the interrupt processing routine.

All the above processing is completed in 10 states (Internal operation with 500 ns at 20 MHz) in the most approximate processing (The external memory is 32-bit data bus 0 wait, the stack area is the built-in RAM and the stack pointer value is an integer multiple of 4).

To return to the main routine after completion of the interrupt processing, the RETI instruction is usually used. Executing this instruction restores the contents of the program counter and the status registers, and decrements the interrupt nesting counter (INTNEST).

Though acceptance of non-maskable interrupts cannot be disabled by program, acceptance of maskable interrupts can. A priority can be set for each source of maskable interrupts. The CPU accepts an interrupt request with a priority higher than the value in the CPU mask register <IFF2:0>. The CPU mask register <IFF2:0> is set to a value higher by 1 than the priority of the accepted interrupt. Thus, if an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest.

If an interrupt generated while the CPU is performing processes (1) to (5) for an earlier interrupt, the new interrupt is sampled immediately after the start instruction of the interrupt processing routine is executed. Setting DI as the start instruction disables maskable interrupt nesting.

Resetting initializes the CPU mask register <IFF2:0> to 7; therefore, maskable interrupts are disabled.

The addresses FFFF00H to FFFFFFH (256 bytes) of TMP94C241C are assigned for interrupt vector area. The interrupt vector area is depended on the derivative products.

Table 3.3.1 TMP94C241C Interrupt Table

Default priority	Type	Interrupt source	Vector	Address refer to vector	DMA start vector
1		"SWI 0" instruction or RESET	0000H	FFFF00H	_
2		"SWI 1" instruction or default vector	0004H	FFFF04H	_
3		"SWI 2" instruction or "INT-UNDEF"	0008H	FFFF08H	_
4		"SWI 3" instruction	000CH	FFFF0CH	_
5	Non-	"SWI 4" instruction	0010H	FFFF10H	_
6	maskable	"SWI 5" instruction	0014H	FFFF14H	_
7		"SWI 6" instruction	0018H	FFFF18H	_
8		"SWI 7" instruction	001CH/	FFFF1CH	_
9	:	NMI Pin	0020H	FFFF20H	_
10		INTWD: Watch-dog timer	0024H	FFFF24H	_
-		(Micro-DMA)	(f	-	_
11		INTO Pin	0028H	FFFF28H	0AH(Note1)
12		INT4 Pin	002CH	FFFF2CH	OBH
13		INT5 Pin	0030Н	FFFF30H	0CH
14		INT6 Pin	0034H	FFFF34H	0DH
15		INT7 Pin	√ 0038H	FFFF38H	OEH
_		(Reserved)	003CH (FFFF3CH	-
16		INT8 Pin	0040H	FFFF40H	7) 10H
17		INT9 Pin	0044H	FFFF44H	11H
18		INTA Pin	0048H /	FFFF48H	12H
19		INTB Pin	004CH	FFFF4CH	13H
20		INTTO: 8-bit timer (Timer 0)	0050H	FFFF50H	14H
21		INTT1: 8-bit timer (Timer 1)	0054H	FFFF54H	15H
22		INTT2: 8-bit timer (Timer 2)	0058H	FFFF58H	16H
23		INTT3: 8-bit timer (Timer 3)	005CH	FFFF5CH	17H
24		INTTR4: 16-bit timer (Treg 4)	0060H	FFFF60H	18H
25		INTTR5: 16-bit timer (Treg 5)	0064H	FFFF64H	19H
26		INTTR6: 16-bit timer (Treg 6)	0068H	FFFF68H	1AH
27		INTTR7: 16-bit timer (Treg 7)	006CH	FFFF6CH	1BH
28	Maskable	INTTR8: 16-bit timer (Treg 8)	0070H	FFFF70H	1CH
29		INTTR9: 16-bit timer (Treg 9)	0074H	FFFF74H	1DH
30		INTTRA: 16-bit timer (Treg A)	0078H	FFFF78H	1EH
31		INTTRB: 16-bit timer (Treg B)	007CH	FFFF7CH	1FH
32		NTRX0: Serial receive 0	0080H	FFFF80H	20H (Note2)
33	<	INTTX0: Serial send 0	0084H	FFFF84H	2011(Note2)
34		INTRX1: Serial receive 1	0088H	FFFF88H	22H (Note2)
35		INTTX1: Serial send 1	008CH	FFFF8CH	23H
36		INTAD: AD conversion completion	0090H	FFFF90H	24H
37	<>/>	INTTC0: micro-DMA completion Ch.0	0094H	FFFF94H	25H
38	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	INTTC1: micro-DMA completion Ch.1	0098H	FFFF98H	26H
39		INTTC2: micro-DMA completion Ch.2	009CH	FFFF9CH	27H
40		INTTC3: micro-DMA completion Ch.3	009CH	FFFFA0H	27H 28H
41		INTTC4: micro-DMA completion Ch.4	00A0H	FFFFA4H	28H 29H
42		INTTC5: micro-DMA completion Ch.5	00A4H	FFFFA8H	
43		INTTC6: micro-DMA completion Ch.6	00A6H	FFFFACH	2AH 2BH
44	_	INTTC7: micro-DMA completion Ch.7	00B0H	FFFFBOH	
		(Reserved)			2CH
	~	· ·	00B4H	FFFFB4H	
		(Reserved)	00FCH	: FFFFFCH	

Note 1: When starting-up micro DMA, set at Edge detect mode.

Note 2: Micro DMA processing cannot be applied.

3.3.2 Micro DMA

TMP94C241C supports the micro DMA function. For interrupt requests set for micro DMA, micro DMA processing is performed at the highest priority for maskable interrupts, regardless of the set interrupt level.

Since the micro DMA has eight channels, it can transfer continuously by the burst specification which is described later.

(1) Micro DMA operation

When an interrupt request occurs for an interrupt specified by the micro DMA start vector register, micro DMA sends data to the CPU with the highest priority for maskable interrupts, regardless of the interrupt level set for the interrupt. If IFF = 7, micro DMA request is not accept.

The micro DMA function has eight channels. This allows micro DMA to be set for up to eight interrupts at the same time.

When micro DMA is accepted, the interrupt request F/F for the micro DMA channel is cleared, data are transferred (1 byte, 2 bytes, and 4 bytes) once from the transfer source address to the transfer destination address (the addresses are set in the control register), and the transfer counter is decremented. If the decremented result is 0, the CPU informs a micro DMA transfer end to the interrupt controller. The interrupt controller generates a micro DMA transfer end interrupt (INTTCn). The CPU clears the micro DMA start vector register (DMAnV) 0, disables the next micro DMA startup, and terminates the micro DMA processing. If the decremented result is other than 0, micro DMA processing is terminated without the burst specification which is described later. In this case, the transfer end interrupt (INTTCN) is not generated.

When the interrupt source is used only to start micro DMA, the interrupt level must be set to "0".

When the interrupt request generates until the interrupt sources are set to the micro DMA start vector, the CPU performs the general-purpose interrupt processing at the interrupt level of 1 to 6.

When simultaneously using the same interrupt resource for both the micro DMA and general-purpose interrupts as described above, set the level of the interrupt source used to start micro DMA lower than the levels of all other interrupt sources.

Like other maskable interrupts, the priority of the micro DMA transfer end interrupt is determined by the interrupt level and default priority.

If multiple-channel micro DMA requests occur at the same time, the priority is determined by the channel numbers, not the interrupt levels. The lower the channel number, the higher the priority. (CH0 (High) to CH2 (Low).)

The transfer source and transfer destination addresses are set in 32-bit control registers. However, as only 24-bit addresses are output, the address space available to micro DMA is 16 Mbytes.

Three transfer modes are supported: 1-byte transfer, 2-byte transfer and 4-byte transfer. For each transfer mode, it is possible to specify whether to increment, decrement, or fix source and destination addresses after transfer.

These modes facilitate data transfer from I/O to memory, from memory to I/O, and from I/O to I/O. For transfer mode details, see "Transfer Mode Register Details" later in this manual.

As a 16-bit transfer counter is used, micro DMA can perform a maximum of 65536 transfers (initializing the counter to 0000H specifies the maximum number of transfers) and the software start (Total 35 interrupt sources) can be used to start micro DMA processing.

Figure 3.3.2 shows the micro DMA cycle for transfer destination address INC mode (the same apart from counter mode). (Condition: 0 waits built-in RAM in the transfer address area.)

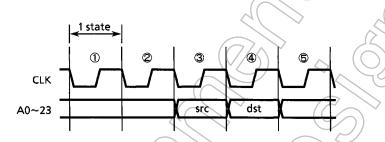


Figure 3.3.2 Micro DMA Cycle Timing

States 1, 2: Instruction fetch cycle (Prefetches the next instruction code)

State 3: Micro DMA read cycle

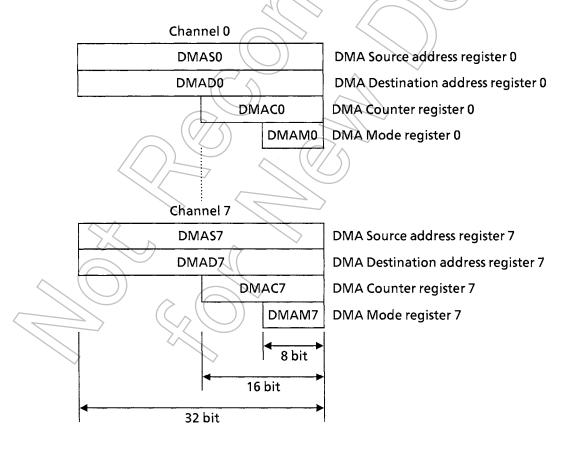
State 4: Micro DMA write cycle

State 5: (The same as in state 1, 2)

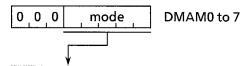
(2) Software Start Function

In addition to starting the micro DMA function by interrupts, TMP94C241C includes a micro DMA software start function that starts micro DMA on the generation of the write cycle to the DMAR register.

Writing "1" to each bit of DMAR register causes micro DMA once. At the end of transfer, the bits of the DMAR register which support the end channel are automatically cleared to "0".


Writing again to the DMAB register triggers another software start, provided the micro DMA trance counter is set to other than "0".

When the burst is specified by DMAB register, data is continuously transferred until the value in the micro DMA transfer counter is "0" after startup of the micro DMA.


SYMBOL	NAME	ADDRESS	7		6		5		4	3		2			0
			DMA Request												
DAAD	DMA	109h	DREQ7	DF	REQ6	[REQ5		DREQ4	REQ	3	DREQ2	DREQ1		DREQ0
DMAR	Request							((,	// R/W		_				
		(no RMW)	0		0		0		9/	0	Y .	0	//\O)		0

(3) Transfer control register

The transfer source address and the transfer destination address are set by the following registers. These registers set data using "LDC cr,r" instruction.

(4) DMA mode register details

DMAM [4:0]	Operation	Execution time
000zz	Destination INC mode (DMADn +) ← (DMASn) DMACn ← DMACn - 1 if DMACn = 0 then INT.	5 States
001zz	Destination DEC mode (DMADn −) ← (DMASn) DMACn ← DMACn − 1 if DMACn = 0 then INT.	5 States
010zz	Source INC mode (DMADn) ← (DMASn+) DMACn ← DMACn − 1 if DMACn = 0 then INT.	5 States
011zz	Source DEC mode (DMADn) ← (DMASn –) DMACn ← DMACn – 1 if DMACn = 0 then INT.	5 States
100zz	Destination and Source INC mode (DMADn +) ← (DMASn +) DMACn ← DMACn − 1 if DMACn = 0 then INT.	6 States
101zz	Destination and Source DEC mode (DMADn −) ← (DMASn −) DMACn ← DMACn − 1 if DMACn = 0 then INT.	6 States
110zz	Destination and Source fixed mode (DMADn) ← (DMASn) DMACn ← DMACn – 1 if DMACn = 0 then INT.	5 States
11100	Counter mode DMASn ← DMASn + 1 DMACn ← DMACn − 1 if DMACn = 0 then INT.	5 States

ZZ: 00 = 1 byte transfer 01 = 2 byte transfer 10 = 4 byte transfer 11 = (reserved)

Note: The execution time is measured at 1 state = 50 ns (operation @ internal 20 MHz).

3.3.3 Interrupt Controller Operation

Figure 3.3.3 is a block diagram of the interrupt circuit. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each interrupt channel (36 channels in total), an interrupt request flag (flip-flop), an interrupt priority setting register, and a micro DMA start vector register. The interrupt request flag latches interrupt request from the peripherals. The flag is cleared to zero in the following cases: when reset occurs, when the CPU reads the channel vector of an interrupt it has received, when the CPU receives a micro DMA request (when micro DMA is set), when the micro DMA burst transfer is terminated, and when an instruction that clears the interrupt for that channel is executed (by writing "0" to the clear bit in the interrupt priority setting register).

The interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTE0AD, INTE12). Six interrupt priorities from 1 to 6 are provided. Setting "0" (or "7") disables the interrupt request. The priority of non-maskable interrupts (NMI pin, watchdog timer) is fixed at 7. If interrupt requests with the same level are generated at the same time, the default priority (the interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request to accept first.

Reading the 3rd bit and the 7th bit in the interrupt priority setting register sees the state of the interrupt request flag and whether there are the interrupt request of each channel.

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2:0> in the status register by the interrupt request signal with the priority value set; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 in the CPU SR <IFF2:0>. Interrupt request where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR <IFF2:0>.

The interrupt controller also has eight registers used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.3.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter register (e.g., DMAS and DMAD) prior to the micro DMA processing.

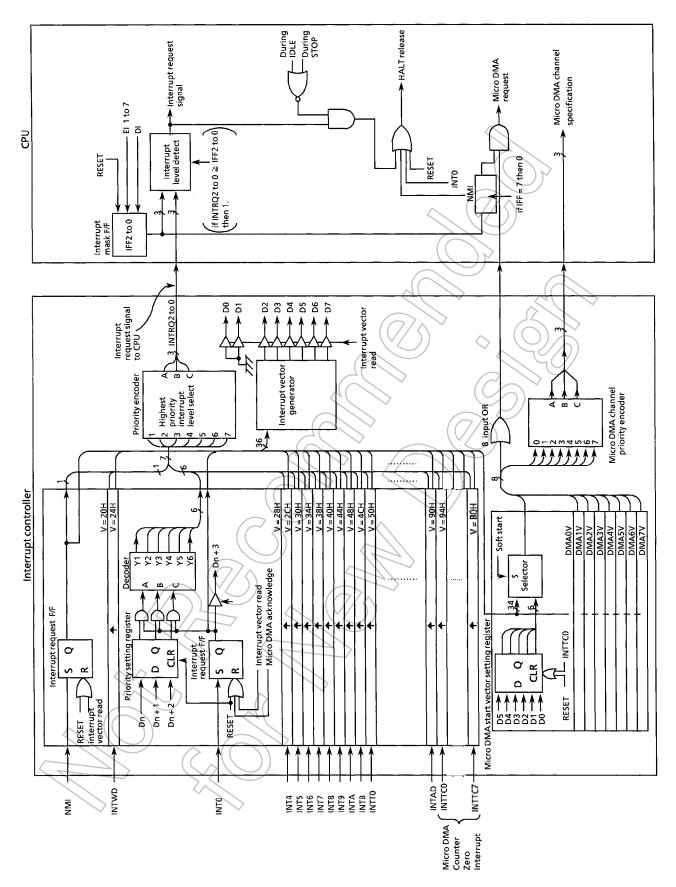


Figure 3.3.3 Block Diagram of Interrupt Controller

(1) Interrupt priority setting register

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	AD		INTO			
	INTO & INTAD		IADC	IADM2	IADM1	IADM0	10C	10M2	10M1	IOMO
INTE0AD	Enable	F0h	R		R/W	***************************************	R		R/W	
			0	0	. 0	. 0	0 ^	0	0	. 0
			-	IN	T5			AI /	IT4	•
	INT4 & INT5		I5C	15M2	15M1	15M0	14C	14M2	14M1	14M0
INTE45	Enable	E0h	R		R/W		R	()	R/W	
			0	0	0	0	0	0	0	0
			<u> </u>	IN	T7) IN	IT6	<u> </u>
	INT6 & INT7		I7C	17M2	17M1	17M0	16C	16M2	16M1	16M0
INTE67	Enable	E1h	R	_	R/W	((R		R/W	
			0	0	. 0	. 0	(0)	0	. 0	0
				IN	iT9			II)	VT8	
	INT8 & INT9		I9C	19M2	I9M1	19M0	≥ 18C	18M2	18M1	18M0
INTE89	Enable	E2h	R		R/W		R		R/W	
			0	0	0((//⟨0,	0	0	: 0	0
					ITB	$\langle \rangle \rangle$	\Diamond	-(+)	ITA)	<u> </u>
	INTA & INTB		IBC	IBM2	IBM1	: IBM0	IAC			: IAM0
INTEAB		E3h	В		R/W	\supset	R		R/W	
			0	0<1	0	. 0	60	0	0	. 0
		 		INTT1 (Timer1)	<u></u>		/_/:	(Timer0)	<u> </u>
	INTTO & INTT1		IT1C		IT1M1	IT1M0	(170c)			ITOMO
INTET01		E4h	R		R/W		R	1101112	R/W	. 1101010
	2110010		0	0	0 /	0	0	0	0	. 0
					(Timer3)		1		(Timer2)	<u>; </u>
	INTT2 & INTT3		T3C	IT3M2		: IT3M0	IT2C		: IT2M1	: IT2M0
INTET23	Enable	E5h	R	77131412	R/W	: 115,010	R	1121012	R/W	: 1121010
	Lilable		6	0		. 0	0	0	. 0	. 0
			()		(TREG5)		-	L	(TREG4)	
	INITED 4 9 INITEDE		IT5C		IT5M1	IT5M0	IT4C	· · · · · · · · · · · · · · · · · · ·	IT4M1	IT4M0
INTET45	INTTR4 & INTTR5) R	1131012	R/W	1131010	R	1141012		: 1141010
	Enable		0	0	7:/\0	. 0	0	0	R/W	. 0
	- /()		INTTR7 (TREG7)				INTTR6 (TREG6)			
	INTTR6 & INTTR7		ITTC			IT7M0	ITEC		IT6M1	: ITCN10
INTET67		E7h	IT7C	TIVIVIZ		: 1171010	IT6C	1101012		IT6M0
	Enable		R		/ R/W	: .	R	 	R/W	: .
			0	0	(====0)	0	0	0	0	: 0
	7		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	(TREG9)	: ,=====	INTTR8 (TREG8)			
INTET89	INTTR8 & INTTR9	E8h	ÍT9C	IT9M2	IT9M1	IT9M0	IT8C	IT8M2	IT8M1	IT8M0
^	Enable		R	ļ	R/W	:	R	<u> </u>	R/W	:
			0	0	0	0	0	0	0	. 0
		1/1))		(TREGB)		ļ	INTTRA	(TREGA)	
INTETAB	INTTRA & INTTRB	E9h	ІТВС	ITBM2	ITBM1	ITBM0	ITAC	ITAM2	ITAM1	ITAM0
	Enable		R	ļ	R/W		R	ļ	R/W	
	\triangleright		0	0	0	0	0	0	0	0

Symbol	Name	Address	7	6	5	4	3	2	1	0		
				INT	TX0		INTRX0					
	INTRX0 & INTTX0		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0		
INTES0	Enable	EAh	R		R/W		R		R/W			
			0	0	0	0	0	0	0	0		
				INT	TX1			INT	RX1			
INITEGA	INTRX1 & INTTX1	EBh	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0		
INTES1	Enable	EBII	R		R/W ·		R	2	R/W			
			0	0	0	0	0 ((0)	0	0		
				INT	TC1			INT	TC0			
INTTC0 & INTTC1	ECh	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITÇOÇ /	/ITC0M2	ITC0M1	ITC0M0			
INTERCOT	Enable	LCII	R		R/W		R))	R/W			
			0	0	0	0	0	0	0	0		
		EDh		INTTC3 INTTC2								
INTETC23	INTTC2 & INTTC3		ITC3C	ITC3M2	ITC3M1	ІТСЗМ0	ITC2C	ITC2M2	ITC2M1	ITC2M0		
INTERCES	Enable		R		R/W	4()	R	(R/W			
			0	0	0	0	0	9	0	0		
					TC5	77~~			TC4			
INTETC45	INTTC4 & INTTC5	 EEh	ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0		
111721043	Enable	CEII	R		R/W		R <	70	/k/W			
			0	0	:1(0)	0	0	0	0	0		
				- ()	TC7			\sim	TC6	1		
INTETC67	INTTC6 & INTTC7	EFh	ITC7C	ITC7M2	: ITC7M1	ITC7M0	ITC6C	JITC6M2	: ITC6M1	ITC6M0		
"""	Enable		R		R/W	(()R		R/W			
			0	0	∨ 0	<u> </u>	(0)	0	0	0		
				N	MI /			INT	WD	,		
INTNMWDT	NMI & INTWD	F7h	ITCNM		<u> </u>	<u> </u>	ITCWD		<u> </u>	<u>: </u>		
	Enable	F7fi	R	1)			/ R					
			0	<i>₹/</i>	<u> </u>		0		_			

lxxM2	lxxM1	lxxM0	Function (Write)
0	0,//	0	Prohibits interrupt request.
0	0	\bigcirc 1	Sets interrupt request level to "1"
0		0	Sets interrupt request level to "2"
0		1	Sets interrupt request level to "3"
_1	0	0	Sets interrupt request level to "4"
1	0	1	Sets interrupt request level to "5"
1	1	0	Sets interrupt request level to "6"
1	1	1	Prohibit interrupt request.

Note: Changing of the interrupt priority setting register should be carried out after execution of DI instruction.

(2) External interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			_	-	-	-	-	<u> </u>	IOLE	NMIREE	
				:	:				R/W		
			_	-	<u>:</u> -	<u> </u>	-	-	0	0	
Interrupt IIMC Input Mode		F6h		:	:	:		:	0: INT0	1: Oper-	
IIIVIC	Input Mode Control	FOII				:			edge	ate	
	Control								mode	even	
	+			1	1	1			1: INT0	at NIV	
						•			level	rise	
		(no RMW)		<u> </u>	<u>:</u>	<u> </u>		\sim	mode	edge	
ote: NT0 level l	Enable							$\left(\right) $			

0	Rising edge detect INT
1	"H"level INT

*NMI rising edge Enable

0	INT request generation at falling edge
	INT request generation at rising/falling edge

Note 1: Disable INT0 request before changing INT0 pin mode from level-sense to edge-sense.

Setting example:

DI

LD (IIMC), xxxxxx0xB ; Switches from level to edge.

LD (INTCLR), 0AH ; Clears interrupt request flag.

ΕI

Note 2: See electrical characteristics in section 4 for external interrupt input pulse width.

Interrupt	Pin name		Mode	Setting method
	-	7	Falling edge	IIMC <nmiree> = 0</nmiree>
NMI	-	~_	Falling and rising edges	IIMC <nmiree> = 1</nmiree>
INTO	PH4		Rising edge	IIMC< 0LE> = 0, PHFC< PH4F> = 1
INTO	PH4	▽ *▽	Level	
INT4	PD1		Rising edge	T4MOD < CAP45M1:0 > = 0,0 or 0,1 or 1,1
11114	PDI	7	Falling edge	T4MOD < CAP45M1:0 > = 1,0
INT5	PD2		Rising edge	
INT6	DDF		Rising edge	T6MOD <cap67m1:0> = 0, 0 or 0, 1 or 1, 1</cap67m1:0>
11016	PD5	7	Falling edge	T6MOD < CAP67M1:0 > = 1, 0
INT7	PD6	<u> </u>	Rising edge	4() - 4()
INITO	DE4		Rising edge	T8MOD < CAP89M1:0 > = 0,0 or 0, 1 or 1, 1
INT8	PE1	7	Falling edge	T8MOD < CAP89M1:0> = 1,0
INT9	PE2		Rising edge	
INTA	PE5	<u></u>	Rising edge	TAMOD < CAPABM1:0 > = 0, 0 or 0, 1 or 1, 1
INTA	753		Falling edge	TAMOD <capabm1:0>=1,0</capabm1:0>
INTB	PE6		Rising edge	(7/4-

(3) Interrupt request flag clear register

The interrupt request flag is cleared by writing the micro DMA start vector, which is listed in table 3.3.1, to the INTCLR register.

For example, to clear the INTO interrupt flag, operate the following register after execution of DI instruction.

Clears INT0 interrupt request flag

 $INTCLR \leftarrow 0AH$

Symbol	Name	Address	7 -		6	5		4		3	 2		1	 0
		_							<u> </u>		 		_	
INTCLR	Interrupt Clear	F8h			>				W					
	Control		(> 0	_ i	0	0	:	0		0	 _0	. :	0	0
		(no RMW)	71					Interru	ıpt V	/ector				

(4) Micro DMA start vector register

This register assigns micro DMA processing to an interrupt source. The interrupt source with a micro DMA start vector that matches the vector set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches 0, the micro DMA transfer end interrupt corresponding to the channel is set to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source of the channel is cleared. Therefore, to continue micro DMA processing, set the micro DMA start vector register again during the processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the channel with the lowest number has a higher priority.

Accordingly, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the lower number is executed until the micro DMA transfer is complete. If the micro DMA start vector of this channel is not set again, the next micro DMA is started for the channel with the higher number. (Micro DMA chaining)

		1		ı	ı			1	1_						
Symbol	Name	Address	7	6	5	4	3	2	\sim 1	0					
	DMA 0					DMA0 Start Vector									
DMA0V	Start	100h	-	-	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0					
DIVIAUV	Vector	10011				75)	R/	$w(\bigcirc)$							
	Vector		=	=	0	\bigcirc	0 <	00	/),6	0					
	DMA 1				7(//	>	DMA1-St	art Vector							
DMA1V	Start	101h	=	- 🗸 (DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0					
DIVIATV	Vector	10111					R	w)							
	V 00101		_		0	0 /	$\bigcirc 0$	0	0	0					
	DMA 2				>		DMA2 St	art Vector							
DMA2V	Start	102h	- <	(-/)	DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0					
DIVIAZV	Vector	10211			_ <<		\\ R	W							
			(+	// -	0	Q	// 0	0	0	0					
	DMA 3 Start Vector			<i>))</i>	DMA3 Start Vector										
DMA3V		103h	7-	-	DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0					
2						R/W									
				-	0) 0	0	0	0	0					
	DMA 4 Start Vector	104h			DMA4 Start Vector										
DMA4V			<u>/ - </u>	-(0	DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0					
						ı		W	,						
			_		0	0	0	0	0	0					
	DMA 5		<=		>	1		art Vector	ı						
DMA5V	Start /	105h	- \	_	DMA5V5	DMA5V4		DMA5V2	DMA5V1	DMA5V0					
	Vector					R/W									
			<u> </u>	-	0	0	0	0	0	0					
	DMA 6	<	71			1		art Vector	ı						
DMA6V	Start	106h	-/- /-	_	DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0					
	Vector	> ((1)			ı		W	Γ						
		$\sqrt{2}$	<u> </u>	_	0	0	0	0	0	0					
	DMA 7					ı		art Vector	Τ	DMA7V0					
DMA7V	Start	107h	_	-	DMA7V5	MA7V5 DMA7V4 DMA7V3 DMA7V2 DMA7									
	Vector					ı		W	Γ						
			_	_	0	0	0	0	0	0					

(5) Micro DMA burst specification

Specifying the micro DMA burst continues the micro DMA transfer until the transfer counter register reaches 0 after micro DMA start. Setting a bit which corresponds to the micro DMA channel of the DMAB registers mentioned below to "1" specifies a burst.

Symbol	Name	Address	7	:	6		5		4	3	3	2		1		0
									DMA	Burst	1	7()	7			
DAAAD	DMA	1005	DBST7		DBST6		DBST5	-	DBST4	DB:	ST3	DBST2	i	DBST1	-	DBST0
DMAB	Burst	108h	RW (//													
			0	-	0	-	0	-	0	7		0	:	0		0

(6) Notes

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag between accepting and reading the interrupt vector. In this case, the CPU reads the default vector 0004H and reads the interrupt vector at address FFFF04H.

To avoid the above problem, place instructions that clear interrupt request flags after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (ex. "NOP" * 3times). If placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enable before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2 to 0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following 2 circuits are exceptional and demand special attention.

INT0 level mode	INTO in level mode is not an edge-detect interrupt, so the interrupt request flip-flop function is canceled. The peripheral interrupt request bypasses the S input of the flip-flop, and acts as the Q output. Changing modes from edge to level automatically clears the interrupt request flag.								
	If the CPU enters the interrupt response sequence as a result of setting INTO from 0 to 1, INTO must be held at 1 unit the interrupt response sequence is completed. If the INTO level mode is used to release a halt, INTO must be held at 1 from the time INTO changes from 0 to 1, to the time when the halt is released. (Ensure that INTO does not go back 0 due to noise before the halt is released.)								
	When switching modes from level to edge, any interrupt request								
	flag set in level mode is not cleared. Accordingly, clear the interrupt								
	request flag using the following sequence.								
	DI (7/A								
	LD (IIMC), 00H: Switches from level to edge.								
	LD (INTCLR), 0AH: Clears interrupt request flag.								
	NOP: Wait EI execution								
	NOR: Wait EI execution								
$\langle \cdot \rangle$	NOP: Wait EI execution								
7//	EI								
INTRX	The interrupt request flip-flop can only be cleared by reset or by reading the serial channel receive buffer, not by an instruction.								

Note: The following instructions or pin changes are equivalent to instructions that clear the interrupt request flag:

INTO: Instructions that switch to level mode after an interrupt request is generated in edge mode.

The pin input changes from high to low after an interrupt request is generated in level mode. ("H" \rightarrow "L")

INTRX: Instructions that read the receive buffer.

3.4 Standby Function

[1] HALT mode

Executing the HALT instruction sets either RUN, IDLE, or STOP mode depending on the content of WDMOD</br>
HALTM1:0>.

(1) RUN: Halts the CPU only. Power dissipation remains almost unchanged.

(2) IDLE: Operates only the internal oscillator, while halts all other circuits.

(3) STOP: Halts all internal circuits, including the internal oscillator.

[2] Release from HALT mode

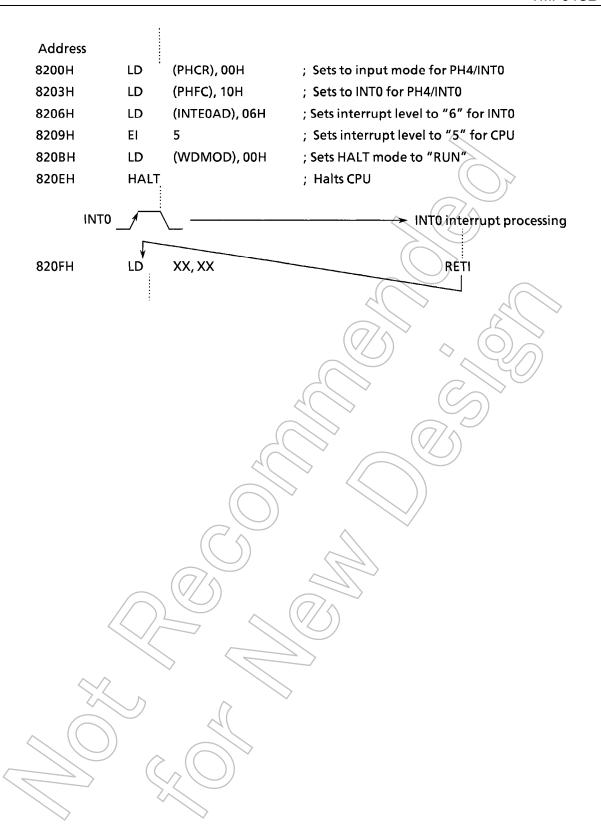
Release from HALT mode can trigger an interrupt request or a reset. A combination of the interrupt mask register <IFF2:0> state and the HALT mode determine the useable halt release source (For details, see Table 3.4.2).

Release by interrupt request

The operation to release HALT mode by using an interrupt request differs according to the interrupt enable state. If the interrupt request level set prior to the execution of the HALT instruction is higher than the interrupt mask register value, after HALT mode is released, interrupt processing is performed by this source, and processing starts from the next instruction following the HALT instruction. If the interrupt request level is lower than the interrupt mask register value, HALT mode is not released. (At a non-maskable interrupt, interrupt processing is performed after HALT mode release irrespective of the mask register value.)

However, in the case of the INTO interrupt only, HALT mode can be released if the interrupt request level is lower than the interrupt mask register value. In this case the interrupt processing is not performed. Processing always starts from the next instruction following the HALT instruction. (The INTO interrupt request flag is held at 1.)

Note: Usually, interrupts can release all halts status. However, the interrupts = (NMI and INTO) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode (RUN is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)


If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

• Release by reset

All HALT modes can be released by a reset. However, when releasing STOP mode, allow sufficient reset time (at least 2 µs) for the oscillator to stabilize.

When releasing HALT mode by a reset, the internal RAM retains the data prevailing immediately prior to entering the HALT mode. However, other settings are initialized.

On execution of the HALT instruction, the device enters standby state in RUN mode. Release halt using INTO.

(1) RUN mode

Figure 3.4.1 is the timing chart for releasing a halt in RUN mode using an interrupt.

In RUN mode, the MCU internal system clock does not stop after the HALT instruction is executed. Only CPU instruction execution stops. Therefore, the CPU performs repeated dummy cycles until the halt state is released.

In the halt state, interrupt requests are sample on the cycle of the CLK signal.

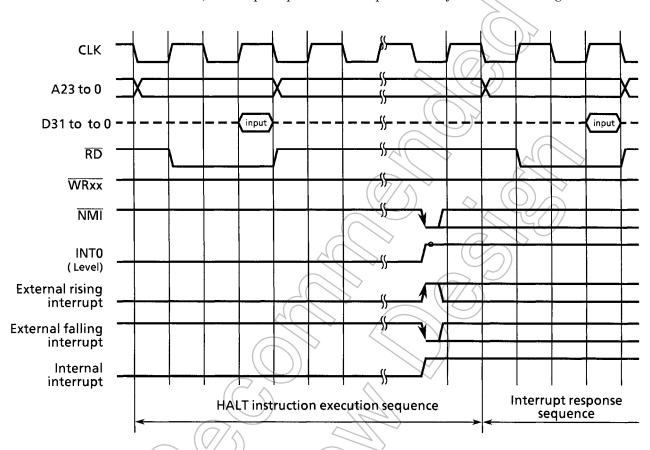


Figure 3.4.1/Timing Chart for Releasing Halt in RUN Mode Using Interrupt

(2) IDLE mode

Figure 3.4.2 is the timing chart for releasing a halt in IDLE mode using an interrupt.

In IDLE mode, the MCU internal system clock stops. Only the internal oscillator functions.

In the halt state, interrupt requests are sampled synchronously to the system clock. The release from the halt state (operation restart), however, is synchronized with the clock.

In IDLE mode, interrupt requests other than external interrupts (NMI, INTO) are disabled.

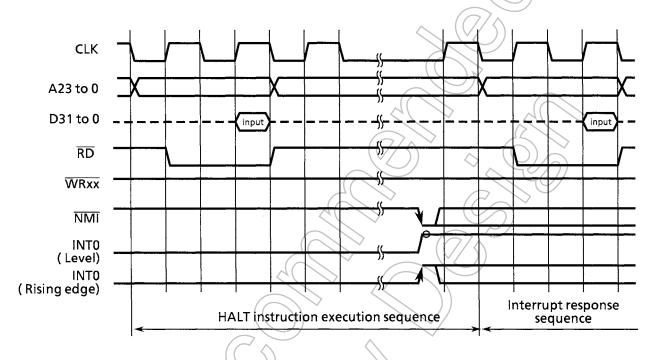


Figure 3.4.2 Timing Chart for Releasing Halt in IDLE Mode Using Interrupt

(3) STOP mode

Figure 3.4.3 is the timing chart for releasing a halt in STOP mode using an interrupt.

In STOP mode, all internal circuits stop, including the internal oscillator. Also, in STOP mode, all pins, apart from a few exceptions, are set to high impedance and are disconnected from the internal circuit of the MCU.

However, setting WDMOD<DRVE> in the internal I/O register to "1" specifies that pins maintain the states prior to the halt. Reset clears the register to "0".

When the CPU receives an interrupt request, the internal oscillation restarts. Then, after the time set by the warm-up counter for the internal oscillation to stabilize, the system clock starts its output. The CLKMOD<WARM> bit sets the warm-up time. Setting this bit to 0 specifies a warm-up time of 2¹⁵ clock cycles; setting the bit to 1 specifies a warm-up time of 2¹⁷ clock cycles. Reset clears CLKMOD<WARM> to 0. The setup time of the internal clock doubler is fixed at 2¹⁴ external clock cycles.

STOP mode can only be released by an NMI pin or INTO pin interrupt, or by reset.

When STOP mode is released by other than reset, the system clock starts its output after the time set by the warm-up counter for the internal oscillation to stabilize. When using reset to release stop mode, input reset signals long enough for stable oscillation.

In systems with an external oscillator, the warm-up counter also operates when STOP mode is released. Therefore, such systems also require a warm-up time between input of release signal and system clock output.

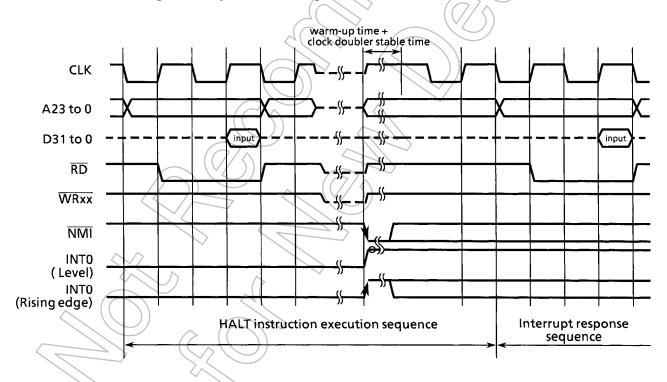


Figure 3.4.3 Timing Chart for Releasing Halt in STOP Mode Using Interrupt

Table 3.4.1 Pin states in STOP mode

Pin Name	Mode	DRVE = 0	DRVE = 1
	D0 to D31 (input/output)	High-Z	High-Z
P00 to P37/D0 to D31	P00 to P37 (input)	Disable	Disable
	P00 to P37 (output)	output	output
P40 to P67/A0 to A23	input	Disable	Disable
	output	High-Z	output
P70/RD	output	High-Z	output
P71 to P74/WRLL to WRHH	output	High-Z	output
P75/BUSRQ	input	Disable	Disable
	output	High-Z	output
P76/BUSAK	output	High-Z	output
P80 to P85/CS0 to CS5	output	High-Z	output
P86/WAIT	input	Disable	Disable
	output	High-Z	output
PA0 to PA4/CAS0 to WEO	output ((//)	High-Z	output
PB0 to PB4/CAS1 to WE1	output	High-Z	output
PC0, PC1/TO1 to TO3	input	Disable	Disable
	output	High-Z	output
PD0 to PD6/TO4 to TI7	input	Disable	Disable
	output	High-Z	output
PEO to PE6/TO8 to TIB	input	Disable	Disable
	output	High-Z	output
PF0 to PF6/TXD0 to SCLK1	input	Disable	Disable
	output	High-Z	output
PG0 to PG7/AN0 to AN7	input	Disable	Disable
DAOUT0, DAOUT1	output	High-Z	High-Z
PH0 to PH3/TC0 to TC3	input	Disable	Disable
	output	High-Z	output
PH4/INT0	input	Enable	Enable
	output (//)	High-Z	output
PZ0 to PZ7	input	Disable	Disable
	output	output	output
NMI	input	Enable	Enable
WDTOUT	output	output	output
AM0, AM1	(input	Enable	Enable
TĘSTO, TĘŚT1	input	Enable	Enable
CLK	output	output	output
XI	input	Disable	Disable
X2	output	"High"	"High"
RESET	input	Enable	Enable

Output: Maintains output states prior to a halt.

Enables Input is valid. When the input pin is set to middle electric potential, through current.

Disabled: Input is invalid. As the input gate is disabled, no through current.

High-Z: The output is set to high impedance.

"High": The output is set to high electric potential.

	HALT Mode	RUN	IDLE	STOP		
W	DMOD <haltm1:0></haltm1:0>	00	10	01		
	CPU	Halt				
	I/O Port			See Table 3.4.1		
Operation Block	8-bit timer 16-bit timer Serial interface AD converter DA converter Watchdog timer DRAM controller Interrupt controller	Operation	Ha	lits		

Table 3.4.2 I/O Operation During Halt and Release

					741	\/		
	nterrupt M quest Lev	lask and el Settings		t Request ot Mask <i< td=""><td></td><td></td><td>Request L ot Mask <i< td=""><td>evel *2 < FF2:0></td></i<></td></i<>			Request L ot Mask <i< td=""><td>evel *2 < FF2:0></td></i<>	evel *2 < FF2:0>
	HALT N	l ode	RUN	IDLE	STOP	RUN 🔷	1DLE/	STOP
HALT Release Source	Interrupt	NMI INTWD INTO INT4 to 9, A, B INTT0 to 3 INTTR4 to 9, A, B INTRXD0, 1 INTTXD0, 1 INTAD		× × × × × ×	**1 X **1 X X X X	× × × ×	> - · · · · · · · · · · · · · · · · · ·	- - 0*1 X X X X
		RESET	^	♦ ∧	•	*	*	•

- ♦: After a halt is released, interrupt processing begins. (Reset initializes the LSI.)
- o: After a halt is released, processing begins from the next address following the HALT instruction.
- x: Cannot be used to release a halt,
- *1: Halt is released after the warm-up time has elapsed.
- *2: Same as a DI instruction.

3.5 Functions of Ports

TMP94C241C has I/O port pins which are shown in Table 3.5.1. In addition to functioning as general-purpose I/O ports, these pins are also used by internal CPU and I/O functions.

Table 3.5.1 Port Functions (1/2)

			·		
Port Name	Pin Name	Number of Pins	1/0	I/O Setting	Pin Name for built-in function
Port 0	P00 to P07	8	1/0	Bit	D0 to D7
Port 1	P10 to P17	8	1/0	Bit	D8 to D15
Port 2	P20 to P27	8	1/0	Bit //	D16 to D23
Port 3	P30 to P37	8	1/0	Bit	D24 to D31
Port 4	P40 to P47	8	1/0	Bit	A0 to A7
Port 5	P50 to P57	8	1/0	Bit	A8 to A15
Port 6	P60 to P67	8	1/0	Bit	A16 to A23
Port 7	P70	1	Output	(Fixed)	RD
	P71	1	Output	(Fixed)	WRLL
	P72	1	Output	(Fixed)	WRLH
	P73	1	Output	(Fixed)	WRHE
	P74	1	Output	(Fixed)	WRHH
	P75	1	1/0	Bit (BUSRQ
	P76	1	Output	(Fixed)	BUSAK
Port 8	P80	1	Output	(/Fixed)	CS0
	P81	1	Output	(Fixed)	CS1/RAS0
	P82	1 2	Output	(Fixed)	CS2
	P83	11	Output	(Fixed)	CS3/RAS1
	P84	1	Output	(Fixed)	CS4
	P85	(1())	Output	(Fixed)	CS5
	P86		1/0	Bit	WAIT
Port A	PA0	((1)	Output	(Fixed)	CASO/LCASO
	PA1		Output	(Fixed)	UCASO
	PA2	7/1	Output	(Fixed)	ŌE0
	PA3	()) 1	Output	(Fixed)	OE1
	PA4	1	Output	(Fixed)	WE0
Port B	PB0	7 1	Output	(Fixed)	CAS1/LCAS1/LLCAS1
	PB1	1	Output	(Fixed)	UCAS1/LUCAS1
	PB2	1	Output	(Fixed)	HLCAS1
	/> PB3	1	Output	(Fixed)	HUCAS1
	PB4	1	Output	(Fixed)	WE1
Port C	PC0	1	1/0	Bit	TO1/TO7
	PC1		1/0	Bit	TO3/TOB
Port D	PD0	1	1/0	Bit	TO4
	PD(1))1	1/0	Bit	TI4/INT4
	PD2	1	1/0	Bit	TI5/INT5
	PD4	1	1/0	Bit	TO6
	PD5	1	1/0	Bit	TI6/INT6
	PD6	1	1/0	Bit	TI7/INT7

Table 3.5.2 Port Functions (2/2)

Port Name	Pin Name	Number of Pins	1/0	I/O Setting	Pin Name for built-in function
Port E	PE0	1	1/0	Bit	TO8
	PE1	1	I/O	Bit	TI8/INT8
	PE2	1	I/O	Bit	TI9/INT9
	PE4	1	I/O	Bit	TOA
	PE5	1	i/O	Bit (TIA/INTA
	PE6	1	I/O	Bit	TIB/INTB
Port F	PF0	1	1/0	Bit	TXD0
	PF1	1	I/O	Bit //	RXD0
	PF2	1	I/O	Bit	CTSO/SCLKO
	PF4	1	1/0	Bit	TXD1
	PF5	1	I/O	Bit	RXD1
	PF6	1	1/0	Bit	CTS1/SCLK1
Port G	PG0 to PG7	8	Input	(Fixed)	ANO to AN7
Port H	PH0	1	1/0	Bit	₹C0
	PH1	1	1/0	Bit 🔿	(tc1)
	PH2	1	1/0	Bit	TC2
	PH3	1	1/0	Bit	1c3
	PH4	1	1/0	Bit	INTO
Port Z	PZ0 to PZ7	8	1/0	Bit) <u>) </u>

3.5.1 Port 0 (P00 to P07/D0 to D7)

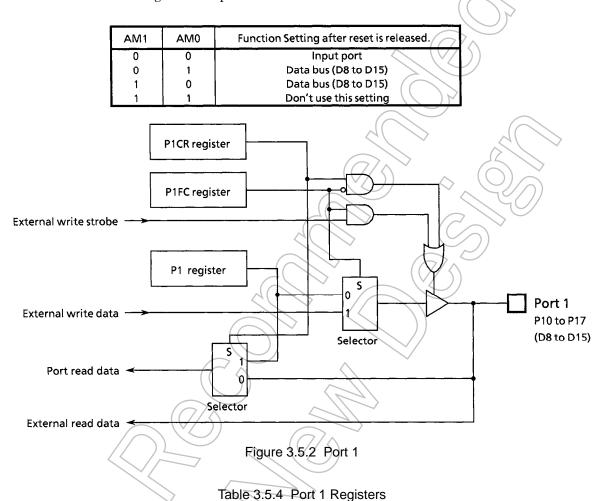
Port 0 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P0CR and function register P0FC.

In addition to functioning as a general-purpose I/O port, port 0 can also function as data bus (D0 to D7).

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 0 to the following function pins:

Table 3.5.3 Port 0 Registers

Symbol	Name	Address	7 _	6	5	4	3	2	1	0
			P07	P06	P05	P04	P03	P02	P01	P00
DO ^	PORTO	00h	4			R/	N			
P0 <	PORTO	UUII	0	> 0	0	0	0	0	0	0
						input/	Output			
1			P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
POCR	PORTO	02h				٧	/			
PUCK	Control Register	0211	0	0	0	0	0	0	0	0
						0: Input	1: Output			
				_	_		_	_	_	POF
P0FC	PORT0 Function	03h				٧	V			
PUFC	Register	USh	_	_	_	=	_	-		1
					0: PC	ORT 1: Dat	a Bus (D7 to	D0)		


Note: Read-modify-write is prohibited for P0CR, P0FC registers.

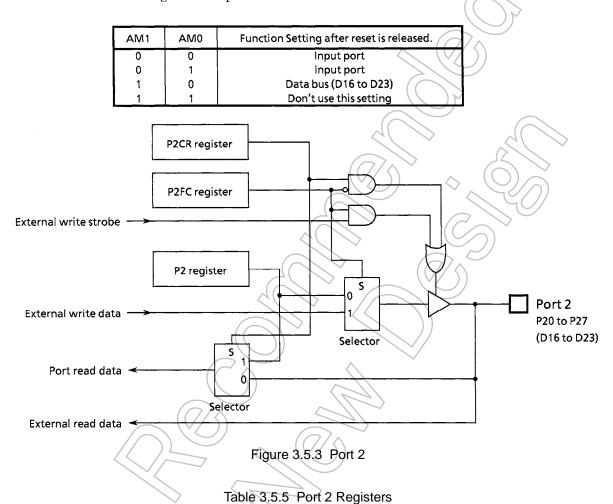
3.5.2 Port 1 (P10 to P17/D8 to D15)

Port 1 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC.

In addition to functioning as a general-purpose I/O port, port 1 can also function as data bus (D8 to D15).

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 1 to the following function pins:

Name Symbol Address 5 3 2 0 1 P17/ P16 P15 P14 P13 P12 P11 P10 R/W PORT1 **P**1 04h 0 0 0 0 0 0 Input / Output P17C P16C P15C P14C P13C P12C P11C P10C PORT1 W P1CR Control 06h 0 0 0 0 0 0 0 0 Register 0: Input 1: Output P1F PORT1 P1FC Function 07h 0/1 Register 0: PORT 1: Data Bus (D15 to D8)


Note: Read-modify-write is prohibited for P1CR, P1FC registers.

3.5.3 Port 2 (P20 to P27/D16 to D23)

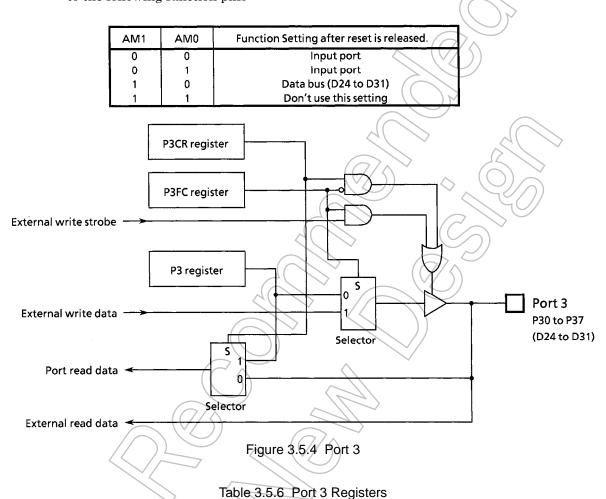
Port 2 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P2CR and function register P2FC.

In addition to functioning as a general-purpose I/O port, port 2 can also function as data bus (D16 to D23).

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 2 to the following function pins:

Symbol Name Address 7 3 2 1 0 P26 P25 P24 P23 P20 P27 P22 P21 R/W PORT2 08h P2 0 0 0 0 0 0 0 0 Input / Output P27C P26C P25C P24C P23C P22C P21C P20C PORT2 W P2CR Control 0Ah 0 0 0 0 0 0 0 0 Register 0: Input 1: Output P2F PORT2 W P2FC **Function** 0Bh 0/1 Register 0: PORT 1: Data Bus (D23 to D16)

Note: Read-modify-write is prohibited for P2CR, P2FC registers.


TOSHIBA

3.5.4 Port 3 (P30 to P37/D24 to D31)

Port 3 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P3CR and function register P3FC.

In addition to functioning as a general-purpose I/O port, port 3 can also function as data bus (D24 to D31).

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 3 to the following function pins:

Name Address 7 6 5 4 2 Symbol 3 1 0 P37 P36 P35 P34 P33 P32 P31 P30 R/W Р3 PORTS 0Ch 0 0 0 0 0 0 0 0 Input / Output P37C P36C P35C P34C P33C P32C P31C P30C PORT3 W P3CR Control 0Eh/ 0 0 0 0 0 0 0 0 Register 0: input 1: Output P3F PORT3 W P3FC 0Fh Function 0/1 Register 0: PORT 1: Data Bus (D31 to D24)

Note: Read-modify-write is prohibited for P3CR, P3FC registers.

TMP94C241C

3.5.5 Port 4 (P40 to P47/A0 to A7)

Port 4 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P4CR and function register P4FC.

In addition to functioning as a general-purpose I/O port, port 4 can also function as data bus (A0 to A7). When accessing internal memory and internal I/O, these pins retain the addresses of the previous bus cycle.

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 4 to the following function pins:

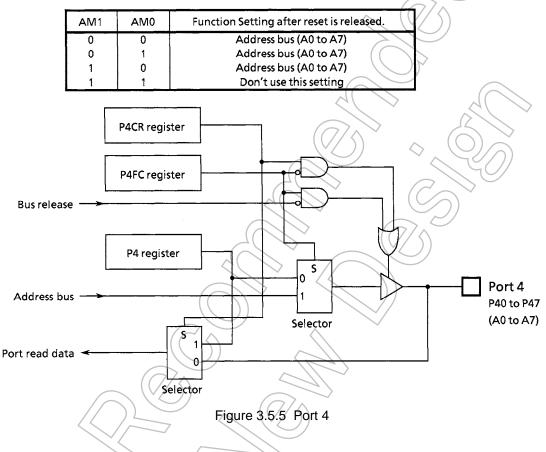
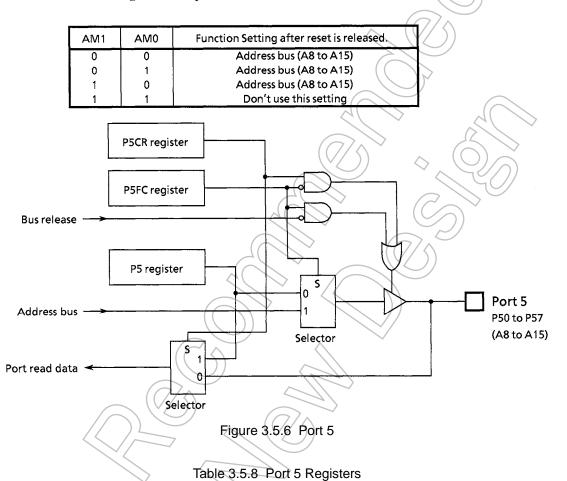


Table 3.5.7 Port 4 Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0	
<u>=</u>		<i>J)</i>	P47/	P46	P45	P44	P43	P42	P41	P40	
D4	DOBT4	10h	al			R	./W				
P4 <	PORT4	10/1	0	0	0	0	0	0	0	0	
		· · · /> _		V		Input/	Output				
			P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C	
DACD	PORT4	12h	W								
P4CR	Control Register	1211	0	0	0	0	0	0	0	0	
						0: Input	1: Output				
			P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F	
DAFC	PORT4	4.21-					W				
P4FC	Function Register	13h	1	1	1	1	1	1	1	1	
					0: POR	T 1: Add	dress Bus (A	7 to A0)			


Note: Read-modify-write is prohibited for P4CR, P4FC registers.

3.5.6 Port 5 (P50 to P57/A8 to A15)

Port 5 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P5CR and function register P5FC.

In addition to functioning as a general-purpose I/O port, port 5 can also function as data bus (A8 to A15). When accessing internal memory and internal I/O, these pins retain the addresses of the previous bus cycle.

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 5 to the following function pins:

Address 7 4 2 0 Symbol Name 3 1 P56 P54 P53 P52 P51 P50 P57 P55 R/W P5 PORT5 14h 0 0 0 0 0 0 0 0 Input / Output R57C) P56C P55C P54C P52C P51C P50C P53C PORT5 W P5CR 16h/ Control 0 0 0 0 0 0 0 0 Register 0: Input 1: Output P50F P57F P56F P55F P54F P53F P52F P51F PORT5 W P5FC 17h **Function** Register 0: PORT 1: Adddress Bus (A15 to A8)

Note: Read-modify-write is prohibited for P5CR, P5FC registers.

3.5.7 Port 6 (P60 to P67/A16 to A23)

Port 6 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P6CR and function register P6FC.

In addition to functioning as a general-purpose I/O port, port 6 can also function as data bus (A16 to A23). When accessing internal memory and internal I/O, these pins retain the addresses of the previous bus cycle.

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 6 to the following function pins:

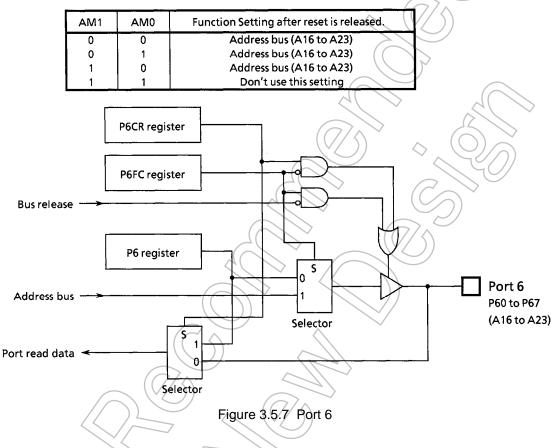


Table 3.5.9 Port 6 Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
		\cup	P67/>	P66	P65	P64	P63	P62	P61	P60
Р6	PORT6	18h	M			R/	W			
70	PORTO	1011	0	0	0	0	0	0	0	0
		\wedge				Input/	Output	-		
			P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
PORT6 P6CR Control	1	1Ab				V	V			
POCK	Register	IAU	0	0	0	0	0	0	0	0
	3					0: Input	1: Output			
			P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
P6FC	PORT6	1Bh				٧	V			
POPC	Function Register	ion	1	1	1	1	1	1	1	1
					0: PORT	1: Adddre	ess Bus (A23	to A16)		

Note: Read-modify-write is prohibited for P6CR, P6FC registers.

3.5.8 Port 7 (P70 to P76)

Port 7 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, port 7 can also function as read/write strobe signals to connect with an external memory and control signals to release bus

A reset initializes P71 to P74 and P76 pins to output port mode, and P75 pin to input port mode. Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 70 to the following function pins:

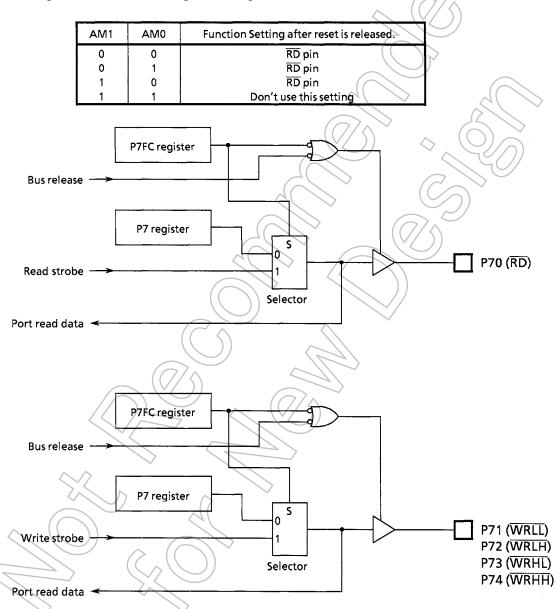


Figure 3.5.8 Port 7 (P70 to P74)



Table 3.5.10 Port 7 Registers

6 4 3 2 0 Symbol Name Address 7 5 1 P76 P75 P74 P73 P72 P71 P70 R/W Р7 PORT7 1Ch 1 1 _ 1 1 1 Output ? In/Out Output P75C PORT7 1Eh P7CR Control 0 _ Register 1: Output 0: Input P75F P76F P74F P73F P72F P71F P70F W PORT7 P7FC 1Fh Function 0 0 0 0 0 0 1 Register 0: PORT 1: BUSAK 1: BUSRQ 1: WRHH 1: WRHL 1: WRLH 1: WRLL

Note: Read-modify-write is prohibited for P7CR, P7FC registers.

3.5.9 Port 8 (P80 to P86)

Port 8 is a 7-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P8CR and function register P8FC.

In addition to functioning as a general-purpose I/O port, port 8 can also function as chip selection to connect with an external memory and wait input.

A reset initializes P80 to P85 pins to output port mode, and P86 pin to input port mode.

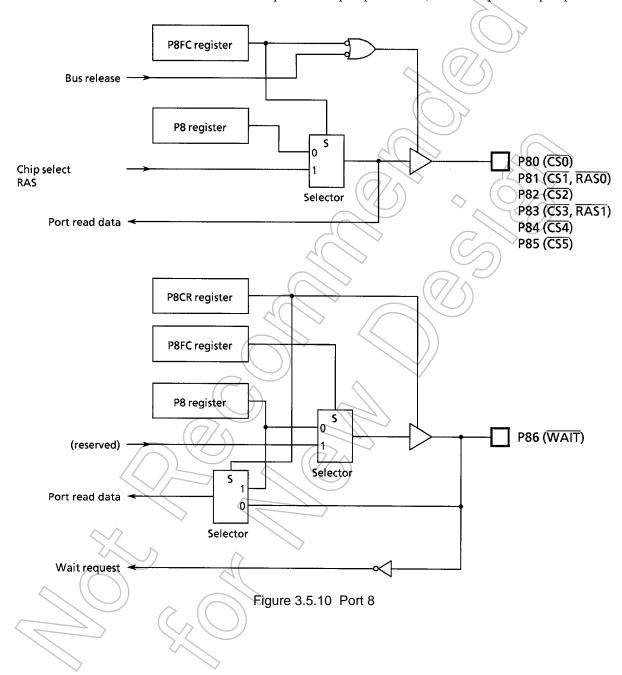
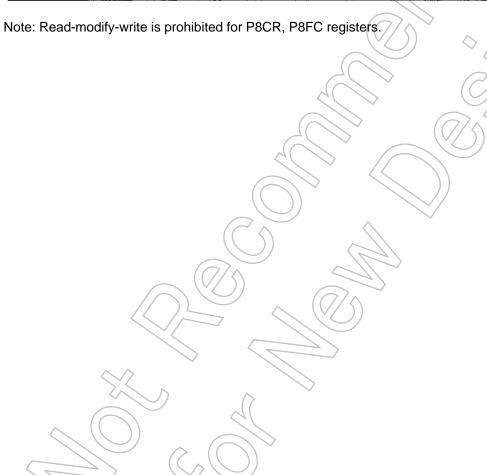



Table 3.5.11 Port 8 Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	P86	P85	P84	P83	P82	P81	P80
DO	DODTO.	204					R/W			
P8	PORT8	20h	_	0	1	1	1	0	1	1
				In/Out			Outi	out		
	1		_	P86C	-	-	-	77	-	-
DOCE	PORT8 Control Register	22h		W					>	:
POCK		2211	_	0	-	-	-		_	-
						0: Input	1: Output	\nearrow		
			_	P86F	P85F	P84F <	P83F	P82F	P81F	P80F
	PORT8						W			
P8FC	Function	23h	-	0	0	0	(0)	0	0	0
	Register			0: PORT	0: PORT	0: PORT		0: PORT	0: PORT	0: PORT
				1: WAIT	1: CS5	1: CS4	1: <u>CS3</u> RAS1	1: CS2	1: CS1 RASO	1: CS0

3.5.10 Port A (PA0 to PA4)

Port A is a 5-bit general-purpose I/O port.

In addition to functioning as a general-purpose I/O port, port A can also function as external DRAM (channel 0) connection.

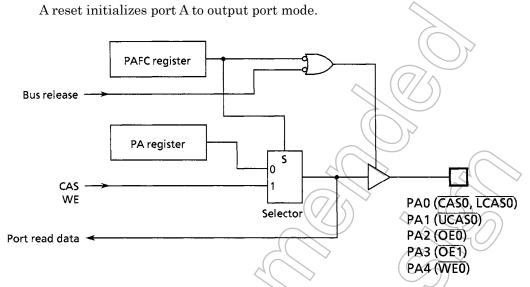


Figure 3.5.11 Port A

Table 3.5.12 Port A Registers

Symbol	Name	Address	7 ((6	5	4	3	2	1	0
					-	PA4	PA3	PA2	PA1	PA0
PA	PORTA	28h						R/W		
PA	PORTA	200		·	-(>	1	1	1	1	1
						$\langle \cdot \rangle$		Output		
			// {)			PA4F	PA3F	PA2F	PA1F	PA0F
	PORTA				(774			W	<u>-</u>	
PAFC	Function	2Bh			(\(_ \)	0	0	0	0	0
	Register					0: PORT	0: PORT	0: PORT	0: PORT	0: PORT
					->	1: WE0	1: OE1	1: OE 0	1: UCASO	
						:	:	:	:	LCAS0

Note: Read-modify-write is prohibited for PAFC register.

3.5.11 Port B (PB0 to PB4)

Port B is a 5-bit general-purpose I/O port.

In addition to functioning as a general-purpose I/O port, port A can also function as external DRAM (channel 1) connection.

A reset initializes port A to output port mode.

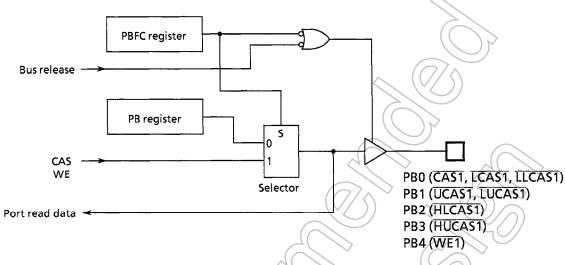


Figure 3.5.12 Port B

Table 3.5.13 Port B Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
			- ((})	-	PB4	PB3	PB2	PB1	PB0
PB	PORTB	2Ch						R/W		
l PB	PORTB	ZCn	(7 ~/	<u> </u>	-	1	1	1	1	1
<u> </u>	c))	_			Output		
				/ -	-	PB4F	PB3F	PB2F	PB1F	PB0F
						7/		W		
225	PORTB		<u> </u>	/	(7) _A	0	0	0	0	0
PBFC	Function Register	2Fh)			$(\vee/)$	0: PORT			0: PORT	0: PORT
	Register		_/			1: /WE1	1: HUCAS1	1: HLCAS1		1: CAS1
1			_					:	LUCAS1	
_						•	<u> </u>	<u> </u>	•	LLCAS1

Note: Read-modify-write is prohibited for PBFC register.

3.5.12 Port C (PC0 to PC4)

Port C is a 2-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register PCCR and function register PCFC.

In addition to functioning as a general-purpose I/O port, port C can also function as 8-bit timer or 16-bit timer output.

Table 3.5.14 Port C Registers

		· · · · · · · · · · · · · · · · · · ·				1/ 3) :	:		: -	=	
Symbol	Name	Address	$(/// \triangle)$	6	5	1/4	3	:	2	1		0
			(U)	-			-		-	PC1		PC0
DC	PORTC	30h		\wedge							R/W	
PC	PORIC	3011	\	-/		_	-		_	0		0
					7/			:		Inpu	ıt/Ou	tput
			> _	/-/	/	_			_	PC1C	-	PC0C
DEED	PORTC	324									W	
PCCR	Control Register	32h	- /	-	V _	_	-		-	0		0
	negister.			((5€	e belo	ow)
^			- <		-	_	-		_	PC1F		PC0F
Dere	PORTC	221.					- :			:	w	
PCFC	Function Register	33h	(() -	-	_	-			0		0
1	Register		2		:					(Se	e bel	ow)
		4						:		funct	ion	
						į	PCFC	PC	CR	PC1	PC	$\overline{}$
						ŀ				Input		
						}	0	. 0				
						ŀ	0	!		Output		4
						}	1	. 0	'	TO3	TO	
						1	1	1	- 1	TOB :	TO	/

Note: Read-modify-write is prohibited for PCCR, PCFC registers.

3.5.13 Port D (PD0 to PD6)

Port D is a 6-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register PDCR and function register PDFC.

In addition to functioning as a general-purpose I/O port, port D can also function as 16-bit timer I/O and interrupt input.

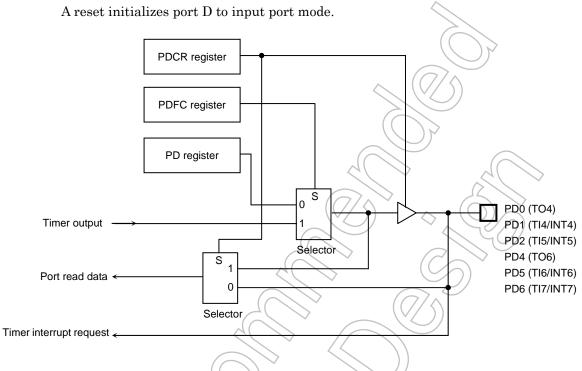


Figure 3.5.14 Port D

Table 3.5.15 Port D Registers

			\rightarrow			\						
Symbol	Name	Address	// 7)	6	5	4	3	2	1	0		
				PD6	PD5	PD4	-	PD2	PD1	PD0		
20	PORTD	245	7		(R/W)				R/W			
PD	PORID	34h	_	0	. 0	0	-	0	0	0		
			Input/Output				Input/Output					
	^ ^		_	PD6C	PD5C	PD4C	-	PD2C	PD1C	PD0C		
DDCD.	PORTO)36h	36 h	36 h			> w				W	
PDCR	Control Register				- (>	0	0	0	-	0	0	0
İ			0: Input 1: Output			utput		0: Ir	put 1: Ou	ıtput		
	(())		_	PD6F	PD5F	PD4F	-	PD2F	PD1F	PD0F		
	DORTO	\wedge			w				w			
PDFC	PORTD Function	37h/>		0	0	0	-	0	0	0		
	Register	2/		0: PORT	0: PORT	0: PORT		:	0: PORT	0: PORT		
				1: TI7 INT7	1: TI6 INT6	1: TO6		1: TI5 INT5	1: TI4 INT4	1: TO4		

Note: Read-modify-write is prohibited for PDCR, PDFC registers.

3.5.14 Port E (PE0 to PE6)

Port E is a 6-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register PECR and function register PEFC.

In addition to functioning as a general-purpose I/O port, port E can also function as 8-bit timer or 16-bit timer output and interrupt input.

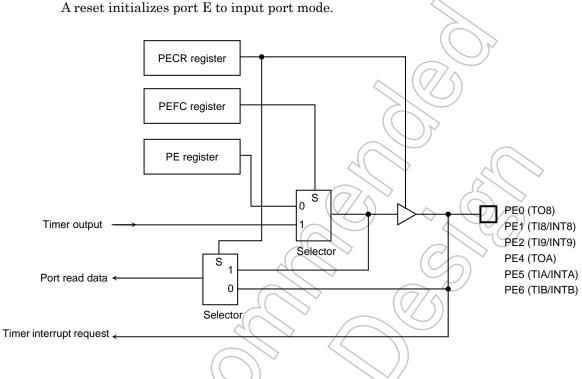


Figure 3.5.15 Port E

Table 3.5.16 Port E Registers

Symbol	Name	Address	(\bigcirc)	6	5	→ 4	3	2	1	0				
	//		<u>_</u>	PE6	PÉ5	PE4	-	PE2	PE1	PE0				
PE	PORTE	38h	7		R/W				R/W					
PE	PORTE		- /	0	0	0	-	0	0	0				
			Input/Output				<u> </u>	nput/Outp	ut					
	$\sim \sim$			PE6C	PE5C	PE4C	-	PE2C	PE1C	PEOC				
PECR	PORTE	3Ah	Danh	Danh	Danh	Danh	_		7 w				W	
PECK	Control Register		-((0	0	0	-	0	0	0				
^			0: Input 1: Output			utput		0: lr	nput 1: O	utput				
				PE6F	PE5F	PE4F	_	PE2F	PE1F	PEOF				
	PORTE) :	W				W					
PEFC	Function	3Bh		0	0	0		0	0	0				
Register	(N)		0: PORT	0: PORT	0: PORT		0: PORT	0: PORT	0: PORT					
				1: TIB INTB	1: TIA INTA	1: TOA		1: TI9 INT9	1: TI8 INT8	1: TO8				

Note: Read-modify-write is prohibited for PECR, PEFC registers.

3.5.15 Port F (PF0 to PF6)

Port F is a 6-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register PFCR and function register PFFC.

In addition to functioning as a general-purpose I/O port, port F can also function as I/O functions of serial interface.

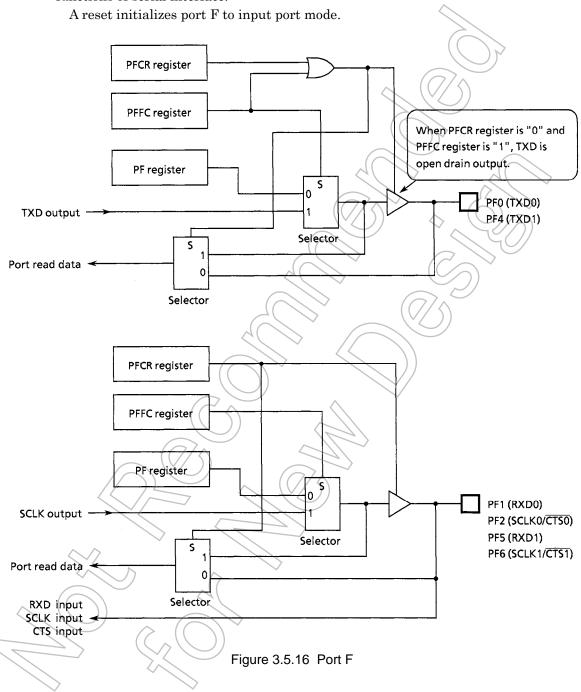
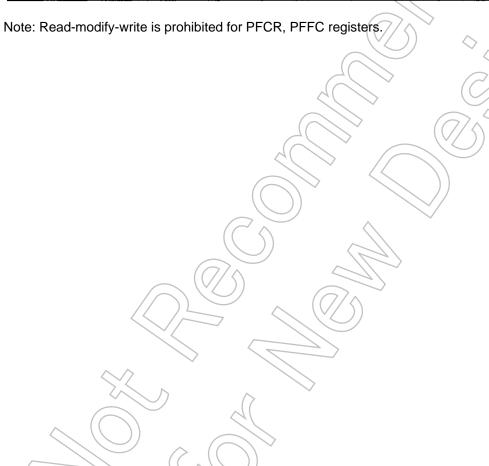



Table 3.5.17 Port F Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			_	PF6	PF5	PF4	-	PF2	PF1	PF0	
D.F.	DODTE	364			R/W				R/W		
PF	PORTF	3Ch	-	0	0	0	-	0	0	0	
					Input/Outp	ut	<	Input/Output			
			_	PF6C	PF5C	PF4C	_	PF2C	PF1C	PF0C	
PFCR		PORTF SEh		W					> w		
PFCR	Control Register	3511	_	0	0	0	-) 0	0	
	13			0: Input 1: Output				0: li	nput 1: O	utput	
			_	PF6F	PF5F	PF4F <	<u> </u>	PF2F	PF1F	PF0F	
	PORTE				W		7//		w		
PFFC	Function	3Fh	_	0	0	0	(-);	0	0	0	
	Register			0: PORT 1: CTS1 SCLK1	0: PORT 1: RxD1	0: PORT 1: TxD1		0: PORT 1: CTS0 SCLK0	0: PORT 1: RxD0	0: PORT 1: TxD0	

3.5.16 Port G (PG0 to PG7)

Port G is an 8-bit general-purpose input-only port.

In addition to functioning as a general-purpose I/O port, port G can also function as I/O functions of AD converter.

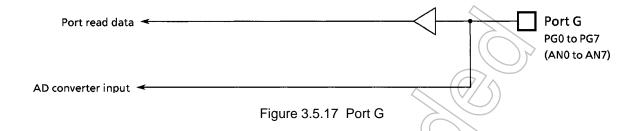


Table 3.5.18 Port G Register

0	2 1	3	5	6	7	Address	Name	Symbol
PG0	PG2 PG1	94 PG	PG5	PG6	PG7			
	, (0))) R				40h	PORTG	PG
	~~~	Input						
	2 //		7( /			· · · · · · · · · · · · · · · · · · ·		
	~ <i>/</i> //							
	(2)			C				

### 3.5.17 Port H (PH0 to PH4)

Port H is a 5-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register PHCR and function register PHFC.

In addition to functioning as a general-purpose I/O port, port H can also function as terminal count output function of micro DMA and interrupt input function.

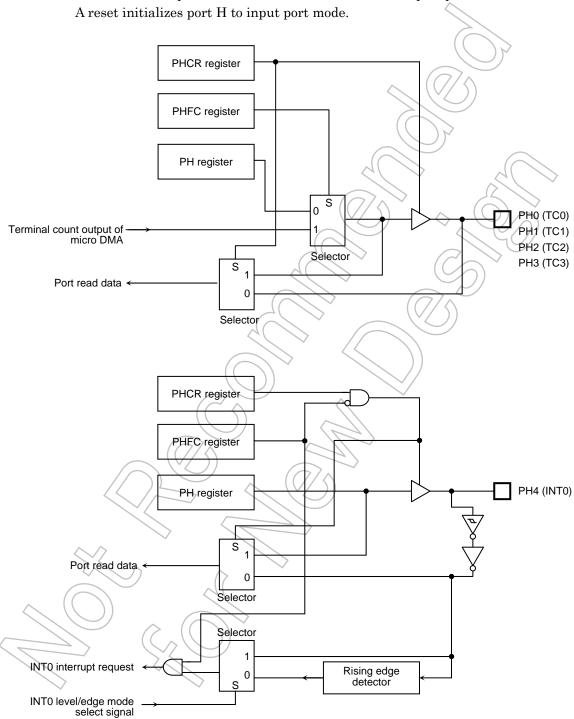



Figure 3.5.18 Port H

Table 3.5.19 Port H Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0			
			_	-	-	PH4	PH3	PH2	PH1	PH0			
DI.	DODTU	4.01-						R/W					
PH	PORTH	44h	_	-	-	0	0	0	0	0			
							ŧ	nput/Outpo	ut				
			-	_	-	PH4C	PH3C	PH2C	PH1C	PH0C			
DUCD	PORTH	166	16h	46h	16h						W	\	
PHCR	Control Register	460	-	-	-	0	0		0	0			
					:		0; tr	put 1: Ou	utput				
			_	_	<u> </u>	PH4F <	PH3F	PH2F	PH1F	PH0F			
	PORTH				:		7//	w					
PHFC	1	tion 47h	_	-	-	0	0	, 0	0	0			
			-				0: PORT 1: TC3	0: PORT 1: TC2	0: PORT 1: TC1	0: PORT 1: TC0			

Note: Read-modify-write is prohibited for PHCR, PHFC registers.

## 3.5.18 Port Z (PZ0 to PZ7)

Port Z is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register PZCR.

A reset initializes port Z to input port mode.

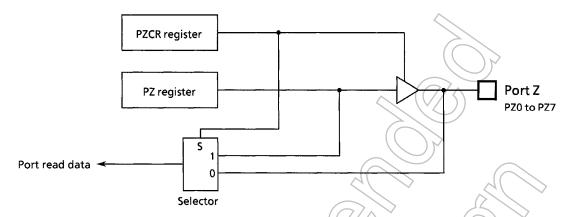



Figure 3.5.19 Port Z

Table 3.5.20 Port Z Registers

Symbol	Name	Address	7	6	- 5	4	3		<u></u> 2/	1	0
			PZ7	PZ6	PZ5	PZ4	( PZ	3/(1)	PZ2	PZ1	PZ0
PZ	PORTZ	68h					R/W		••••		
72	PORIZ	QON	0	Ó	<b>V</b> 0	//0	0		0	0	0
			/		>	Inpu	t / Output				
			PZ7C	PZ6C	PZ5C	PZ4C	PZ3	C	PZ2C	PZ1C	PZ0C
PZCR	PORTZ	6Ah					W				
FZCR	Register	I OAN	0	<b>0</b>	0	0	0		0	0	0
	1.09.3001			))	(,	0; Inpu	t 1: Out	out			

Note: Read-modify-write is prohibited for PZCR register.

### 3.6 Memory Controller

#### 3.6.1 Functions

TMP94C241C has a memory controller with a variable 6-block address area that controls as follows.

(1) 6-block address area support

Specifies a start address and a block size respectively for 6-block address area (block 0 to 5).

(2) Connecting memory specification

Specifies SRAM, ROM and DRAM as memories to connect with the respective block address areas. DRAM is specified only in block 1 and block 3.

When SRAM or ROM is specified, a usual bus cycle is executed. When DRAM is specified, DRAM is effectively accessed with built-in DRAM controller. The page access of ROM is also supported in block 2. For details, see section 3.6.4 "ROM Control".

(3) Data bus size selection

Whether 8-bit, 16-bit or 32-bit is selected as the data bus size of the respective block address areas.

(4) Wait control

Wait specification bit in the control register and WAIT input pin control the number of waits in the external bus cycle. Read cycle and write cycle can specify the number of waits individually. The number of waits is controlled in three mode mentioned below.

0 waits, 1 wait,

2 waits, 3 waits,

N waits (controls with WAIT pin)

(5) DRAM control

TMP94C241C has DRAM controller to control refresh and DRAM accessing.

This document describes in order of the operation after reset release, basic functions and ROM page mode.

Each section explains the operation and the register setting method and the signal timing. The register setting method is mentioned as the lists of registers in the final.

Note: The operation of memory controller and DRAM controller cannot be insured until power supply becomes stable after power-on reset.

The external RAM data provided before turning on the TMP94C241C may be spoiled because the control signals are unstable until power supply becomes stable after power-on reset.

### 3.6.2 Control Register and Operation after Reset Release

This section describes the registers to control the memory controller, the state after reset release and necessary settings.

#### (1) Control register

The control registers of the memory controller are as follows.

- Control register: BnCSH/BnCSL (n = 0 to 5)

  Sets the basic functions of the memory controller, that is the connecting memory type, the data bus size, the number of waits to be read and written.
- Memory start address register: MSARn (n = 0 to 5)
   Sets a start address in the respective block address areas.
- Memory address mask register: MAMRn (n = 0 to 5)
   Sets a block size in the respective block address areas.

In addition to setting of the above-mentioned registers, it is necessary to set the following registers to control ROM page mode access and DRAM.

- Page ROM control register: PMEMCR
  Sets to executed ROM page mode accessing,
- DRAM control register: DRAMnCRL/DRAMnCRH (n = 0 to 1) Sets DRAM access.
- DRAM refresh control register: DRAMnREF (n = 0 to 1) Sets DRAM refresh operation.



#### (2) Operation after reset release

The start data bus size is determined depending on the state of AM1/AM0 pins just after reset release. Then, the external memory is accessed as follows.

AM1	AM0	Start mode
0	0	Start with 8-bit data bus
0	1	Start with 16-bit data bus
1	0	Start with 32-bit data bus
1	1	Don't use this setting

AM1/AM0 pins are valid only just after reset release. In the other cases, the data bus width is set to the value set to BnBUS bit of the control register.

After reset, only control register (B2CSH/B2CSL) of the block address area 2 is automatically valid. The data bus width which is specified by AM1/AM0 pins is loaded to the bit to specify the bus width of the control register in the block address area 2. The block address area 2 is set to addresses 000000H to FFFFFFH after reset.

After reset release, the block address areas are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). Then the control register (BnCS) is set.

Set the enable bit (BnE) of the control register to "1" to enable the setting. Set relevant registers to access ROM page mode and DRAM.

## 3.6.3 Basic Functions and Register Setting

In this section, setting of the block address area, the data bus width, the connecting memory and the number of waits out of the memory controller's functions are described.

#### (1) Block address area specification

The block address area is specified by two registers.

The memory start address register (MSARn) sets the start address of the block address areas. The memory controller compares between the register value and the address every bus cycles. The address bit which is masked by the memory address mask register (MAMRn) is not compared by the memory controller. The block address area size is determined by setting the memory address mask register. The set value in the register is compared with the block address area on the bus. If the compared result is a match, the memory controller sets the chip select signal (CSn) to "low".

Setting memory start address register

The MnS23 to 16 bits of the memory start address register respectively correspond with addresses A23 to A16. The lower start address A15 to A0 are always set to address 0000H. Therefore, the start address of the block address area are set to addresses 000000H to FF0000H every 64 Kbytes.

Byte ]

### (ii) Setting memory address mask registers

The memory address mask register sets whether an address bit is compared or not. Set the register to "0" to compare, or to "1" not to compare.

The address bit to be set is depended on the block address area.

Block address area 0: A20 to A8

Block address area 1: A21 to A8

Block address area 2 to 5: A22 to A15

The above-mentioned bits are always compared. The block address area size is determined by the compared result.

The size to be set depending on the block address areas is as follows.

	256	512	32K	64K	128K	256K	512K	1M (	2M	4M	8M	[ Unit:
CS0	0	0	0	0	0	0	0	0	9	/		
CS1	0	0		0	0	0	0	0	0	0	74	
CS2 to 5			0	0	0	0	90	0	0	0/	0	

Note: After reset release, only the control register of the block address area 2 is valid. The control register of the block address area 2 has B2M bit. Setting B2M bit to "0" sets the block address area 2 to addresses 000000H to FFFFFFH. Setting B2M bit to "1" specifies the start address and the address area size as it is in the other block address areas.

### (iii) Example of register setting

To set the block address area 1 to 512 bytes from address 110000H, set the register as follows.

### MSAR1 Register

bit /	7	6	5	/\4	3	2	1	0
bit Symbol	M1\$23	7M1S22	M1521	M1S20	M1S19	M1S18	M1S17	M1S16
Specified value	0	0	0	) 1	0	0	0	1

M1S23 to M1S16 bits of the memory start address register MSAR1 correspond with addresses A23 to A16.

A15 to A0 are set to "0". Therefore, setting MSAR1 to the above-mentioned value specifies the start address of the block address area 1 to address 110000H.

The start address is set as it is in the other block address areas.

### MAMR1 Register

bit	7	6	5	4	3	2	1	0
bit Symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15 to 9	M1V8
Specified value	0	0	0	0	0	0	0	1

M1V21 to M1V16 and M1V8 bits of the memory address mask register MAMR1 set whether addresses A21 to A16 and A8 are compared or not. Set the register to "0" to compare, or to "1" not to compare. M1V15 to M1V9 bits set whether addresses A15 to A9 are compared or not with 1 bit. A23 and A22 are always compared.

Setting the above-mentioned compares A23 to A9 with the values set as the start addresses. Therefore, 512 bytes of addresses 110000H to 1101FFH are set as the block address area 1, and compared with the addresses on the bus. If the compared result is a match, the chip select signal CS1 is set to "low".

The other block address area sizes are specified like this.

A23 and A22 are always compared in the block address area 0. Whether A20 to A8 are compared or not is set to the register.

Similarly, A23 is always compared in the block address areas 2 to 5. Whether A22 to A15 are compared or not is set to the register.

Note: When the set block address area overlaps with the built-in memory area, or both 2 address areas overlap, the block address areas are processed according to priority as follows.

Built-in I/O > Built-in memory > Block address area 0 > 1 > 2 > 3 > 4 > 5

Note also that any accessed areas outside the address spaces set by  $\overline{\text{CS0}}$  to  $\overline{\text{CS5}}$  are processed as the  $\overline{\text{CS2}}$  space. Therefore, settings of  $\overline{\text{CS2}}$  apply for the control of wait cycles, data bus width, etc., and the  $\overline{\text{CS2}}$  signal is output.

#### (2) Connection memory specification

Setting the BnOM1 to BnOM0 bit of the control register (BnCSH) specifies the memory type to be connected with the block address areas. The interface signal is output according to the set memory as follows.

BnOM1,BnOM0 bit (BnCSH Register)

BnOM1	BnOM0	Function	
0	0	SRAM/ROM (Default)	
0	1	(Reserved)	<
1	0	DRAM	
1	1	(Reserved)	

DRAM is set only in the block address are 1 and 3.

When ROM is selected, the page mode is accessed. It is possible to specify only in the block address area 2.

### (3) Data bus width specification

The data bus width is set for every block address areas. The bus size is set by the BnBUS1 and BnBUS0 bits of the control register (BnCSH) as follows.

BnBUS Bit (BnCSH Register)

BnBUS1	BnBUS0	Function
0	0 (	8-bit bus mode (Default)
0	1	16-bit bus mode
1	0	32-bit bus mode
1	1	Reserved

This way of changing the data bus size depending on the address being accessed is called "dynamic bus sizing". The part where the data is output to is depended on the data size, the bus width and the start address.

Note: Since there is a possibility of abnormal writing/reading of the data if two memories with different bus width are put in consecutive address, do not execute a access to both memories with one command.

Operand data size	Operand start	Memory data size		T	CPU	data	
(bit)	address	(bit)	CPUaddress	D31 to D24	D23 to D16	D15 to D8	D7 to D0
	4n + 0	8/16/32	4n + 0	xxxxx	xxxxx	XXXXX	b7 to b0
	4n + 1	8	4n + 1	xxxxx	xxxxx	xxxxx	b7 to b0
		16/32	4n + 1	xxxxx	xxxxx	b7 to b0	xxxxx
8	4n + 2	8/16	4n + 2	xxxxx	xxxxx	xxxxx	b7 to b0
		32	4n + 2	xxxxx	b7 to b0	xxxxx	xxxxx
	4n + 3	8	4n + 3	xxxxx	xxxxx	xxxxx	b7 to b0
		16	4n + 3	xxxxx	XXXXX	b7 to b0	xxxxx
		32	4n + 3	b7 to b0	xxxxx	xxxxx	xxxxx
	4n + 0	8	(1) 4n + 0	xxxxx	XXXXX	xxxxx	b7 to b0
			(2) 4n + 1	xxxxx	xxxxx	xxxxx	b15 to b8
		16/32	4n + 0	XXXXX	XXXXX	b15 to b8	b7 to b0
	4n + 1	8	(1) 4n + 1	xxxxx	XXXXX	XXXXX	b7 to b0
			(2) 4n + 2	xxxxx	xxxxx 🔷	xxxxx	b15 to b8
		16	(1) 4n + 1	XXXXX	xxxxx	b7 to b0	xxxxx
			(2) 4n + 2	XXXXX	XXXXX	xxxxx	b15 to b8
		32	4n + 1	XXXXX (	b15 to b8	b7 to b0	xxxxx
16	4n + 2	8	(1) 4n + 2	XXXXX \	XXXXX	xxxxx	b7 to b0
			(2) 4n + 1	XXXXX	xxxxx	xxxxx	b15 to b8
		16	4n + 2	XXXXX	xxxxx	b15 to b8	b7 to b0
		32	4n + 2	b15 to b8	b7 to b0	XXXXX	XXXXX
	4n + 3	8	(1) 4n + 3	XXXXX	XXXXX	XXXXX	b7 to b0
			(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
		16	(1) 4n + 3	XXXXX	xxxxx	b7 to b0	XXXXX
			(2) 4n + 4	XXXXX	XXXXX	xxxxx	b15 to b8
		32	(1) 4n + 3	b7 to b0	xxxxx	xxxxx	XXXXX
	4n + 0	8	(2) 4n + 4	xxxxx	XXXXX	XXXXX	b15 to b8
	40+0	8	(1) 4n + 0	xxxxx	XXXXX	xxxxx	b7 to b0
			(2) 4n + 1 (3) 4n + 2	XXXXX	XXXXX	) xxxxx	b15 to b8
			(4) 4n + 3	XXXXX	XXXXX	xxxxx	b23 to b16
		16	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b31 to b24
		10	(2) 4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
		32	4n + 0	b31 to b24	b23 to b16	b31 to b24	b23 to b16
	4n + 1	8	(1) 4n + 1	XXXXX	XXXXX	b15 to b8	b7 to b0
	,		(2) 4n + 2	XXXXX	XXXXX	XXXXX	b7 to b0 b15 to b8
			(3) 4n + 3	XXXXX	XXXXX	XXXXX	b23 to b16
			) (4) 4n + 4	XXXXX	xxxxx	XXXXX	b31 to b24
		16	(1) 4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
			(2) 4n + 2	xxxxx	XXXXX	b23 to b16	b15 to b8
			(3) 4n + 4	xxxxx	XXXXX	XXXXX	b31 to b24
		32	(1) 4n + 1	b23 to b16	b15 to b8	b7 to b0	XXXXX
		$(\Omega)$	(2) 4n + 4	xxxxx	XXXXX	xxxxx	b31 to b24
32	4n + 2	( \/ \ 8 )	(1) 4n + 2	xxxxx	xxxxx	XXXXX	b7 to b0
			(2) 4n + 3	xxxxx	xxxxx	XXXXX	b15 to b8
	// ) l		(3) 4n + 4	xxxxx	xxxxx	xxxxx	b23 to b16
	\\/		(4) 4n + 5	xxxxx	xxxxx	XXXXX	b31 to b24
	\"\	16	(1) 4n + 2	xxxxx	xxxxx	b15 to b8	b7 to b0
			(2) 4n + 4	xxxxx	xxxxx	b31 to b24	b23 to b16
		32	(1) 4n + 2	b15 to b8	b7 to b0	xxxxx	xxxxx
	$\searrow \nearrow$		(2) 4n + 4	xxxxx	xxxxx	b31 to b24	b23 to b16
	4n + 3	8	(1) 4n + 3	xxxxx	xxxxx	XXXXX	b7 to b0
	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\wedge$	(2) 4n + 4	xxxxx	xxxxx	XXXXX	b15 to b8
		$\mathcal{A}$	(3) 4n + 5	xxxxx	xxxxx	xxxxx	b23 to b16
	11	//	(4) 4n + 6	XXXXX	XXXXX	XXXXX	b31 to b24
_ ((			(1) 4n + 3	XXXXX	XXXXX	b7 to b0	xxxxx
		16		AAAAA			
		10	(2) 4n + 4	XXXXX	XXXXX	b23 to b16	b15 to b8
			(2) 4n + 4 (3) 4n + 6	xxxxx xxxxx			
	<i>─</i> ) ⟨	32	(2) 4n + 4	xxxxx	xxxxx	b23 to b16	b15 to b8

xxxxx: During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains non to active.

#### (4) Wait control

The external bus cycle completes a wait of two states at least (100 ns at 20 MHz). Setting the BnWW2 to BnWW0 and BnWR2 to BnWR0 of the control register (BnCSL) specifies the number of waits in the read cycle and the write cycle. BnWW is set with the same method as BnWR.

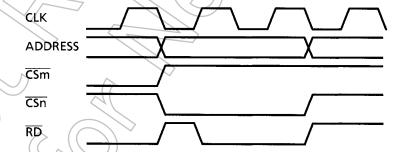
#### BnWW/BnWR Bit (BnCSL register)

BnWW2 BnWR2	BnWW1 BnWR1	BnWW0 BnWR0	Function
0	0	1	2 states (0 wait) access fixed mode
0	1	0	3 states (1 wait) access fixed mode (Default)
1	0	1	4 states (2 wait) access fixed mode
1	1	0	5 states (3 wait) access fixed mode
0	1	1	WAIT pin input mode
others			(Reserved)

Note: When DRAM is specified as a connecting memory, setting should be 3 states (1 wait) or more. In the case of DRAM access, the WAIT pin input mode cannot be used.

#### (i) Waits number fixed mode

The bus cycle is completed with the set states. The number of states is selected from 2 states (0 waits) to 5 states (3 waits).


#### (ii) WAIT pin input mode

This mode samples the WAIT input pins. It continuously samples the WAIT pin sate and inserts a wait if the pin is active. The bus cycle is minimum 2 states. The bus cycle is completed when the wait signal is non-active ("High" level) at 2 states. The bus cycle extends if the wait signal is active at 2 states and more.

#### BnREC Bit (BnCSH register)

0	No dummy cycle is inserted (default).
1	Dummy cycle is inserted.

#### • When not inserting a dummy cycle (0 waits)



When inserting a dummy cycle (0 waits)

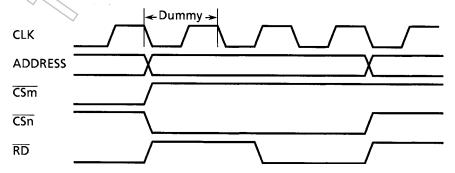
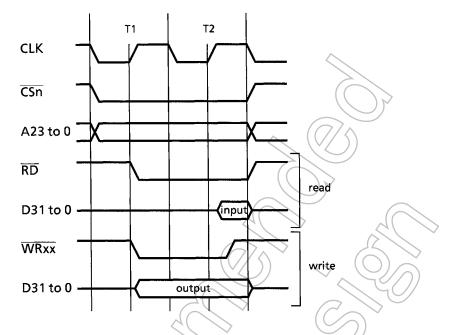
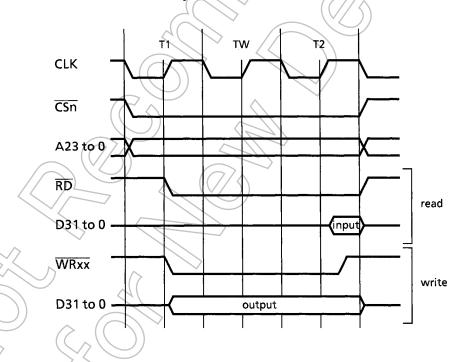
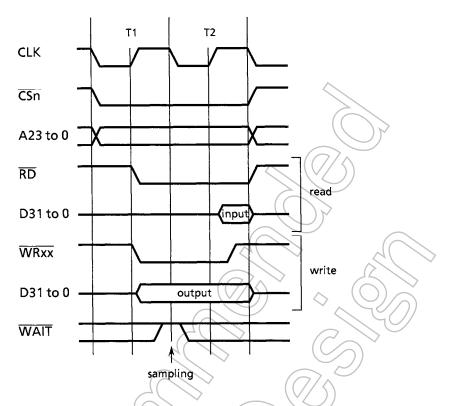
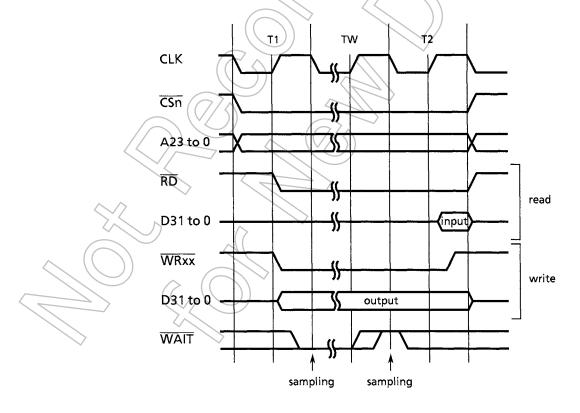




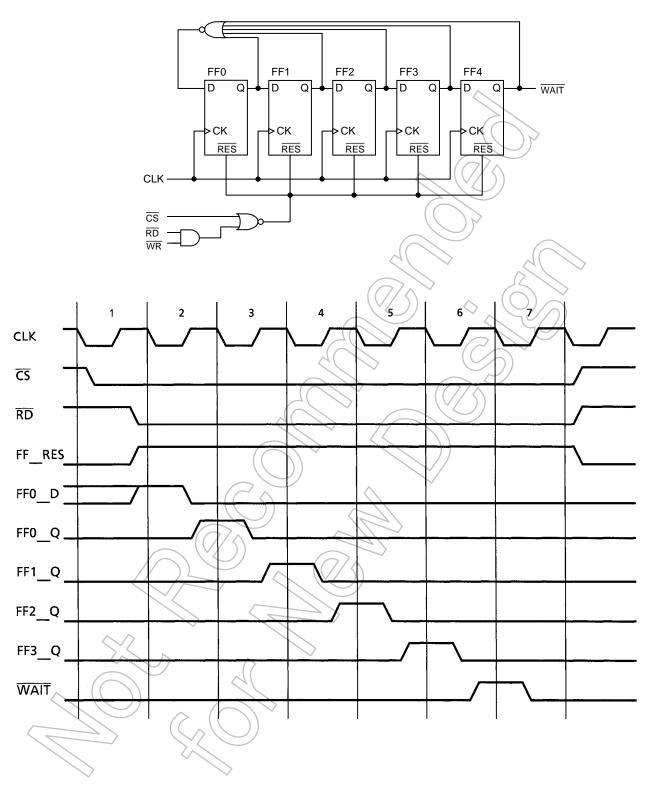

Figure 3.6.1 Read Cycle when Dummy Cycle is Inserted


- (5) Basic bus timing
  - External read/write bus cycle (0 waits)




• External read/write bus cycle (1 wait)




• External read/write bus cycle (0 waits at WAIT pin input mode)



• External read/write bus cycle (n waits at WAIT pin input mode)



• Example of WAIT input cycle (5 waits)



## 3.6.4 ROM Control (Page mode)

This section describes ROM page mode accessing and how to set the registers. ROM page mode is set by the page ROM control register.

#### (1) Operation and how to set the registers

TMP94C241C supports ROM access of the page mode. The ROM access of the page mode is specified only in the block address area 2.

ROM page mode is set by the page ROM control register (PMEMCR). Setting OPGE bit of the PMEMCR register to "1" sets the memory access of the block address area 2 to ROM page mode access.

The number of read cycles is set by the OPWR1, OPWR0 bit of the PMEMCR register.

## OPWR1/OPWR0 Bit (PMEMCR register)

OPWR1	OPWR0	Number of cycle in a page
0	0	1 state (n-1-1-1 mode) (n ≥ 2)
0	1	2 states (n-2-2-2 mode) (n ≥ 3)
1	0	3 states (n-3-3-3 mode) (n ≥ 4)
1	1	(Reserved)

Note: Set the number of waits "n" to the control register (BnCSL) in each block address area.

The page size (the number of bytes) of ROM in the CPU side is set to the PR1 and 0 bit of the PMEMCR register. When data is read out until a border of the set page, the controller completes the page reading operation. The start data of the next page is read in the normal cycle. The following data is set to page read again.

## PR1/PR0 Bit (PMEMCR register)

	RR1	RRO	ROM Page Size
	0	<b>)</b> 0	64 Bytes
//	√ 0	1	32 Bytes
<		0	16 Bytes (Default)
	) 1	1	8 Bytes

(2) Signal timing pulse

For the signal timing pulse, see "Page ROM Read Cycle" in section 4.3.2.

## 3.6.5 List of Registers

The memory control registers and the settings are described as follows. For the addresses of the registers, see "Table of Special Function Registers" in section 5.

### (1) Control register

The control register is a pair of BnCSL and BnCSH. (n is a number of the block address area.) BnCSL has the same configuration regardless of the block address areas. In BnCSH, only B2CSH which is corresponded to the block address area 2 has a different configuration from the others.

BnCSL(n = 0 to 5)

	7	6	5	4	3	) > 2	1	0
bit Symbol		BnWW2	BnWW1	BnWW0		BnWR	BnWR1	BnWR0
Read/Write			W				(w	<b>&gt;</b>
After reset	_	0	1			0		0

Note: Read-modify-write is prohibited.

BnWW [2:0] Specifies the number of write waits.

001 = 2 states (0 waits) access 010 = 3 states (1 wait) access

101 = 4 states (2 waits) access 110 = 5 states (3 waits) access

011 = WAIT pin input mode Others = (Reserved)

BnWR [2:0] Specifies the number of read waits.

001 = 2 states (0 waits) access 010 = 3 states (1 wait) access

101 = 4 states (2 waits) access 110 = 5 states (3 waits) access

011 = WAIT pin input mode Others = (Reserved)

Note: When DRAM is specified as a connecting memory, setting should be 3 states (1 wait) or more.

In the case of DRAM access, the WAIT pin input mode cannot be used.

#### **B2CSH**

	7>	6	5	4	3	2	1	0
bit Symbol	B2E	B2M	//-	B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
Read/Write	) w	Ŵ		w	V	V	V	v
After reset	1	0	-	0	0	0	0/1	0/1

Note: Read-modify-write is prohibited.

B2E Enable bit

0 = No chip select signal output

1 = Chip select signal output (Default)

Note: After reset release, only the enable bit B2E of B2CS register is valid ("1").

B2M Block address area specification

0 = Sets the block address area of CS2 to addresses 000000H to FFFFFFH. (Default)

1 = Sets the block address area of CS2 to programmable.

Note: After reset release, the block address area 2 is set to addresses 000000H to FFFFFH.

B2REC Sets the dummy cycle for data output recovery time.

0 = Not insert a dummy cycle (Default)

1 = Insert a dummy cycle

B2OM [1:0]

00 = SRAM or ROM (Default)

Others = (Reserved)

B2BUS [1:0] Sets the data bus width

00 = 8 bits (Default)

01 = 16 bits

10 = 32 bits

11 = (Reserved)

Note: The value of B2BUS bit is set according to the state of AM [1:0] pin after reset release.

## BnCSH (n = 0,1,3,4,5)

	7	6	5	3	2	U/1))	0
bit Symbol	BnE	-	- (	BnREC BnOM1	BnOM0	BnBUS1	BnBUS0
Read/Write	W	:	4	W	w	٧	V
After reset	0	-		0 0		0	0

Note: Read-modify-write is prohibited:

BnE Enable bit

0 = No chip select signal output (Default)

1 = Chip select signal

BnREC Sets the dummy cycle for data output recovery time.

0 = Not insert a dummy cycle (Default)

1 = Insert a dummy cycle

BnOM [1:0] Sets the connecting device.

00 = SRAM or ROM (Default)

01 = (Reserved)

10 = DRAM

11 = (Reserved)

Note: DRAM is set only by B1CS and B3CS.

BnBUS [1:0] Sets data bus width.

00 = 8 bits (Default)

01 = 16 bits

10 = 32 bits

11 = (Reserved)

#### (2) Block address register

A start address and an address area of the block address area are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). The memory start address register sets all start addresses similarly regardless of the block address areas. The bit to be set by the memory address mask register is depended on the block address area.

### MSARn (n = 0 to 5)

	7	6	5	4	3	2	1	0
bit Symbol	MnS23	MnS22	MnS21	MnS20	MnS19	Mn\$18	MnS17	MnS16
Read/Write	:			R/	w		-	
After reset	1	1	1	1	1	) > 1	1	1

MnS [23:16] Sets a start address.

Sets the start address of the block address areas. The bit are corresponding to the addresses A23 to A16.

#### MAMR0

-	7	6	5 🗸 🤇	4	3	(2)	1	0
bit Symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-9	M0V8
Read/Write		·	20	> R/M		/))		
After reset	1	1	(1)	1//	1	1	1	1

M0V [20:8]

Enables or masks comparison of the addresses. M0V20 to M0V8 are corresponding to addresses A20 to A8. The bit of M0V14 to M0V9 are corresponding to addresses A14 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

## MAMR1

	7	6	5	4	3	2	1	0
bit Symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-9	M1V8
Read/Write				R/	W			
After reset	1	(7)	1	1	1	1	1	1

M1V [21:8]

Enables or masks comparison of the addresses. M1V20 to M1V8 are corresponding to addresses A21 to A8. The bit of M1V15 to M1V9 are corresponding to addresses A15 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

## MAMRn (n = 2 to 5)

	7,	6	5	4	3	2	1	0
bit Symbol	MnV22	MnV21	MnV20	MnV19	MnV18	MnV17	MnV16	MnV15
Read/Write				R/	w			
After reset	1	1	1	1	1	1	1	1

MnV [22:15]

Enables or masks comparison of the addresses. MnV22 to MnV15 are corresponding to addresses A22 to A15. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

Page ROM control register (PMEMCR)

The page ROM control register sets page ROM accessing. ROM page accessing is executed only in the block address area 2.

	7	6	5	4//	)) 3	Q 2 ())		0
bit Symbol	_	-	-	OPGE	OPWR1	OPWRO	PR1	PR0
Read/Write				R/W	R	W	R/	w
After reset	-	-	- </td <td>0</td> <td>0</td> <td>0)</td> <td>1</td> <td>0</td>	0	0	0)	1	0

OPGE enable bit

0 = No ROM page mode accessing (Default)

1 = ROM page mode accessing

OPWR [1:0] Specifies the number of waits.

00 = 1 state (n-1-1-1 mode) (n  $\geq$  2) (Default)

 $01 = 2 \text{ states (n-2-2-2 mode) (n } \ge 3)$ 

 $10 = 3 \text{ states (n-3-3-3 mode) (n } \ge 4)$ 

11 = (Reserved)

Note: Set the number of waits "n" to the control register (BnCSL) in each block address area.

PR [1:0] ROM page size

00 = 64 bytes

01 = 32 bytes

10 = 16 bytes (Default)

11 = 8 bytes

Table 3.6.1 Control Register (1/2)

Symbol	Address	7	6	5	4	3	2	1	0
Symbol	Address	_	B0WW2	B0WW1	B0WW0		BOWR2	B0WR1	B0WR0
BOCSL	140H		5011112	W					
50052	1.01.	_	0	1	0	_	0	1	0
		BOE	_		BOREC	B0OM1	воомо	B0BUS1	B0BUS0
восѕн	141H	W			W				
		0	_	_	0	0	0	0	0
		M0V20	M0V19	M0V18	M0V17	M0V16		M0V14-V9	M0V8
MAMRO	142H	10.0020			R/V		-	<u> </u>	
		1	1	1	1	1		1	1
		M0523	M0S22	M0S21	M0S20	M0S19	M0518	M0S17	M0S16
MSARO	143H				R/\			/	
		1	1	1	1	1 (	1	1 1	1
			B1WW2	B1WW1	B1WW0	_ ((	B1WR2	B1WR1	B1WR0
B1CSL	144H			W				W	*
		-	0	1	0	~(F)	0	10	0
		B1E	_	_	B1REC	B1OM1	B1OM0	B1BUS1	B1BUS0
B1CSH	145H	W		•	W			N	
		0	_	<u> </u>	0 (	// ô	Q	0	0
		M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-V9	M1V8
MAMR1	146H		·		RA			5901	
		1	1	1		√ 1	17	1	1
		M1S23	M1522	M1S21	M1520	M1S19	M1518	M1S17	M1S16
MSAR1	147H		·		R/\	N	~~~		
		1	1	1 (		1 /	7/5	1	1
		_	B2WW2	B2WW1	B2WW0	_	B2WR2	B2WR1	B2WR0
B2CSL	148H			W(				W	
1		_	0	_1\\	0 /	< - \	0	1 1	0
		B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
B2CSH	149H	V	V	$((\ ))$	W		/ \	N	
		1	0		0 ^	0	0	0	0
		M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
MAMR2	14AH			))	RA	W			
		1		1	1	$\bigcirc$ 1	1	1 1	1
		M2S23	M2\$22	M2S21	M2\$20	M2S19	M2S18	M2S17	M2S16
MSAR2	14BH				( )	Ň	<u> </u>		
		// 1 ) 4	1		(//1))	1	1	1	1
		\\/	B3WW2	B3WW1	B3WW0	_	B3WR2	B3WR1	B0WR0
B3CSL	14CH		. ,	W			<u>:</u>	w_	
			0	1		_	0_	1	0
	^/	B3E	_	/_/	B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
взсѕн	14DH	W			: w_			w	
		0	- (7		0	0	0	0	0
		M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
MAMR3	14EH				R/1	W			
		1 🔿		1	1	1	1	1	1
/	7/	M3S23	M3\$22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
MSAR3	14FH		<b>(</b> )		R/	w			
		1 4		11	11	1	1	1	1
			B4WW2	B4WW1	B4WW0		B4WR2	B4WR1	B4WR0
B4CSL	150H			W				W	
1		_	0	1	0	_	0	1	0
		B4E	-	-	B4REC	B4OM1	B4OM0	B4BUS1	B4BUS0
1 - 4 - 611	151H	W	:		· · · · · · · · · · · · · · · · · · ·		:		
B4CSH	1 13111	, ,,	:		W		•	W	

Note: Read-modify-write is prohibited for B0CSL to B4CSL and B0CSH to B4CSH registers.

Table 3.6.2 Control Register (2/2)

Symbol	Address	7	6	5	4	3	2	1	0
	. :	M4V22	M4V21	M4V20	M4V19	M4V18	M4V17	M4V16	M4V15
MAMR4	152H				R/	w			
		1	1	1	1	1	1	1 1	1
		M4S23	M4S22	M4S21	M4S20	M4S19	M4S18	M4S17	M4S16
MSAR4	153H				R/	w			
		1	1	1	1	1	1 2	1	1
		-	B5WW2	B5WW1	B5WW0	_	B5WR2	B5WR1	B5WR0
B5CSL	154H			w				$\bigvee_{\mathbf{W}}$	
		_	0	1	0	_	(0)	1	0
		B5E	_	_	B5REC	B5OM1	B5OM0	B5BUS1	B5BUS0
B5CSH	155H	W	:		w			<b>V</b>	
		0	-	<u> </u>	0	0 (	0	0	0
		M5V22	M5V21	M5V20	M5V19	M5V18	M5V17	M5V16	M5V15
MAMR5	156H			•	R/	w			
		1	1	1	1	76	) 1	.1(	1
		M5S23	M5S22	M5S21	M5S20	M5S19	M5S18	M5\$17	M5S16
MSAR5	157H				R/	w >		14	>
		1	1	1	1 (	(// 1)	A.	(()1)	1
		_	-	<u> </u>	OPGE	OPWR1	OPWR0	PR1	PR0
PMEMCR	166H			:			R/W	X 90/	
		_	-	-	0	0	0/	1	0

Note: Read-modify-write is prohibited for B5CSL and B5CSH registers.

#### 3.6.6 Cautions

If the parasitic capacitance of the read signal (Output enable signal) is greater than that of the chip select signal, it is possible that an unintended read cycle occurs due to a delay in the read signal. Such an unintended read cycle may cause a trouble as in the case of (a) in Figure 3.6.2.

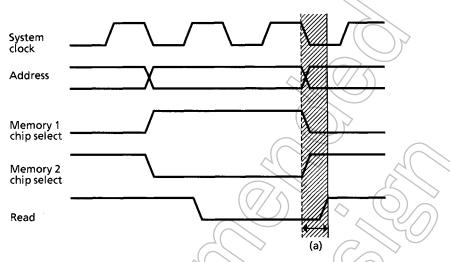



Figure 3.6.2 Read Signal Delay Read Cycle

Example: When using an externally connected Flash E²PROM which uses JEDEC standard commands, note that the toggle bit may not be read out correctly. If the read signal in the cycle immediately preceding the access to the Flash E²PROM does not go high in time, as shown in Figure 3.6.3, an unintended read cycle like the one shown in (b) may occur.

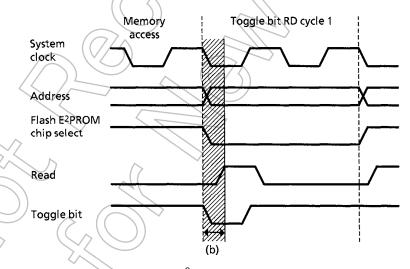



Figure 3.6.3 Flash E²PROM Toggle Bit Read Cycle

When the toggle bit reverses with this unexpected read cycle, TMP94C241C always reads same value of the toggle bit, and cannot read the toggle bit correctly. To avoid this phenomena, the data polling control is recommended.

### 3.7 DRAM controller

TMP94C241C has a two-channel DRAM controller. In addition, it controls DRAM access, address multiplexed, refresh, etc., as followings.

Mapping area

Block address area 1....... 256 to 4 Mbytes

Block address area 3....... 32K to 8 Mbytes

• Memory access mode

4CAS (32-bit bus), 2CAS (16-bit bus), 1CAS (8-bit bus)

Supports the page mode.

• Memory access address length

Selects of 8 to 11 bits.

• Refresh mode

CAS-before-RAS refresh mode

• Refresh interval

Programmable (78 to 384 states)

Refresh cycle width

Programmable (2 to 9 states)

• Self-refresh

Sets the self-refresh mode.

Arbitration between refresh and access

Refresh is prior to access. Wait is automatically inserted to the access cycle.

Operation during bus release

While the bus is released, there is a mode to support only DRAM refresh operation.

The data bus width and the number of waits to access DRAM are set according to the set value to the control register (B1CSH, B3CSH) in the block address are 1 and 3. This wait setting should be 3 states (1 wait) or more. In the case of DRAM access, the WAIT pin input mode cannot be used. The DRAM control register (DRAM0CRL/H, DRAM1CRL/H) and the DRAM refresh control register (DRAM0REF, DRAM1REF) set the other values.

DRAM accessing and refresh are explained with the setting method of the registers.

#### (1) DRAM access pin

The DRAM accessing is performed by the following pins. The functions of the pins are depended on the connected data bus width. The data bus width is set to the control register (B1CSH, B3CSH) in the block address area 1 and 3.

Note: The 32-bit bus mode is supported only in the channel 1.

	Bus Size	
8 bit	16 bit	32 bit
RASO	RASO (	77/-
WE0	WEO	()) –
OE0	OE0	_
_	UCASO )	_
CASO	LCAS0	- (
RAS1	RAS1	RAS1
WE1	WE1	WE1
OE1	OE1	OE3
_(_		HUCAS1
4	- ((	HLCAS1
	UCAS1	LUCAS1
CAS1	LCA\$1	LLCAS1
	RASO WEO OEO CASO RAS1 WE1 OE1	8 bit 16 bit  RASO RASO  WEO WEO  OEO OEO  - UCASO  CASO CASO  RAST RAST  WET WET  OET OET  - UCASO  OEO  - UCASO  RAST  WET  UCASO  OET  - UCASO  OET  - UCASO  OET  - UCASO

### (2) DRAM access control

The DRAM control register (DRAM0CRL/H, DRAM1CRL/H) sets the DRAM access mode. The following explains the operations of the modes and the setting of the register.

## (i) Address multiplexing

In TMP94C241C, the internal address multiplexer outputs the row/column address. The multiplexed address lines depend on the bus size: 8 bits or 11 bits.

## Setting method

The MUXWn1 and 0 bits of the DRAM control register specify the multiplexed address width. The value set as follows is valid by setting MUXEn bit to "1".

## MUXWn_

	MUXWn1	MUXWn0	Multiplexed address length
	))	O (	8 bit (default)
1	0		9 bit
	1	\\ 0\	10 bit
>	1	1	11 bit

The multiplexed access bus size is depended on the data bus width after the multiplexed address width is set.

Column						Row A	ddress					Row Address											
Address	8 bit multiplexed address length				9 bit multiplexed address length			10 bit multiplexed address length			11 bit multiplexed address length												
(A0~A12 Pins)	8 bit	16 bit	32 bit	8 bit	16 bit	32 bit	8 bit	16 bit	32 bit	8 bit	16 bit	32 bit											
A0	A8	A0	A0	Α9	A0	A0	A10	A0	A0	A11	A0	A0											
A1	Α9	Α9	Α1	A10	A10	A1	A11	A11	AI.	A12	A12	A1											
A2	A10	A10	A10	A11	A11	A11	A12	A12	A12	A13	A13	A13											
A3	A11	A11	A11	A12	A12	A12	A13	A13	A13	A14	A14	A14											
A4	A12	A12	A12	A13	A13	A13	A14	-A14	A14	A15	A15	A15											
A5	A13	A13	A13	A14	A14	A14	A15	A15	A15	A16	A16	A16											
A6	A14	A14	A14	A15	A15	A15	A16	A16	A16	A17	A17	A17											
- A7	A15	A15	A15	A16	A16	A16	A17	A17	A17	A18	A18	A18											
A8	A8	A16	A16	A17	A17	A17	A18	A18	A18	A19	A19	A19											
A9	Α9	A9	A17	Α9	A18	A18	A19	A19	A19	A20	A20	A20											
A10	A10	A10	A10	A10	A10	A19	A10	A20	A20	A21	A21	A21											
A11	A11	A11	A11	A11	A11	A11	A11	A11	A21	A11	A22	A22											
A12	A12	A12	A12	A12	A12	A12	A12	A12	A12	A12	A12	A23											

## (ii) Page mode access

The DRAM page mode is accessed by setting the PGEn bit of the DRAM control register to "1".

In the page mode accessing, it is set to the DRAM control register.

## • Setting method

The number of waits in writing is set to the PnWW1, PnWW0 bits. The number of waits in reading is set to the PnWR1, PnWR0 bits. The setting method is the same as follows.

# PnWW/PnWR bits

PnWW1 PnWR1		Function
0 <	0/	(reserved)
0	1	1 wait (n-2-2-2 mode) (n ≥ 3)
_1	0	2 wait (n-3-3-3 mode) (n ≥ 4)
1	<i>⊳</i> 1	(reserved)

Note: Set the number of waits "n" to the control register (BnCSL) in each block address area.

## (iii) DRAM access signal timing

For details of the signal timing pulse, see "DRAM Bus Cycle" in section 4.3.3.

#### (3) DRAM refresh controller

TMP94C241C support three refresh controls as followings.

- CAS-before-RAS interval refresh
- CAS-before-RAS self-refresh
- Dummy refresh

The DRAM refresh control register (DRAM0REF, DRAM1REF) and the SRFC bit of the DRAM control register control the DRAM refresh operation. The followings explain the setting method and the operations.

#### (i) CAS-before-RAS interval refresh

In the CAS-before-RAS interval refresh mode, the  $\overline{RAS}$  and  $\overline{CAS}$  signals which are necessary for DRAM refresh are created according to the refresh interval and the refresh cycle width.

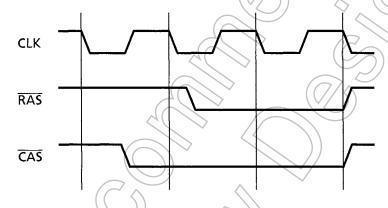
### • Execution procedure

Setting the RCn bit of the DRAM refresh control register (DRAMOREF, DRAM1REF) to "1" inserts the refresh cycle. The refresh cycle width is set to RWn2 to RWn0 bit, and the refresh cycle insertion interval is set to RSn2 to RSn0 bit. When using DRAM, set to at least three cycles.

The RWn bit is set as follows

#### RWn

RW02 RW12	RW01 RW11	RW00 RW10	Refresh cycle width
0	0	0	2 cycle (default)
0	0	F	3 cycle
0	(17/	0	4 cycle
0		<u> </u>	5 cycle
$\langle 1 \rangle$		0	6 cycle
1	0		7 cycle
1	1	0	8 cycle
1,	1	1	9 cycle


The refresh insertion interval is set in accordance with the setting of the RSn bit. The refresh cycle insertion interval is set in accordance with the frequency of the system clock as follows.

#### RSn

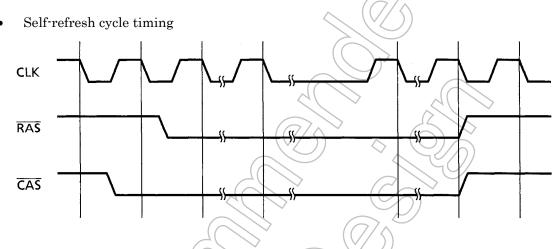
RS02	RS02 RS01 RS00		Insertion	Clock Frequency (MHz)					
RS12	RS11	RS10	(cycle)	16.00	19.66	20,00			
0	0	0	78	4.88	3.97	3.90			
0	0	1	154	9.63	7.83	7.70			
0	1	0	188	11.75	9.56	9.40			
0	1	1	226	14.13	11.50	11.30			
1	0	0	246	15.38	12.51	12.30			
1	0	1	302	18.88	15.36	15.10			
1	1	0	308	19.25	15.67	15.40			
1	1	1	384	24.00	19.53	19.20			

(Unit:  $\mu$ s)

#### Refresh cycle timing



## (ii) CAS-before-RAS self-refresh


The CAS-before-RAS self-refresh (Hereinafter referred as self-refresh mode) used when the clock supplied is stopped by a HALT instruction while refreshing using the CAS-before-RAS interval refresh mode (Hereinafter referred to as interval mode). (To stop clock supplied by a HALT instruction, the standby function is set in the IDLE mode or the STOP mode.)

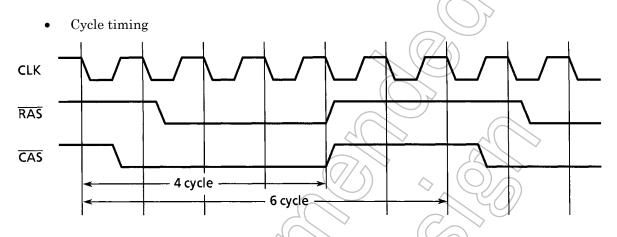
#### • Execution procedure

Setting the SFRCn bit of the DRAM control register to "0" during refresh in usual interval mode executes self-refresh.

In the self-refresh mode, the  $\overline{RAS}$  and  $\overline{CAS}$  signals maintain their low levels after turning to "low", as it is in the interval mode.

When halt is released and the clock is supplied, "1" is set to the SFRCn bit by halt release detector. The self-refresh mode is automatically released. But "1" isn't set in "RUN mode". After the self-refresh mode is released,  $\overline{RAS}$  and  $\overline{CAS}$  signals turn to "high". The usual refresh is executed to return to the interval refresh mode.




## (iii) Dummy refresh

The dummy refresh executes CAS-before RAS interval refresh successively. The refresh cycle width is fixed to 4 states; the interval, to 6 states.



#### • Execution procedure

Setting the DMn bit of the DRAM refresh control register (DRAMOREF, DRAM1REF) to "1" generates the dummy refresh. Dummy refresh is released by writing "0" to the DMn bit, by enabling DAM access control, or setting the RCn bit of the DRAM refresh control register to "1" and setting to the interval refresh mode. When dummy refresh mode is released by enabling DRAM access control or by setting the RCn bit of the DRAM refresh control register, the DMn bit is not cleared to 0.



#### (4) Priorities

As the DRAM refresh cycle is asynchronous to the CPU operating cycle, the refresh cycle may overlap with DRAM read and write cycles. If an overlap occurs, the DRAM controller gives priority to the cycle that started first. If the refresh cycle and DRAM access request are generated at the same time, the refresh cycle is given priority. In this case, the DRAM controller automatically inserts wait states in the memory access cycle until the refresh cycle completes.

#### (5) Refresh in the bus release mode

TMP94C241C has a bus release function. DRAM accessing pins ( $\overline{RAS}$ ,  $\overline{CAS}$ ) include two modes; either to release mode (set to high impedance) in the same way as other pins, or to non-release mode (output refresh signals). The BRMn bit of DRAM control register sets these modes.

**BRMn** 

BRM0 BRM1	Bus release mode
0	Releases bus release-only pin (default)
_1	Supports only refresh operation

#### • DRAM accessing pin release mode

When "0" is input to the BRMn bit and the bus release request pin ( $\overline{BUSRQ}$ ) is set to active, TMP94C241C acknowledges a bus release request. When the current bus cycle completes, TMP94C241C first set the DRAM accessing pins ( $\overline{RAS}$ ,  $\overline{CAS}$ ) to high, then turns the output buffer off to set the pins to high impedance. As the refresh cycle is asynchronous to the access cycle, when a refresh request is generated and has to wait, the refresh cycle is generated and the bus is released.

Only one refresh request generated during the bus release is held. The refresh cycle is generated immediately upon return of the bus mastership to TMP94C241C at bus release completion.

## • DRAM accessing pin non-release mode

When "1" is input to the BRMn bit, DRAM accessing pins do not release the bus when a bus release request occurs.

The pins continue to operate but support refresh cycles only. In DRAM accessing pin non-release mode, the bus release timing is not affected by refresh requests.

## (6) List of registers

The registers to control DRAM controller and the settings are described as follows. For the addresses of the registers, see "Table of Special Function Registers" in section 5.

DRAM can be set to the connecting memory only in the block address area 1 and 3. DRAM0CRL, DRAM0CRH and DRAM0REF control DRAM (Channel 0) in the block address area 1. DRAM1CRL, DRAM1CRH and DRAM1REF control DRMA (Channel 1) in the block address area 3.

#### **DRAMOCRL**

	-		<del></del>			:			
	7	6	5	4	3	2	1	0	
bit Symbol	SFRC0		BRM0		MUXE0	MUXW01	MUXW00	MAC0	
Read/Write	ead/Write R/W		R/W		R/W	R/W		R/W	
After reset	1 (	<i>))-</i>	0		0	0	0	0	

## DRAM1CRL

	7	6	5	4	3	2	1	0
bit Symbol	SFRC1	-	BRM1	_	MUXE1	MUXW11	MUXW10	MAC1
Read/Write	R/W	$\cap$	R/W		R/W	R/W		R/W
After reset	1	<u>Gil</u>	0	-	0	0	0	0

- SFRC0/1 self-refresh control
  - 0 = Self-refresh
  - 1 = No self-refresh
- BRM0/1 bus release mode control
  - 0 = Also releases DRAM pin in bus release mode
  - 1 = Does not release DRAM pin in bus release mode. Supports only refresh.
- MUXE0/1 address multiplex
  - 0 = Disable
  - 1 = Enable (Make this setting when using DRAM.)
- MUXW0/1 [1:0] multiplex address length control
  - 00 = 8 bits
  - 01 = 9 bits
  - 10 = 10 bits
  - 11 = 11 bits
- MAC0/1 enable bit
  - 0 = No DRAM access control
  - 1 = DRAM access control

#### DRAM0CRH

	7	6	5	4	3))	2	1	0
bit Symbol	P0WW1	P0WW0	P0WR1	P0WR0	PGE0	-	-	-
Read/Write	R/	w / s	R/	w	R/W			
After reset	1		1	(60)	0	-	-	

## DRAM1CRH

	//7-	7	6	5		4	3	2	1	0
bit Symbol	P1WW	1 P	1WW0	P1WF	17	P1WR0	PGE1	-	-	-
Read/Write		R/W			R/W		R/W		-	
After reset	1		0			0	0	-	-	-

P0/1WW [1:0] specifies the number of DRAM page mode write waits.

00 = (Reserved)

 $01 = 2 \text{ states (n-2-2-2 mode) (n } \ge 3)$ 

 $10 = 3 \text{ states (n-3-3-3 mode) (n } \ge 4)$ 

11 = (Reserved)

Note: Set the number of waits "n" in the corresponding control register (BnCSL).

• P0/1WR [1:0] specifies the number of DRAM page mode read waits.

00 = (Reserved)

 $01 = 2 \text{ states (n-2-2-2 mode) (n } \ge 3)$ 

 $10 = 3 \text{ states (n-3-3-3 mode) (n } \ge 4)$ 

11 = (Reserved)

Note: Set the number of waits "n" to the control register (BnCSL) in each block address area.

• PGE0/1 page mode access enable

0 = No page mode access

1 = Page mode access

Note: Please set the same value to PGE0 and PGE1.

Setting the different value may occur malfunction.

## **DRAMOREF**

	7	6	5	4//	3	2	1	0
bit Symbol	DM0	RS02	RS01	RS00	RW02	RW01	RW00	RC0
Read/Write	R/W		R/W			R/W		R/W
After reset	0	(0 ()	Ó	0	0	0	0	0

## DRAM1REF

	7	2/6	5	4	3	2	1	0
bit Symbol	DM1	7 RS12	RS11	RS10	RW12	RW11	RW10	RC1
Read/Write	R/W		R/W			R/W		R/W
After reset	0	0	0	0	0	0	0	0

• DM0/1 dummy refresh cycle control

0 = No dummy refresh cycle

1 = Dummy refresh cycle

• RS0/1 [2:0] refresh cycle insertion interval

000 = 78 cycles

001 = 154 cycles

010 = 188 cycles

011 = 226 cycles

100 = 246 cycles

101 = 302 cycles

110 = 308 cycles

111 = 384 cycles

• RW0/1 [2:0] refresh cycle width

000 = 2 cycles

001 = 3 cycles

010 = 4 cycles

011 = 5 cycles

100 = 6 cycles

101 = 7 cycles

110 = 8 cycles

111 = 9 cycles

• RC0/1 enable bit

0 = No refresh cycle

1 = Refresh cycle

(7) Register setting examples

The following shows an example of setting block address space 1 (CS1) with addresses 100000H to 1FFFFH (1-Mbyte space), 8-bit data bus width, write 3 states, read 3 states, no dummy cycle for data bus recovery, and 8-bit address multiplex DRAM mode.

MSAR1 = 10H

MAMR1 = 3FH

B1CSL = 22H

B1CSH = 88H

DRAMOCRL = 8DH

The following shows an example of setting block address space 3 (CS3) with addresses 300000H to 3FFFFFH (1-Mbyte space), 16-bit data bus width, write/read 1 wait, page access, and 10-bit address multiplex DRAM mode.

MSAR3 = 30H

MAMR3 = 1FH

B3CSH = 89H

DRAM1CRL = 8DH

DRAM1CRH = 58H

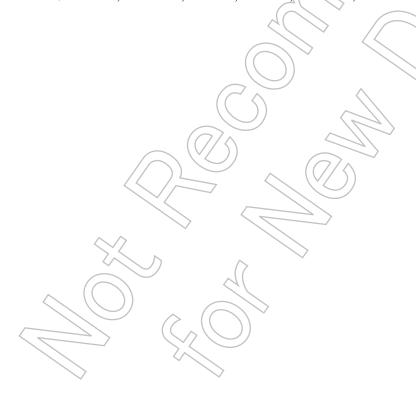
Table 3.7.1 List of Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			SFRC0	-	BRM0	_	MUXE0	MUXW01	MUXW00	MAC0	
	DRAM 0 Control Register L		R/W								
DRAM0CRL			1	-	0	-	0	0	0	0	
		160h	Self- refresh 0: Exec. 1: Rele.		Bus release mode control 0: Rele. 1: Not release		multiplex 0: disable	Multiplexe address 00: 8bit 01: 9bit 10: 10bit 11: 11bit	ed length	memory access control 0: Disable 1: Enable	
			P0WW1	P0WW0	P0WR1	P0WR0	PGE0	<i>J)</i>	-	-	
					R/W					<u>:</u>	
	DRAM 0	4641	1	0	1	0	(0)	<u> </u>	-	<u> </u>	
DRAM0CRH	Control   Register H	161h		n-2-2-2 mode) n-3-3-3 mode)	00: (Reserv 01: 1wait ( 10: 2wait ( 11: (Reserv	n-2-2-2 mode) n-3-3-3 mode)		Š			
			SFRC1	-	BRM1	(7/0	MUXE1	MUXW11	MUXW10	MAC1	
		162h	RW Q								
			1	-	0		0	(0)	100	0	
DRAM1CRL	DRAM 1 Control Register L		Self- refresh 0: Exec. 1: Rele.		Bus release mode control 0: Rele. 1: Not release		address multiplex 0: disable 1: Enable	00: 8bit	ed length	memory access control 0: Disable 1: Enable	
			P1WW1	P1WW0	P1WR1	P1WR0	PGE1	-	-	-	
			RW								
	DRAM 1 Control Register H		1	0)	1	0	<b>//</b> 0	-	-	-	
DRAM1CRH		163h		n-2-2-2 mode n-3-3-3 mode	00: (Reser ) 01: 1wait ) 10: 2wait 11: (Reser	(n-2-2-2 mode) (n-3-3-3 mode)					
		_ ((	DIVIO	RS02	R501	R500	RW02	RW01	RW00	RC0	
	/						w				
	DRAM 0 Refresh Control	1) _	0	~ 0	(0)	0	0	0	0	0	
DRAMOREF		164h	Dummy cycle 0: Prohibit 1: Execute	000:		246 302 308	Refresh cy 000: 2 001: 3 010: 4 011: 5	100: 6 101: 7 110: 8	7 3	Refresh cycle 0: Not insert 1: insert	
	4//	$\mathcal{N}$	DM1	RS12	RS11	RS10	RW12	RW11	RW10	RC1	
		<b>Y</b>	(			R	w				
$\wedge$	DRAM 1		0	0	0	0	0	0	0	0	
DRAM1REF		165h	Dummy cycle 0: Prohibi	000: 001:	154 101: 3	246	Refresh cy 000: 2 001: 3	100: 6 101: 7		Refresh cycle 0: Not	
		1/2	1: Execute	010: 011: 2			010: 4 011: 5			insert 1: insert	

## 3.8 8-Bit Timers

TMP94C241C incorporates four 8-bit timers (timers 0 to 3). Each timer can operate independently or be cascaded to form two 16-bit timers. The 8-bit timers have the following four operating modes.

- 8-bit interval timer mode (4 channels) The above two modes can be combined
- 16-bit interval timer mode (2 channels) \( \int \) (for example, two 8-bit timers and one 16-bit timers)
- 8-bit programmable square wave (PPG: variable cycle, variable duty) output mode (2 channels)
- 8-bit PWM (pulse width modulation: variable duty at fixed cycle) output mode (2 channels)


Figure 3.8.1 is a block diagram for 8-bit timers (timers 0, 1).

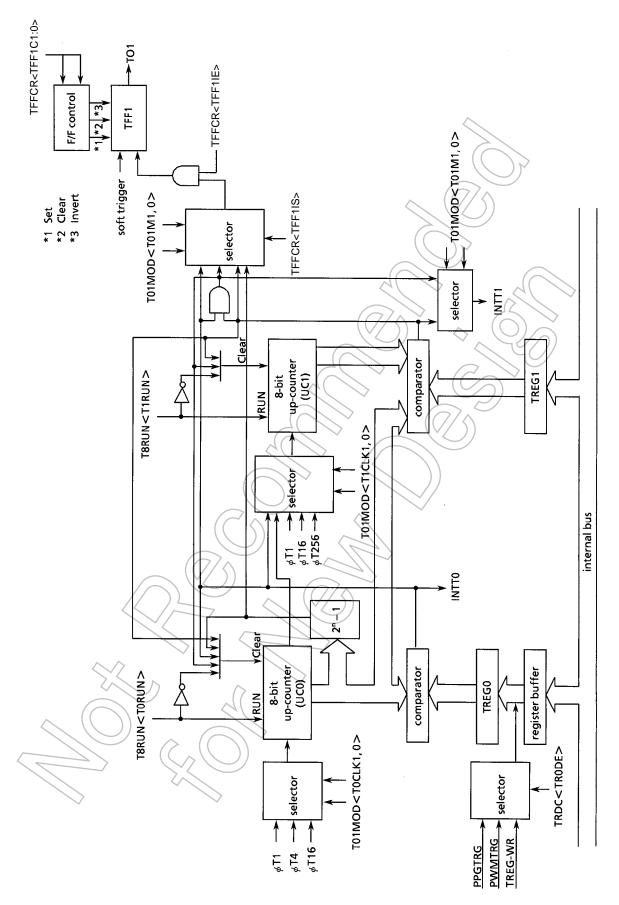
Timers 2 and 3, have the same circuit configuration as timers 0 and 1.

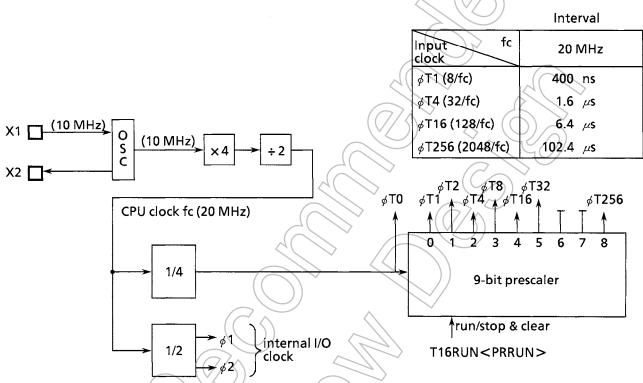
Each interval timer consists of an 8-bit up counter, an 8-bit comparator, and an 8-bit timer register. One timer flip-flop each (TFF1, TFF3) is provided for the timer pairs: timers 0 and 1, timers 2 and 3.

Of the input clock sources for interval timers, the  $\phi$ T1,  $\phi$ T4,  $\phi$ T16, and  $\phi$ T256 internal clocks are obtained from the 9-bit prescaler shown in Figure 3.8.2.

The 8-bit timer operating mode and the timer flip-flops are controlled by six control registers (T01MOD, T23MOD, TFFCR, T8RUN, T16RUN, and TRDC).







Figure 3.8.1 8-Bit Timer Block Diagram (Timers 0, 1)

#### [1] Prescaler

The input to the 9-bit prescaler is the CPU fundamental clock (fc) divided by four (fc/4). The prescaler generates an input clock for the 8-bit timers, the 16-bit timer/event counters, and baud rate generator, for example.

The 8-bit timers can use the following four clock signals:  $\phi T1$ ,  $\phi T4$ ,  $\phi T16$ , and  $\phi T256$ .

To set the prescaler to count or stop, use timer control register T16RUN<PRRUN>. Setting T16RUN<PRRUN> to "1" starts the count. Clearing <PRRUN> to "0" clears and stops the prescaler. Resetting clears <PRRUN> to "0", and clears and stops the prescaler.



Note: The number in the parenthesis indicates the frequency when TMP94C241C operates is the maximum frequency.

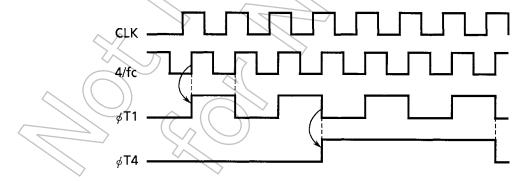



Figure 3.8.2 Prescaler

# [2] Up counter

The up counter is an 8-bit binary counter that counts up using the input clock specified by timer 0 and 1 mode registers T01MOD, T23MOD.

The timer 0, 2 input clocks are selected from internal clocks  $\phi$ T1,  $\phi$ T4, and  $\phi$ T16 in accordance with the T01MOD, T23MOD settings.

The timer 1, 3 input clocks vary according to the operating mode. When the up counter is set to 16-bit timer mode, timer 0, 2 overflow output is used as an input clock.

When the up counter is set to other than 16-bit timer mode, two further settings are available: internal clocks  $\phi T1$ ,  $\phi T16$ , or  $\phi T256$  based on the T01MOD, T23MOD settings, and timer 0, 2 comparator output (match detect).

Example: If T01MOD<T01M1:0> is set to "01", the timer 0 overflow output is used as the timer 1 input clock (16-bit timer mode).

If T01MOD<T01M1:0> is "00" and <T1CLK1:0> is "01",  $\phi$ T1 is used as the timer 1 input clock (8-bit timer mode).

The T01MOD, T23MOD registers also set the operating mode. A reset sets the up counter to 8-bit timer mode.

To control the count, stop, and clear functions of each up counter interval timer, use timer control register T8RUN. A reset clears all up counters and stops the timers.

## [3] Timer registers

The timer registers are 8-bit registers for setting interval times. When the setting of timer registers TREG0 to TREG3 matches the up counter value, the comparator match detect signal becomes active. If "00H" is set, the match detect signal is activated when the up counter overflows.

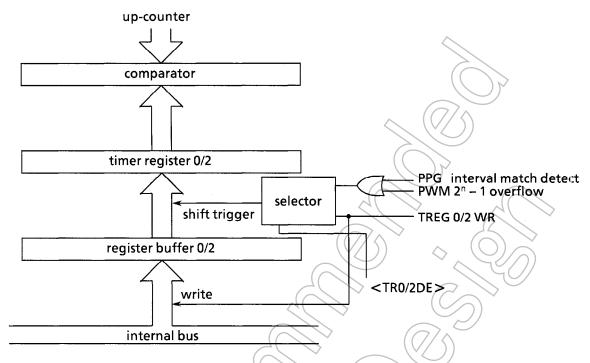
Timer registers TREG0, TREG2 have a double-buffer configuration and are paired with a register buffer.

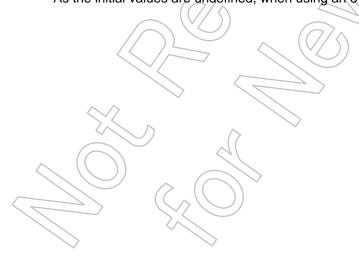
TREGO, 2 enable or disable the double-buffer using timer register double-buffer control register TRDC<TR0/2DE>. Setting <TR0/2DE> to "0" disables the double-buffer; setting <TR0/2DE> to "1" enables the double-buffer.

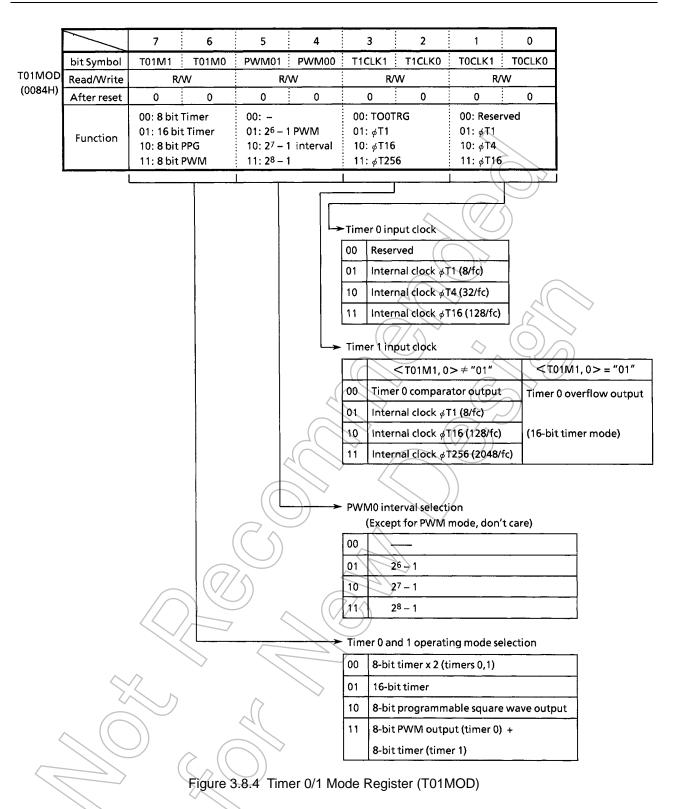
With the double-buffer enabled, data are transferred from the register buffer to the timer register at a  $2^n - 1$  overflow in pulse width modulation (PWM) mode, or at an interval comparison match in programmable pulse generation (PPG) mode.



A reset initializes <TR0/2DE> to "0", disabling the double-buffer. When using the double-buffer, first write data to the timer register and set <TR0/2DE> to "1", then write the following data to the register buffer.





Figure 3.8.3 Timer Register 0/2/4/6 Configuration


Note: The timer register and register buffer are allocated to the same address in memory.

When <TR0/2DE> is set to "0", the same value is written to both the register buffer and the timer register. When <TR0/2DE> is set to "1", the value is written to the register buffer only.

The timer register TREG0, TREG1, TREG2, TREG3 are write only; cannot read data from them.

As the initial values are undefined, when using an 8-bit timer, be sure to write values.





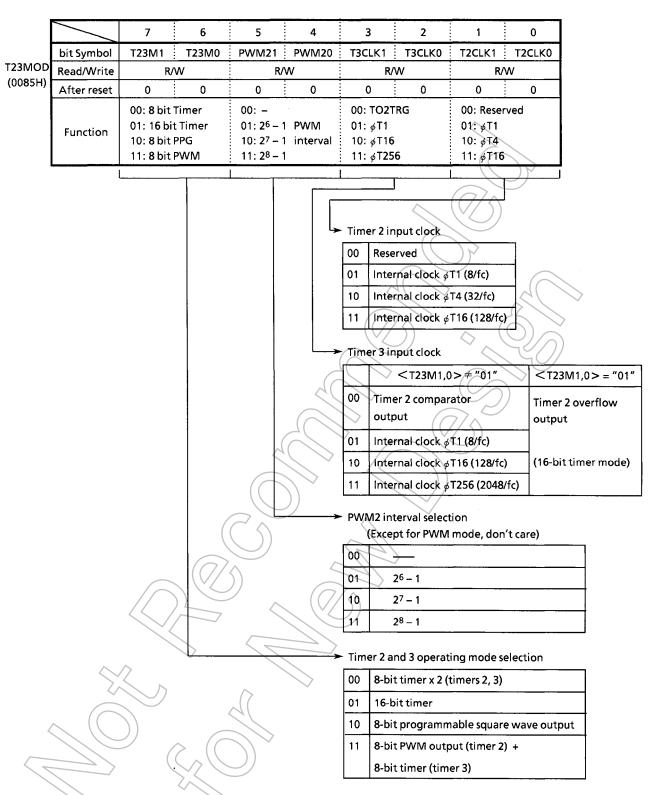
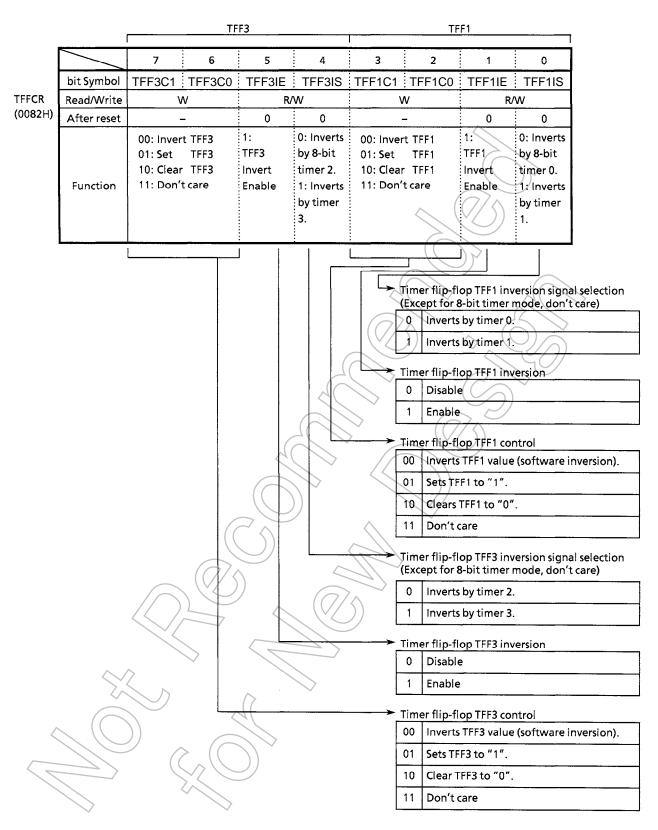




Figure 3.8.5 Timer 2/3 Mode Register (T23MOD)



Note: Read-modify-write is prohibited.

Figure 3.8.6 8-Bit Timer Flip-flop Control Register (TFFCR)

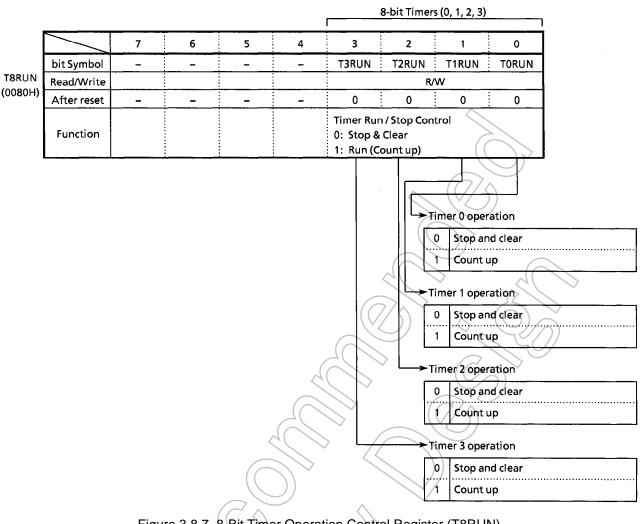



Figure 3.8.7 8-Bit Timer Operation Control Register (T8RUN)




Figure 3.8.8 Timer Register Double-Buffer Control Register (TRDC)

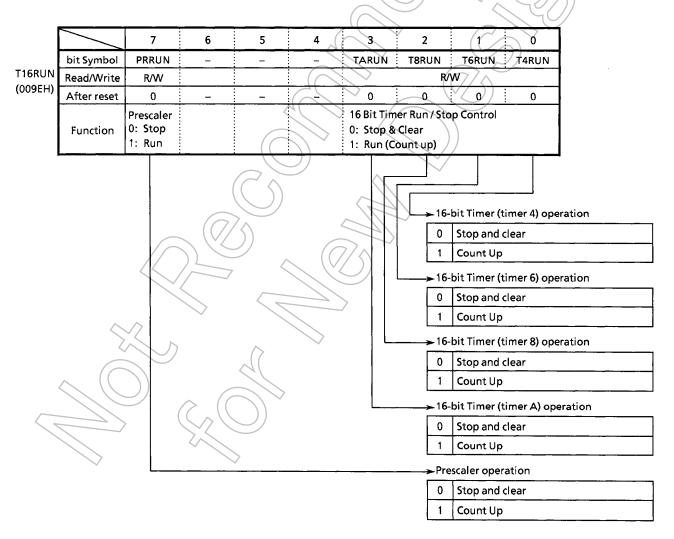



Figure 3.8.9 16-Bit Timer Operation Control Register (T16RUN)

Symbol	Address	7	6	5	4	3	2	1	0		
TREG0	88h				V						
					Unde						
TREG1	89h				V		^				
					Unde	fined					
	8Ah				-	-					
TREG2					V	V					
					Unde	fined					
	8Bh		···-			- <	((// '	5)	<u></u>		
TREG3					V	v					
					Unde	fined ((					

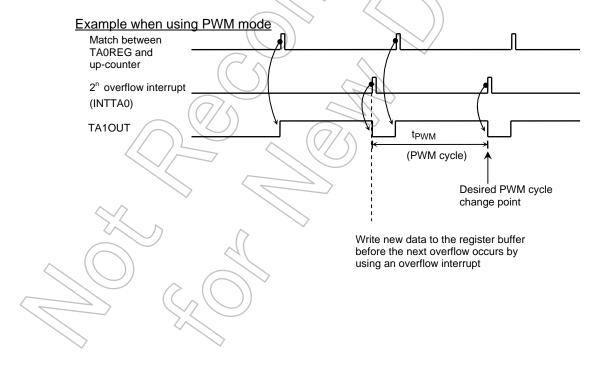


# [4] Comparator

The comparator compares the up counter value with the timer register value. If the values match, the comparator clears the up counter to 0 and generates an interrupt (INTT0 to INTT3). If the timer flip-flop invert is enabled at this time, the comparator inverts the timer flip-flop value.

#### [5] Timer flip-flops (timer F/F)

Each interval timer match detect signal (comparator output) inverts the timer flip-flops and outputs the values to timer output pins TO1 (also used as PC0), TO3 (also used as PC1).


One timer flip-flop is provided for a timer pair: TFF1 for timer pair 0, 1; TFF3 for pair 2, 3. TFF1 is output to pin TO1, TFF3 to pin TO3.

Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.

For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ( $f_{SYS} \times 6$ ) before the next overflow occurs by using an overflow interrupt.

In the case of using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt.



TOSHIBA TMP94C2410

The following explains the operation of the 8-bit timers.

#### (1) 8-bit timer mode

Four interval timers 0 to 3 can be used independently as 8-bit interval timers. As all the timers operate the same, the following describes timer 1 only.

### [1] Generating a fixed-interval interrupt

When using timer 1 to generate a timer 1 interrupt (INTT1) for each fixed interval, first halt timer 1, then set the operating mode, input clock, and interval in T01MOD and TREG1. Next, enable INTT1, and start timer 1 counting.

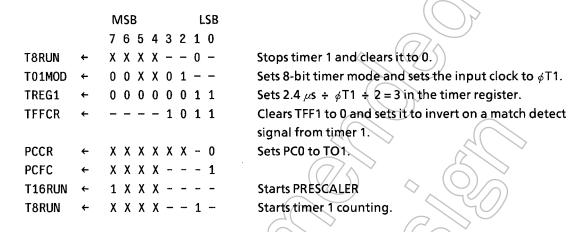
Example: If a timer 1 interrupt is required every 40 µs at fc = 20 MHz, set the registers in the following order:

	ISB LSB	
	7 6 5 4 3 2 1 0	
T8RUN	XXXX 0 - Stops timer 1 and clears it to "0".	
T01MOD	0 0 X X 0 1 Sets 8-bit timer mode and sets the input clock to 9	δ <b>Τ1</b>
	$(0.4  \mu s  at  fc = 20  MHz).$	
TREG1	0 1 1 0 0 1 0 0 Sets $40\mu$ s ÷ $\phi$ T1 = 100 (64H) in the timer register.	
INTET01	X 1 0 1 Sets INTT1 to level 5.	
T16RUN	1 X X X Starts Prescaler	
T8RUN	X X X X 1 - Starts timer 1 counting.	
_		

Note: X; Don't care -; No change

For input clock selection, see the following table.

Table 3.8.1 Selecting Interrupt Interval and the Input Clock Using 8-Bit Timer


Input Clock	Interrupt Interval (at fc = 20 MHz)	Resolution
øT1 (8/fc)	0.4 μs to 102.4 μs	0.4 μs
φ <b>T4 (32/fc)</b>	1.6 μs to 409.6 μs	1.6 <i>μ</i> s
φT16 (128/fc)	6.4 µs to 1.639 ms	6.4 µs
φT256 (2048/fc)	102.4 μs to 26.22 ms	102.4 μs

**TOSHIBA** 

[2] Generating a square wave with a 50%-duty cycle

Invert the timer flip-flop at fixed intervals and output the timer flip-flop values to the timer output pin (TO1).

Example: To output a square wave from pin TO1 with an interval of  $2.4~\mu s$  at fc = 20~MHz, set the registers in the following order. Use either timer 0~or~1. The example shows the register settings for timer 1.



Note: X; Don't care -; No change

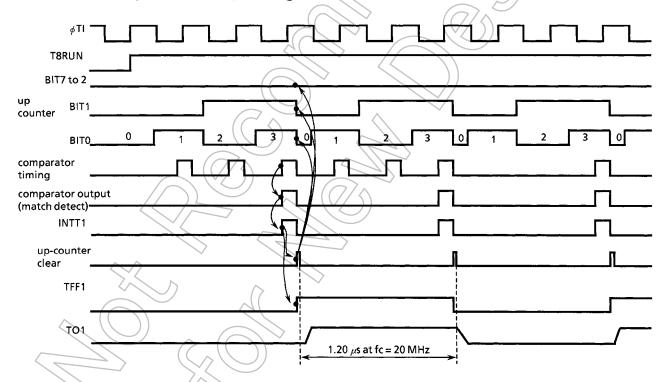



Figure 3.8.11 Square Wave (50% duty) Output Timing Chart

[3] Setting timer 1 to count up at timer 0 match output

Set 8-bit timer mode and set the timer 1 input clock to timer 0 comparator output.

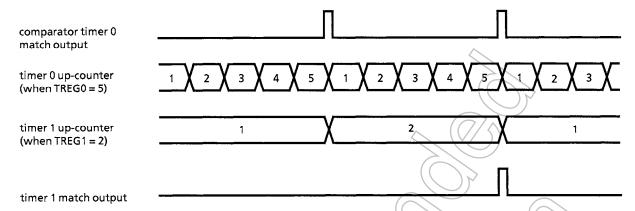



Figure 3.8.12 Timer 1 Count-up due to Matching Output of Timer 0

[4] Output invert by software

The timer flip-flop (timer F/F) value can be inverted independently of timer operation.

For example, writing "00" to TFFCR<TFF1C1:0> inverts the TFF1 value; writing "00" to TFFCR<TFF3C1:0> inverts the TFF3 value.

[5] Timer flip-flop (timer F/F) initialization

The timer flip-flop value can be initialized to "0" or "1" independently of timer operation.

For example, to set TFF1 to 0, write "10" to TFFCR<TFF1C1:0>. To set TFF1 to TFF1, write "01" to TFFCR<TFF3C1:0>.

Note: The timer flip-flop or timer register value cannot be read.

(2) 16-bit timer mode

Timers 0 and 1, 2 and 3 can be paired to configure 16-bit interval timers.

As timers 0 and 1, 2 and 3 operate the same, the following describes timers 0 and 1 only.

To cascade-connect timers 0 and 1 and configure a 16-bit interval timer, set mode register T01MOD<T01M1:0> to "01".

When setting 16-bit timer mode, the input clock for timer 1 is provided by the overflow output of timer 0, irrespective of the clock control register TCLK setting.

Table 3.8.2 Selection of 16-Bit Timer (Interrupt) Interval and Input Clock

Input Clock	Interrupt Interval (fc = 25 MHz)	Resolution
φT1 (8/fc)	0.4 μs to 26.214 ms	0.4 μs
φT4 (32/fc)	1.6 μs to 104.858 ms	$1.6 \mu\text{s}$
φ <b>Τ16 (128/fc)</b>	6.4 μs to 419.430 ms	6.4 $\mu$ s

To set the timer interrupt interval, set the lower 8 bits in timer register TREG0 and the upper 8 bits in TREG1. Be sure to set TREG0 first (as entering data in TREG0 temporarily disables the compare, while entering data in TREG1 starts the compare).

Setting Example: To generate interrupt INTT1 every 0.4 s at fc = 20 MHz, set the following values in timer registers TREG0 and TREG1:

Using  $\phi$ T16 (= 6.4  $\mu$ s at 20 MHz) as a timer input clock,

 $0.4 \text{ s} \div 6.4 \text{ } \mu\text{s} = 62500 = \text{F424H}$ 

Therefore, set TREG1 to F4H, and TREG0 to 24H.

A match between up counter UCO and TREGO triggers the timer 0 comparator to generate a match detect signal, but does not clear up counter UCO. No interrupt INTTO is generated.

A match between up counter UC1 and TREG1 at comparator timing triggers the timer 1 comparator to generate a match detect signal. When comparator match detect signals for both timer 0 and timer 1 are generated, up counter 0 and up counter 1 are cleared to 0 and interrupt INTT1 only is generated. When invert is enabled, the value of timer flip-flop TFF1 is inverted.

,		Timer 0			Timer 1	
	INT TO	то1	Match Value	INTT1	TO1	Match Value
16-bit timer mode timer 1 counts up on timer 0 overflow	no interrupt generated	output disabled	TREGO  /timer 1  continues  counting up  at match	interrupt generated	output enabled	TREG1+28 + TREG0 (full 16 bits)
8-bit timer mode timer 1 counts up on timer 0 match	interrupt generated	output enabled (timer 0 or timer 1	TREG0 clear at match	interrupt generated	output enabled (timer 0 or timer 1	TREG1* TREG0 (product)

Example: When TREG1 = 04H, and TREG0 = 80H:

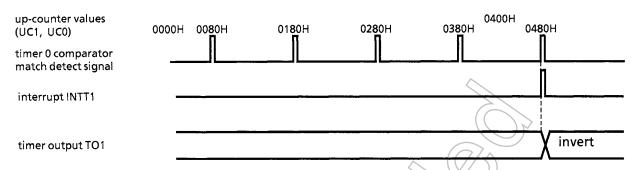
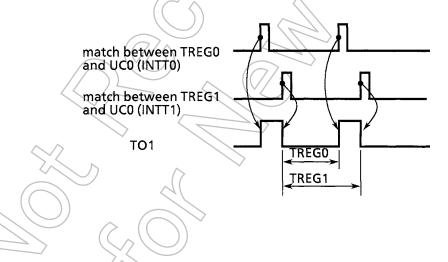



Figure 3.8.13 Timer Output for 16-Bit Timer Mode

(3) 8-bit programmable pulse generation output mode


Timers 0, 2 can output variable frequencies and square waves (pulses) with variable duty. The output pulse can be set to either active low or active high.

Timers 1, 3 cannot be used in this mode.

Timer 0 outputs from pin TO1 (also used as PC0), timer 2 outputs from pin TO3 (also used as PC1).



As timers 0, 2 operate the same, the following describes timer 0 only.



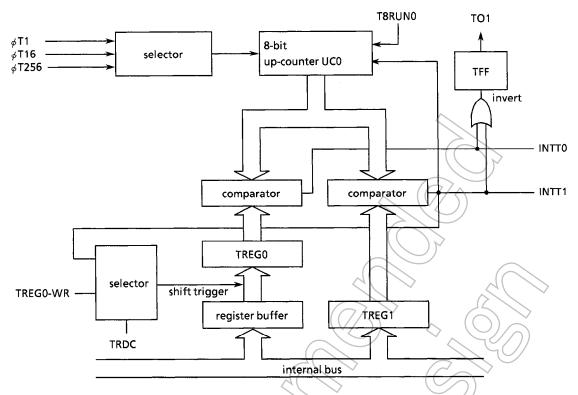
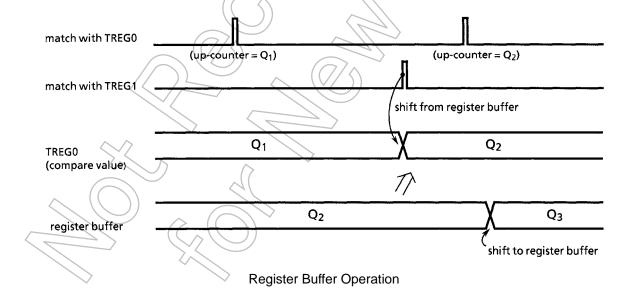




Figure 3.8.14 8-Bit PPG Output Mode Block Diagram

Enabling the TREG0 double-buffer in this mode shifts the register buffer value to TREG0 when TREG1 matches UC0.

Using the double-buffer facilitates output of waveforms with a low duty ratio (when changing the duty).



Example: Output a 1/4-duty 62.5 kHz-pulse (at fc = 20 MHz)



• Determine the set value in the timer register.

Setting the frequency to 62.5 kHz generates a square wave with a cycle of t = 1/62.5 kHz = 16  $\mu s.$ 

Using  $\phi T1 = 0.4~\mu s$  (at fc = 20 MHz) results in:

$$16 \mu s \div 0.4 \mu s = 40$$

Accordingly, set timer register 1 (TREG1) to TREG1 = 40 = 28H.

Next, set the duty to 1/4 as follows:  $t \times 1/4 = 16 \mu s \times 1/4 = 4 \mu s$ 

Accordingly, set timer register 0 (TREG0) to TREG0 = 10 = 0AH.

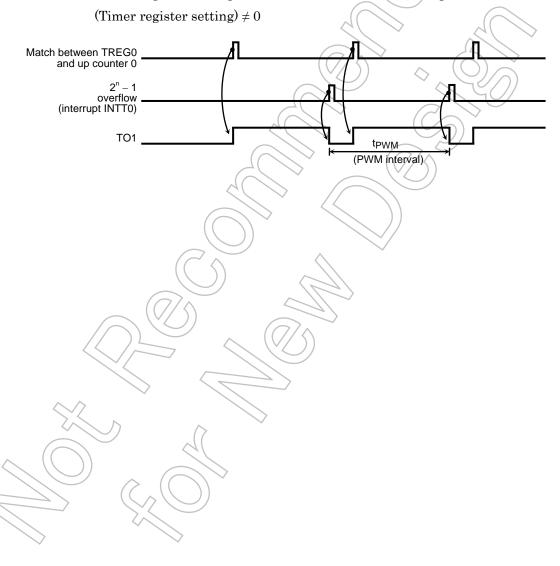
		MSE	3					L	SB	
		7	6	5	4	3	2	1	0	
T8RUN	<b>←</b>	X	Χ	Χ	Χ	-	-	0	0	Stops timers 0 and 1, and clear them to 0.
T01MOD	<b>←</b>	1	0	Χ	Χ	0	1	0	1	Sets 8-bit PPG mode and sets the input clock to $\phi$ T1.
TFFCR	<b>←</b>	-	-	-	-	0	1	1	x _((	Sets JFF1 to "1" and enables invert.
						_	_			Setting to "10" obtains a negative logic output wave.
TREG0	<b>←</b>	0	0	0	0	1	0	1	0	Writes 0AH.
TREG1	<b>←</b>	0	0	1	0	1	0	0	$(\bigcirc)$	Writes 28H.
PCCR	←	X	Χ	Χ	Χ	7		1	1	Sets P91 to TO1.
PCFC	←	X	X	Χ	Χ	7/	7	1	<b>x</b> )	
T8RUN	<b>←</b>	X	Χ	X/	X	7	$\overline{\Lambda}$	1	1	Starts timers 0 and 1 counting.
T16RUN	<b>←</b> /	1	X	X	X	_	)-)	_	-	Starts prescaler

Note: X; Don't care -; No change

(4) 8-bit pulse width modulation (PWM) output mode

Only timers 0, 2 support this mode, which allows up to two pulse width modulation outputs with 8-bit resolution.

For timer 0, PWM is output to pin TO1 (also used as PC0). For timer 2 PWM is output to pin TO3 (also used as PC1).


Timers 1, 3 can be used as 8-bit timers.

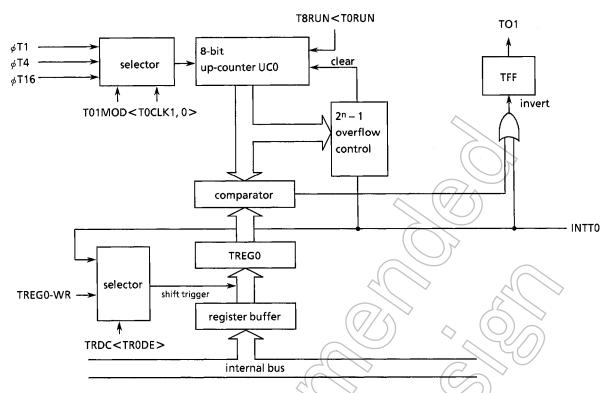
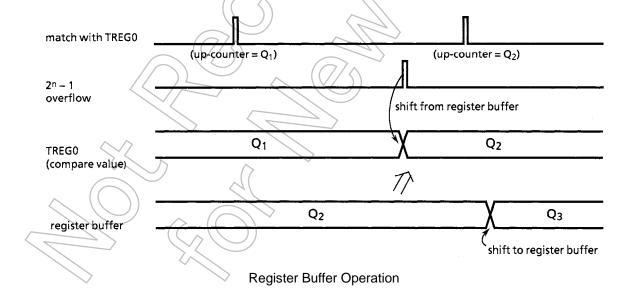
As timers 0, 2 operate the same, the following describes timer 0 only.

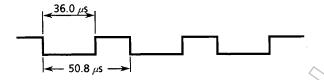
Timer output is inverted when the up counter UC0 setting and the timer register TREG setting match, or when  $2^n - 1$  (T01MOD specifies one of n = 6, n = 7, or n = 8) counter overflow occurs. The up counter UC0 is cleared by the  $2^n - 1$  counter overflow.

In 8-bit PWM output mode, the following conditions must be satisfied:

(Timer register setting) <  $(2^n - 1 \text{ counter overflow setting})$ 





Figure 3.8.15 8-Bit PWM Output Mode Block Diagram

Enabling the TREG0 double-buffer in this mode shifts the register buffer value to TREG0 when  $2^n-1$  overflow is detected.

Using the double-buffer facilitates output of waveforms with a low duty ratio (when changing the duty).



Example: Output the following PWM waveform to pin TO1 using timer 0 for fc = 20 MHz:



To realize a PWM interval of 50.8  $\mu$ s using  $\phi$ T1 = 0.4  $\mu$ s (at fc = 20 MHz)

$$50.8~\mu s \div 0.4~\mu s = 127 = 2^{n} - 1$$

Accordingly, set n = 7.

As the low-level interval is 36.0  $\mu s,$  at  $\phi T1 = 0.4~\mu s,$ 

set 36.0  $\mu s \div 0.4 \ \mu s = 90 = 5AH$  in TREG0

	MSB	L	_SB	$\langle \langle \rangle \rangle \langle \langle \rangle \rangle$
	7	6 5 4 3 2	1 0	
T8RUN	<b>←</b> X	x x x	- 0	Stops timer 0 and clears it to 0.
T01MOD	← 1	1 1 0 0	0 1	Sets to 8-bit PWM mode (interval $= 27 - 1$ ) and sets the
				input clock to $\phi$ T1.
TFFCR	← -	1 0	1 X	Clears TFF1 and sets to invert enable.
TREG0	<b>←</b> 0	1 0 1 1 0	10	Writes 5AH.
PCCR	<b>←</b> X	x x x x x ·	- 1	Sets PC0 to TO1.
PCFC	<b>←</b> X	x x x x x ·	- 1	
T16RUN	← 1	X X X		Starts prescaler
T8RUN	X	X X X	<del>[</del> (1 ))	Starts timer 0 counting

Note: X; Don't care -; No change

Table 3.8.3 Setting PWM Interval and 2ⁿ - 1 Counter

		PWM Interval (at fc = 20 MHz)	
	φT1	φ <b>T</b> 4	<b></b> <i>φ</i> T16
2 ⁶ – 1	25.2 μs (39.7 kHz)	100.8 μs (9.92 kHz)	403.2 μs (2.48 kHz)
27 – 1	50.8 μs (19.6 kHz)	203.2 μs (4.92 kHz)	810 μs (1.23 kHz)
28 – 1	102 μs ( 9.80 kHz)	408 μs (2.45 kHz)	1.63 ms (0.61 kHz)

(5) Table 3.8.4 shows the settings for all 8-bit timer modes.

Table 3.8.4 Setting Register for All Timer Modes

Timer Mode (for 8-bit timer x 2 channels)	Mode T01M (T23M)	PWM0 (PWM2)	Upper Timer Input Clock T1CLK (T3CLK)	Lower Timer Input Clock TOCLK (T2CLK)	Invert Select FF1IS (FF3IS)
16-bit timer (full 16 bits) × 1ch	01	_	-	(φT1, 4, 16)	<b>-</b>
8-bit timer (8-bit × 8-bit mode × 1ch) (inputs lower timer comparator output to upper timer)	00	-	00	(¢T1, 4, 16)	0: lower timer 1: upper timer
8-bit timer × 2ch	00	_	(øT1, 16, 256)	( φT1, 4, 16)	0: lower timer 1: upper timer
8-bit PPG × 1ch	10	_		(φT1, 4, 16)	_
8-bit PWM × 1ch (lower) 8-bit timer × 1ch (upper)	11	PWM interval	(øT1, 16, 256)	(øT1, 4, 16)	<u> </u>

### 3.9 16-Bit Timers

TMP94C241C incorporates four multi-function 16-bit timer/event counters (timers 4, 6, 8, and A).

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) output mode
- Frequency measurement mode
- Pulse width modulation (PWM) mode
- Time differential measurement mode

The timer/event counters have a 16-bit up counter, two 16-bit timer registers (one with a double-buffer configuration), two 16-bit capture registers, two comparators, capture input control, and timer flip-flops and accompanying F/F control circuit.

The timer/event counter is controlled by four control registers: T4MOD/T6MOD/T8MOD/TAMOD, T4FFCR/T6FFCR/T8FFCR/TAFFCR, T16RUN and T16CR,

Figure 3.9.1 to Figure 3.9.4 is a block diagram of a 16-bit timer/event counter (timer 4, 6, 8, A).

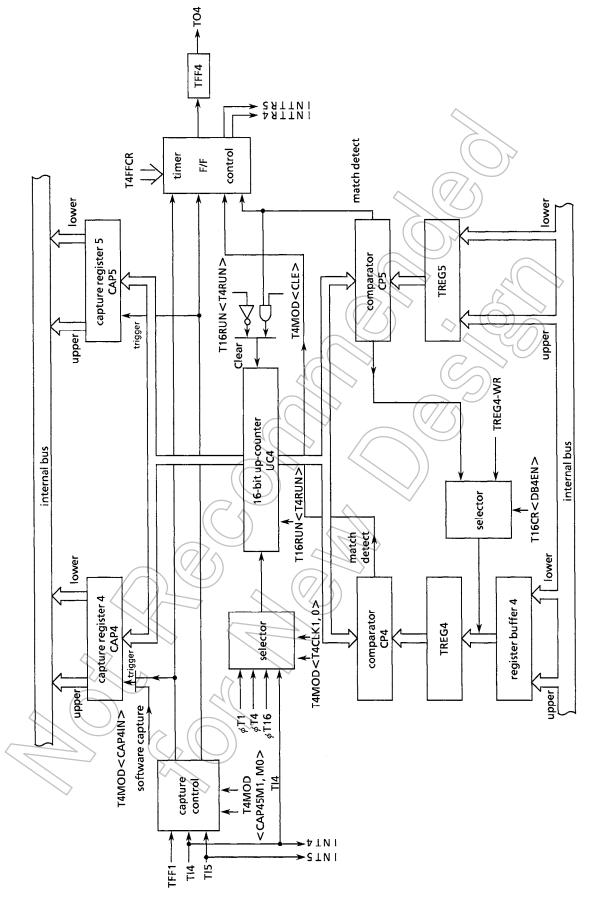



Figure 3.9.1 16-Bit Timer Block Diagram (Timer 4)

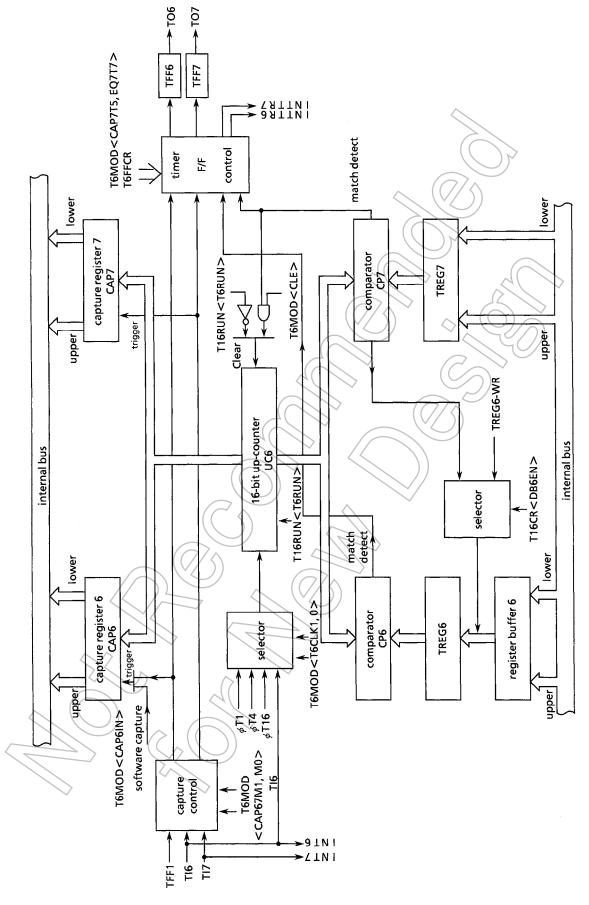



Figure 3.9.2 16-Bit Timer Block Diagram (Timer 6)

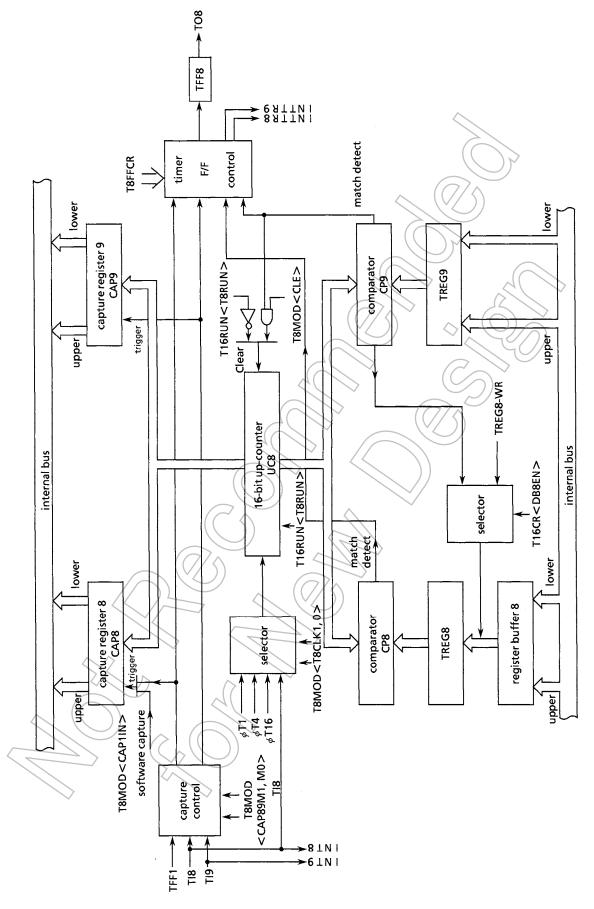



Figure 3.9.3 16-Bit Timer Block Diagram (Timer 8)

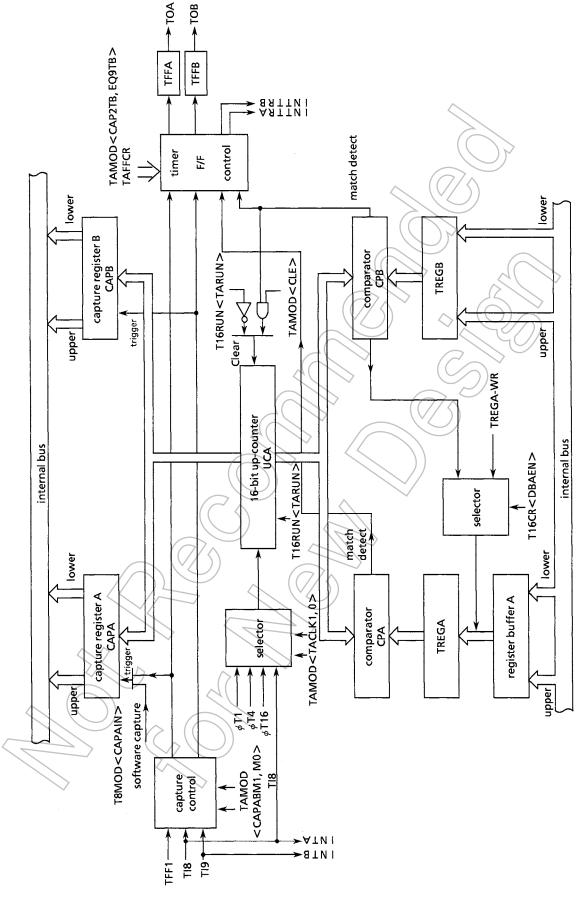



Figure 3.9.4 16-Bit Timer Block Diagram (Timer A)

6 5 2 0 T4CLK0 T4MOD Bit symbol CAP4IN CAP45M1 CAP45M0 CLE T4CLK1 (0098H)Read/Write W R/W R/W R/W After reset _ 0 0 0 Function 0: Software Capture timing 1: UQ4 Source clock capture clear 00: Disable 00: TI4 1: Don't enable 01: TI4↑ 01: _{\$\phi\$T1\$} TI5↑ care 10: TI4↑ 10: φT4 TI4↓ 11: TFF1↑ TFF1↓ 11: φT16 Timer 4 input clock

> Up counter UC4 clear Disables up counter clear. Clears by match with TREG5. Timer 4 capture timing Capture control INT4 control 00 Capture disable 01 CAP4 on TI4 rising INT4 generated on CAP5 on TI5 rising TI4 rising 10 CAP4 on TI4 rising INT4 CAP5 on TI4 falling generated on TI4 falling CAP4 on TFF1 rising INT4 11 CAP5 on TFF1 falling generated on

> > Software capture

TI4 rising

Loads up counter 4 value to CAP4. Disables software capture to CAP4.

External input clock (TI4)

Internal clock φT1 (8/fc)
Internal clock φT4 (32/fc)
Internal clock φT16 (128/fc)

01

Note: Read-modify-write is prohibited.

Figure 3.9.5 16-Bit Timer Mode Control Register (T4MOD)

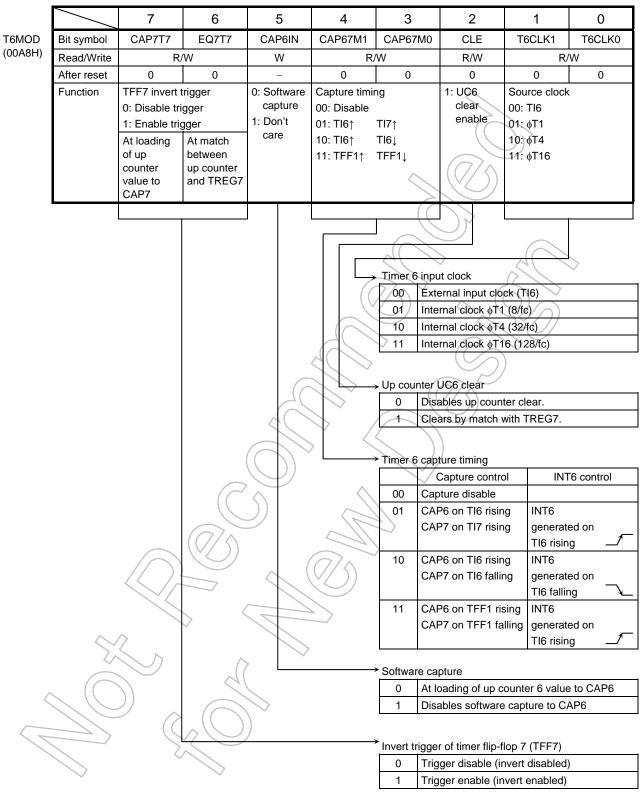
T4FFCR (0099H)

	7	6	5	4	3	2	1	0
Bit symbol	-	-	CAP5T4	CAP4T4	EQ5T4	EQ4T4	TFF4C1	TFF4C0
Read/Write			R/W	R/W	R/W	R/W	V	V
After reset	=	=	0	0	0	0	-	=
Function			TFF4 invert t 0: Disable tri 1: Enable tri	gger			00: Invert TF 01: Set TF 10: Clear TF	FF4
			At loading of up counter value to CAP5	At loading of up counter value to CAP4	At match between up counter and TREG5	At match between up counter and TREG4	11: Don't car	re

→ Timer flip-flop 4 (TFF4) control

00	Inverts TFF4 value (software invert).
01)	Sets TFF4 to "1".
10	Clears TFF4 to "0".
<del>\</del> 11	Don't care

Timer flip-flop 4 (TFF4) invert trigger


0	Trigger disable (invert disabled)
1	Trigger enable (invert enabled)

CAP5T4: When up counter value is loaded to CAP5 CAP4T4: When up counter value is loaded to CAP4 EQ5T4: When up counter and TREG5 match

EQ4T4: When up counter and TREG4 match

Note: Read-modify-write is prohibited.

Figure 3.9.6 16-Bit Timer 4 F/F Control (T4FFCR)



CAP7T7: When up counter value is loaded to CAP7 EQ7T7: When up counter and TREG7 match

Note: Read-modify-write is prohibited.

Figure 3.9.7 16-Bit Timer Mode Control Register (T6MOD)

T6FFCR (00A9H)

Read/Write         W         R/W         R/W         R/W           After reset         0         0         0         0           Function         00: Invert TFF7         TFF6 invert trigger           01: Set TFF7         0: Disable trigger           10: Clear TFF7         1: Enable trigger	Q7T6 EQ6T6 R/W R/W 0 0	TFF6C1 TFF  W  -  00: Invert TFF6	F6C0
After reset 0 0 0 0 0 0  Function 00: Invert TFF7 01: Set TFF7 0: Disable trigger 1: Enable trigger		-	
Function 00: Invert TFF7 TFF6 invert trigger 01: Set TFF7 0: Disable trigger 1: Enable trigger	0 0	- 00: Invert TFF6	
01: Set TFF7 0: Disable trigger 10: Clear TFF7 1: Enable trigger	_	00: Invert TFF6	
11: Don't care		01: Set TFF6 10: Clear TFF6	
* Always read as "11". of up of up between	ounter up counte	. \	

Timer flip-flop 6 (TFF6) control

00	Inverts TFF6 value (software invert).
01)	Sets TFF6 to "1".
10	Clears TFF6 to "0".
≥ 11	Don't care

Timer flip-flop 6 (TFF6) invert trigger

	0	Trigger disable (invert disabled)
/	)	Trigger enable (invert enabled)

CAP7T6: When up counter value is loaded to CAP7 CAP6T6: When up counter value is loaded to CAP6 EQ7T6: When up counter and TREG7 match EQ6T6: When up counter and TREG6 match

Timer flip-flop 7 (TFF7) control

00	Inverts TFF7 value (software invert).
01	Sets TFF7 to "1".
10	Clears TFF7 to "0".
11	Don't care

Note: Read-modify-write is prohibited.

Figure 3.9.8 16-Bit Timer 6 F/F Control (T6FFCR)

6 5 3 2 0 T8MOD CAP8IN T8CLK1 T8CLK0 Bit symbol CAP89M1 CAP89M0 CLE (00B8H) Read/Write W R/W R/W R/W After reset 0 0 0 Function 0: Software Capture timing 1: UC8 Source clock capture clear 00: Disable 00: TI8 enable 1: Don't 01: TI8↑ TI9↑ 01: φT1 care 10: TI8↑ TI8↓ 10: φT4 11: TFF1↑ TFF1↓ 11: φT16 Timer 8 input clock External input clock (TI8)

Up counter UC8 clear

01

10

0 Disables up counter clear.1 Clears by match with TREG9.

Internal clock  $\phi$ T1 (8/fc)

Internal clock φT4 (32/fc)
Internal clock φT16 (128/fc)

Timer 8 capture timing

<		Capture control	INTA control	
	00	Capture disable		
	01	CAP8 on TI8 rising	INT8	
		CAP9 on TI9 rising	generated on	
\			TI8 rising	
_	10	CAP8 on TI8 rising	INT8	
	~	CAP9 on TI8 falling	generated on	
			TI8 falling	_
	11	CAP8 on TFF1 rising	INT8	
		CAP9 on TFF1 falling	generated on	
			TI8 rising	_

Software capture

0 At loading of up counter 8 value to CAP81 Disables software capture to CAP8

Note: Read-modify-write is prohibited.

Figure 3.9.9 16-Bit Timer Mode Control Register (T8MOD)

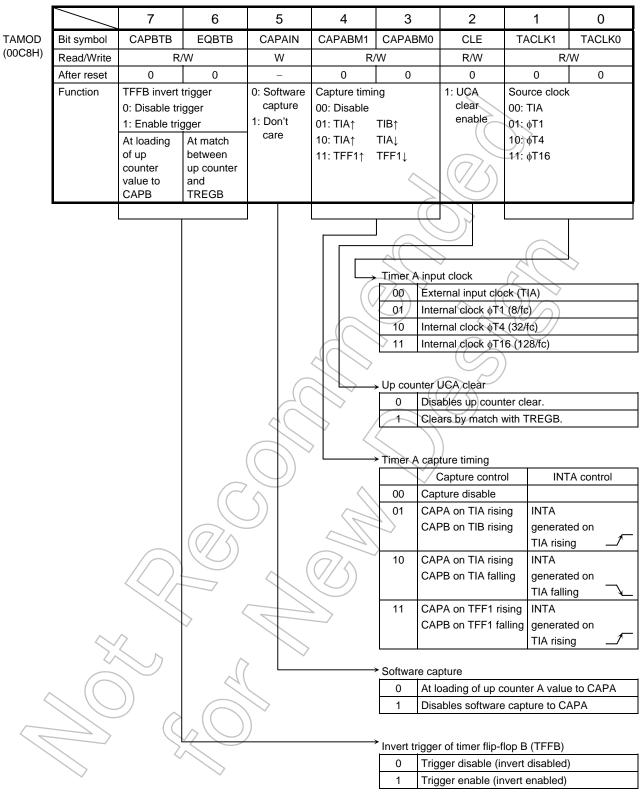
T8FFCR (00B9H)

	7	6	5	4	3	2	1	0
Bit symbol	_	-	CAP9T8	CAP8T8	EQ9T8	EQ8T8	TFF8C1	TFF8C0
Read/Write			R/W	R/W	R/W	R/W	V	V
After reset	1	-	0	0	-	=		
Function			TFF8 invert to 0: Disable trice 1: Enable trice	gger	00: Invert TF 01: Set TF 10: Clear TF	FF8		
			At loading of up counter value to CAP9	At loading of up counter value to CAP8	11: Don't car	re		

→ Timer flip-flop 8 (TFF8) control

700	Inverts TFF8 value (software invert).
(01)	Sets TFF8 to "1".
10	Clears TFF8 to "0".
≥ 11	Don't care

Timer flip-flop 8 (TFF8) invert trigger


0	Trigger disable (invert disabled)
1	Trigger enable (invert enabled)

CAP9T8: When up counter value is loaded to CAP9 CAP8T8: When up counter value is loaded to CAP8 EQ9T8: When up counter and TREG9 match

EQ8T8: When up counter and TREG8 match

Note: Read-modify-write is prohibited.

Figure 3.9.10 16-Bit 8 F/F Control (T8FFCR)



CAPBTB: When up counter value is loaded to CAPB EQBTB: When up counter and TREGB match

Note: Read-modify-write is prohibited.

Figure 3.9.11 16-Bit Timer Mode Control Register (TAMOD)

TAFFCR (00C9H)

Read/Write         W         R/W         R/W         R/W         R/W           After reset         0         0         0         0         0           Function         00: Invert TFFB         TFFA invert trigger         00: Invert On: Set			7	6	5	4	3	2	1	0
After reset         0         0         0         0         0         0           Function         00: Invert TFFB         TFFA invert trigger         00: Invert 00: I	ſ	Bit symbol	TFFBC1	TFFBC0	CAPBTA	CAPATA	EQBTA	EAQTA	TFFAC1	TFFAC0
Function  O0: Invert TFFB  O1: Set TFFB  O0: Disable trigger  O1: Set  O1: Clear TFFB  O1: Enable trigger  O1: Clear  O1: Clear  O2: Invert  O3: Invert  O3: Invert  O3: Invert  O4: Set  O5: Clear  O5: Clear  O6: Invert  O7: Set  O7: Clear  O7: Clear  O6: Invert  O7: Set  O7: Clear  O7:		Read/Write	V	V	R/W	R/W	R/W	R/W	٧	V
01: Set TFFB 0: Disable trigger 10: Clear TFFB 1: Enable trigger 10: Clear TFFB 1: Enable trigger 10: Clear 11: Don't care Always read as "11". At loading of up of up between 11: Don't to between 11	Ī	After reset	0	0	0	0	0	0	-	=
* Always read as "11". of up of up between between		01: Set TFFB			0: Disable tri	gger			00: Invert TF 01: Set TF 10: Clear TF	FFA
value to value to and and CAPB CAPA TREGE TREGE				-	of up counter value to	of up counter value to	between up counter and	between up counter and	11: Don't car	re

Timer flip-flop A (TFFA) control

00	Inverts TFFA value (software invert).
01)	Sets TFFA to "1".
10	Clears TFFA to "0".
711	Don't care

Timer flip-flop A (TFFA) invert trigger

0	Trigger disable (invert disabled)
1	Trigger enable (invert enabled)

CAPBTA: When up counter value is loaded to CAPB CAPATA: When up counter value is loaded to CAPA EQBTA: When up counter and TREGB match

EQATA: When up counter and TREGA match

Timer flip-flop B (TFFB) control

00	Inverts TFFB value (software invert).
01	Sets TFFB to "1".
10	Clears TFFB to "0".
11	Don't care

Note: Read-modify-write is prohibited.

Figure 3.9.12 16-Bit Timer A F/F Control (TAFFCR)

7 6 5 4 3 2 1 0 T6RUN PRRUN TARUN T8RUN T4RUN bit Symbol T16RUN (009EH) R/W R/W Read/Write 0 After reset 0 0 16-Bit Timer RUN /STOP Control Prescaler 0:STOP 0: STOP & Clear Function 1 : RUN 1: RUN (Count up) 16-bit timer (timer 4) operation

1 Count up

16-bit timer (timer 8) operation

0 Stop and clear

1 Count up

16-bit timer (timer 6) operation

Stop and clear Count up

Stop and clear

16-bit timer (timer A) operation
 Stop and clear
 1 Count up

Figure 3.9.13 16-Bit Timer Operation Control Register (T16RUN)

6 T16CR bit Symbol DBAEN DB8EN DB6EN DB4EN (009FH) Read/Write R/W After reset 0 0 0 1: Double buffer Enable Function

Double-buffer control

0 Disable

1 Enable

Figure 3.9.14 16-Bit Timer (4, 6, 8, A) Control Register (T16CR)

Symbol	Address	7	6	5	4	3	2	1	0				
					_								
TREG4L	90h				V Unde								
					- Office	·		<u>-</u>					
TREG4H	91h				٧								
					Unde	fined							
TDECE	021-												
TREG5L	92h		·····					12					
			Undefined										
TREG5H	93h		w										
					Unde	fined		)					
TDECEL	A0h					<del>-</del>							
TREG6L	Aun				Unde		$\bigcirc$ ) $^{\prime}$	······································					
			<u>-</u>		-	-							
TREG6H	A1h					v 6/1	$\supset$	7					
					Unde	$\sim 7.$							
TREG7L	A2h	Ph W Undefined											
INEGIL	AZII												
					7	->							
TREG7H	A3h		w										
					Unde	fined		<u>//                                    </u>					
TREG8L	B0h		- w										
1112002	5011				Unde		$\langle U \rangle$						
					V /								
TREG8H	B1h				>		) )						
	<u> </u>	<del></del>		$\left( \left\langle \cdot \right\rangle \right)$	Unde	fined	/						
TREG9L	B2h					<u> </u>							
						fined							
				9		47							
TREG9H	B3h		(7/4)			V fined							
					/ // /	-							
TREGAL	C0h			<del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>	$\langle \langle \rangle \rangle$		<u> </u>	<del></del>					
		/4/			Unde	fined							
			>			-							
TREGAH C1h W Undefined													
<u> </u>		\ h	^			-							
TREGBL	C2h		- (1		\	V							
						fined							
				$\rightarrow$									
TREGBH	C3h	( (	$\sim$	)		V efined							
1					Unae	inteu		<del></del>					

Note: Read-modify-write is prohibited.

Figure 3.9.15 Timer Register

Symbol	Address	7	6	5	4	3	2	1	0				
,					-	-		<u> </u>					
CAP4L	94h				F								
					Unde	fined			10110				
CAP4H	95h					<del>-</del>	· · · · · · · · · · · · · · · · · · ·						
CAF4FI	9511				Unde		^						
					-	-							
CAP5L	96h					₹	Ĉ						
			Undefined										
			R Undefined - R										
CAP5H	97h	<del></del>											
		· · · · · · · · · · · · · · · · · · ·											
CAP6L	A4h												
J, 1, 02			R Undefined										
					•	-							
CAP6H	A5h					RAL		$\mathcal{A}()$					
			Undefined										
CADZI	A.C.												
CAP7L	A6h		Undefined										
			Undefined										
САР7Н	A7h		R Undefined										
							$\bigcirc$						
CAP8L	B4h		R Undefined										
				~		etined	$\sim$						
CAP8H	B5h					R	<del>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </del>						
CAPOR	55.1					efined	<del>)                                    </del>	·					
						- \							
CAP9L	B6h					R							
			((	))	Unde	fined							
64.5011					7/2	<del></del>			· · · · · · · · · · · · · · · · · · ·				
САР9Н	B7h		((// 1)			R efined			<del></del>				
	<del></del>					-							
CAPAL	C4h	( )=	$\overline{}$			R	··· <u>·</u>		·				
		V/			Unde	efined							
		-											
CAPAH C5h R													
				$\longrightarrow$		efined			<u></u>				
CARRI	Cep	<del>\</del>	- A			<del>-</del> R							
CAPBL	C6h		<del>\\</del>			efined							
	()												
САРВН	C7h	$\wedge$		\		R			<del></del>				
	4		7 (V)	)		efined							

Figure 3.9.16 Capture Register

## [1] Up counter

The up counter is a 16-bit binary counter that counts up using the input clock specified by 16-bit timer mode control registers T4MOD<T4CLK1:0>, T6MOD<T6CLK1:0>, T8MOD<T8CLK1:0> and TAMOD<TACLK1:0>.

The input clock is selected from internal clocks  $\phi T1$ ,  $\phi T4$ , and  $\phi 16$  output from the 9-bit prescaler (shared with the 8-bit timers), or the external clocks output from pin TI4 (also used as PD1/INT4), pin TI6 (also used as PD5/INT6), pin TI8 (also used as PE1/INT8), and pin TIA (also used as PE5/INTA). A reset initializes <T4CLK1:0>/<T8CLK1:0>/<T9CLK1:0>/<TACLK1:0> to "00", selecting an external input clock on pin TI4/TI6/TI8/TIA as the input clock.

To control the count, stop, and clear functions for the counter, use timer control register T16RUN<T4RUN, T6RUN, T8RUN, TARUN>.

If up counter clearing is enabled, up counter UC4/UC6/UC8/UCA is cleared to 0 when up counter UC4/UC6/UC8/UCA matches timer register TREG6/TREG7/TREG9/TREGB. The clear enable/disable is set with T4MOD<CLE>, T6MOD<CLE>, T8MOD<CLE>, and TAMOD<CLE>.

When clear disable is set, the counter operates as a free-running counter.

# [2] Timer registers

Each timer has two internal 16-bit registers for setting counter values. When the value set in the timer register matches the value of the up counter UC4/UC6/UC8/UCA, the comparator match detect signal is activated.

Setting data for both H and L timer registers (TREG4L/H, TREG5L/H, TREG6L/H, TREG7L/H, TREG8L/H, TREG9L/H, TREG9L/H, TREG9L/H, TREG9L/H, TREG9L/H, TREG9L/H) is always needed. For example, either using the 2-byte data load instruction, or the 1-byte data load instruction twice; first to write data to the lower 8 bits, then to write data to the upper 8 bits.

Timer registers TREG4, TREG6, TREG8, and TREGA have a double-buffer configuration and are paired with a register buffer. Timer registers TREG4/TREG6/TREG8/TREGA enable/disable the double-buffer function using timer control register T16CR<DB4EN, DB6EN, DB8EN, DBAEN>. Setting <DB4EN, DB6EN, DB8EN, DBAEN> to 0 disables the double-buffer; setting <DB4EN, DB8EN, DBAEN> to 1 enables the double-buffer.

With the double-buffer enabled, data are transmitted from the register buffer to the timer register at a match between up counter UC4/UC6/UC8/UCA and timer register TREG5/TREG9/TREGB.

A reset initializes T16CR<DB4EN, DB6EN, DB8EN, DBAEN> to "0", disabling the double-buffer. When using the double-buffer, write data to the timer register and set <DB4EN, DB6EN, DB8EN, DBAEN> to "1", then write the next data to the register buffer.

TREG4/TREG6/TREG8/TREGA and the register buffer are allocated to the same addresses in memory (000090H, 000091H/0000A0H, 0000A1H/0000B0H, 0000B1H/0000C0H, 0000C1H).

When <DB4EN, DB6EN, DB8EN, DBAEN> is set to "0", the same value is written to TREG4/TREG6/TREG8/TREGA and to their respective register buffers. When <DB4EN, DB6EN, DB8EN, DBAEN> is set to "1", the value is written to the register buffers only. Therefore, disable the register buffers before writing the initial values to the timer registers.

As the timer registers are undefined after a reset, be sure to write data to the upper and lower registers before using the timers.

# [3] Capture register

The capture register is a 16-bit register for latching the up counter value.

Data in the capture registers should be read all 16 bits.

When reading the capture register, use the 2-byte data load instruction, or the 1-byte data load instruction twice; first to read data from the lower eight bits, then to read data from the upper eight bits.

## [4] Capture input control

The capture input control circuit controls the timing to latch the up counter UC4/UC6/UC8/UCA value to capture registers CAP4, CAP5/CAP6, CAP7/CAP8, CAP9/CAPA, CAPB.

Set the capture register latch timing using T4MOD<CAP45M1:0>/T6MOD<CAP67M1:0>/T8MOD<CAP89M1:0>/TAMOD<CAPABM1:0>.

• When T4MOD<CPA45M1:0>/T6MOD<CAP67M1:0>/T8MOD<CAP89M1:0>/DAMOD <CAPABM1:0> = "00",

the capture function is disabled. Resetting disables the capture function.

• When T4MOD<CPA45M1:0>/T6MOD<CAP67M1:0>/T8MOD<CAP89M1:0>/DAMOD<CAPABM1:0> = "01",

On the TI4 (also used as PD1/INT4)/TI6 (also used as PD5/INT6)/TI8 (also used as PE1/INT8)/TIA (also used as PE5/INTA) input rising edge, the up counter value is loaded to capture register CAP4/CAP6/CAP8/CAPA. On the TI5 (also used as PD2/INT5)/TI7 (also used as PD6/INT7)/TI9 (also used as PE2/INT9)/TIB (also used as PE6/INTB) input rising edge, the up counter value is loaded to capture register CAP5/CAP7/CAP9/CAPB (Time differential measurement).

• When T4MOD<CPA45M1:0>/T6MOD<CAP67M1:0>/T8MOD<CAP89M1:0>/DAMOD <CAPABM1:0> = "10",

On the TI4/TI6/TI8/TIA input rising edge, the up counter value is loaded to capture register CAP4/CAP6/CAP8/CAPA. On the input falling edge, the up counter value is loaded to capture register CAP5/CAP7/CAP9/CAPB. In this mode only, interrupt INT4/INT6 is generated on a falling edge (Pulse width measurement).

• When T4MOD<CPA45M1:0>/T6MOD<CAP67M1:0>/T8MOD<CAP89M1:0>/DAMOD<CAPABM1:0> = "11",

On the timer flip-flop TFF1 rising edge, the up counter value is loaded to capture register CAP4/CAP6/CAP8/CAPA. On the falling edge, the up counter value is loaded to capture register CAP5/CAP7/CAP9/CAPB.

The up counter value can also be loaded to a capture register on a software request. When "0" is written to T4MOD<CAP4IN>/T6MOD<CAP6IN>/T8MOD<CAP8IN>/TAMOD<CAPAIN>, the up counter value at that time is loaded to capture register CAP4/CAP6/CAP8/CAPA. The prescaler must be set to RUN (set T16RUN<PRRUN> to "1").

## [5] Comparator

A 16-bit comparator compares the up counter UC4/UC6/UC8/UCA value with the value set in the timer register (TREG4, TREG5/TREG6, TREG7/TREG8, TREG9/TREGA, TREGB) to detect a match.

On detection of a match, the comparator generates interrupt INTTR4/INTTR5, INTTR6/INTTR7, INTTR8/INTTR9, INTTRA/INTTRB. Only a match with TREG5/TREG7/TREG9/TREGB clears up counter UC4/UC6/UC8/UCA. (Setting T4MOD<CLE>/T6MOD<CLE>/T8MOD<CLE>/TAMOD<CLE> to "0" disables UC4/UC6/UC8/UCA clearing.)

## [6] Timer flip-flop (TFF4/TFF6/TFF8/TFFA)

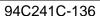
This flip-flop is inverted by a match detect signal from the comparator and a latch signal to the capture register.

Enable or disable the invert for each interrupt source using T4FFCR<CAP5T4, CAP4T4, EQ5T4, EQ4T4>/T6FFCR<CAP7T6, CAP6T6, EQ7T6, EQ6T6>/T8FFCR<CAP9T8, CAP8T8, EQ9T8, EQ8T8>/TAFFCR<CAPBTA, CAPATA, EQBTA, EQATA>.

To invert TFF4/TFF6/TFF8/TFFA write "00" to T4FFCR <TFF4C1:0>/T6FFCR<TFF6C1:0>/T8FFCR<TFF8C1:0>/TAFFCR<TFFAC1:0>. Writing "01" sets TFF4/TFF6/TFF8/TFFA to 1; "10" clears TFF4/TFF6/TFF8/TFFA to 0.

The TFF4/TFF6, TFF8, TFFA value can be output to timer output pin TO4 (also used as PD0)/TO6 (also used as PD4)/TO8 (also used as PE4).

## [7] Timer flip-flop (TFF7/TFFB)


This flip-flop is inverted by a match detect signal between up counter UC6/A and timer register TREG7/B, and a latch signal to capture register CAP7/B.

Enable or disable the invert for each interrupt source using T6MOD<CAP7T7, EQ7T7>/TAMOD<CAPBTB, EQBTB>.

To invert TFF7/B, write "00" to T6FFCR<TFF7C1:0>/TAFFCR<TFFBC1:0>. Writing "01" sets TFF7/B to 1; "10" clears TFF7/B to 0.

The TFF7/B value can be output to timer output pin TO7 (also used as PC3)/TOB (also used as PC1).

Note: Only timer 6 and timer A contains this flip-flop (TFF7/TFFB).



#### (1) 16-bit timer mode

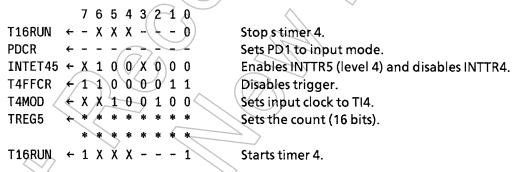
Timers 4, 6, 8, and A operate independently. As both timers operate the same, the following describes timer 4 only.

Example: Generate fixed-interval interrupts

Set an interval time in timer register TREG5 and generate interrupt INTTR5.

```
7 6 5 4 3 2 1 0
T16RUN ← - X X X - - - 0
                                     Stop timer 4.
                                     Enables INTTR5 (set to level 4) and disables INTTR4.
INTET45 ← X 1 0 0 X 0 0 0
T8FFCR + 1 1 0 0 0 0 1 1
                                     Disables trigger.
T8MOD
         ← X X 1 0 0 1 * *
                                     Sets input clock to an internal clock, and disables
              (** = 01, 10, 11)
                                     capture function.
                                     Sets interval time.
TREG5
                                     (16 bits)
T16RUN ← 1 X X X - - - 1
                                     Starts timer 4.
```

Note: X; Don't care -; No change


### (2) 16-bit event counter mode

Setting external clock TI4/TI6/TI8/TIA as an input clock in 16-bit timer mode results in an event counter. To obtain a counter value, load the counter value into a capture register using "software capture" and read the captured value from the capture register.

The counter counts up at the TI4/TI6/TI8/TIA input rising edge.

The TI4/TI6/TI8/TIA pin is also used as PD1/INT4, PD5/INT6, PE1/INT8, PE5/INTA.

As timers 4, 6, 8, and A operate the same, the following describes timer 4 only.



Note: Set the prescaler to RUN when using a 16-bit counter as an event counter.

(3) 16-bit programmable pulse generation (PPG) output mode

As timers 4, 6, 8, and A operate the same, the following describes timer 4 only.

To enter PPG mode, set the device to invert timer flip-flop TFF4 and output the TFF4 value from the TO4 pin (also used as PD0) at a match between up counter UC4 and the TREG4/TREG5 register value.

The following condition must be satisfied: (TREG4 setting) < (TREG5 setting).

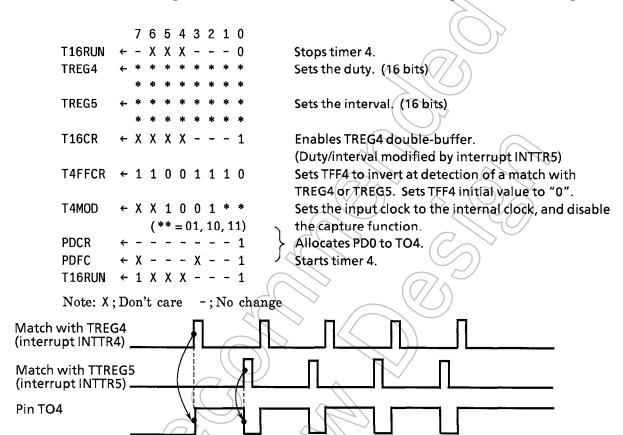



Figure 3.9.17 Programmable Pulse Generation (PPG) Output Waveform

**TOSHIBA** 

Enabling the TREG4 double-buffer in this mode shifts the value of register buffer 4 to TREG4 when TREG5 matches UC4. Using the double-buffer facilitates output of waveforms with a low duty ratio.

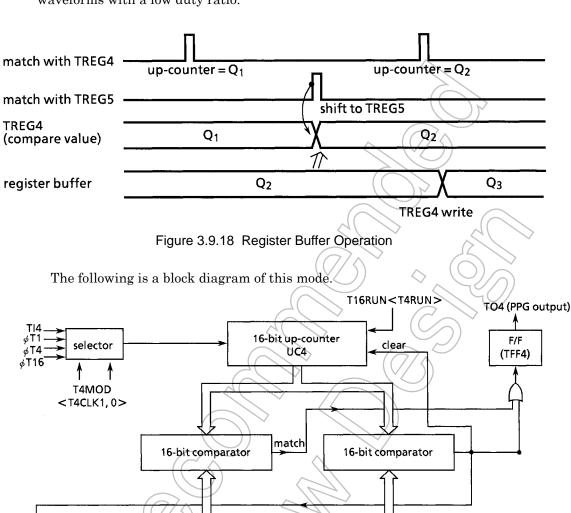



Figure 3.9.19 16-Bit PPG Mode Block Diagram

internal bus

TREG5

TREG4

register buffer 4

selector

T16CR < DB4EN >

TREG4-WR

## (4) Capture function application example

As timers 4, 6, 8, and A operate the same, the following describes timer 4 only.

The following features of the 16-bit timer can be enabled or disabled as required: loading of up counter UC4 value to capture registers CAP4 and CAP5, inversion of timer flip/flop TFF4 on a match detect signal from comparators CP4 and CP5, and outputting of TFF4 to pin TO4. Many functions can be obtained by combining these features with interrupts. For example:

- [1] One-shot pulse output from the external trigger pulse
- [2] Frequency measurement
- [3] Pulse width measurement
- [4] Time differential measurement

## [1] One-shot pulse output from external trigger pulse

Set up counter UC4 to free-running using internal clock input. Input the external trigger pulse from pin TI4, and load the up counter value to capture register CAP4 on the TI4 input rising edge (set T4MOD<CAP45M1:0> to "01").

On the TI4 input rising edge, add the value of capture register CAP4 at interrupt INT4 (c) to the delay time (d), and set timer register TREG4 to the sum of these values (c + d). Add the pulse width of the one-shot pulse (p) to TREG4, and set TREG5 to the result (c + d + p). On interrupt INT4, set register T4FFCR<EQ5T4, EQ4T4> to "enable the inversion of timer flip-flop TFF4 only when the up counter matches with TREG4 or TREG5". On interrupt INTTR5, disable the inversion of timer flip-flop TFF8.

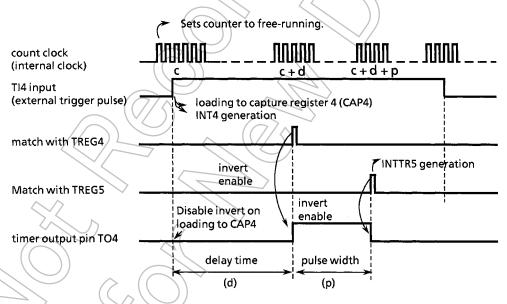
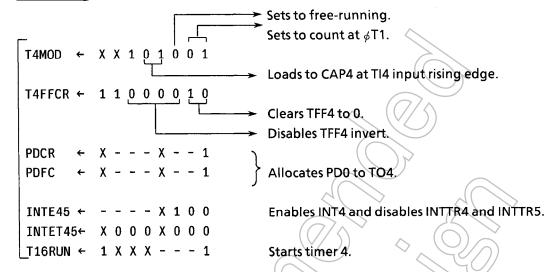




Figure 3.9.20 One-shot Pulse Output (with delay)

**TOSHIBA** 

Setting Example: On pin TI4, output a 2ms one-shot pulse with a 3ms-delay after an external trigger pulse.

### Main setting



## Settings at INT4

```
TREG4 ← CAP4+3ms/¢T1

TREG5 ← TREG4+2ms/¢T1

T4FFCR ← - - - - 1 1 - Enables TFF4 invert on match with TREG4 or TREG5.

INTET45← X 1 0 0 - - Enables INTTR5.
```

## Settings at INTTR5



Note: X; Don't care -; No change

If delay time is not required, invert timer flip-flop TFF4 by loading to capture register 4 (CAP4). Set timer register TREG5 to the sum of the one-shot pulse width (p) and the value of CAP4 at interrupt INT4 (c) (c + p). Enable TFF4 invert on match between TREG5 and up counter UC4. On interrupt INTTR5, disable the timer flip-flop TFF4 invert.

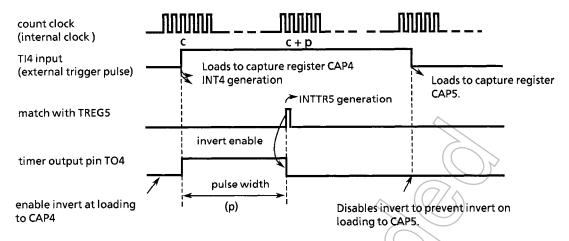



Figure 3.9.21 One-shot Pulse Output (No delay)

# [2] Frequency measurement

This mode is used to measure the frequency of the external clock. Input the external clock on pin TI4 and measure its frequency with the 8-bit timers (timers 0:1) and the 16-bit timer/event counter (timer 4).

Set the TI4 input as the timer 4 input clock, and load the value of up counter UC4 to capture register CAP4 when timer flip/flop TFF4 of the 8-bit timer (timer 0:1) rises, and to capture register CAP5 when timer flip/flop TFF4 falls.

The frequency is determined from the difference between capture registers CAP4 and CAP5 at the 8-bit timer interrupts (INTT0 or INTT1).

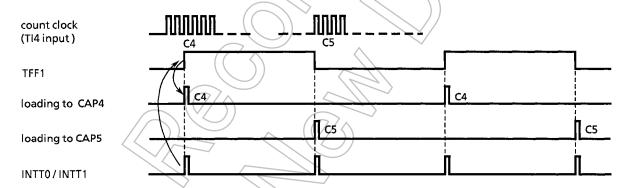



Figure 3.9.22 Frequency Measurement

For example, if TFF1 is set to "1" for 0.5 s by the 8-bit timers, and the difference between CAP4 and CAP5 is 100, the frequency is  $100 \div 0.5 \text{ [s]} = 200 \text{ [Hz]}$ .

#### [3] Pulse width measurement

This mode is used for measuring the "high" level width of an external pulse. Input the external pulse through pin TI4 and set the 16-bit timer/event counter to free-running count-up using an internal clock. Load the up counter UC4 value into capture register CAP4 and CAP5 on the rising and falling edge respectively of the external pulse. Interrupt INT4 is generated on the falling edge of pin TI4.

The pulse width can now be determined according to the difference between CAP4 and CAP5, and the internal clock interval.

For example, if the difference between CAP4 and CAP5 is 100 and the internal clock interval is 0.8  $\mu$ s, the pulse width is 100 × 0.8  $\mu$ s = 80  $\mu$ s.

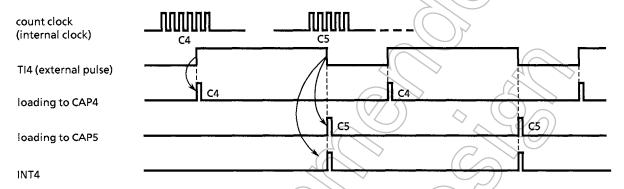



Figure 3.9.23 Pulse Width Measurement

Note: Only in pulse width measurement mode where T4MOD<CAP45M1:0> = "10", external interrupt INT4 is generated at the falling edge of pin TI4. In other modes, external interrupt INT4 is generated at the rising edge.

Determine the "low" level width at the second INT4 using the difference between the value of C5 at the first interrupt and the value of C4 at the second interrupt.

#### [4] Time differential measurement

This mode measures the time difference between the rising edge of the external pulses input to pins TI4 and TI5.

Set the 16-bit timer/event counter (timer 4) to free-running count-up using an internal clock. When a rising edge is detected in the pulse on pin TI4, the up counter UC4 value is loaded into capture register CAP4 and interrupt INT4 is generated.

Similarly, when a rising edge is detected in the pulse on pin TI5, the up counter UC4 value is loaded into capture register CAP5 and interrupt INT5 is generated.

When the up counter values are loaded to CAP4 and CAP5, the time difference can be determined from the difference between CAP4 and CAP5.

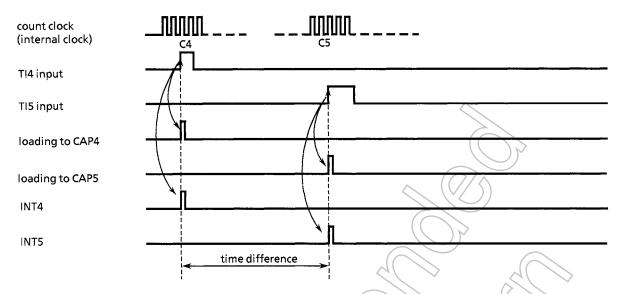



Figure 3.9.24 Time Differential Measurement

### (5) Phase output mode

Set the up counter UC4/6/8/A to free-running and output a signal with any phase differential. As timers 4, 6, 8, and A operate the same, the following describes timer 6 only.

A match between up counter UC6 and TREG6 or TREG7 inverts TFF6 or TFF7 respectively, and outputs the invert values to TO6 and TO7 respectively.

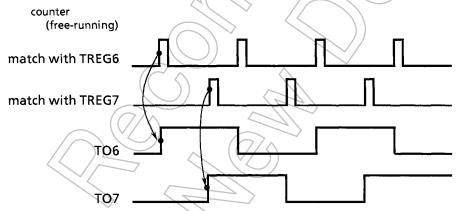
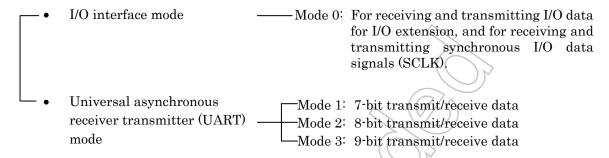



Figure 3.9.25 Phase Output


The following table shows the interval (counter overflow time) of the above waveform output.

	16 MHz	20 MHz
φΤ1	32.77 ms	26.214 ms
φT4	131.07 ms	104.856 ms
φ <b>T</b> 16	524.29 ms	419.424 ms

TOSHIBA

#### 3.10 Serial Channel

TMP94C241C features two built-in serial input/output channels. The serial channel operating modes are as follows:



Parity bits can be added in modes 1 and 2. Mode 3 has a wake up function to start slave controllers using serially linked master controllers (multi-controller system).

Figure 3.10.1 shows the data formats (for one frame) in each mode.

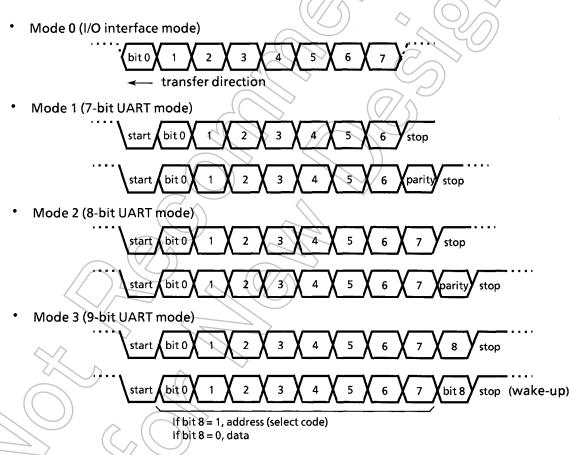



Figure 3.10.1 Data Formats

Serial channel buffer registers temporarily hold data to be transmitted or received (full-duplex), allowing independent transmission and reception.

Note that in I/O interface mode, the serial clock (SCLK) is shared between reception and transmission (half-duplex).

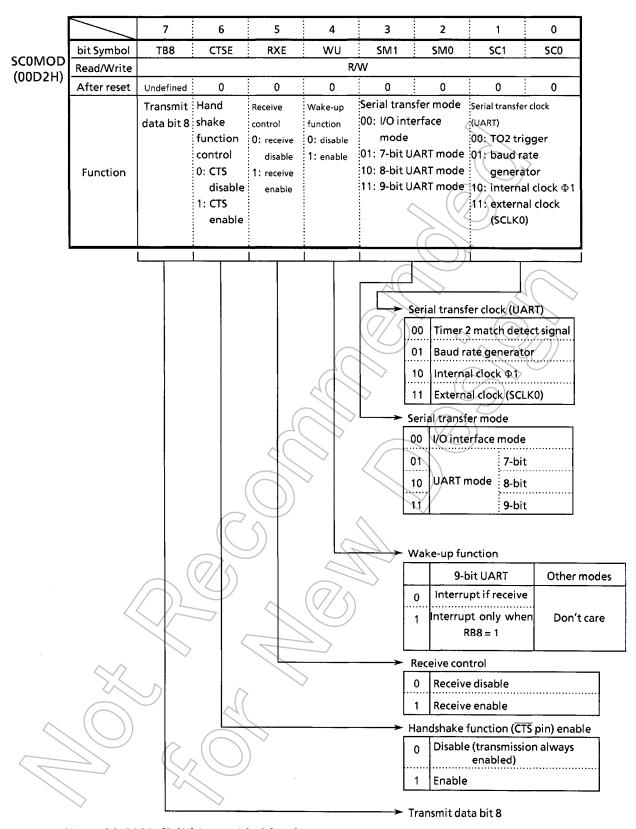
The buffer register for reception features a double-buffer configuration to prevent overrun error; an extra frame holds data until the data are read by the CPU. That is, a receive buffer holds the data already received, while the buffer register receives the next frame of data.

By using  $\overline{\text{CTS}}$  and  $\overline{\text{RTS}}$  (as no  $\overline{\text{RTS}}$  pin is provided, a pin in any port must be controlled by software), it is possible to halt data transmission until the CPU reads the data received after each frame (handshake function).

In UART mode, a check function prevents data receive operations from starting due to erroneous start bits being generated by noise or other interference on the line. The channel starts receiving data only when the start bit is detected as normal in at least two of three samplings.

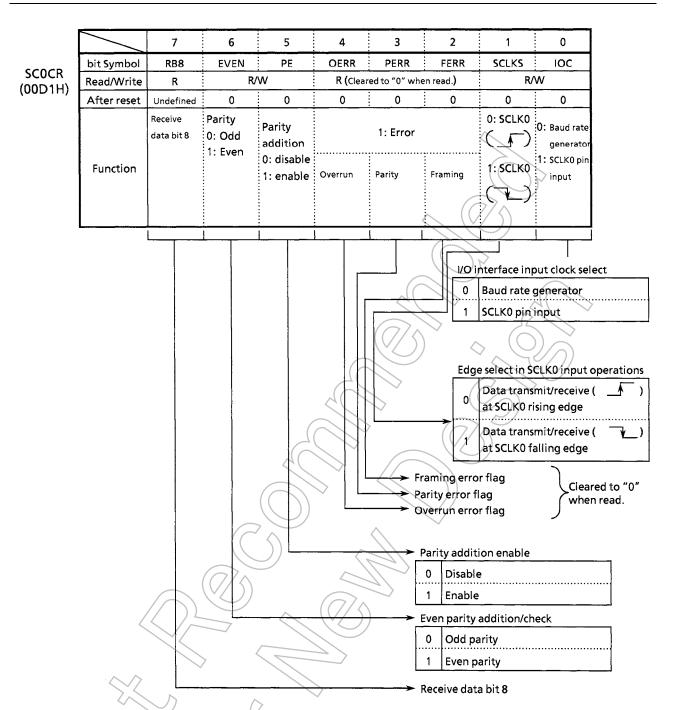
When the transmit buffer is empty, an INTTX interrupt is generated to request the CPU to supply the next data to transmit. When the receive buffer has data to be read by the CPU, an INTRX interrupt is generated.

When an overrun error, parity error, or framing error is detected at data reception, the corresponding flag <OERR, PERR, FERR> is set in the control register (SCOCR/SC1CR) of the relevant serial channel.


Serial channels 0 and 1 have a dedicated baud rate generator, which can set any baud rate by dividing the frequency of internal input clocks ( $\phi$ T0,  $\phi$ T2,  $\phi$ T8, and  $\phi$ T32) from the 9-bit prescaler (shared with 8/16 bit timers) by a value between 1 and 16.

In addition to the clock from the internal baud rate generator, an arbitrary baud rate can be obtained from the external clock input (SCLK0/1). Moreover, in I/O interface mode, a sync signal (SCLK0/1) can be input and data transfer performed using this external clock.

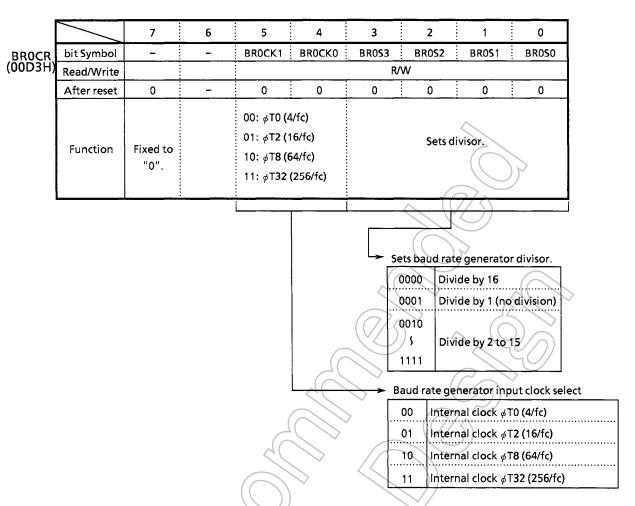
#### 3.10.1 Control Registers


Each serial channel is controlled by three control registers (SCOCR, SCOMOD, and BROCR for channel 0). Transmit/receive data are stored in a register in each channel (SCOBUF for channel 0).





Note: SC1MOD (D6H) is provided for channel 1.

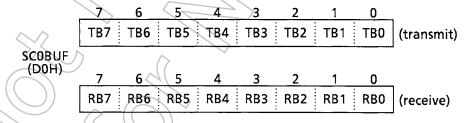

Figure 3.10.2 Serial Mode Control Register (SC0MOD, Channel 0)



Note 1: SC1CR (D5H) is provided for channel 1.

Note 2: As the error flags are all cleared after reading, when testing with a bit test instruction, test more than just a single bit.

Figure 3.10.3 Serial Control Register (SC0CR, Channel 0)




Note 1: BR1CR (D7H) is provided for channel 1.

Note 2: To use the baud rate generator, set T16RUN<PRRUN> to "1" and run the prescaler.

Note 3: The baud rate generator frequency can be divided by 1 in UART mode only. Do not use this setting in I/O interface mode.

Figure 3.10.4 Baud Rate Generator Control Register (BR0CR, Channel 0)



Note: Read-modify-write is prohibited.

Figure 3.10.5 Serial Transmit/Receive Register (SC0BUF, Channel 0)

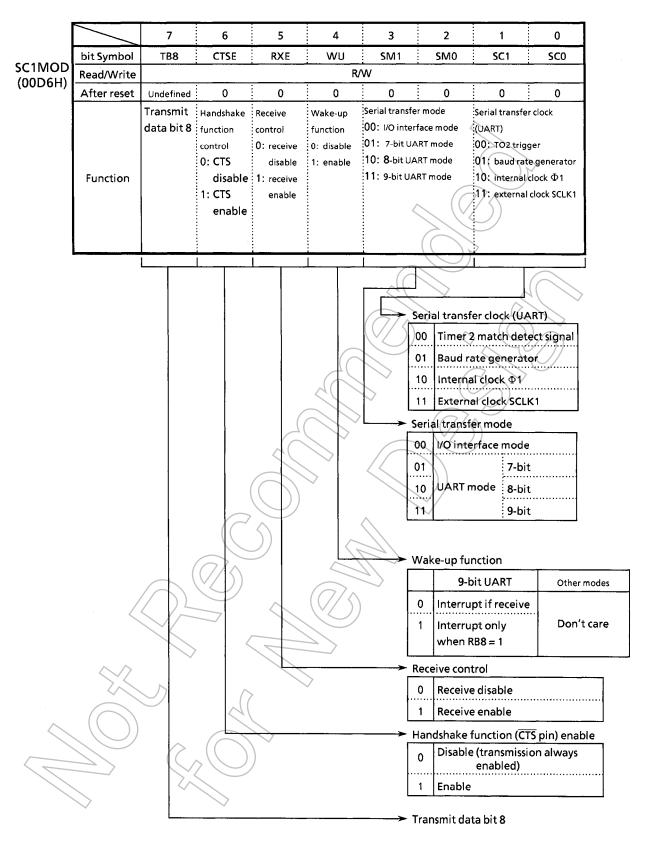
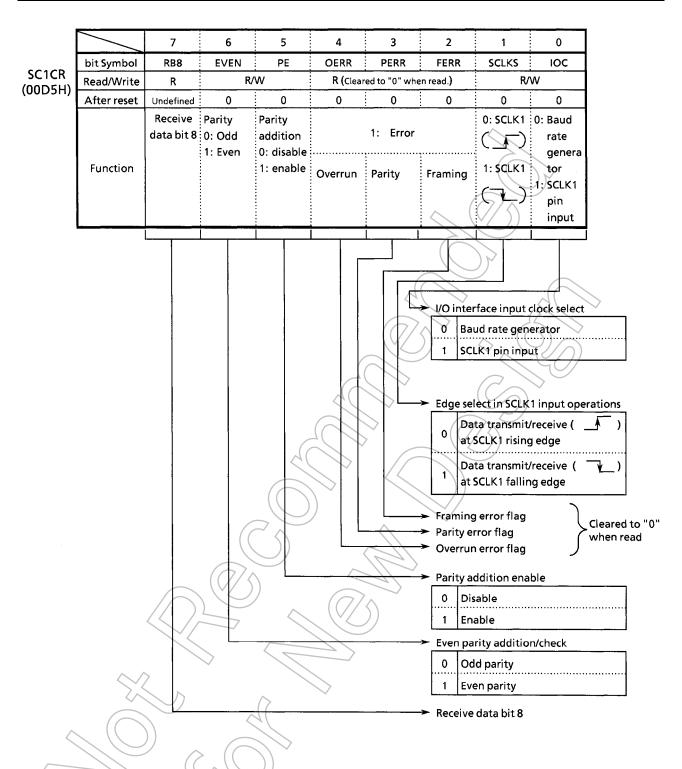
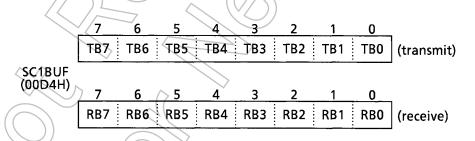




Figure 3.10.6 Serial Mode Control Register (SC1MOD, Channel 1)



Note: As the error flags are all cleared after reading, when testing with a bit test instruction, test more than just a single bit.


Figure 3.10.7 Serial Control Register (SC1CR, Channel 1)

		7	6	5	4	3	2	1	0
bit	t Symbol	- :	-	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
l) Rea	ad/Write					R/	w		
Af	fter reset	0		0	0	0	0	0	0
Fi	unction	Fixed to "0".		00: φT0 (4 01: φT2 (1 10: φT8 (6 11: φT32	16/fc) 54/fc)		Sets d	ivisor	)>
							(()	$\searrow$	
						B B	0000 Div 0001 Div 0010 Div 11111	ide by 16 ide by 1 (no ide by 2 to	out clock se
						B B	0000 Divi 0001 Div 0010 Div 11111 Div aud rate ge 00 Inter	ide by 16 ide by 1 (no	o division) 15  out clock sel T0 (4/fc) T2 (16/fc)

Note 1: To use the baud rate generator, set T16RUN<PRRUN> to "1" and run the prescaler.

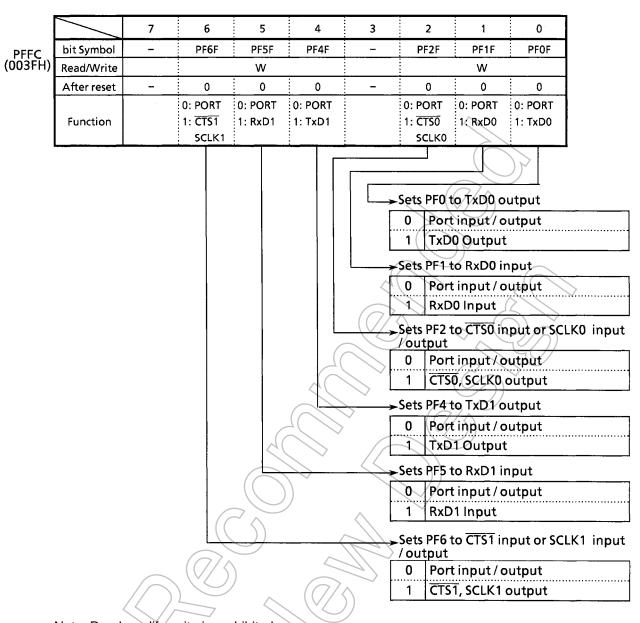

Note 2: The baud rate generator frequency can be divided by 1 in UART mode only. Do not use this setting in I/O interface mode.

Figure 3.10.8 Baud Rate Generator Control Register (BR1CR, Channel 1)



Note: Read-modify-write is prohibited.

Figure 3.10.9 Serial Transmit/Receive Buffer Register (SC1BUF, Channel 1)



Note: Read-modify-write is prohibited.

Figure 3.10.10 Port F Function Register (PFFC)

## 3.10.2 Configuration

Figure 3.10.11 is a block diagram of serial channel 0. Serial channel 1 has the same circuit configuration.

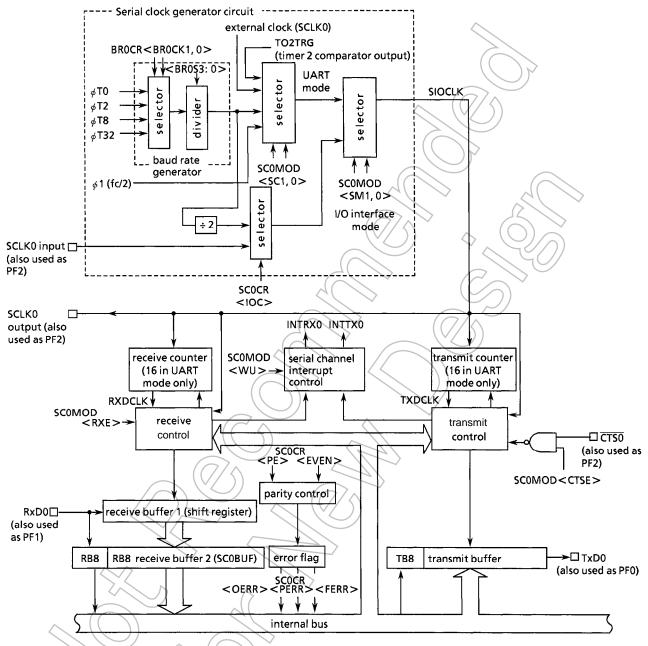



Figure 3.10.11 Serial Channel 0 Block Diagram

### [1] Baud rate generator

The baud rate generator is a circuit to generate the transmission clock signals that control the serial channel transmission rate.

The baud rate generator input clock is one of  $\phi$ T0 (4/fc),  $\phi$ T2 (16/fc),  $\phi$ T8 (64/fc), or  $\phi$ T32 (256/fc) from the 9-bit prescaler that the baud rate generator shares with the timers.

Bits 5 and 4 <BR0CK1:0>/<BR1CK1:0> of the baud rate generator control register (BR0CR/BR1CR) select the input clock.

The baud rate generator features a built-in 4-bit divider. Set the transmission rate by dividing the frequency by 1 to 16 using the divider.

Baud rates using the baud rate generator are determined as follows:

UART mode

Baud rate 
$$=$$
  $\frac{\text{Baud rate generator input clock}}{\text{Baud rate generator divisor}} \div 16$ 

• I/O interface mode

The relationship between the input clock and the source clock (fc) is:

$$\phi TO = 4/fc$$

$$\phi T2 = 16/fc$$

$$\phi T8 = 64/fc$$

$$\phi T32 = 256/fc$$

Accordingly, with the source clock set to 19.6608 MHz, when  $\phi$ T2 (16/fc) is selected as input clock and the divisor is 8, the baud rate in UART mode is:

Baud rate = 
$$\frac{\text{fc/16}}{8} \div 16$$
  
=  $19.6608 \times 10^6 \div 16 \div 8 \div 16 = 9600 \text{ (bps)}$ 

Table 3.10.1 shows examples of the baud rates in UART mode.

In UART mode, the serial channels use 8-bit timer 2 to obtain the baud rate. Table 3.10.2 shows examples of baud rates using timer 2.

Moreover, the external clock input can also be used as the serial clock. The baud rate in this case is determined as follows.

Baud rate = External clock input ÷ 16

TOSHIBA TMP94C2410

Table 3.10.1 UART Mode Baud Rate Selection (1) (Using baud rate generator)

Unit: kbps

					Other Reps
fc [MHz]	Input Clock Divisor	φ⊤0 (4/fc)	φT2 (16/fc)	φT8 (64/fc)	φ⊤32 (256/fc)
18.432000	15	19.2000	4.800	1.200	0.300
19.660800	8	38.400	9.600	2.400	0.600
1	16	19.200	4.800	1.200	0.300

Note: In I/O interface mode, the transmission rate is eight times the values shown in this table.

Table 3.10.2 UART Mode Baud Rate Selection (2) (Using timer 2 input clock \$\phi\$T1)

Unit: kbps

fc TREG2	20 MHz	19.6608 MHz	16 MHz
01H			
<b>02</b> H		76.8	62.5
03H			
04H		38.4	31.25
05H	31.25		$\langle \gamma \rangle$
06Н			76
08H		19.2	
0СН			
10H		9.6	

Baud rate calculation (using timer 2):

Transmission rate:  $\frac{\text{fc}}{\text{TREG2} \times \underline{8} \times 16}$ 

(Where timer 2 input clock is  $\phi$ T1)

Input clocks for timer 0

 $\phi$ T1 = 8/fc

 $\phi T4 = 32/fc$ 

 $\phi T16 = 128/fc$ 

Note: In I/O interface mode, the timer 2 match signal cannot be used as a transmission clock.

### [2] Serial clock generator circuit

This circuit generates the transmit/receive basic clock.

#### In I/O Interface mode

In SCLK output mode where SC0CR/SC1CR<IOC> is set to "0", the basic clock (SIOCLK) is generated by dividing the output of the baud rate generator by 2.

In SCLK input mode where SC0CR/SC1CR<IOC> is set to "1" the basic clock is derived from the rising or falling edge of the SCLK input, as determined by the setting of the SC0CR/SC1CR<SCLKS> register.

In universal asynchronous receiver transmitter (UART) mode

Basic clock SIOCLK is selected from one of the following depending on the setting of the <SC1:0> bits of the SC0MOD or SC1MOD register: the clock from the baud rate generator, internal clock  $\phi$ 1 (500 kbps at fc = 16 MHz), a match detect signal from timer 2, or an external clock.

#### [3] Receive counter

The receive counter is a 4-bit binary counter that counts by the SIOCLK clock and is used in universal asynchronous receiver transmitter (UART) mode. Sixteen cycles of SIOCLK are used to receive one bit of data. The data are sampled three times: at the 7th, 8th, and 9th clock cycles.

The data received are checked by the majority rule applied to the three samples. For example, if the sampled data bits are 1, 0, 1 at the 7th, 8th, and 9th clock cycles respectively, the data are determined as "1". If the samplings are 0, 0, 1, the data received are determined as "0".

## [4] Receive control section

## • In I/O Interface mode

In SCLK output mode where SCOCR/SC1CR<IOC> is set to "0", the RXD0/1 pin is sampled at the rising edge of the shift clock output on the SCLK0/1 pin. In SCLK input mode where SCOCR/SC1CR<IOC> is set to "1", the RXD0/1 pin is sampled at the rising or falling edge of SCLK input as determined by the setting of the SCOCR/SC1CR<SCLKS> register.

In universal asynchronous receiver transmitter (UART) mode

The receive control section has a circuit for detecting the start bit by the majority rule. If two or more 0s are detected among three samples, the circuit recognizes the bit as a start bit and begins receiving. Data being received are also checked by the majority rule.

#### [5] Receive buffer

The receive buffer has a double-buffer configuration to prevent overrun error. Receive buffer 1 (a shift register buffer) stores the data received bit by bit. When the receive buffer contains seven or eight bits of data, the data are transferred to receive buffer 2 (SC0BUF/SC1BUF), generating interrupt INTRX0/INTRX1.

The CPU reads only receive buffer 2 (SC0BUF/SC1BUF). Data can be stored in receive buffer 1 even before the CPU reads receive buffer 2.

However, receive buffer 2 must be read before all bits of the next data unit are received by buffer 1. Otherwise, an overrun error occurs and the contents of receive buffer 1 are lost, although the contents of receive buffer 2 and SCOCR <RB8>/SC1CR<RB8> are preserved. Reading receive buffer 2 (SC0BUF/SC1BUF) clears interrupt request flags INTRX0<IRX0C> and INTRX1<IRX1C>.

In 8-bit UART mode with parity added, the parity bit is stored in SC0CR<RB8>/SC1CR<RB8>. In 9-bit UART mode, the MSB is stored in SC0CR<RB8>/SC1CR<RB8>.

Setting SC0MOD<WU>/SC1MOD<WU> to "1" in 9-bit UART mode enables the slave controller wakeup. Only when SC0CR<RB8>/SC1CR<RB8> is set to 1, interrupt INTRX0/INTRX1 is generated.

#### [6] Transmit counter

The transmit counter is a 4-bit binary counter for use in universal asynchronous receiver transmitter (UART) mode. Like the receive counter, the transmit counter counts by the SIOCLK clock, generating transmission clock TXDCLK every 16 clock cycles.

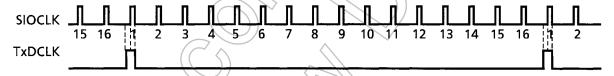



Figure 3.10.12 Transmission Clock Generation

### [7] Transmit control section

• In I/O interface mode

In SCLK output mode where SC0CR/SC1CR<IOC> is set to "0", the data in the transmit buffer is output bit by bit to the TXD0/1 pin at the rising edge of the shift clock output on the SCLK0/1 pin.

In SCLK input mode where SC0CR/SC1CR<IOC> is set to "1", the data in the transmit buffer is output bit by bit to the TXD0/1 pin at the rising or falling edge of SCLK input as determined by the setting of the SC0CR/SC1CR <SCLKS> register.

In universal asynchronous receiver transmitter (UART) mode

When the CPU writes data in the transmit buffer, transmission begins from the next rising edge of the TXDCLK, generating transmission shift clock TXDSFT.

#### Handshake Function

The serial channels use the  $\overline{\text{CTS}}$  pin to transmit data in units of frames, thus preventing an overrun error. Use SC0MOD/SC1MOD<CTSE> to enable or disable the handshake function.

When  $\overline{\text{CTS}}$  goes high, data transmission is halted after the completion of the current transmission and is not restarted until  $\overline{\text{CTS}}$  returns to low. An INTTX0 interrupt is generated to request the CPU for the next data to transmit. When the CPU writes the data to the transmit buffer, processing enters standby mode.

An RTS pin is not provided, but a handshake function can easily be configured if the receiver sets any port assigned to the RTS function to high (in the receive interrupt routine) after data receive, and requests the transmitter to temporarily halt transmission.

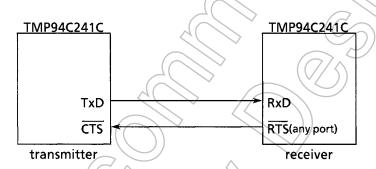
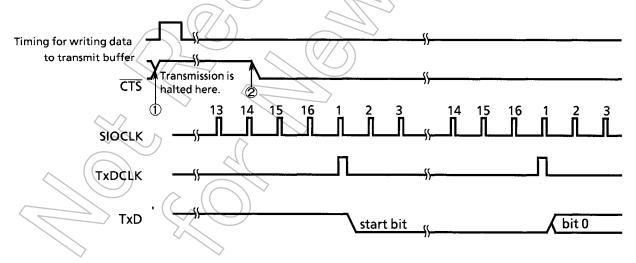




Figure 3.10.13 Handshake Function



Notes 1: When the  $\overline{\text{CTS}}$  signal rises during transmission, transmission of the next data frame halts after transmission of the current data frame is complete.

Notes 2: Transmission begins at the first TXDCLK clock falling edge after the  $\overline{\text{CTS}}$  signal falls.

Figure 3.10.14 CTS (Clear to Send) Signal Timing

#### [8] Transmit buffer

Transmit buffer (SC0BUF/SC1BUF) shifts out and transmits the transmit data written by the CPU, beginning with the least significant bit, using the transmission shift clock (TxDSFT) generated by the transmission control section. When all bits are shifted out, the empty transmit buffer generates interrupt INTTX0/INTTX1.

## [9] Parity control circuit

When serial channel control register SC0CR<PE>/SC1CR<PE> is set to "1", data are transmitted and received with parity. However, parity can be added only in 7-bit or 8-bit UART mode. The SC0CR<EVEN>/SC1CR<EVEN> register selects even/odd parity.

At transmission, the parity control circuit automatically generates parity according to the data written in the transmit buffer (SC0BUF/SC1BUF). In 7-bit UART mode, the parity bit is stored in SC0BUF<TB7>/SC1BUF<TB7> prior to transmission. In 8-bit UART mode, parity is stored in SC0MOD<TB8>/SC1MOD<TB8> prior to transmission. Set both <PE> and <EVEN> before writing the transmit data in the transmit buffer.

At receiving, data are first shifted into receive buffer 1. The parity control circuit automatically generates parity according to the data transferred to receive buffer 2 (SC0BUF/SC1BUF). In 7-bit UART mode, the generated parity is compared with the received parity in SC0BUF<RB7>/SC1BUF<RB7>. In 8-bit UART mode, the generated parity is compared with the received parity in SC0CR <RB8>/SC1CR<RB8>. If the parities differ, a parity error occurs and the SC0CR <PERR>/SC1CR<PERR> flag is set.

#### [10] Error flags

Three error flags improve the reliability of data reception.

### 1. Overrun error <OERR>

When all bits of the next data frame have been received in receive buffer 1 while valid data are stored in receive buffer 2 (SCBUF0/1), an overrun error occurs.

#### 2. Parity error <PERR>

The parity generated according to the data shifted into receive buffer 2 (SCBUF0/1) is compared with the parity bit received from the RxD pin. If the parities are not equal, a parity error occurs.

#### 3. Framing error <FERR>

The stop bit of data received is sampled three times around the center. If the majority of the samples are "0", a framing error occurs.

# [11] Signal generation timing

## 1) In UART mode

#### Receive

Mode	9 Bit	8 Bit + Parity	8 Bit, 7 Bit + Parity, 7 Bit
Interrupt generation timing	Center of last bit (bit 8)	Center of last bit (parity bit)	Center of stop bit
Framing error generation timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error generation timing	<u>—</u>	Center of last bit (parity bit)	<b>←</b>
Overrun error generation timing	Center of last bit (bit 8)	Center of last bit (parity bit)	Center of stop bit

Note: In 9-bit and 8-bit + parity mode, interrupts coincide with the ninth bit pulse. Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

## Transmit

Mode	9 Bit	8 Bit + Parity	8 Bit, 7 Bit + Parity, 7 Bit
Interrupt generation timing	Immediately before stop bit is sent		<b>←</b>

## 2) In I/O interface mode

Transmission interrupt	SCLK output mode	Immediately after rise of last SCLK signal (See Figure 3.10.17)
generation timing	SCLK input mode	Immediately after rise of last SCLK signal (rising mode), immediately after fall in falling mode (See Figure 3.10.18)
Receive interrupt generation timing	SCLK output mode	When received data are transferred to receive buffer 2 (SC0BUF/SC1BUF) (immediately after final SCLK) (See Figure 3.10.19)
	SCLK input mode	When received data are transferred to receive buffer 2 (SC0BUF/SC1BUF) (immediately after final SCLK)
$\langle \cdot \rangle$		(See Figure 3.10.20)

## 3.10.3 Operation

#### (1) Mode 0 (I/O interface mode)

This mode is used to increase the number of I/O pins for transmitting or receiving data to an external shift register or other external destinations.

This mode consists of SCLK output mode for outputting a synchronous clock (SCLK), and SCLK input mode for inputting a synchronous clock (SCLK) from an external source.

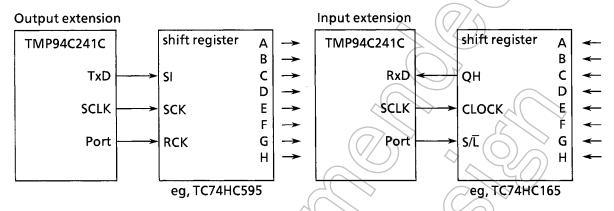



Figure 3.10.15 Example of SCLK Output Mode Connection

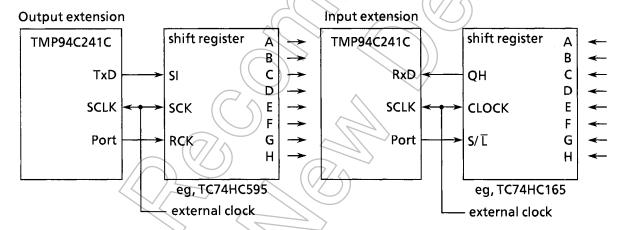



Figure 3.10.16 Example of SCLK Input Mode Connection

### [1] Transmission

In SCLK output mode, each time the CPU transmits data to the transmit buffer, eight data bits are output from the TXD0/1 pin, and a synchronous clock signal is output from the SCLK0/1 pin. When all data are output, INTES0<ITX0C>/INTES1<ITX1C> is set, generating interrupt INTTX0/1.

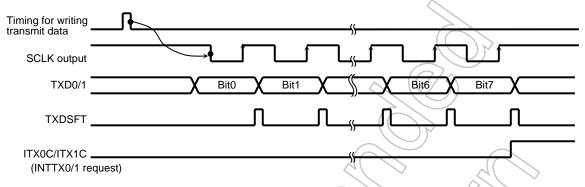



Figure 3.10.17 Data Transmission in I/O Interface Mode (SCLK output mode)

In SCLK input mode, 8-bit data are output from TXD0/1 pin when SCLK input becomes active while data are written in the transmission buffer by CPU.

When all data are output, INTESO<ITX0C>/INTES1<ITX1C> is set, generating interrupt INTTX0/1.

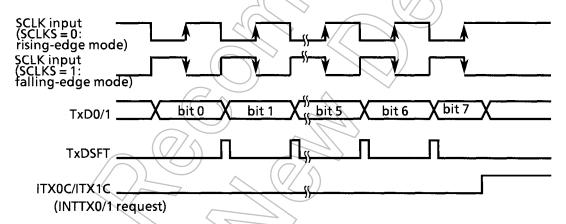



Figure 3.10.18 Data Transmission in I/O Interface Mode (SCLK input mode)

### [2] Receiving

In SCLK output mode, whenever the CPU reads the received data and clears the receive interrupt flag INTES0<IRX0C>/INTES1<IRX1C>, a synchronous clock is output from the SCLK0/1 pin and the next data frame is shifted to receive buffer 1. When an 8-bit data frame has been received, it is transferred to receive buffer 2 (SC0BUF/SC1BUF), and INTES0<IRX0C>/INTES1<IRX1C> is set again, generating interrupt INTRX0/1.

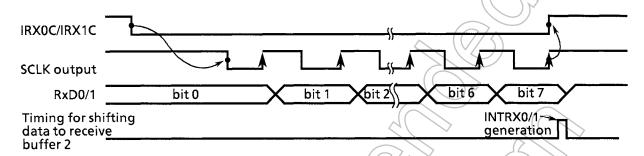



Figure 3.10.19 Data Receive in I/O Interface Mode (SCLK output mode)

In SCLK input mode, if SCLK is input after the CPU reads the received data and clears the receive interrupt flag INTESO<IRX0C>/INTES1<IRX1C>, the next data frame is shifted into receive buffer 1. When an 8-bit data frame is received, the data are shifted to receive buffer 2 (SC0BUF/SC1BUF) and INTESO<IRX0C>/INTES1<IRX1C> is set again, generating interrupt INTRX0/1.

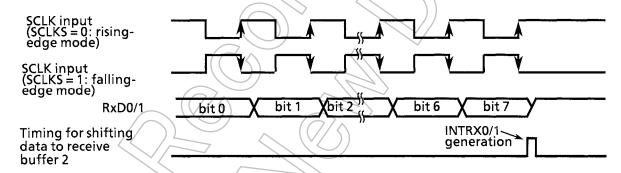



Figure 3.10.20 Data Receive in I/O Interface Mode (SCLK input mode)

Note: To receive data in either SCLK input mode or SCLK output mode, first enable receive (\$C0MOD/SC1MOD<RXE> = "1").

#### (2) Mode 1 (7-bit UART mode)

Setting the serial channel mode register SC0MOD<SM1:0>/SC1MOD<SM1:0> to "01" specifies 7-bit UART mode.

A parity bit can be added in this mode. Enable or disable the addition of a parity bit by the serial channel control register SCOCR<PE>/SC1CR<PE> bit. With <PE> set to "1" (parity enabled), select even or odd parity using SCOCR<EVEN>/SC1CR<EVEN>.

Example: When data are transmitted in the following format, the control registers are set as follows. The example shows channel 0.



transmission direction (transmission rate: 2400 bps at fc = 19.6608 MHz)

```
7 6 5 4 3 2 1 0
PFCR
                                 Sets PF0 as TxD0 pin.
        ← - - X - - - X 1
PFFC
                                   Sets 7-bit UART mode.
SCOMOD \leftarrow X 0 - X 0 1 0 1
SCOCR + X 1 1 X X X 0 0
                                   Adds even parity.
BROCR + 0 X 1 0 1 0 0 0
                                   Sets transmission rate to 2400 bps.
T16RUN \leftarrow 1 X - - - - -
                                   Starts prescaler for baud rate generator.
INTESO ← X 1 0 0 - - - -
                                   Enables interrupt INTTX0 and sets interrupt level 4.
SCOBUF ← * *
                                   Sets transmit data.
```

Note: X; Don't care -; No change

#### (3) Mode 2 (8-bit UART mode)

Setting serial channel mode register SC0MOD<SM1:0>/SC1MOD<SM1:0> to "10" selects 8-bit UART mode. A parity bit can be added in this mode. Enable or disable the addition of a parity bit by the serial channel control register SCOCR<PE>/SC1CR <PE> bit. With <PE> set to "1" (parity enabled), select even or odd parity using SCOCR <EVEN>/SC1CR<EVEN>.

When data are transmitted in the following format, the control registers are set as follows. The example shows channel 0.



transmission direction (transmission rate: 9600 bps at fc = 19.6608 MHz)

Main routine settings:

```
7 6 5 4 3 2 1 0

PFCR ← - - - - - 0 - Sets PF1 (RxD0) as input pin.

SC0MOD ← - 0 1 X 1 0 0 1 Sets 8-bit UART mode and enables reception.

SC0CR ← X 0 1 X X X 0 0 Adds odd parity.

BR0CR ← 0 X 0 1 1 0 0 0 Sets transmission rate to 9600 bps.

T16RUN ← 1 X - - - - - - Starts prescaler for baud rate generator.

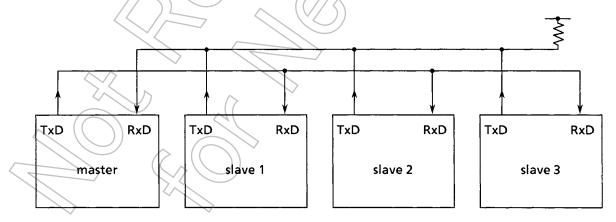
INTES0 ← - - - - X 1 0 0 Enables interrupt INTRX0 and sets interrupt level 4.
```

Interrupt routine processing example:

```
Acc \leftarrow SCOCR AND 00011100 
if Acc \neq 0 then ERROR
Acc \leftarrow SCOBUF Reads data received
```

Note: X; Don't care -; No change

## (4) Mode 3 (9-bit UART mode)


Setting the serial channel mode register SC0MOD<SM1:0>/SC1MOD<SM1:0> to "11" selects 9-bit UART mode. A parity bit cannot be added in this mode.

At transmission, the most significant bit (9th bit) is written to <TB8> of the serial channel mode register. At receiving, the most significant bit is saved in <RB8> of the serial channel control register.

When data are written to or read from the buffer, the most significant bit is always read or written first, followed by the SC0BUF/SC1BUF register.

#### Wake up Function

In 9-bit UART mode, select the slave controller wake up function by setting SC0MOD<WU>/SC1MOD<WU> to "1". Interrupt INTRX0/INTRX1 is generated only when <RB8> is set to 1.



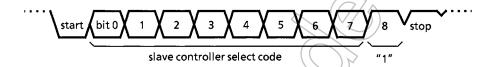
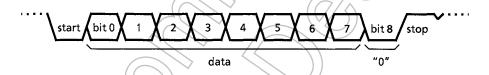
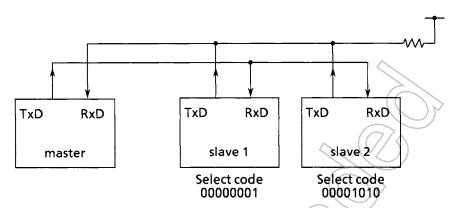

Note: Set, in the ODE register, the TXD pin of the slave controller to open drain output mode.

Figure 3.10.21 Serial Link with Wakeup Function


### Protocol

[1] Configure the master controller and all slave controllers to 9-bit UART mode.

- [2] Set the SC0MOD<WU>/SC1MOD<WU> bit of each slave controller to "1" to enable data reception.
- [3] The master controller transmits one frame with the most significant bit (bit 8) <TB8> set to "1". This frame contains the 8-bit select code of a slave controller.




- [4] The slave controllers receive the above data frame. The slave controller whose select code matches the select code in the data frame received clears its WU bit to 0.
- [5] The master controller transmits data frames with most significant bit (bit 8) <TB8> set to "0" to the specified slave controller (the controller whose SC0MOD<WU>/SC1MOD<WU> bit is cleared to 0).



- [6] The slave controllers not specified (the controllers whose <WU> bit is set to "1") ignore the received data as interrupt INTRX0/INTRX1 is not generated when the most significant bit (bit 8) <RB8> remains cleared to 0 (when data are transmitted).
  - The specified slave controller (the slave controller whose <WU> bit is set to "0") can transmit data informing the master controller of the termination of a transmission.

Setting example: When linking two slave controllers serially with the master controller using internal clock  $\phi 1$  as the transmission clock.



As serial channels 0 and 1 have the same operation in this mode, the following describes channel 0 only.

• Setting of master controller

#### Main routine:

PFCR ← - - - - - - 0 1
PFFC ← X - - - X - 1 1

INTES0 ← X 1 0 0 X 1 0 1

Enables interrupt INTTX0 and sets interrupt level to 4.

Enables interrupt INTRX0 and sets interrupt level to 5.

SC0MOD ← 1 0 1 0 1 1 1 0

Sets PF0 as TxD pin, and PF1 as RxD pin.

Enables interrupt INTRX0 and sets interrupt level to 5.

SC0MOD ← 1 0 1 0 1 1 1 0

Sets to 9-bit UART mode and sets φ1 as transmission clock.

SC0BUF ← 0 0 0 0 0 0 0 1

Sets select code for slave controller 1.

### INTTX0 interrupt routine:

SCOMOD ← 0 - - - - - - Sets TB8 to 0.

SCOBUF ← * * * * * * * * * * Sets transmit data.

## Setting of slave controller1

### Main routine:

PFCR  $\leftarrow$  - - 0 0 Sets PF0 as TxD pin (open drain output), and PF1 as RxD pin.

INTES0  $\leftarrow$  X 1 0 1 X 1 1 0 Enables INTTX0 and INTRX0.

SCOMOD  $\leftarrow$  0 0 1 1 1 1 1 1 0 Sets to 9-bit UART mode, sets  $\phi$ 1 (fc/2) as transmission

clock, and sets <WU> to "1".

## Interrupt INTRX0 routine :

# 3.11 Analog/Digital Converter

TMP94C241C incorporates a high-speed, high-precision 10-bit analog/digital converter (AD converter) with 8-channel analog input.

Figure 3.11.1 is a block diagram of the AD converter. The 8-channel analog input pins (AN0 to AN7) are also used as input-only port G pins and can be also used as input ports.

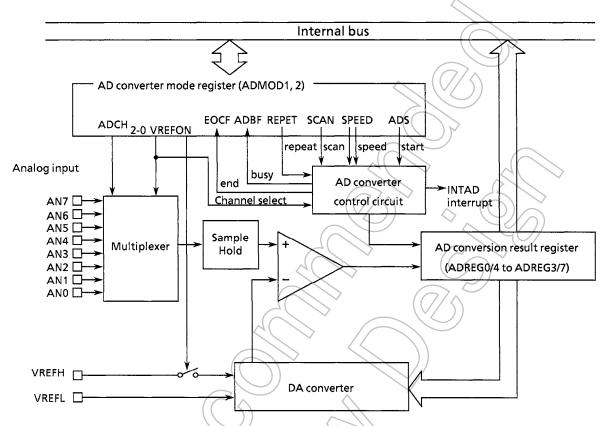



Figure 3.11.1 Block Diagram for DA Converter

	7	6	5	4	3	2	1	0
bit Symbol	EOCF	ADBF	-	_	_	REPET	SCAN	ADS
DD1 Bood/Mrito		<del>.</del> R	:			:	R/W	•
After reset	0	0	0	_	-	0	0	0
Function	AD Conversion	AD Conversion BUSY Flag 1: BUSY	Fix to "0"			Repeat Mode 0: Single	Scan Mode 0: Fixed channel 1: Channe Scan Mode	AD Conversion start
		Figure	3.11.2 A	D Control	Register	Note: Alw AD Scan M O Fixed 1 Chan AD Repea O Singl 1 Repe AD BUSY f O NOT 1 BUSY AD END fl. O NOT 1 END	Conversion ays "0" whe lode I channel m inel scan mo t Mode e mode at mode lag BUSY	en data is read

6 5 4 3 2 1 0 VREFON SPEED1 SPEED0 ADCH2 ADCH1 ADCH0 bit Symbol ADMOD2 R/W Read/Write (0129H)After reset 0 0 0 0 **Conversion Speed Analog Input** Ladder 00: 160 states **Channel Selection** Resistance **Function** 320 states ON/OFF 10: 640 states 1280 states Analog Input Channel Selection <SCAN> 0 1 <ADCH2,1,0> 000 AN0 AN0 001 AN1  $AN0 \rightarrow AN1$ 010 AN2  $AN0 \rightarrow AN1 \rightarrow AN2$ 011 AN3  $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ 100 AN4 AN4  $AN4 \rightarrow AN5$ AN5 **10**1 110 AN6  $AN4 \rightarrow AN5 \rightarrow AN6$ 111 AN7  $AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7$ Conversion Speed 00 160 states (8 μs at 20 MHz) 01 320 states (16 µs at 20 MHz) 10 640 states (32 μs at 20 MHz) 11 1280 states (64 µs at 20 MHz) Ladder Resistance ON / OFF Selection 0 Ladder Resistance OFF 1 Ladder Resistance ON Note: Set the <VREFON> register to 1 before starting conversion (setting <ADS> to 1). Figure 3.11.3 AD Control Register (2/2)

7 0 5 4 3 2 6 ADREG04L (0120H) _ ADR00 Bit Symbol ADR01 Read/Write R After Reset Undefined Lower 2 bits of AD result for AN0 or AN4 are stored. Function 5 4 3 0 7 6 ADREG04H (0121H) ADR04 ADR05 Bit Symbol ADR09 ADR08 ADR07 ADR06 ADR03 ADR02 Read/Write Undefined After Reset Upper 8 bits of AD result for AN0 or AN4 are stored. Function 7 6 5 4 3 2 J) 0 ADREG15L (0122H) Bit Symbol ADR11 ADR10 R Read/Write After Reset Undefined Lower 2 bits of AD result for AN1 or AN5 are stored. Function 7 6 \$ 4 3. 2 0 ADR19 ADR18 ADR17 ADR16 ADR15 ADR14 ADR13 ADR12 Bit Symbol Read/Write After Reset Undefined Upper 8 bits of AD result for AN1 or AN5 are stored. **Function** 

Note: The result registers are used both as ANO and AN4, AN1 and AN5, AN2 and AN6, and AN3 and AN7. They are stored in ADREG04, ADREG15, ADREG26, and ADREG37.

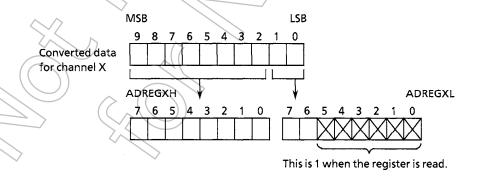



Figure 3.11.4 AD Conversion Result Register (ADREG04, ADREG15) (1/2)

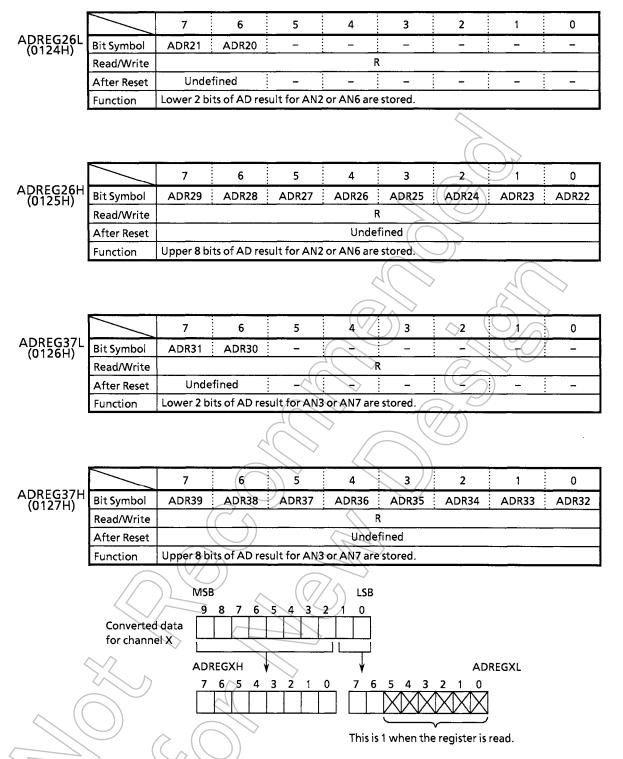



Figure 3.11.5 AD Conversion Result Register (ADREG26, ADREG37) (2/2)

## 3.11.1 Operation

### (1) Analog reference voltage

The high analog reference voltage is applied to the VREFH pin, and the low analog reference voltage is applied to the VREFL pin.

The reference voltage between VREFH and VREFL is divided by 1024 (using ladder resistance) and compared with the analog input voltage for AD conversion.

The switch between VREFH and VREFL can be turned off by writing 0 to ADMOD2<VREFON>.

When  $\langle VREFON \rangle = 0$ , before the conversion can start, must be written to  $\langle VREFON \rangle$  and a 3 µs period must be allowed so that the internal reference voltage can stabilize (regardless of fc) before 1 is written to ADMOD1 to  $\langle ADS \rangle$ .

### (2) Analog input channels

The analog input channel is selected by ADMOD2<ADCH2:0>. However, the channel which should be selected depends on the operation mode of the AD converter.

In fixed analog input mode, one channel is selected out of eight pins, AN0 to AN7, by <ADCH2:0>

In analog input channel scan mode, the number of channels to be scanned is specified by ADMOD2<ADCH2:0>, e.g., AN0 only, AN0→AN1, AN0→AN1→AN2, AN0→AN1→AN2→AN3, AN4→AN5, AN4→AN5→AN6 or AN4→AN5→AN6→AN7.

When reset the AD conversion channel register will be initialized to ADMOD2<ADCH2:0> = 000, so that the AN0 pin is selected.

The pins which are not used as analog input channels can be used as ordinary input port pins for port G.

#### (3) Starting AD conversion

AD conversion starts when 1 is written to the AD conversion register ADMOD1<ADS>. When conversion starts, the conversion busy flag ADMOD1<ADBF>, which indicates that conversion is in progress, is set to 1.

#### (4) AD conversion mode

Both fixed AD conversion channel mode and conversion channel scan mode include two conversion modes; single and repeat conversion mode.

In fixed channel repeat mode, conversion of the specified single channel is executed repeatedly.

In scan repeat mode, scanning is executed repeatedly.

The AD conversion mode is selected by ADMOD1<REPET, SCAN>.

### (5) AD conversion speed selection

There are four AD conversion speed modes. The selection is made by the ADMOD2<SPEED1:0> register.

When reset, <SPEED1:0> is initialized to 00, selecting 160-state conversion mode (8 µs at 20 MHz).

### (6) AD conversion end and interrupt

• AD conversion single mode

When AD conversion of the specified channel has finished (in fixed channel conversion mode) or when AD conversion of the last channel has finished (in channel scan mode), ADMOD<EOCF> is set to 1, the ADMOD<ADBF> flag is reset to 0, and the INTAD interrupt is generated.

• AD conversion repeat mode

For both fixed conversion channel mode and conversion channel scan mode, INTAD should be disabled in repeat mode. Always set INTEOAD to 000, to disable the interrupt request.

Write 0 to ADMOD1<REPET> to terminate repeat mode. Repeat mode will be exited as soon as the conversion in progress is completed.

## (7) Storing the AD conversion result

The results of AD conversion are stored in the registers ADREG04 to ADREG37 for each channel. The result registers are used as AN0 and AN4, AN1 and AN5, AN2 and AN6 and AN3 and AN7.

However, the contents of the registers do not indicate which channel's data has been converted.

In repeat mode, the registers are updated as soon as conversion ends.

ADREG04 to ADREG37 are read-only registers.

## (8) Reading the AD conversion result

The results of AD conversion are stored in the registers ADREG04 to ADREG37.

When the one of the registers ADREG04, ADREG15, ADREG26 or ADREG37 are read, ADMOD1<EOCF> is cleared to 0.



Setting example: [1] When the analog input voltage on the AN3 pin is AD-converted at 160-state speed and the result is transferred to the memory address 0100H by the AD interrupt INTAD routine.

## Main setting

```
INTEOAD ← X 1 0 0 - - - - Enable INTAD and set interrupt level 4.

ADMOD2 ← 1 X 0 0 X 0 1 1 Specify AN3 pin as an analog input channel and ADMOD1 ← X X 0 X X 0 0 1 start AD conversion in 160-atate speed mode.
```

#### **INTAD** routine

[2] When the analog input voltage of the four pins AN4 to AN7 are AD converted at 320-state speed and the channel is set to scan and repeat mode.

#### Main setting

INTEOAD 

X 0 0 0 - - - - Disable NTAD.

ADMOD2 

1 X 0 1 X 1 1 1 Specify AN4 to AN7 pins as input channel, select 

ADMOD1 

X X 0 X X 1 1 1 Scan & Repeat mode and start AD conversion.

Note: X; Don't care -; No change

# 3.12 8-Bit Voltage Output-type DA Converter

TMP94C241C incorporates a 2-channel, 8-bit resolution DA converter with the following features.

• String resistor method buffer output-type 8-bit resolution DA converter with two internal channels

• Registers DAREG0 and DAREG1 to control the analog voltage output

Figure 3.12.1 is a block diagram of the DA converter.

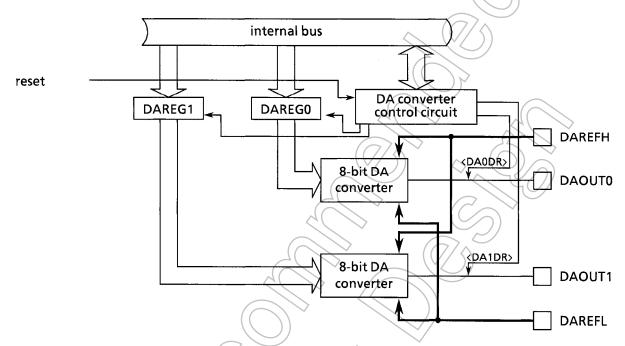



Figure 3.12.1 DA Converter Block Diagram



_			_	DA converte	er drive regis	ter	_				
		7	6	5	4	3	2	1	0		
.DRV	bit Symbol	<del>-</del>	_	_	_ [		_	DA1DR	DA0DR		
32H)	Read/Write	R/W							w		
	After reset	-	_	_	_	_	_		0		
	Function							0: High-Z 1: Outputs conversi	register on value.		
								DA	output drive	setting	
								$\mathcal{M}$	High-Z Outputs regi conversion v	ster	
				T	ion register (				T		
REG0	bit Symbol	7	6	5	4	3	2	1 1	0		
30H)	Read/Write				W	, \					
	After reset						<del>\</del>	7			
w)		Undefined									
vv)	Function	Starts DA conversion at register write, outputs to DAOUTO.									
			,	DA convers	ion register				70/		
		7	6	5	4	3	2		0		
REG1	bit Symbol										
31H)	Read/Write				V	$\rightarrow$	(7	70			
0	After reset			_	Unde	fined					
1W)	Function	Starts DA conversion at a register write, outputs to DAOUT1.									

These registers are used for the DA converter digital input data. The relationship between the register values and the output voltages is as follows: output voltage  $V = (DAREFH - DAREFL) \times N/256$  (where N is the register value).

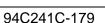
Note: Read-modify-write is prohibited for registers DAREGO, DAREG1.

Figure 3.12.2 DA Converter Registers

**TOSHIBA** 

#### 3.12.1 Operation

When DA converter drive register DADRV<DA1DR, DA0DR> is set to "1", the internal DA converter converts digital values in DA converter registers DAREG1 or DAREG0 to analog values, and outputs these values as voltages from pins DAOUT1 and DAOUT0. Figure 3.12.2 shows the relationship between input data and output voltage.


As a reset clears <DA1DR> and <DA0DR> to "0", DAOUT1 and DAOUT0 pins output High-Z (Note). After a reset, DAREG1 and DAREG0 are undefined. To output the relevant analog value using the DA converter, write input data in DAREG1 and DAREG0, then write "1" to the DADRV bit of the channel to be used. Be sure to write data to DAREG1 and DAREG0 first. If, after a reset, DADRV is set to "1" before the input data are written to DAREG1 and DAREG0, DAREG1 and DAREG0 are undefined, and the converter outputs undefined analog values.

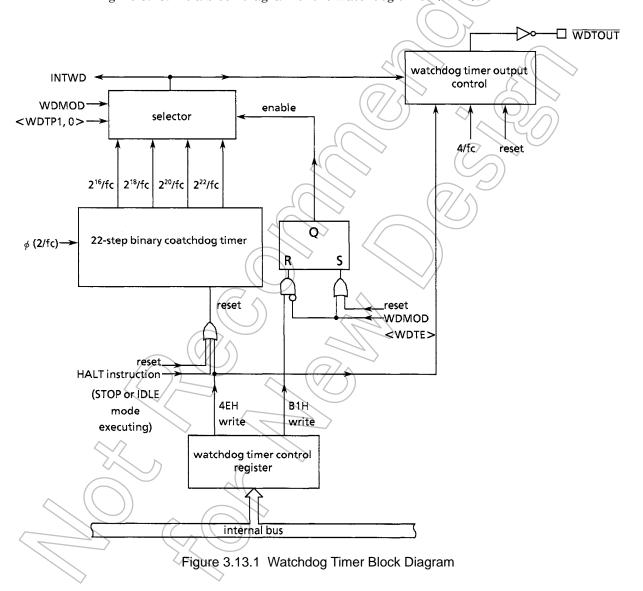
If the HALT instruction is executed after specifying STOP mode (WDMOD<HALTM1:0> = "01"), the DAOUT0/DAOUT1 pin outputs High Z regardless of the DADRV or DAREG setting.

Example: Set DAREFH = Vcc, DAREFL = GND.

7 6 5 4 3 2 1 0 Writes FFH. DAREG1 ← 1 1 1 1 1 1 1 1 Writes 80H. DAOUTO=Vcc×-← 1 0 0 0 0 0 0 0 DAREG0 Outputs DAOUT1/DAOUT0. DADRV ← X X X X X X 1 1 Writes 80H. Outputs Vcc / 2 to DAOUT1. ← 1 0 0 0 0 0 0 0 DAREG1 Writes FFH. Outputs Vcc to DAOUTO. DAREG0

Note: If the miss operation should occur because the DAOUT1 and DAOUT0 terminals are High-Z, connect both terminals to ground via a 100 k $\Omega$  pull-down resistor.



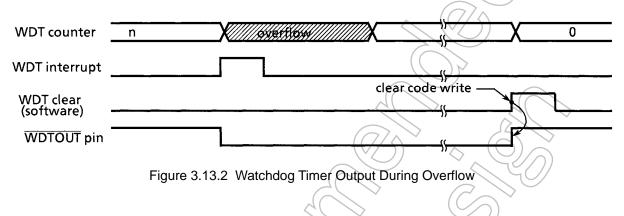

### 3.13 Watchdog Timer (Runaway detection timer)

TMP94C241C incorporates a watchdog timer for detecting runaways.

The watchdog timer (WDT) returns the CPU to its normal state after the watchdog timer detects the start of a CPU malfunction (Runaway) due to noise, for example. When the watchdog timer detects a runaway, it generates a non-maskable interrupt to notify the CPU of the runaway and outputs a "0" signal from the watchdog timer out pin (WDTOUT) to notify any peripheral devices of the runaway.

### 3.13.1 Configuration

Figure 3.13.1 is a block diagram of the watchdog timer (WDT).




The watchdog timer is a 22-step binary counter, which uses  $\phi$  (2/fc) as the input clock.

The WDMOD register selects the output of one of four binary counters:  $2^{16}$ /fc,  $2^{18}$ /fc,  $2^{20}$ /fc, or  $2^{22}$ /fc. Overflow from the selected counter generates a watchdog timer interrupt and outputs a signal to the watchdog timer out pin.

As a result of watchdog timer overflow, the watchdog timer out pin ( $\overline{WDTOUT}$ ) outputs "0", which can be used as a reset signal for peripheral devices.

Clearing the watchdog timer (writing the clear code (4EH) to the WDCR register) sets the WDTOUT pin to "1". In normal mode, the  $\overline{\text{WDTOUT}}$  pin continually outputs "0" until the clear code is written to the WDCR register.



#### 3.13.2 Control Registers

The watchdog timer (WDT) is controlled by three control registers: WDMOD, WDCR and CLKMOD

#### (1) Watchdog timer mode register WDMOD

[1] Setting watchdog timer detection time <WDTP>

This 2-bit register is used to set the watchdog timer interrupt time for detecting runaways. At reset, this register is initialized to "00" (WDMOD<WDTP1:0> is set to "00"), setting a detection time of 2¹⁶/fc [s]. (The number of states is approximately 32,768.)

[2] Watchdog timer enable/disable control <WDTE>

At reset, the WDMOD<WDTE> bit is initialized to "1", enabling the watchdog timer.

Disabling the watchdog timer requires both clearing WDTE to 0 and writing disable code B1H in the WDCR register. This two-step process makes it difficult for a runaway to disable the watchdog timer.

To return from the disable state to the enable state, simply set the <WDTE> bit to "1".

(2) Watchdog timer control register WDCR

This register is used to disable the watchdog timer functions and to clear the binary counter.

• Disable control

After clearing the WDMOD<WDTE> register to 0, writing the disable code "B1H" to the WDCR register disables the watchdog timer.

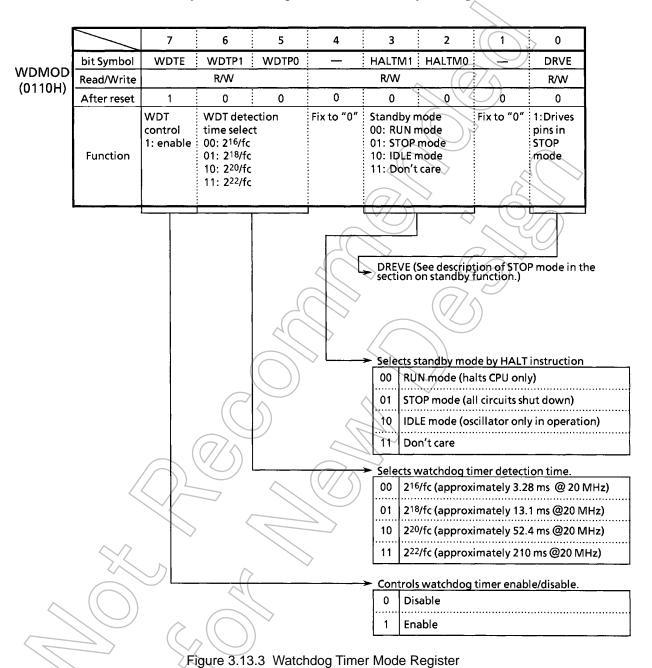
WDMOD 
$$\leftarrow$$
 0 - - - - X X Clears WDTE to 0.  
WDCR  $\leftarrow$  1 0 1 1 0 0 0 1 Writes disable code B1H.

• Enable control

Set WDMOD7<WDTE> to 1.

• Clear control

Writing clear code 4EH to the WDCR register clears the binary counter and resumes the count.


WDCR + 0 1 0 0 1 1 1 0 Writes clear code 4EH.

### (3) Clock mode register CLKMOD

This register is used to set the warming up time after the stop mode ends.

Writing "0" to the CLKMOD<WARM> bit, 2¹⁵/fc (approximately 1.6 ms at 20 MHz) is selected and writing "1", 2¹⁷/fc (approximately 6.6 ms at 20 MHz) is selected.

Also, the system clock output can be disabled by writing 0 to CLKMOD<CLKOE>.



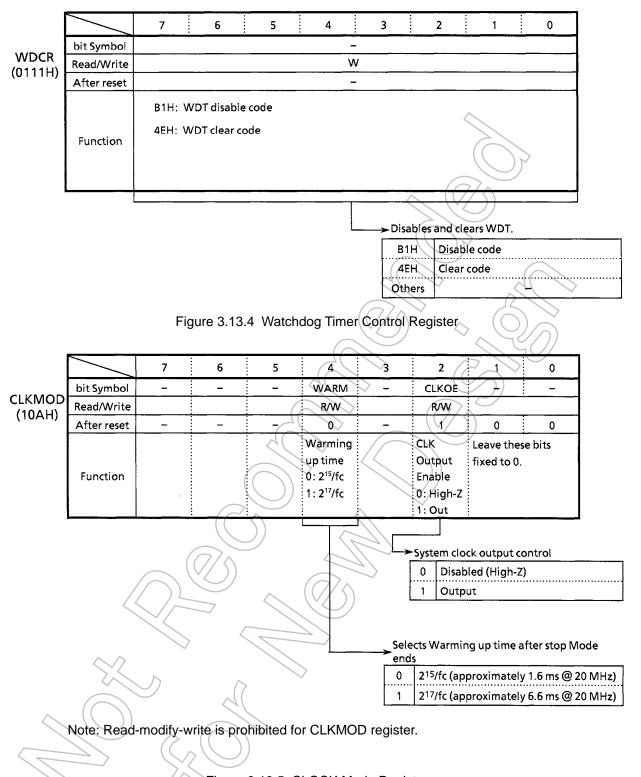



Figure 3.13.5 CLOCK Mode Register

#### 3.13.3 Operation

After the detection time set by the WDMOD<WDTP1:0> register is reached, the watchdog timer generates interrupt INTWD and outputs a low signal to the watchdog timer out pin \overline{\text{WDTOUT}}. The binary counter for the watchdog timer must be cleared to 0 by software (instruction) before INTWD is generated. If the CPU malfunctions (runaway) due to causes such as noise and does not execute an instruction to clear the binary counter, the binary counter overflows and generates INTWD.

The CPU interprets INTWD as a malfunction detection signal, which can be used to start the malfunction recovery program to return the system to normal. A CPU malfunction can also be fixed by connecting the watchdog timer output to a reset pin for peripheral devices.

The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is reset and halted in IDLE and STOP modes. The watchdog counter continues counting during bus release ( $\overline{BUSAK} = low$ ).

The watchdog timer operates in RUN mode; it can be disabled when RUN mode is entered.

#### Examples:

[1] Clear the binary counter.

[2] Set the watchdog timer detection time to 218/fc.

[3] Disable the watchdog timer.

WDMOD 
$$\leftarrow$$
 0 - X - - - Clears WDTE to "0".  
WDCR  $\leftarrow$  1 0 1 1 0 0 0 1 Writes disable code (B1H).

[4] Select IDLE mode.

[5] Select STOP mode. (Warm-up time 217/fc)

WDMOD 
$$\leftarrow$$
 - - -  $\times$  0 1 - - Sets to STOP mode.  
CLKMOD $\leftarrow$  X/X X 1 X - - -

Executes HALT instruction.

Sets to standby mode.

**TOSHIBA** 

#### 3.14 Bus Release Function

TMP94C241C has a bus request pin ( $\overline{BUSRQ}$ , also used as P75) for releasing the bus, and a bus acknowledge pin ( $\overline{BUSAK}$ , also used as P76). Set these pins using P7CR and P7FC.

#### 3.14.1 Operation

When the bus release request pin  $(\overline{BUSRQ})$  is set to active (low), TMP94C241C acknowledges a bus release request.

When the operand cycle completes, TMP94C241C first sets the address bus (A23 to A0) and the bus control signals ( $\overline{RD}$ ,  $\overline{WRLL}$ ,  $\overline{WRLH}$ ,  $\overline{WRHL}$ ,  $\overline{WRHH}$ ,  $\overline{CSO}$  to  $\overline{CS5}$ ) simultaneously to high, sets these signals and the output buffer for the data bus (D31 to D0) to off, and sets the  $\overline{BUSAK}$  pin to low, indicating that the bus is released.

When using as input port or output port modes, the bus release is not executed for the port, and the output buffer is not turned off.

During bus release, TMP94C241C disables all access to the internal I/O registers, although the internal I/O functions are not affected. As the watchdog timer continues to count up during bus release, when using the bus release function, set the runaway detection time in accordance with the bus release time.

When inputting "low" into  $\overline{BUSRQ}$  terminal, continue "low" input until  $\overline{BUSAK}$  terminal outputs "low". If the request is released before  $\overline{BUSAK}$  terminal output "low", a memory controller may malfunction.

TOSHIBA TMP94C2410

### 4. Electrical Characteristics

### 4.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V cc	Power Supply Voltage	– 0.5 to 6.5	٧
VIN	Input Voltage	- 0.5 to Vcc + 0.5	V
ΣIOL	Output Current (total)	120	mA
ΣΙΟΗ	Output Current (total)	- 120	mA
PD	Power Dissipation (Ta = 70°C)	600	mW

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead free products

Test parameter	Test condition Note
Solderability	Use of Sn-37Pb solder Bath Solder bath temperature =230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux  Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature =245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead free)



## 4.2 DC Electrical Characteristics

 $Vcc = 5V \pm 10\%$ , TA = -20 to 70°C

X1 = 8 to 10 MHz (Internal operation = 16 to 20 MHz	X1 = 8  to  1	10 MHz	(Internal	operation =	16 to	20 MHz)
-----------------------------------------------------	---------------	--------	-----------	-------------	-------	---------

Symbol	Parameter	Min	Max	Unit	Test Condition
V ILO	Input Low Voltage P00 to P07 (D0 to 7) P10 to P17 (D8 to 15) P20 to P27 (D16 to 23) P30 to P37 (D24 to 31)	-0.3	0.8	V	
V IL1	Input Low Voltage P40 to P47 P50 to P57 P60 to P67 P75 P86 PC0, PC1 PD0 to PD2, PD4 to PD6 PE0 to PE2, PE4 to PE6 PF0 to PF2, PF4 to PF6 PG0 to PG7 PH0 to PH3 PZ0 to PZ7	-0.3	0.3*Vcc		
V IL2	Input Low Voltage PH4 (INT0) NMI RESET	-0.3	0.25*Vcc	V	
V IL3	Input Low Voltage AM0, AM1 TEST0, TEST1	0.3	0.3		Ĵ
V IL4	Input Low Voltage X1	-0.3	0.2*Vcc	) <b>v</b>	
V IH0	Input High Voltage P00 to P07 (D0 to 7) P10 to P17 (D8 to 15) P20 to P27 (D16 to 23) P30 to P37 (D24 to 31)	2.2	Vcc + 0.3	V	

Note: Typical value are for Ta = 25°C and Vcc = 5 V unless otherwise noted.



Symbol	Parameter	Min	Max	Unit	Test Condition
V IH1	Input High Voltage P40 to P47 P50 to P57 P60 to P67 P75 P86 PC0, PC1 PD0 to PD2, PD4 to PD6 PE0 to PE2, PE4 to PE6 PF0 to PF2, PF4 to PF6 PG0 to PG7 PH0 to PH3 PZ0 to PZ7	0.7*Vcc	Vcc + 0.3	V	
V IH2	Input High Voltage PH4 (INT0) NMI RESET	0.75*Vcc	Vcc + 0.3	V	>
V IH3	Input High Voltage AM0, AM1 TEST0, TEST1	Vcc-0.3	Vcc+0.3	> V	
V IH4	Input High Voltage X1	0.8*Vcc	Vcc + 0.3	V	
V OL	Output Low Voltage	7(	0.45	V	IOL = 1.6 mA
V OH0	Output High Voltage	2.4		V (	IOH = -400μA
V OH1	Output High Voltage	0.75*Vcc		V	IOH = - 100μA
V OH2	Output High Voltage	0.9*Vcc	((	/y <	1OH = -20μA
LLI	Input Leakage Current	0.02 (typ.)	±5	μΑ	0.0V≦ Vin≦ Vcc
l LO	Output Leakage Current	0.05 (typ.)	(± 10	μA	0.2V≦ Vin≦ Vcc – 0.2 V
l cc0	Operating Current (NORMAL)	90	108	mΑ	X1 = 10 MHz (Internal 20 MHz)
l cc1	RUN	50	70	mΑ	X1 = 10 MHz (Internal 20 MHz)
l cc2	IDLE	5	20	mΑ	X1 = 10 MHz (Internal 20 MHz)
l cc3	STOP	0.5	50	μΑ	0.2 V ≤ Vin ≤ Vcc - 0.2 V Ta = -20 to 70°C
l cc4	STOP		10	μΑ	0.2 V ≦ Vin ≦ Vcc - 0.2 V Ta = 0 to 50°C
V STOP	Power Down Voltage @ STOP (for internal RAM back-up)	2.0	6.0	٧	VIL2 = 0.2*Vcc VIH2 = 0.8*Vcc
RRST	Pull Up Registance RESET	50	150	kΩ	
CIO	Pin Capacitance		10	pF	fc = 1 MHz
VTH	Schmitt Width PH4 (INTO) NMI RESET	0.4	1.0 (typ)	V	

### 4.3 AC Electrical Characteristics

### 4.3.1 Basic Bus Cycle

### (1) Read cycle

 $Vcc = 5~V~\pm 10\%,~TA = -20~to~70^{\circ}C$  (Internal 16 to 20 MHz)

No.	Symbol	Parameter	Min	Max	@ 20 MHz	@ 16 MHz	Unit
1	tosc	OSC period (X1/X2)	100	125	100	125	ns
2	tcyc	System Clock Period (= T)	50	62.5	50	62.5	ns
3	t _{CL}	CLK Low Width	0.5 × T – 15		10	16	ns
4	tCH	CLK High Width	0.5 × T – 15	~ ((/	/ \10	16	ns
5-1	t _{AD}	A0 to A23 $\rightarrow$ D0 to D31 Input at 0 waits		2.0 × T – 50	<u> </u>	75	ns
5-2	t _{AD3}	A0 to A23 $\rightarrow$ D0 to D31 Input at 1 wait		3.0 × T - 50	100	138	ns
6-1	t _{RD}	$\overline{RD}$ Fall $\rightarrow$ D0 to D31 Input at 0 waits		1.5 × T – 45	30	49	ns
6-2	t _{RD3}	$\overline{\text{RD}}$ Fall $\rightarrow$ D0 to D31 Input at 1 wait	(	2.5 × T – 45	80	111	ns
7-1	t _{RR}	RD Low Width at 0 waits	1.5 × T – 20		55	74	ns
7-2	t _{RR3}	RD Low Width at 1 wait	2.5 × T – 20		105	136	ns
8	t _{AR}	A0 to A23 Valid $\rightarrow \overline{RD}$ Fall	0.5 × T – 20 <	\ \ \ \	(5)	11	ns
9	t _{RK}	$\overline{RD} Fall \to CLK Fall$	0.5 × T – 20		5	()11	ns
10	t _{HA}	A0 to A23 Invalid $\rightarrow$ D0 to D31 Hold	0		0	// 0	ns
11	t _{HR}	$\overline{RD}$ Rise $\rightarrow$ D0 to D31 Hold	0	((	0	0	ns
12	t _{APR}	A0 to A23 Valid → PORT Input		2.0 × T – 120	-20	5	ns
13	t _{APH}	A0 to A23 Valid → PORT Hold	2.0 × T		100	125	ns
14	t _{TK}	WAIT Set-up Time	15		15	15	ns
15	t _{KT}	WAIT Hold Time	5		5	5	ns

### (2) Write cycle

 $Vcc = 5 V \pm 10\%$ , TA = -20 to 70°C (Internal 16 to 20 MHz)

No	Cumbal	Doromotor		Mov	,		
No.	Symbol	Parameter /	Min	Max	@ 20 MHZ	@ 16 MHz	Unit
1	tosc	OSC Period (X1 / X2)	100	125	100	125	ns
2	tcyc	System Clock Period (= T)	50	62.5	50	62.5	ns
3	t _{CL}	CLK Low Width	0.5 × T > 15		10	16	ns
4	tcH	CLK High Width	0.5×T – 15		10	16	ns
5-1	$t_{DW}$	D0 to D31 Valid → WRxx Rise at 0 waits	1.25 × T – 35		28	43	ns
5-2	t _{DW3}	D0 to D31 Valid → WRxx Rise at 1 wait	2.25 × T – 35		78	106	ns
6-1	t _{WW}	WRxx Low Width at 0 waits	1.25 × T – 30		33	48	ns
6-2	t _{WW3}	WRxx Low Width at 1 wait	2.25 × T – 30		83	111	ns
7	t _{AW}	A0 to A23 Valid → WRxx Fall	0.5 × T – 20		5	11	ns
8	t _{WK}	WRxx Fall → CLK Fall	0.5 × T – 20		5	11	ns
9	t _{WA}	WRxx Rise → A0 to A23 Hold	$0.25 \times T - 5$		8	11	ns
10	twD	WRxx Rise → D0 to D31 Hold	0.25 × T – 5		8	11	ns
11-	t _{APW}	A0 to A23 Valid → PORT Output		2.0 × T + 70	170	195	ns
12	tTK	WAIT Set-up Time	15		15	15	ns
13	t _{KT}	WAIT Hold Time	5		5	5	ns
14	t _{RDO}	RD Rise → D0 to D31 Output	0.5 × T – 5		20	26	ns

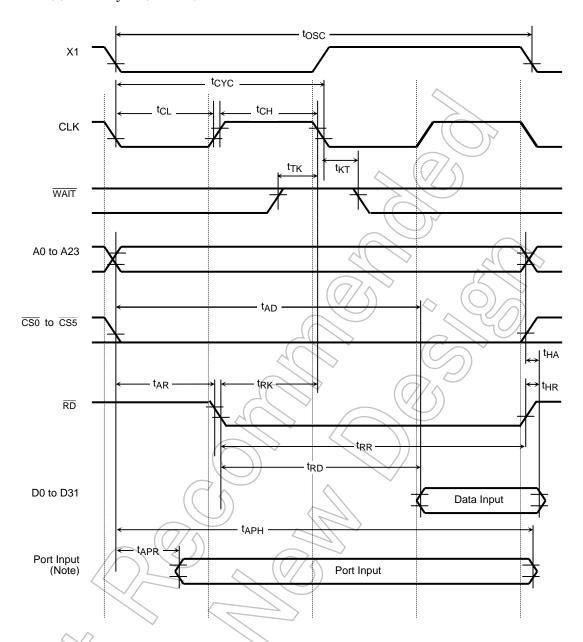
AC condition

Output: P0 to P3 (D0 to D31), P4 to P6 (A0 to A23), P70 (\$\overline{RD}\$), P71 to P74 (\$\overline{WRxx}\$)

High 2.0 V, Low 0.8 V, CL = 50 pF

Others

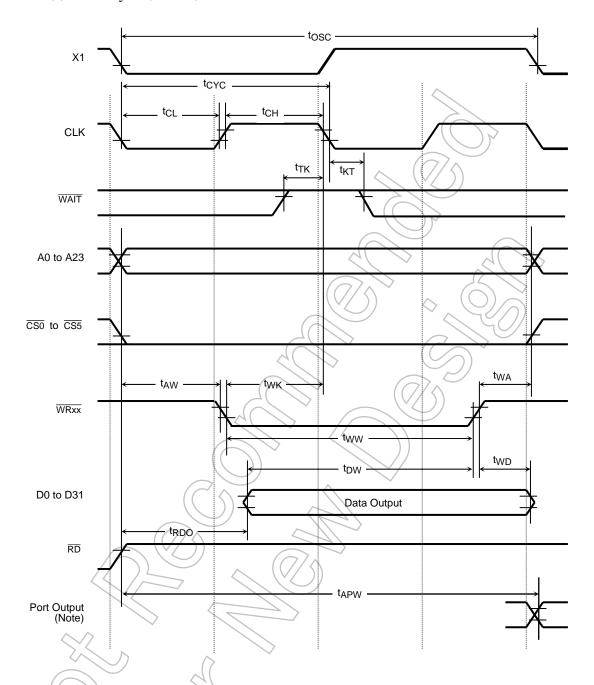
High 2.0 V, Low 0.8 V, CL = 50 pF


Input: P0 to P3 (D0 to D31)

High 2.4 V, Low 0.45 V

Others

High 0.8 Vcc, Low 0.2 Vcc

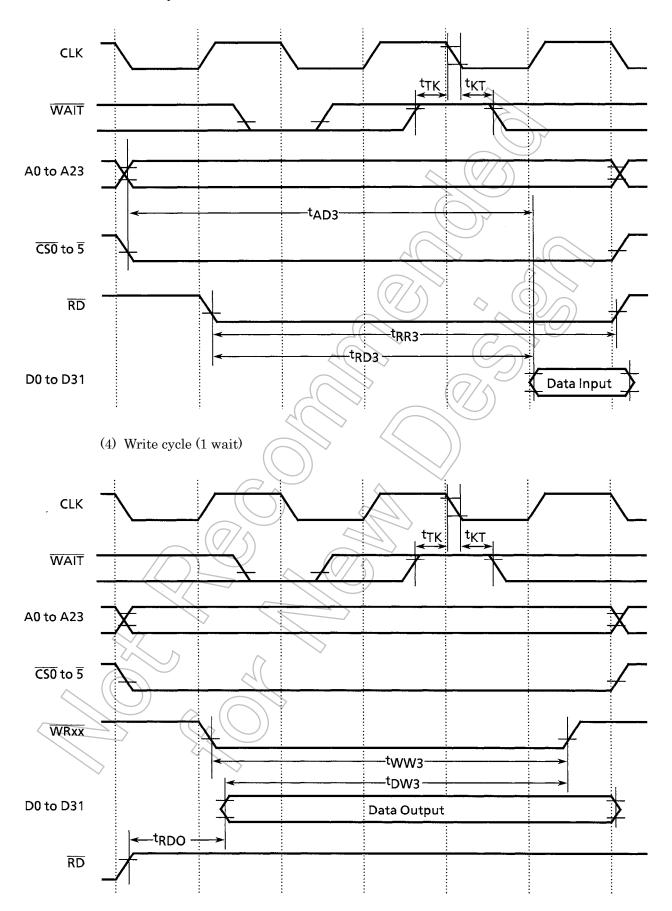

### (1) Read cycle (0 Waits)



Note 1: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.

Note 2: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as  $\overline{\text{RD}}$  and  $\overline{\text{CS}}$  are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

### (2) Write cycle (0 waits)




Note 1: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.

Note 2:  $\overline{\text{WRXX}}$  shows  $\overline{\text{WRLH}}$ ,  $\overline{\text{WRLH}}$ ,  $\overline{\text{WRHH}}$ .

Note 3: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as  $\overline{WR}$  and  $\overline{CS}$  are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

### (3) Read cycle (1 wait)



### 4.3.2 Page ROM Read Cycle

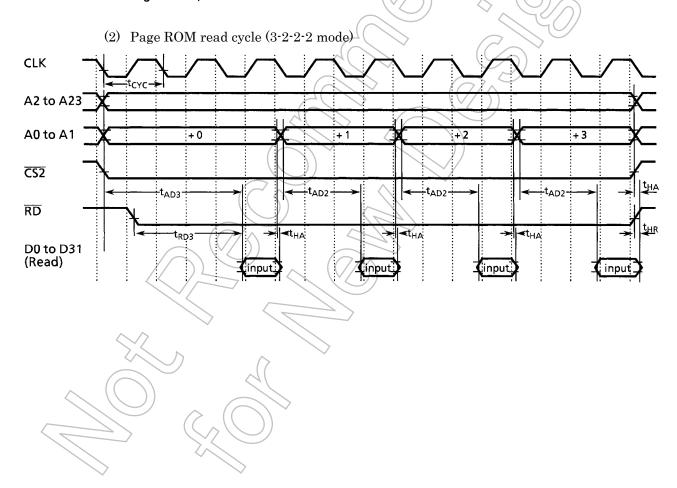
(1) 3-2-2-2 mode

 $V_{\mbox{\footnotesize CC}} = 5~\mbox{\footnotesize V} \pm 10\%, \mbox{\footnotesize TA} = -20~\mbox{\footnotesize to}~70\mbox{\footnotesize ^{\circ}C} \mbox{\footnotesize (Internal 16 to 20 MHz)}$ 

No.	Symbol	Parameter	Min	Max	@20 MHz	@16 MHz	Unit
1	tcyc	System Clock Period ( = T)	50	62.5	50	62.5	ns
2	t _{AD2}	A0, A1 $\rightarrow$ D0 to D31 Input		1.0 × T-50	50	75	ns
3	t _{AD3}	A2 to A23 $\rightarrow$ D0 to D31 input		3.0×T-50	100	138	ns
4	t _{RD3}	$\overline{RD}$ Fall $\rightarrow$ D0 to D31 Input		2.5×T-45	80	111	ns
5	t _{HA}	A0 to A23 Invalid $\rightarrow$ D0 to D31 Hold	0		0	0	ns
6	t _{HR}	$\overline{RD}$ Rise $\rightarrow$ D0 to D31 Hold	0	\ ((//	<b>()</b> 0	0	ns

**AC Condition** 

Output: P4 to P6 (A0 to A23), P70 (RD)


High = 2.0V, Low = 0.8V, CL = 50pF

CLK, P82 (CS2)

High = 2.0V, Low = 0.8V, CL = 50pF

Input: P0 to P3 (D0 to D31)

High = 2.4V, Low = 0.45V



# 4.3.3 DRAM Bus Cycle

 $V_{CC}$  = 5 V  $\pm$  10%, TA = –20 to 70°C (Internal 16 to 20 MHz)

No.	Symbol	Parameter	Min	± 10%, TA = -2 Max		@16 MHz	
1	tcyc	System Clock Period (= T)	50	62.5	50	62.5	ns
2	tRC	RAS Cycle Time	3.00 × T	02.0	150	188	ns
3	t _{PC}	Page Mode Cycle Time	2.00 × T	<	100	125	ns
4-1	tRAC	RAS Access Time	2.00 × 1	1.75 × T – 45	43	64	ns
4-2	t _{RAC4}	RAS Access Time @ 4 Clock Access		2.75 × T – 45	93	127	ns
5	t _{CAC}	CAS Access Time		1.00 × T – 40	10	23	ns
6-1	t _{AA}	Column Address Access Time		1,25 × T – 45	/ 18	33	ns
	t _{AA2}	Column Address Access Time		2.00 × T – 45	)55	80	ns
	-7.7.2	@ Page Mode					
6-3	t _{AA4}	Column Address Access Time @ 4 Clock Access		2.25 × T – 45	68	96	ns
7	t _{CPA}	CAS Pre-charge Access Time	\(()	2.00 × T – 45	55	80	ns
8	toff	Input Data Hold Time	0		0	0	ns
9	t _{RP}	RAS Pre-charge Time	1.25 × T – 20		43	58	ns
10-1	t _{RAS}	RAS Width	1.75 × T – 20		(68)	89	ns
10-2	t _{RAS4}	RAS Width @ 4 Clock Access	2.75 × T – 20	/	118	152	ns
11	t _{RSH}	RAS Hold Time	1.00 × T – 20		30	43	ns
12	tRHCP	CAS Pre-charge to RAS Hold Time	2.00 × T – 20	((	80	105	ns
13-1	tcsh	CAS Hold Time	1.75 × T – 20		68	89	ns
13-2	t _{CSH4}	CAS Hold Time @ 4 Clock Access	2.75 × T – 20	(0)/	118	152	ns
14	tCAS	CAS Width	1.00 × T – 20	$\langle \langle \rangle \rangle$	30	43	ns
15	t _{RCD}	RAS - CAS Delay Time	$0.75 \times 7 - 17$		21	30	ns
16	t _{RAD}	RAS - Column Address Delay Time		0.50 × T + 20	45	51	ns
17	tCRP	CAS – RAS Pre-charge Time	1.25 × T – 20		43	58	ns
18-1	t _{CP}	CAS Pre-charge Time @ Refresh	0.50 × T – 15		10	16	ns
18-2	t _{CP2}	CAS Pre-charge Time @ Page Mode	1.00 × T – 20		30	43	ns
19	t _{ASR}	Row Address Set-up Time	1.25 × T - 40		23	38	ns
20	t _{RAH}	Row Address Hold Time	0.50 × T – 15		10	16	ns
21-1	tasc	Column Address Set-up Time	$0.25 \times T - 12$		1	4	ns
21-2	t _{ASC2}	Column Address Set-up Time @ Page Mode	1.00 × T – 20		30	43	ns
22	tCAH	Column Address Hold Time	1.00 × T – 20		30	43	ns
23	t _{AR}	Column Address Hold Time from RAS	1.75 × T – 20		68	89	ns
24	t _{RAL}	Column Address RAS Read Time	1.25 × T – 20		43	58	ns
25	t _{RCS}	Read Command Set-up Time	2.00 × T – 40		60	85	ns
26	t _{RCH}	Read Command Hold Time from CAS	0.50 × T – 20		5	11	ns
27	t _{RRH}	Read Command Hold Time from RAS	$0.50 \times T - 20$		5	11	ns
28	tWCH	Write Command Hold Time	1.00 × T – 20		30	43	ns
29	twcr	Write Command Hold Time from RAS	1.75 × T – 20		68	89	ns
30	twp	Write Command Time	1.50 × T – 20		55	74	ns
31	t _{RWL}	Write Command RAS Read Time	1.50 × T – 20		55	74	ns
32	t _{CWL}	Write Command CAS Read Time	1.50 × T – 20		55	74	ns
33	t _{DS}	Data Output Set-up Time	1.50 × T – 30		45	58	ns

No.	Symbol	Parameter	Min	Max	@20 MHz	@16 MHz	Unit
34	t _{DH}	Data Output Hold Time	1.00 × T-25		25	38	ns
35	t _{DHR}	Data Output Hold Time from RAS	1.75×T-5		83	104	ns
36	twcs	Write Command Set-up Time	0.50×T-20		5	11	ns
37	tcsr	CAS Set-up Time	0.75×T-20		18	27	ns
38	t _{CHR}	CAS Hold Time	1.75×T-20		68	89	ns
39	t _{RPC}	RAS Pre-charge CAS Active Time	0.50 × T-20		5.	11	ns
40	t _{ROH}	RAS Hold Time from OE	1.00×T-20		30	43	ns
41	toea	OE Access Time		1.00×T-40	10	23	ns
42	toez	Input Data Hold Time from OE	0		<b>7</b> 0	0	ns
43	t _{RPS}	RAS Pre-charge Time @ Release Self Refresh Cycle	2.25×T-20		93	121	ns
44	t _{CHS}	CAS Hold Time @ Release Self Refresh Cycle	- 15		- 15	- 15	ns

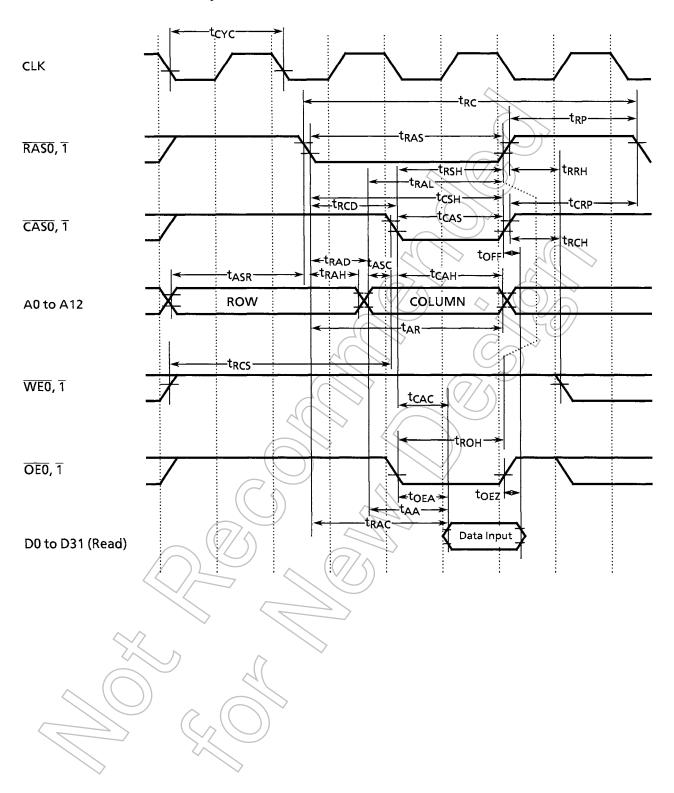
**AC** Condition

Output: P0 to P3 (D0 to D31), P4 to P6 (A0 to A23), P70 (RD), P71 to P74 (WRxx)

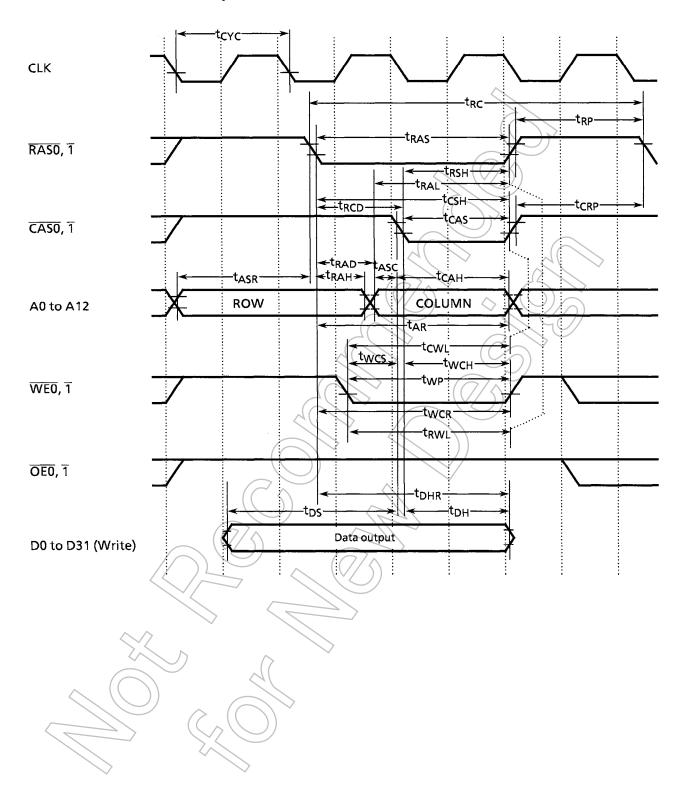
High 2.0 V, Low 0.8 V, CL = 50 pF

Others

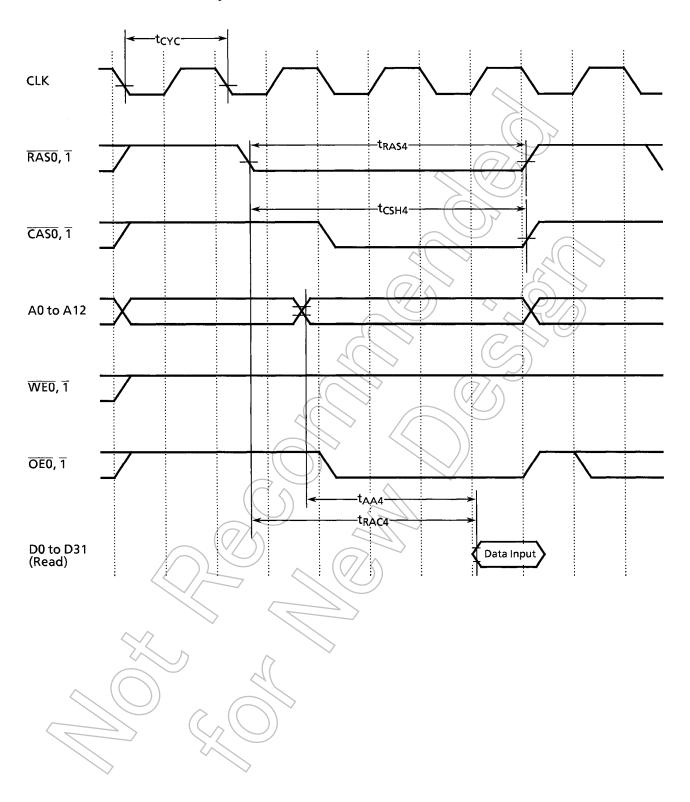
High 2.0 V, Low 0.8 V, CL = 50 pF


Input: P0 to P3 (D0 to D31)

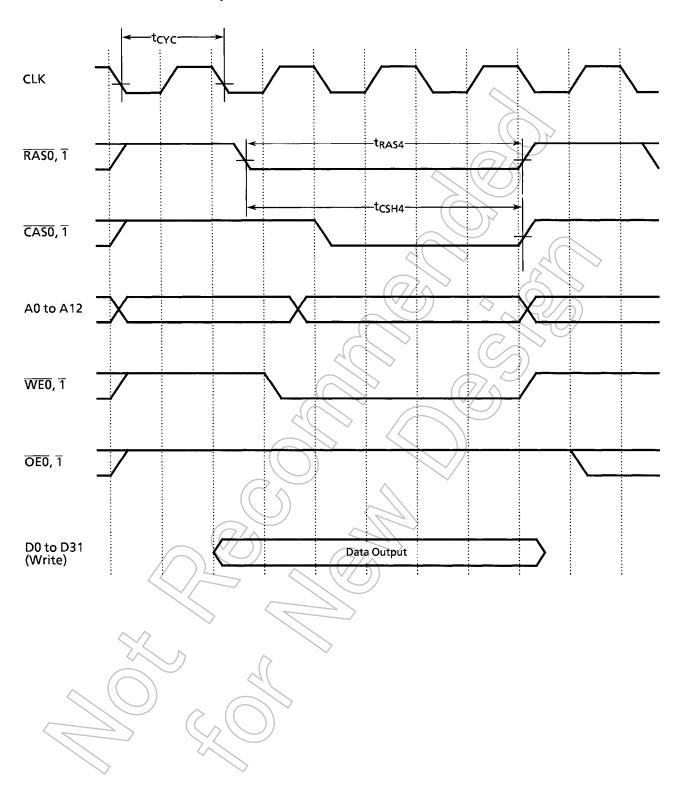
High 2.4 V, Low 0.45 V


Others

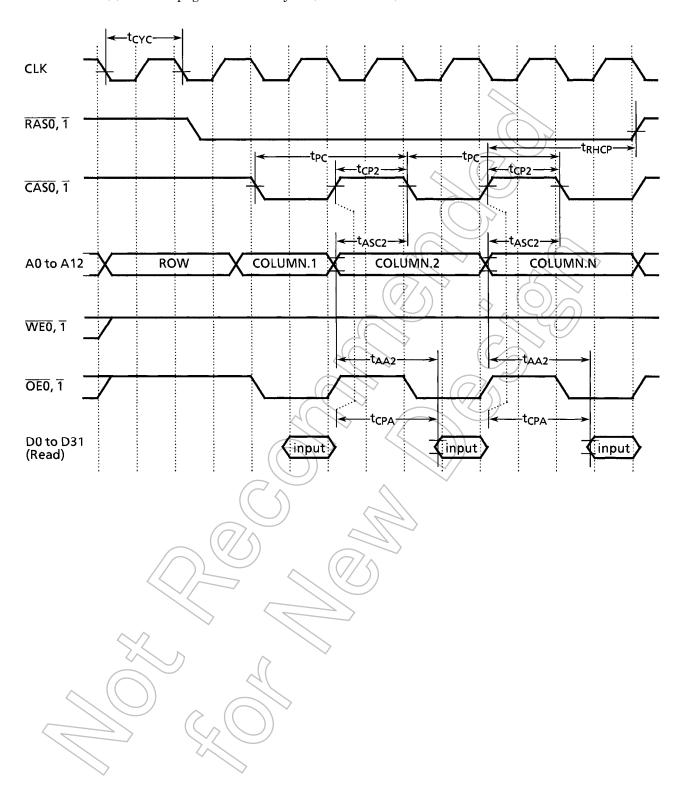
High 0.8 Vcc, Low 0.2 Vcc


### (1) DRAM read cycle (3 clock access)

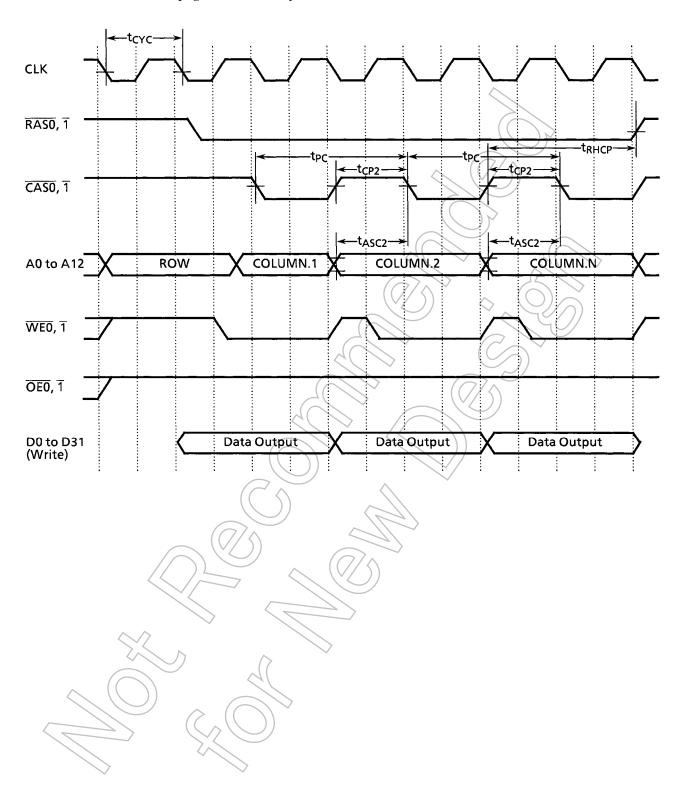



### (2) DRAM write cycle (3 clock access)

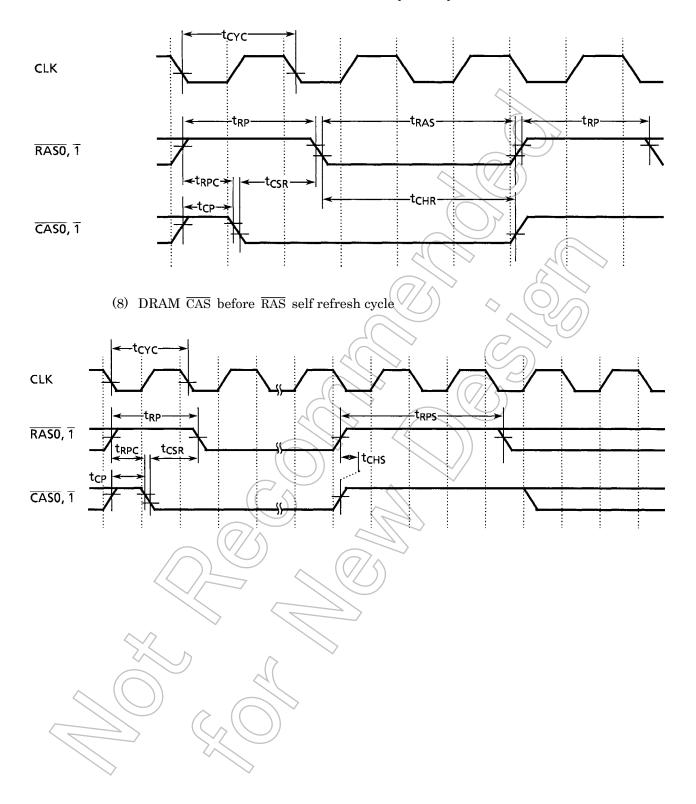



### (3) DRAM read cycle (4 clock access)




# (4) DRAM write cycle (4 clock access)




(5) DRAM page mode read cycle (3-2-2-2 mode)



(6) DRAM page mode write cycle (3-2-2-2 mode)



(7) DRAM  $\overline{\text{CAS}}$  before  $\overline{\text{RAS}}$  interval refresh cycle (3 cycle mode)



## 4.4 Event Counter (TI4, TI5, TI6, TI7, TI8, TI9, TIA, TIB)

 $Vcc = 5 V \pm 10\%$ ,  $TA = -20 \text{ to } 70^{\circ}C$  (Internal 16 to 20 MHz)

Symbol	Parameter	Variable		20 MHz		16 MHz		11.11
Symbol		Min	Max	Min	Max	Min	Max	Unit
t _{VCK}	Clock cycle	8T + 100		500		600		ns
$t_{VCKL}$	Clock low-level pulse width	4T + 40		240		<b>290</b>		ns
t _{VCKH}	Clock high-level pulse width	4T + 40		240		290		ns

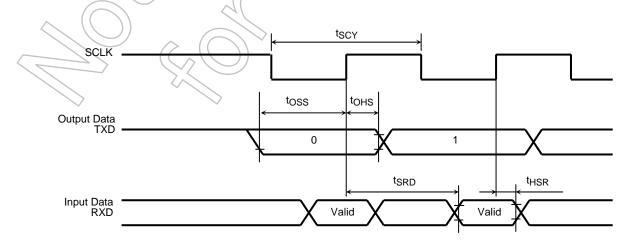
## 4.5 Serial Channel Timing

(1) SCLK input mode (I/O interface mode)

 $Vcc = 5 V \pm 10\%$ ,  $TA = -20 \text{ to } 70^{\circ}C$  (Internal 16 to 20 MHz)

Symbol	Parameter	Variable			20 MHz		16 MHz	
Jyllibol	rarameter	Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle	16T	4	0.8		1(0		μS
toss	Output Data $\rightarrow$ Rising edge of SCLK	t _{SCY} /2 – 5T – 50		100	Û	138		ns
t _{OHS}	SCLK rising edge $\rightarrow$ Output Data hold	5T – 100	$O/\Diamond$	150		213	$\supset$	ns
t _{HSR}	SCLK rising edge → Input Data hold	0		0	1	20/	))	ns
t _{SRD}	SCLK rising edge $\rightarrow$ effective data input		t _{SCY} – 5T – 100		450	70	588	ns

(2) SCLK output mode (I/O interface mode)


 $Vcc = 5 V \pm 10\%$ , TA = -20 to 70°C (Internal 16 to 20 MHz)

Symbol	Parameter	Varia	ble ((/	<b>/</b> 20 I	ИНz	161	ИНz	1111
3y111001	- arameter	Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle (programmable)	16T	8192T	0.8	409.6	1.0	512	μS
toss	Output Data → SCLK rising edge	t _{SCY} – 2T – 150		550		725		ns
t _{OHS}	SCLK rising edge $\rightarrow$ Output Data hold	2T – 80		20		45		ns
t _{HSR}	SCLK rising edge → Input Data hold	0 \		0		0		ns
t _{SRD}	SCLK rising edge $\rightarrow$ effective data input		t _{SCY} – 2T – 150		550		725	ns

(3) SCLK input mode (UART mode)

 $Vcc = 5 V \pm 10\%$ ,  $TA = -20 \text{ to } 70^{\circ}C$  (Internal 16 to 20 MHz)

Symbol	Parameter	^	Varia	ble	201	VIHz	161	VIHz	
Symbol	Tavameter		Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle		4T + 20		220		270		ns
t _{SCYL}	SCLK Low level Pulse width		2T + 5		105		130		ns
t _{SCYH}	SCLK High level Pulse width		2T + 5		105		130		ns



### 4.6 10-Bit AD Conversion Characteristics

 $V_{CC} = 5 \text{ V} \pm 10\%$ , TA = -20 to 70°C (Internal 16 to 20 MHz)

Symbol	Parar	neter	Min	Тур.	Max	Unit
VREFH	Analog reference voltage (Hi	gh)	V _{CC} – 0.2 V	V _{CC}	V _{CC}	
VREFL	Analog reference voltage (Lo	ow)	$V_{SS}$	V _{SS}	V _{SS} + 0.2 V	V
VAIN	Analog input voltage range		VREFL		VREFH	
I _{REF} (VREFL = 0 V)	Analog current for analog ref $V_{CC} = 5V \pm 10\%$ $V_{CC} = 5V \pm 10\%$	erence voltage <vrefon> = 1  <vrefon> = 0</vrefon></vrefon>		0.5	1.5 5.0	mA μA
Error (Quantize error of ±0.5 LSB not included)	V _{CC} = 5V ± 10%	Total error		#3.0	±6	LSB

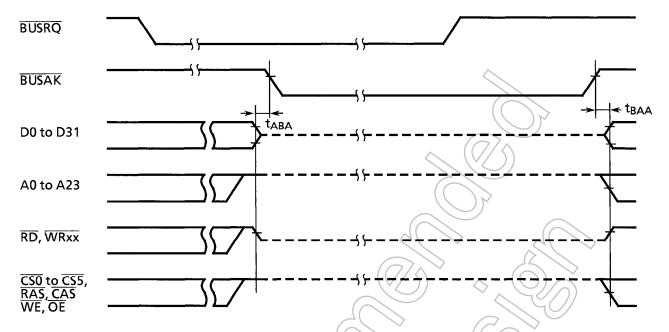
Note 1: 1LSB = (VREFH - VREFL)/1024 [V]

Note 2: Power supply current lcc from the digital power supply includes the power supply from the AVcc pin.

## 4.7 8-Bit DA Conversion Characteristics

 $V_{CC} = 5 \text{ V} \pm 10\%$ , TA = -20 to 70°C (Internal 16 to 20 MHz)

Symbol	Parameter	Condition	Min	Тур.	Max	Unit
DAREFH	Analog reference voltage (+)		4.0	775	V _{CC}	V
DAREFL	Analog reference voltage (-)		Vss		V _{SS}	V
	Total error	RL = 2.4 KΩ		2.0	4.0	LSB
	Output voltage range	$RL = 2.4 \text{ K}\Omega$	V _{SS} + 0.5	/	V _{SS} - 0.5	V
	Settling time	RL = 2.4 KΩ, CL = 100 pF			5	μS
DAC	Output impedance				5	Ω
output mode	Resistance load	V _{SS} + 0.5 ≤ DAOUT ≤ V _{CC} - 0.5	2.4			ΚΩ


Note: RL is the resistance load of the DA converter output pin.

# 4.8 Interrupt Operation

 $Vcc = 5 V \pm 10\%$ ,  $TA = -20 \text{ to } 70^{\circ}C$  (Internal 16 to 20 MHz)

Symbol	Parameter	Vari	able	20 N	ЛHz	16 N	ЛHz	
39111001	rdianeter	Min	Max	Min	Max	Min	Max	Unit
t _{INTAL}	NMI, INTO Low level Pulse width	4T		200		250		ns
t _{INTAH} <	NMI, INTO High level Pulse width	<b>4</b> T		200		250		ns
t _{INTBL}	INT4 to INTB Low level Pulse width	8T + 100		500		600		ns
tINTBH	INT4 to INTB High level Pulse width	8T + 100		500		600		ns

# 4.9 Bus Request/Bus Acknowledge Timing



 $Vcc = 5 V \pm 10\%$ ,  $TA = -20 \text{ to } 70^{\circ}\text{C}$  (Internal 16 to 20 MHz)

Symbol	Parameter		/ariable	20 N	//Hz	16 N	ЛHz	I I in it
Symbol	raiameter	Min	Max	Min	Max	Min	Max	Unit
t _{ABA}	Floating time to BUSAK fall	0 <	80	0	80	0	80	ns
t _{BAA}	Floating time to BUSAK rise	0	80	0	80	0	80	ns

Note: The bus will be released after the WAIT request is inactive, when the BUSRQ is set to "low" during "wait" cycle.

# 5. Table of Special Function Registers (SFRs)

The special function registers (SFRs: Special function registers) include the I/O ports and peripheral control registers allocated to the 1024-byte addresses from 000000H to 0003FFH.

- (1) Input/output ports
- (2) Timer
- (3) Watchdog timer
- (4) Clock control
- (5) Serial channels
- (6) AD converter
- (7) DA converter
- (8) Interrupt controller
- (9) Memory controller
- (10) DRAM controller

### Configuration of the table

Symbol	Name	Address	7 6	1 0	
			Z( \sigma_5(		→ bit Symbol
					Read / Write
					Initial value after reset
					├── Remarks
			1		7

#### **Explanations of symbols**

R/W: Either read or write is possible

R: Only read is possible

W: Only write is possible

W*: Either read or write is possible (Always read as "1")

1*: Always read as "1"

No RMW: Prohibit read-modify-write.

(Prohibit RES/SET/TSET/CHG/STCF/ANDCF/ORCF/XORCF etc.)

Table 5.1 I/O Register Address Map

Address	Name	Address	Name	Address	Name	Address	Name
TLCS-900/H2 1	type 8 bit I/O			-			
00h	P0	01h	••••	02h	P0CR	03h	P0FC
04h	P1	05h	• • • •	06h	P1CR	07h	P1FC
08h	P2	09h	• • • •	0Ah	P2CR _	0Bh	P2FC
0Ch	P3	0Dh		0Eh	P3CR	0Fh	P3FC
10h	P4	11h	••••	12h	P4CR	13h	P4FC
14h	P5	15h	• • • •	16h	P5CR	17h	P5FC
18h	P6	19h		1Ah	P6CR	1Bh	P6FC
1Ch	P7	1Dh	• • • •	1Eh	P7CR	1Fh	P7FC
20h	P8	21h	• • • •	22h	P8CR	23h	P8FC
24h		25h	• • • •	26h		27h	
28h	PA	29h		2Ah		2Bh	PAFC
2Ch	РВ	2Dh	• • • •	2Eh		2Fh	PBFC
30h	PC	31h	• • • •	32h	PCCR	33h	PCFC
34h	PD	35h	• • • •	36h /	PDCR	37h	PDFC
38h	PE	39h	• • • •	3Ah	PECR	3Bh	PEFC
3Ch	PF	3Dh	• • • •	3Eh	PFCR	3Fh	PFFC
40h	PG	41h	• • • •	42h	F. CI	43h	PEFC
44h	PH	45h	••••	46h	PHCR	47h	D
68h	PZ	69h		6Ah	PZCR 🔷		PHFC
		0511	<u> </u>	UAN	PZCR V	6Bh/	)
LCS-90 type		041	T			11 70	
80h	T8RUN	81h	TRDC	82h	T02FFCR	83h	* * * *
84h	T01MOD	85h	T23MOD	86h	(0	87h	
88h	TREG0	89h	TREG1	8Ah	TREG2	//8Bh	TREG3
8Ch	••••	8Dh		8Eh	(//>/^	8Fh	
90h	TREG4L	91h	TREG4H	<b>92</b> h	TREG5L	93h	TREG5H
94h	CAP4L	95h	CAP4H	96h	CAP5L	97h	CAP5H
98h	T4MOD	99h	T4FFCR	9Ah//	/./	9Bh	• • • •
9Ch		9Dh		9Eh	T16RUN	9Fh	T16CR
A0h	TREG6L	A1h	TREG6H	A2h	TREG7L	A3h	TREG7H
A4h	CAP6L	A5h	CAP6H	A6h	CAP7L	A7h	CAP7H
A8h	T6MOD	A9h	T6FFCR	AAh	· · · ·	ABh	
ACh	• • • •	ADh /	, V	AEh	• • • •	AFh	••••
B0h	TREG8L	B1h \\	TREG8H	B2h	TREG9L	B3h	TREG9H
B4h	CAP8L	B5h	CAP8H	B6h	CAP9L	B7h	CAP9H
B8h	T8MOD	/B9h> / _	T8FFCR	BAh	• • • •	BBh	
BCh	••••	BDh )	)	BEh	• • • •	BFh	• • • •
C0h	TREGAL	C1h	TREGAH	7// <b>C</b> 2h	TREGBL	C3h	TREGBH
C4h	CAPAL/	C5h	CAPAH	C6h	CAPBL	C7h	САРВН
C8h	TAMOD	C9h	TAFFCR	<b>C</b> Ah	• • • •	CBh	
CCh		CDh		CEh	• • • •	CFh	
D0h	SC0BUF	D1h	SC0CR	D2h	SCOMOD	D3h	BROCR
D4h	SC1BUF	D5h	SCICR	D6h	SC1MOD	D7h	BR1CR
D8h	<b>\\\/</b>	D9h		DAh	• • • •	DBh	······
DCh	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DDh		DEh	* * * *	DFh	• • • • • • • • • • • • • • • • • • • •
LCS-900/H2 t	vne 8 hit I/O		(7			Dilli	<u> </u>
E0h.	INTE45	Eib	INTEGZ	FOL	1117700		· · · · · · · · · · · · · · · · · · ·
E4h		E1h	INTE67	E2h	INTE89	E3h	INTEAB
	INTETO1	E5h	INTET23	E6h	INTET45	E7h	INTET67
E8h	INTET89	E9h	INTETAB	EAh	INTES0	EBh	INTES1
ECh	INTETC01	EDh	INTETC23	EEh	INTETC45	EFh	INTETC67
FOh	INTE0AD	F1h		F2h		F3h	• • • •
F4h		F5h		F6h	IIMC	F7h	INTNMWD
F8h	INTCLR	F9h	(reserved)	FAh	• • • •	FBh	
FCh	(reserved)	FDh	(reserved)	FEh	(reserved)	FFh	(reserved)
100h	DMA0V	101h	DMA1V	102h	DMA2V	103h	DMA3V
104h	DMA4V	105h	DMA5V	106h	DMA6V	107h	DMA7V
108h	DMAB	109h	DMAR	10Ah	CLKMOD	10Bh	(reserved)
10Ch	• • • •	10Dh	• • • •	10Eh	• • • •	10Fh	

Address	Name	Address	Name	Address	Name	Address	Name
TLCS-90 type	I/O						
110h	WDMOD	111h	WDCR	112h		113h	
114h		115h		116h		117h	
118h		119h		11Ah		11Bh	
11Ch		11Dh		11Eh		11Fh	
120h	ADREG04L	121h	ADREG04H	122h	ADREG15L	123h	ADREG15H
124h	ADREG26L	125h	ADREG26H	126h	ADREG37L	127h	ADREG37H
128h	ADMOD1	129h	ADMOD2	12Ah	(reserved)	12Bh	
12Ch		12Dh		12Eh	( · · · ( / / /	)) 12Fh	
130h	DAREG0	131h	DAREG1	132h	DADRV	133h	
134h		135h		136h	$\langle (\cdot (\cdot \cdot \cdot \cdot) \rangle \rangle$	137h	
138h		139h		13Ah		13Bh	
13Ch		13Dh		13Eh 📈	<u></u>	13Fh	
TLCS-900/H2 t	type 8 bit I/O						
140h	B0CSL	141h	B0CSH	142h	MAMR0	143h	MSAR0
144h	B1CSL	145h	B1CSH	146h	) MAMR1<	147h	MSAR1
148h	B2CSL	149h	B2CSH	14Ah	MAMR2	14Bh	MSAR2
14Ch	B3CSL	14Dh	B3CSH	14Eh	MAMR3	14Fh	MSAR3
150h	B4CSL	151h	B4CSH <	152h	MAMR4	153h	MSAR4
154h	B5CSL	155h	B5CSH	156h	MAMR5	157h	MSAR5
158h		159h	,	15Ah	.(.(,/,/ 5)	15Bh	
15Ch		15Dh	.54(.	15Eh		15Fh	
160h	DRAM0CRL	161h	DRAM0CRH	162h	DRAM1CRL	163h	DRAM1CRH
164h	DRAM0REF	165h	DRAM1REF	166h	PMEMCR	167h	

Note 1: TLCS-900/H2 type I/Os are always accessed by two clocks (100 ns @ 20 MHz).

Note 2: TLCS-90 type I/Os are accessed by five clocks min (250 ns @ 20 MHz) and eight clocks max (400 ns @ 20 MHz).

# (1) Input/output ports

### Port 0

Symbol	Name	Address	7	6	5	4	3	2	1	0	
· · · · · · · · · · · · · · · · · · ·			P07	P06	P05	P04	P03	P02	P01	P00	
DO.	DODTO	006				R/	w			-	
P0	PORT0	00h	0	0	0	0	0	0	0	0	
						Input/0	Output				
			P07C	P06C	P05C	P04C	P03C	P02C	> P01C	P00C	
DOCD	PORTO	02h	W								
P0CR	Control Register	U2n	0	0	0	0	0(/	/\0	0	0	
	inegiste.	(no RMW)		•		0: Input	1: Output	$\supset$ )			
			_	-	-	-		_	-	POF	
DOEC	PORTO	025		•		V	9 ( ) N	>			
P0FC	Function Register	03h	-	-	-	-(		-		1	
	1.1.5	(no RMW)			0: PC	ORT 1: Dat	a Bus (D7 to	D0)			

### Port 1

Symbol	Name	Address	7	6	5	4	3	5	<u> </u>	0
			P17	P16	P15	P14	P13/	P12	P11	P10
P1	PORT1	04h			4		ww	<u>/))</u>		
P1	PORTI	0411	0	0	0	0	0	0	0	0
				7(		Input	/Output			
			P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	PORT1 Control	06h					W			
PICK	Register	0011	0 (	0	0	0	) )0	0	0	0
	J	(no RMW)	(1			0: Input	1. Output			
-					-		· -	-	-	P1F
D15C	PORT1	076	(( <				W			
P1FC	Function Register	07h		<del>7 -</del>	-<-	165	-	-	-	0/1
		(no RMW)	77/		(0:P	ORT 1: Da	ta Bus (D15 t	o D8)		

### Port 2

Symbol	Name	Address	7 6	5	4	3	2	1	0		
			P27 P26	P25	P24	P23	P22	P21	P20		
P2	PORT2	08h		>	R/	W		.,.			
FZ	PORIZ	J) VOII	0 🔿 0	0	0	0	0	0	0		
			M		Input/0	Output					
$\wedge$			P27C P26C	P25C	P24C	P23C	P22C	P21C	P20C		
P2CR	PORT2	0Ah	w								
PZCR	Control Register	UAN	0 0	0	0	0	0	0	0		
		(no RMW)			0: Input	1: Output					
				-	-	<del>-</del>	-	-	P2F		
DOEC	PORT2	OR L			٧	V	•				
P2FC	Function Register	0Bh		-	-	-	-	-	0/1		
	3	(no RMW)		0: PO	RT 1: Data	Bus (D23 to	D16)				

### Port 3

Symbol	Name	Address	7	6	5	4	3	2	1	0
<del> </del>			P37	P36	P35	P34	P33	P32	P31	P30
<b>D</b> O	DODT2	och [				R/	W			
Р3	PORT3	0Ch	0	0	0	0	0	0	0	0
						Input/0	Output (			
			P37C	P36C	P35C	P34C	P33C	P32C	P31C	P30C
DOCD	PORT3	OF L				٧	V			
P3CR	Control Register	0Eh	0	0	0	0	0	0	0	0
		(no RMW)		·		0: Input	1: Output	.>,		
			_	-	-	- <	< <del>-</del> (V)	( ) )-	-	P3F
D256	PORT3	OF!		<del></del>		٧				
P3FC	Function Register	0Fh	_	-	-	<u>:</u> -		<u> </u>	-	0/1
		(no RMW)			0: PO	RT 1: Data	Bus (D31 to	D24)		

### Port 4

Symbol	Name	Address	7	6	5 (4)	3 🔷 2		0
			P47	P46	P45 P44	P43 P42	₽41	P40
P4	PORT4	10h		-	RAV	v C		
P4	POR14	1011	0	0	A(0) 0	0 (0)	0	0
					Input/O	utput		
			P47C	P46C	P45C P44C	P43C P42C	P41C	P40C
DACD	PORT4	126			W			
P4CR	Control Register	12h	0	<b>\0</b>	0 /0	0 0	0	0
		(no RMW)			0: Input 1	: Output	•	
			P47F	P46F	P45F P44F	P43F P42F	P41F	P40F
DATE	PORT4	125			W	/		
P4FC	Function Register	13h	1/	1	1 ( 1	1 1	1	1
		(no RMW)	1	))	0: PORT 1: Addre	ss Bus (A7 to A0)		

### Port 5

						$\sim$									
Symbol	Name <	Address	7	6	<b>\</b> \\\ 5	71	4		3		2		1		0
			P57	P56	P55		P54		P53		P52		P51		P50
P5	PORT5	14h						R/W							
P5	PORTS	1411	0	0	0	-	0	-	0		0		0		0
	7/	<b>N</b>	_		7		Inpu	t/Out	put						
			P57¢ (	P56C	P55	=	P54C		P53C		P52C		P51C	Ī	P50C
DE CD A	PORT5	16h	(1)					W							
P5CR	Control   Register	Ton	0	0	0		0		0		0	-	0		0
		(no RMW)		)			0: Input	1: 0	Output	:					
			P57F	P56F	P55	-	P54F		P53F		P52F		P51F		P50F
P5FC	PORT5	17h						W			٠	-			
rarc	Function Register	'''	<b>√</b> 1	1	1		1		1		1		1		1
		(no RMW)			0:	ORT	1: Add	ress	Bus (A1	15 to	A8)				

### Port 6

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P67	P66	P65	P64	P63	P62	P61	P60
D.C	DODTC	18h				R/	W		·	
P6	PORT6	l lon	0	0	0	0	0	0	0	0
						Input/0	Output (			
			P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
ncen	PORT6	1 _{Ah}				٧	V		\	
P6CR	Control   Register	) IAn [	0	0	0	0	0		0	0
	,g	(no RMW)				0: Input	1: Output	7,		
			P67F	P66F	P65F	P64F <	P63F	P62F	P61F	P60F
DCEC	PORT6	406		<del>1</del>		V	v//			
P6FC	Function Register	1Bh	1	1	1	1		, 1	1	1
		(no RMW)			0: POR	1: Addre	ss Bus (A23 1	o A16)		

### Port 7

Symbol	Name	Address	7	6	5	(/(4))	3 🔷	20		0
			<del></del>	P76	P75	P74	P73	P72	P71	P70
P7	PORT7	1Ch					R/W	2		
Γ/	PORT		-	1	1	1	1 ((	ì	11	1
				Output	ln/Out	~		Output		
			_	- (/	P75C	-	(9/3)	<u> </u>	<u> </u>	-
P7CR	PORT7	1Eh			W			) )		
PICK	Control	1511 [		J.S	0			-	-	-
	Register	(no RMW)	/		>	0: Input	1: Output			
			- (	P76F	P75F	P74F	/P73F	P72F	P71F	P70F
	PORT7	Ī					<b>√_w</b>			
P7FC	Function	1Fh	(7-7	0	0 <	0	0	0	0	1
	Register	(no RMW)		0: PORT 1: BUSAK	0: PORT 1: BUSRQ	0: PORT 1: WRHH	0: PORT 1: WRHL	0: PORT 1: WRLH	0: PORT 1: WRLL	0: PORT 1: RD

## Port 8

Symbol	Name	Address	7	6	5	4	3	2	1	0
			- <	P86	P85	P84	P83	P82	P81	P80
P8	PORT8	20h					R/W	_		
го	FORTE	2011	_	0	1	1	1	0	1	1
		<i>1)</i>	$\wedge$	In/Out			Οι	ıtput		
			41	P86C	-	-		-	-	-
P8CR	PORTZ	22h		W						
POCK	Control Register	2211	( - ) )	0	-	-	-	-	-	-
		(no RMW)				0: Input	1: Output			
		1		P86F	P85F	P84F	P83F	P82F	P81F	P80F
	PORT8						W		***	
P8FC	Function	23h	_	0	0	0	0	0	0	0
	Register			0: PORT	0: PORT	0: PORT	0: PORT	0: PORT	0: PORT	0: PORT
		(no RMW)		1: WAIT	1: CS5	1: CS4	1: <u>CS3</u> RAS1	1: CS2	1: CS1 RAS0	1: CS0

### Port A

Symbol	Name	Address	7	6	5	4	3	2	1	0
			_	-	-	PA4	PA3	PA2	PA1	PA0
D.4	DODTA	204						R/W		
PA	PORTA	28h	_	-	-	1	1	1	1	1
					:		<	Output		
			_	_	-	PA4F	PA3F	PA2F	PA1F	PAOF
	DORTA							W		
PAFC	PORTA Function	] [	_	_	-	0	0		) 0	0
	Register	2Bh			:	0: PORT		0: PORT	0: PORT	0: PORT
						1: WEO	1: OET (//	1: <b>OE</b> 0	1: UCASO	
		(no RMW)					////		:	LCAS

#### Port B

Symbol	Name	Address	7	6	5	4	3	2 <	1 )	0
			_	-	_	PB4	PB:	PB2	PB1	PB0
РВ	PORTB	2Ch		:		(	)	R/W		
PB	PORIB	2Cn	_	-			1	170	//)i)	1
								Output	<b>9</b>	
			-	-		PB4F	PB3	F PB2F	PB1F	PB0F
					2/	$\searrow$		, W		
225	PORTB	] asi	_	- 6	()	0	0	· 0	0	0
PBFC	Function Register	2Fh		7		0: PORT	0: POF	0: PORT		0: PORT
	Register					1: WE1	1: HU	AS1.1: HLCAS1		1: CAS1
		(no RMW)			~	//			LUCAS1	LCAS1 LLCAS

### Port C

Symbol	Name	Address	7 6	5	4 3	2	1	0
			(07)			-	PC1	PC0
DC.	PORTC	20h			<b>&gt;</b>		R/	W
PC	PORTC	30h	_	((7/<)		-	0	0
	<	< /r				:	Input/0	Output
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///		\\-		-	PC1C	PC0C
PCCR	PORTC	32h					V	v
PCCR	Register	3Zn		-		_	0	0
		(no RMW)					(See b	elow)
•			- (? -	-		-	PC1F	PC0F
PCFC ^	PORTC Function	33h					\	v
PUPU	Register	) 33N		-		-	0	0
Ì		(no RMW)					(See b	elow)

 PCFC
 PCCR
 function

 PC1
 PC0

 0
 0
 Input Port

 0
 1
 Output Port

 1
 0
 TO3
 TO1

 1
 1
 TOB
 TO7

### Port D

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	PD6	PD5	PD4	-	PD2	PD1	PD0
	DORTO	34h			R/W				R/W	
PD	PORTD	3411	-	0	0	0	-	0	0	0
					input/Outp	ut	<		Input/Outp	ut
			_	PD6C	PD5C	PD4C	-	PD2C	PD1C	PD0C
PDCR	PORTD	36h			W				> w	
POCK	Register	3011	_	0	0	0	-		0	0
		(no RMW)		0:1	Input 1: O	utput		0:	Input 1: O	utput
				PD6F	PD5F	PD4F <	$\leq 4 $	PD2F	PD1F	PD0F
	PORTD				w		7//		W	
PDFC	Function	37h	-	0	0	0	( - )	0	0	0
	Register	( DN0)A()		0: PORT 1: TI7	0: PORT 1: TI6	0: PORT 1: TO6		0: PORT 1: TI5	0: PORT 1: TI4	0: PORT 1: TO4
_		(no RMW)		INT7	INT6	$\sim$		INT5	[ INT4	

### Port E

Symbol	Name	Address	7	6	5	4	3	2		0
			-	PE6	PE5	PE4	- ((	PE2	PE1	PE0
PE	PORTE	38h			R/W	$\supset$		/))	R/W	
PE	PORTE	3611	-	0 /	0	0			0	0
				71	Input/Outpu	ut			Input/Outp	ut
				PE6C	PE5C	PE4C		PE2C	PE1C	PEOC
PECR	PORTE	3Ah			w	//			W	
FLCI	Register	30" [	- /	0	0	0	) }-	0	0	0
		(no RMW)		0:1	nput 1: Ou	ıtput	<b>\</b> //	0:1	nput 1: O	utput
				PE6F	PE5F	PE4F	_	PE2F	PE1F	PE0F
	PORTE		((		W				W	
PEFC	Function	3Bh		// 0	0 6	://0	-	0	0	0_
	Register		///	0: PORT		0: PORT		0: PORT	0: PORT	0: PORT
_		(no RMW)	()	1: TIB INTB	1: TIA INTA	1: TOA		1: TI9 INT9	1: TI8 INT8	1: TO8

### Port F

Symbol	Name	Address	7	6	5	4	3	2	1	0
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\mathcal{D}$	- ^	PF6	PF5	PF4	_	PF2	PF1	PF0
PF	PORTF	3Ch			R/W				R/W	
FI	FOILT	3011	-//	0	0	0		0	0	0
					nput/Outp	ut		lr .	put/Outpu	it
			( - ))	PF6C	PF5C	PF4C	-	PF2C	PF1C	PF0C
PFCR	PORTF Control	3Eh	)		W				W	
FICH	Register	3LVI	-	0	0	0	-	0	0	0
	$\searrow$	(no RMW)		0: lr	nput 1: O	utput		0: In	put 1: Ou	tput
•			-	PF6F	PF5F	PF4F	-	PF2F	PF1F	PFOF
	PORTF				W				W	
PFFC	Function	3Fh	-	0	0	0	-	0	0	0
	Register	(ma DA4)A()		1: CTS1	0: PORT 1: RxD1	0: PORT 1: TxD1		1: CTS0	0: PORT 1: RxD0	0: PORT 1: TxD0
		(no RMW)		SCLK1	<u> </u>			SCLK0		:

# Port G

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0
PG	PORTG	40h					R			
ļ		<b>!</b> [				ln	put			

# Port H

Symbol	Name	Address	7	6	5	4	3	2	1	0
			_	_	<u>:</u> -	PH4	; PH3(/	/ PH2	PH1	PH0
DU	PORTH	44h						R/W		
PH	PORTH	440	_	_		0	0	0	0	0
					:		1( / )	put/Outp	ut	
				-		PH4C	PH3C	PH2C	PH1C	PH0C
PHCR	PORTH	46h				41		w		\
PHCK	Register	4671	-	-	-	0	0	0 🔿	0	00
		(no RMW)			-	(7/0	0: In	put 1:-O	utput	
	1		-	-	-	PH4F	PH3F	PH2F	PH1F	PHOF
	PORTH							T w	7	
PHFC	Function	47h	_	-	4	0	0	7 0	0	0
	Register				4	0: PORT		0: PORT	0: PORT	0: PORT
		(no RMW)				1: INTO	1: TC3	1: 102	1: TC1	1: TC0

# Port Z

Symbol	Name	Address	7 6	5	4	Э	2	1	0
			PZ7 PZ6	PZ5	PZ4	PZ3	PZ2	PZ1	PZ0
PZ	PORTZ	68h			F	₹W			
PZ	PORIZ	9011	0 ( 0	0	0	0	0	0	0
				(,	Input	/Output			
			PZ7C PZ6C	PZ5C	PZ4C	PZ3C	PZ2C	PZ1C	PZ0C
DZCD	PORTZ	Can ((	(/ ))		3	W			
PZCR	Control Register	6Ah	0 0	((7,0)	0	0	0	0	0
	<	(no RMW)	7	(	0: Input	1: Output	i i		

(2) Timer

# 8-Bit Timer 01, 23

Symbol	Name	Address	7	6	5	4	3	2	1	0
			_	_	<del>-</del>	: -	T3RUN	T2RUN	T1RUN	TORUN
					:	<del>-</del>	:	R/	w	<u> </u>
T8RUN	8 Bit	80h	-	-	-	-	0	0	0	0
1011011	Timer Control	3011	,		:		8 Bi		/Stop Con	trol
							:	0: Stop		
						<u>:</u>		1: KUN	Countup)	
TRECO	8 Bit Timer	88h		·			<del>-</del> (()	<del>//</del>	·	
TREG0	Reg. 0	(no RMW)				Unde	<del></del>	<del></del>		
	-	(10 144177)				Onde	inieu			
TREG1	8 bitTimer	89h		· · · · · · · · · · · · · · · · · · ·			$\langle \cdot \rangle$	<u> </u>	· · · · · · · · · · · · · · · · · · ·	==
111201	Reg. 1	(no RMW)		_			fined			
			T01M1	T01M0	PWM01	PWM00		T1CLK0/	TOCLK1	T0CLK0
					•		v	(2)	<u> </u>	•
	8 Bit Timer 0, 1		0	0	. 0	(7,0	0	0	0	0
T01MOD	Source CLK	84h	00: 8 bit Ti	mer	00: -		00: TOOTR	G	00: Reserv	red
	& MODE		01: 16 bit		01: PWM	26-1	01: øT1		01: 611	
		(no RMW)	10: 8 bit Pi 11: 8 bit Pi		10: cycle 11:	27-1 28-1	10: φT16 11: φT256		10: φT4 11: φT16	
		,	TFF3C1	TFF3C0	TFF31E	TFF3IS		TFF1C0	TFF1IE	: TFF1IS
				v C	R	w		, v	R	w
	8 bitTimer		-	-4(	0	0		) -	0	0
TFFCR	Flip-Flop Control	82h	00: Invert	7 1	0: Don't	Invert	00: Invert		0: Don't	Invert
	Control	1	01: SetT FF 10: Clear T		1: TFF3 Invert	0: T2 1: T3	01: Set TFI		1: TFF1 Invert	0: T0 1: T1
		(no RMW)	10. Clear 1		Enable	1,13	11. Don't		Enable	
							<b>Y</b> /			•
TREG2	8 Bit Timer Reg. 2	8Ah				\ \	N			
	Reg. 2	(no RMW)			_	Unde	fined			
	0.5% =				1	3)	-			
TREG3	8 Bit Timer Reg. 3	8Bh ((	7/\			1 /4	N			
	/	(no RMW)				Unde	fined			
	//	1)	T23M1	T23M0	(PWM21)	PWM20	T3CLK1	T3CLK0	T2CLK1	T2CLK0
							Ņ	•		
T23MOD	8 Bit Timer 2, 3 Source CLK	85h	0 (	0	0	0	0	0	0	0
12310101	& MODE	03.0	00: 8 bit T 01: 16 bit		00: – 01: PWM	26-1	00: TO2TR 01: φT1	k <b>G</b>	00: Reserv	/ed
	$\sim$		10: 8 bit P		10: cycle	2 ⁷ -1	10: φT16		10: <i>φ</i> T4	
		(no RMW)	11: 8 bit P	WM	11:	28-1	11: φT256		11: φ <b>T16</b>	
			$\mathcal{A}$	<u> </u>	<u> </u>		<u> </u>		TR2DE	TRODE
				<u></u>	<u> </u>	<u> </u>	<u> </u>	-		·/W
TRDC	Timer Reg. Double Buffer	81h		<u> </u>	-		-	-	0	0
	Control Reg								0: Double	
		77							1: Double	
									Enable	

#### 16-Bit Timer Control

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			PRRUN	-	-	-	TARUN	T8RUN	T6RUN	T4RUN	
		}	R/W				:	R/	W		
T16RUN	16 Bit	9Eh	0	_	-	<u>:</u> -	0	0	0	0	
	Timer Control	er Control	Prescaler 0: Stop 1: Run				16 BitT imer Run / Stop Contro 0: Stop&Clear 1: Run (Countup)				
			-	-	-	-	DBAEN	DB8EN	DB6EN	DB4EN	
T16CR	T4, T6, T8, TA	9Fh						, R	w		
HOCK	Control	9511	-	-	-	- ,	0 (	/ <u>\</u> 0	0	0	
								: Double B	uffer Enabl	e	

#### 16-Bit Timer 4

O-DIL TITLE	JI T									
Symbol	Name	Address	7	6	5	4	3	2 /	(1)	0
	16 Bit Timer						>			
TREG4L	Reg. 4L	90h				(// <u> </u>				
		(no RMW)				Undef	ined	7	// <u>)</u>	
						<del>-</del>		_///	70/	
TREG4H	16 Bit Timer Reg. 4H	91h				W	1 (	~		
	Reg. 4ff	(no RMW)			4/ /	Undef	ined			
. —									,, <u> </u>	
TREG5L	16 Bit Timer	92h				W	((//<			
	Reg. 5L	(no RMW)				Undef	ined	/		
				- 4/-	<del></del>	//	1			
TREG5H	16 Bit Timer	93h			>	// N	, \			
	Reg. 5H	(no RMW)		()		Undef				
						-	V	······································		
CAP4L	Capture	94h	-(c')	$\overline{\wedge}$		R				
·	Reg. 4L			<del>)) -</del>	7	Undef				
					1/5	Onder				
CAP4H	Capture	95h ((	// 1			R				
CALTIL	Reg. 4H				$\bigcap$	Undef				
	//			~	$\left( \left\langle \left\langle \right\rangle \right\rangle \right)$	Onder	inieu			
CAP5L	Capture	96h	_	$\rightarrow$	$\leftarrow$	R	<u> </u>	<del></del>		
0.52	Reg. 5L	30			7/	Undet	·			
						Onder	·		<del></del> ,	
CAP5H	Capture	97h			>	R		<del></del> ;	<del></del>	### T
G-11 ST	Reg. 5H	J)	$\rightarrow$		<u> </u>	Undet				
			2/	<del></del>	: CAP4IN	CAP45M1		CLE	T4CLK1	T4CLK0
$\wedge$				<del></del>	: W	CAF43IVIT	CAP43IVIU	<del></del>	HULKI	: I4CLNO
	16 Bit Timer 4			_	-	0	0	R/W 0	: 0	0
T4MOD	Source CLK	98h	(  )	<del>!                                    </del>		Capture Tir			Source Clo	•
1	& MODE				0: Soft	:Capture III :00: Disable	ning	1: UC4	00: TI4	CK
		<b>\\</b>			1: Don't	00: Disable 01: TI4↑	T15 ↑	Clear	01: φT1	
		(no RMW)			care	:10: TI4 ↑ :11: TFF1 ↑	TI4   TFF1	Enable	10: ∳T4 11: ∳T16	
	· · · · · · · · · · · · · · · · · · ·		_	<del>:</del> -	CAP5T4	CAP4T4	EQ5T4	EQ4T4	TFF4C1	TFF4C0
				:	:	R/1			<del>:</del>	W
	16 bitTimer4		_		0	0	0	. 0	<del>-</del> -	·· -
T4FFCR	Flip-Flop	99h		<del>:</del>	TFF4 Inver	<u> </u>	·	, -	00: Invert	<u>.                                    </u>
	Control			:	0: Trigger	Disable			01: Set TF	
					1: Trigger				10: Clear	
		(no RMW)							11: Don't	

#### 16-Bit Timer 6

Symbol	Name	Address	7	6	5		4	3	2	1	0
	16 Bit Timer	A0h					-				
TREG6L	Reg. 6L							<u>v</u>			
		(no RMW)					Unde	fined			
	16 Bit Timer	A1h						-			
TREG6H	Reg. 6H							N			
		(no RMW)			<u> </u>		Unde	fined	(()	>	
	16 Bit Timer	4.01								<u>/</u>	
TREG7L	Reg. 7L	A2h						N (	7/4		
		(no RMW)					Unde	fined 🗸	$\langle \rangle \rangle$		
	16 Bit Timer							-///			
TREG7H	Reg. 7H	A3h						W ( )			
	I	(no RMW)					Unde	efined	)		
	Camtura							-//-			
CAP6L	Capture Reg. 6L	A4h						R	<	41 /	>
							Unde	efined			
	Contino					((	// ১)				
CAP6H	Capture Reg. 6H	A5h				_/		R		U/))	
					((		Unde	efined		70/	
							V	- /		>	
CAP7L	Capture Reg. 7L	A6h			9			R	$\mathcal{S}(\mathcal{S}(\mathcal{S}))$		
	1.09.72					>	Unde	efined			
								- ((//	5)		
CAP7H	Capture Reg. 7H	A7h		40				R			
	1109.711						Unde	efined			
			CAP7T7	EQ7T7	CAP6II	4 C	AP67M1	CAP67M	O CLE	T6CLK1	T6CLK0
			R/	w ))	W			<b>\</b> //	R/W		
	16 Bit Timer 6		0	9	0		0	0	0	0	0
T6MOD	Source CLK	A8h	TFF7 INV T		0: Soft	1/2	apture T	iming		Source Cl	ock
	& MODE		0: TRG Disa		1: Don	re:00	0: Disabl 1: TI6↑	le TI7↑	1: UC6 Clear	00: TI6 01: øT1	
			$\gamma_{\lambda}$	DIC.	care		D: TI6↑	TI6 J		10: φT4	
		(no RMW)	(/ ))					TFF1 J		11: ¢T16	
			TEF7C1	TFF7C0	CAP7T	6 (	CAP6T6	EQ7T6	EQ6T6	TFF6C1	TFF6C0
i		1/-	7 V	v <			R	·W	-		W
	16 Bit Timer6	<u> </u>	0	0	0		0	0	0	-	<u> </u>
T6FFCR	Flip-Flop Control	A9h	00: InvertT		TFF6 Inv					00: Invert	
	Control		01: Set TFF		0: Trigg	er Di	sable			01: Set TF	
		(no RMW)	10: Clear T 11: Don't c		1: Trigg	er En	able			10: Clear 11: Don't	-
		<u> </u>	i i Don to	are	<u> </u>					; i i ; Don t	care

#### 16-Bit Timer 8

Symbol	Name	Address	7	6		5	4		3	<u>;</u>	2	1		0
	16 BitTimer	B0h											_	
TREG8L	Reg. 8L	1 1						<u> </u>						
		(no RMW)					Und	efine	<u>d</u>	_				
	16 BitTimer	B1h					·····			$\overline{}$				
TREG8H	Reg. 8H	(no RMW)						W		$\rightarrow$				
		(no Rivivv)					Und	efine	<del>a</del>	-((		<del>&gt;</del>		
TREG9L	16 BitTimer	B2h									$\subseteq$	/		
INEGSL	Reg. 9L	(no RMW)						efine	<del>4 ((</del>	7/{	1			
<del></del>		(1.0 1)	<del></del>				Oliu	EIINE		$\bigcirc$	/ -			· · · · · · · · · · · · · · · · · · ·
TREG9H	16 BitTimer	B3h		-			<u> </u>	w (	-					
	Reg. 9H	(no RMW)						efine		<u> </u>				
·							(							
CAP8L	Capture Reg. 8L	B4h					4	R	$\supset$		<	11/	>	
	Reg. 6L						Und	efine	d		12			
,								/-						
CAP8H	Capture Reg. 8H	B5h	-					R		1	7	$//\Omega$		
							Und	efine	d			70/		
	Capture							_	-(			·		
CAP9L	Reg. 9L	B6h			< '		<u> </u>	R		<u> </u>	))			
				- (	$\overline{\wedge}$	$\rightarrow$	Und	efine	d	$\overline{}$				
САР9Н	Capture	B7h			1	$\overline{}$		_ /	V.	<del>))</del>				
CAPSH	Reg. 9H	B/II		-4(	$\rightarrow$		/ IInd	R lefine	<u>, , , , , , , , , , , , , , , , , , , </u>					
	<del>                                     </del>		_		) c/	AP8IN	CAP89M		_	<u> </u>	CLE	T8CLK	1	T8CLK0
			(			W	CA, OSIVI		/ / / / /	<del></del>	VW	TOCEN		TOCERO
	16 Bit Timer 8					0	0	$\prec$	0	<del>-                                    </del>	0	. 0		0
T8MOD	Source CLK	B8h		$\overline{\wedge}$	0: 5	oft	Capture	Timin	a a	$\dagger$		Source	Clock	
	& MODE			))			00: Disab	ole	_	1: L		01: øT1		
						Oon't are	01: TI8↑ 10: TI8↑	TI9	<b>?</b> ↑		lear	10: φT4 11: φT1	, 6	
		(no RMW)	// 5)			are	11: TFF1			-	Habie	11. φιι	O	
	/				(0)	AP9T8	САР8Т8		Q9T8	E	Q8T8	TFF8C	1	TFF8C0
İ	_ <<	1/-	7					R/W					W	
TOLLCO	16 BitTimer8	DOP				0	0		0		0	-	- :	_
T8FFCR	Flip-Flop Control	B9h			TFF	8 Inver	t Trigger					00: Inv		
	^ ^					Trigger Trigger	Disable Enable					01: Set 10: Cle		
I	\ \	(no RMW)			<b>∵'</b> '	i iggel	FIGURE					11: Doi		

#### 16-Bit Timer A

Symbol	Name	Address	7	6_	5	4	3	2	1	0
	16 Bit Timer	C0h								
TREGAL	Reg. AL						N			
		(no RMW)				Unde	efined		·	
	16 Bit Timer						- <			
TREGAH	Reg. AH	C1h				1	<i>N</i>	//		
	11.09.7111	(no RMW)				Unde	efined			
							_		)~	
TREGBL	16 Bit Timer	C2h	····			1	N (	77,		
		(no RMW)				Und€	efined	/ ))		
					*		-7//			
TREGBH	16 Bit Timer	C3h		-		1	W			
	Reg. BH	(no RMW)				Unde	efined	/		
						6				
CAPAL	Capture	C4h	, ···		<del></del>	4	R			,
	Reg. AL					Unde	efined	$\bigcirc$	1	
				-		(7/6)				
CAPAH	Capture	C5h				$\langle \langle \cup \rangle \rangle$	R		//	
	Reg. AH					Unde	efined	1/1	40/	
							- (/	7		<del></del>
CAPBL	Capture	C6h			4( /	>	R			
	Reg. BL					Unde	efined			
							- ((7/<			
САРВН	Capture	C7h		.(			R			· · · · · · · · · · · · · · · · · · ·
	Reg. BH			9/		Und	efined			
			CAPBTB	EQBTB	CAPAIN	/ /	CAPABM0	CLE	TACLK1	TACLK0
			R.	W )	W			R/W	- <u>-</u>	<del></del> -
	16 Bit Timer A		0		0	0	0	0	0	0
TAMOD	Source CLK	C8h	TFFB/INV T	RG	0: Soft	Capture T	iming		Source Clo	ck
	& MODE		0: TRG Dis	able		00: Disab	le	1: UCA	00: TIA	
			1: TRG Ena	able	1: Don't	01: TIA ↑	TIB ↑	Clear	01: <i>ϕ</i> T1	
		(no RMW)	7/^		care	10: TIA ↑		Enable	10: φT4 11: φT16	
	<del>                                     </del>		TFFBC1	TFFBC0	CAPBTA	CAPATA	- <b>.</b>	EQATA	TFFAC1	TFFAC0
		1)		· ~	CAPBIA	<u> </u>	<u> </u>	EQATA	<del>:</del>	<del> </del>
	16 Bit Timer A	///	0	W 0		. 0	₹ <b>/W</b> : 0	. 0		<i>N</i> : _
TAFFCR	Flip-Flop	C9h				<u> </u>	<u> </u>		<u>:</u>	<u>:</u>
	Control		00: Invert 01: SetT FI		TFFA Inver 0: Trigger				00: Invert	
	^ ^		101: Set1 FI		0: Trigger 1: Trigger				10: Set 1F	
		(no RMW)	11: Don't		: mgger	LITADIE			11: Don't	
		5)	/>			<del></del>	<del></del>		; iii. Doil t	

# (3) Watchdog timer

Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0	-	HALTM1	HALTM0	-	DRVE
				R/W				R/W	•	R/W
			1	0	0	0	0	0	0	0
WDMOD	Watch Dog Timer Mode	110h	1: WDT Enable	00: 2 ¹⁶ 01: 2 ¹⁸ 10: 2 ²⁰ 11: 2 ²²	3/fc 3/fc	Fix to "0"	Standby M 00: Run M 01: Stop M 10: IDLE M 11: (Reser	ode 1ode 1ode	Fix to "0"	1: Drive pin in STOP mode.
\4/D.CD	WatchDog	444			<del></del>		N (	<del>()) -</del>		
WDCR	TimerControl Register	111h			th: WDT F	Disable Code	4Eh: WD	T Clear Cod	e	

# (4) Clock control

Symbol	Name	Address	7	6	5	((//4 \)	3 💍	(2) 1	0
			-	-	-(-	WARM	- ` <	CLKOE -	-
						R/W		R/W	
						0	- (()	0	0
CLKMOD	Clock Mode	10Ah			(//	Warming	_`e	LK Fix to "0"	
		1 1				up time		Output	
		1 1			/// ~	0: 2 ¹⁵ /fc		nable	
		1 1				1: 2 ¹⁷ /fc	\	: High Z	
		1 1		1 4 ( )			( )1	: out	

# (5) Serial channels

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial		RB7 TB7	RB6 TB6	RB5 TB5	RB4 TB4	RB3 TB3	RB2 TB2	RB1 TB1	RB0 TB0
SC0BUF	Channel 0	D0h		<u> </u>	R (Re	: :ceiving)/V	/ (Transmiss	ion)	<u> </u>	·
	Buffer	(no RMW)			· · · · · · · · · · · · · · · · · · ·	Unde				
	-		RB8	EVEN	PE	OERR	PERR	FERR	SCLK	IOC
			R	R/	w	R (Clea	ar 0 after rea	eding)	R	w
	l Serial		_	0	0	0	0	(0)	7 0	0
SC0CR	Channel 0	D1h	Receive	Parity	Parity		1: Error		0: SCLK0	0: Baud
	Control		Data bit 8	0: Odd 1: Even	Addition 0: Disable 1: Enable	Overrun	Parity	Framing	↑ 1: SCLK0 ↓	rate genera. 1: SCLK0 Pin input
			TB8	CTSE	RXE	WU	SM1)	SM0	SC1	SC0
·				·	·	R/	W	·		
	Serial		Undefi.	0	0	0	0	0 ^	0	. 0
SC0MOD	Channel 0 Mode	D2h	Trans- mission Data bit 8	0: CTS Disable 1: CTS Enable	1: Receive	up	00: I/O inte 01: UART 7 10: UART 8 11: UART 9	bit bit	00: TO2 Tr 01: baudra genera 10: Interna 11: Extern SCLK0	ate ator al clock ph1 al clock
			-	-	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
					4()	>	(RZ	W		i
BROCR	Baud Rate	D3h	0		0	0		~9/	0	0
S. Oct.	Channel 0		Fix to "0"		00: φT0 (4/ 01: φT2 (10 10: φT8 (6/ 11: φT32 (	6/fc) 4/fc)	Set of the I 0000: 16 di 0001: Don 0010 → 11	ivisions		
	Serial		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
SC1BUF	Channel 1	D4h	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Buffer				R (Re		V (Transmiss	sion)		
			DDO	FVEN	: pr		fined	FEDD	CCLIA	: 100
			RB8	EVEN	PE	OERR	PERR	FERR	SCLK	IOC
			R	<del></del>	W /r		ar 0 after re		<del></del>	/W
66460	Serial	((		0	0	0	0	0	0	0
SC1CR	Channel 1 Control	D5h	Receive Data bit 8	Parity 0: Odd 1: Even	Parity Addition 0: Disable 1: Enable	Overrun	1: Error Parity	Framing	0: SCLK1 ↑ 1: SCLK1 ↓	0: Baud rate genera. 1: SCLK0 Pin input
			TB8	CTSE	ŔXE	WU	SM1	SMO	SC1	SC0
	$\wedge \wedge$					R/	w	·		·
	Serial	N	Undefi.	0	0	0	0	0	0	0
SC1MOD	Channel 1 Mode	D6h	Trans- mission Data bit 8	1: CTS Enable	1: Receive Enable	up	00: I/O into 01: UART 10: UART 11: UART	7 bit 8 bit	00: TO2 Tr 01: baudra genera 10: Interna 11: Externa clockS	ate ator al clock ph1 al
		1		-	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
		1/		:			R/	w	•	
DD4.55	Baud Rate	D2:	0	-	0	0	0	0	0	0
BR1CR	Channel 1	D3h	Fix to "0"		00: φT0 (4 01: φT2 (1 10: φT8 (6 11: φT32 (	6/fc) 4/fc)	0000: 16 d 0001: Don		, ,	<del></del>

# (6) AD converter

Symbol	Name	Address	7	6	5	4	3	2	1	0
		_	EOCF	ADBF	-	-	_	RPT	SCAN	ADS
·				R		:			R/W	
	AD		0	0	0	-	-	0	0	0
ADMOD1	Mode Reg. 1	128h	0: Busy or Stop 1: End	0: Stop 1: Busy	Fix to "0"		<	Repeat Mode 0: Once 1: Repeat	Scan Mode 0: Settle 1: Scan	0: – 1: Run Conver.
			VREFON	-	SPEED1	SPEED0	-	ADCH2	ADCH1	ADCH0
			R/W	:	R/	W	(0	7^	R/W	
			1	-	0	0 <	/ -/\/	))0	0	0
ADMOD2	AD Mode Reg. 2	129h	off	Resistance Resistance	SpeedSele 00: 160 sta 01: 320 sta 10: 640 sta 11: 1280 s	ate ate ate		(See belov	v)	
	AD Result		ADR01	ADR00	<u> </u>	- 5./	<u></u>	<	1 - >	<u> </u>
ADREG04L	Reg 0/4	120h					₹>	14		
	Low		Unde	efined	-	((//-5)		(-(-)	ÌŠ	-
	AD Result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
ADREG04H	1 -	121h					₹		<u> </u>	
	High					<del>,                                     </del>	fined (			<del>,</del>
	AD Result		ADR11	ADR10		<u> </u>		<del>/, )  </del>	<u> </u>	<u> </u>
ADREG15L	Reg 1/5 Low	122h		- (		1	(7)	$\sim$		
<del></del>	LOW			efined		<u> </u>	( ( ( )	) -		
	AD Result		ADR19	: ADR18	: ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG15H	Reg 1/5 High	123h					R			
	riigii		(		<u> </u>	Unde	fined	:	<del>.</del>	<del></del>
	AD Result	40.41	ADR21	ADR20	<u>: - </u>	- \	<del>// -</del>	<u>: -                                   </u>	<u> </u>	<u> </u>
ADREG26L	Reg 2/6 Low	124h	8	<u> </u>		1	R	:	:	:
	2000			efined	-		-	-	-	-
	AD Result	4051	ADR29	ADR28	ADR27	: ADR26	ADR25	ADR24	ADR23	ADR22
ADREG26H	Reg 2/6 High	125h	( <del>//</del> A-			<del></del>	R			
	/ / /				$\bigcap_{\lambda}$		fined	<del></del>	<del></del>	·
	AD Result	1 )	ADR31	ADR30	((//-5))	-		<u>: -</u>	<u> </u>	
ADREG37L	Reg 3/7 Low	126h				:	R :	<del></del>	<del></del>	·:
	<u> </u>			efined	- 4000	- ADD36	- ADDOC		-	: -
4 DDEC 2711	AD Result	1075	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADREG37H	Reg 3/7 High	127h			>		R .			
	3,	<b>N</b>			/	Unde	fined			

SCAN ADCH [2:0]	0	1
000	ANO ANO	ANO
001	AN1	AN0→AN1
010	AN2	AN0 → AN1 → AN2
011	AN3	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$
100	AN4	AN4
101	AN5	AN4 → AN5
110	AN6	AN4 → AN5 → AN6
111	AN7	$AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7$

# (7) DA converter

Symbol	Name	Address	7		6		5		4		3		2		1		0
DAREG0	DA Conversion	130h							11=	W defin							
	Reg. 0	(no RMW)	DA	4 conv	ersion	start	tat DAI	REG0				e the	datais	send	to DAO	UT0.	
										_			//				
DAREG1	DA Conversion	131h								W				1			
DARLOT	Reg. 1								Un	defin	ed			<u>')`</u>			
		(no RMW)	DA	4 conv	ersion/	n start	tat DAI	REG1	input	t, and	intim	e the	datais	send	to DAO	UT1.	
			_		_		_		-		(1	//	) }-	1	DA1DR	D	A0DR
											7 /				F	₹/W	
DADRV	DA Drive	132h	_		-		-		-	(	-/	5	-	-	0		0
	Register								$\mathcal{M}$			7	-"	1:	High-Z Conver Outpu	rsion	Data

# (8) Interrupt controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	AD			INI	Γ0	
	INTO & INTAD	-0.	IADC	IADM2	IADM1	IADM0	IOC	10M2	10M1	IOMO
INTE0AD	Enable	F0h	R		R/W		R		R/W	
			0	0	. 0	0	0 /	0	0	0
				1N	T5			, IN	Γ4	<u> </u>
	   INT4 & INT5		15C	15M2	15M1	15M0	I4C	/4M2	I4M1	14M0
INTE45	Enable	E0h	R		R/W		R	(( ))	R/W	
			0	0	0	0	0	50	0	0
				· IN	IT7	^		IN-	Г6	
	INT6 & INT7		17C	17M2	17M1	. I7M0	16C	16M2	16M1	16M0
INTE67	Enable	E1h	R		R/W		R		R/W	•
			0	0	: 0	0	(0)	0	0	0
<del>-</del>			-	<u> </u>	:			IN		:
	INT8 & INT9		19C	 19M2	: I9M1	191/10	18C	18M2 \	18M1	18M0
INTE89	Enable	E2h	R	131112	R/W		R	.5.11.12	R/W	
			0	0		700	0	0	0	0
				<del></del>	:	$(\vee/\sim)$	$\Diamond$	, CON		: •
	INTA GINTE		IBC	IBM2	: IBM1	: IBM0	IAC	IAM2	JAM1	IAM0
INTEAB	INTA & INTB Enable	E3h	R	: IDIVIZ	RAW	. IDIVIO	R	TAINIZ	R/W	: 171010
			0	. 0	i O	. 0	0 (	0	0	0
			0		-/-	:> 0	0 0	- //		: 0
			IT1C	IT1M2	Timer1)	: IT1M0	(TOC/	ITOM2	ITOM1	ITOMO
INTET01	INTTO & INTT1 Enable	E4h		1111012		: 1111010	$+$ $\vee$ $/ \rightarrow$	TIOIVIZ		: 1101010
	Lilable		R	<0	R/W		R	0	R/W	; 0
		<del> </del>	0	· /	<u> </u>	0	0	·	0	0
			ITAC (		Timer3)	: 173440	) J	INTT2 (		: ITON 40
INTET23	INTT2 & INTT3 Enable	E5h	IT3C	IT3M2	IT3M1	IT3M0	/JT2C	IT2M2	IT2M1	IT2M0
	Lilable		R		R/W	<u> </u>	√ R	•	R/W	
		ļ . <u></u>	(0	0	0 <	0	0	0	0	0
	INTTR4 &			-/	(TREG5)			INTTR4		:
INTET45	INTTR5	E6h	IT5C	IT5M2	IT5M1	T5M0	IT4C	IT4M2	IT4M1	IT4M0
	Enable	//	(/ R)		R/W		R		R/W	<del>,</del>
			9	<u> </u>	(70)	0	0	0	0	0
	INTTR6 &		7		(TREG7)	<del> </del>		INTTR6		
INTET67	INTTR7	EZh	IT7C	IT7M2	: 1T7M1	iT7M0	IT6C	IT6M2	IT6M1	IT6M0
	Enable		R		R/W		R		R/W	
	~~	, v	0	0	0	0	0	0	0	<u>.                                    </u>
	INITERO			INTTR9	(TREG9)			INTTR8	(TREG8)	
INTET89	INTTR8 &	E8h	IT9C	IT9M2	IT9M1	IT9M0	IT8C	IT8M2	IT8M1	IT8M0
11412103	Enable	1 2011	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
		$\wedge$		INTTRB	(TREGB)			INTTRA	(TREGA)	
INITETAD	INTTRA &	E9h	ITBC	ITBM2	ITBM1	ITBM0	ITAC	ITAM2	ITAM1	ITAM0
INTETAB	Enable	Eatt	R		R/W		R	:	R/W	
			0	0	0	0	0	0	0	: 0
				IN	TTX0	•	:	INT	RX0	•
	INTRX0 &		ITX0C		ITX0M1	ITX0M0	IRX0C	IRX0M2	:	IRX0M0
INTESO	INTTX0 Enable	EAh	R	:	R/W		R		R/W	-
	LIIGDIE		0	0	. 0	. 0	0	0		: 0

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	TX1			INT	RX1	
INITEC 4	INTRX1 &	FDL	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	INTTX1 Enable	EBh	R	<u> </u>	R/W		R		R/W	
•	2110010		0	0	0	0	0	0	0	0
				INT	TC1			INT	TC0	
INTETCO1	INTTC0 &	ECh	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01	INTTC1 Enable	ECh	R		R/W		R		R/W	
			0	0	0	0	0	((0)	0	0
				INT	TC3			TNT	TC2	
INITETECCO	INTTC2 & INTTC3	EDh	ITC3C	ITC3M2	ITC3M1	ІТСЗМ0	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTETC23	Enable	EDII	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				INT	TC5		16 77	INT	TC4	
INTETC45	INTTC4 &	EEh	ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	Enable	EEN	R		R/W	70	Ŗ		R/W	
			0	0	0	0/	0	0 <		0
				INT	TC7		$\supset$	INT	TC6	
INITETCCZ	INTTC6 & INTTC7	EFh	ITC7C	ITC7M2	ITC7M1	UTC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETC67	Enable	Ern	R		R/W		R	7	/R/W	
			0	0	0(	0	0	0	0	0
				N	Mİ		((	INT	WD	
INTNMWDT	NMI & INTWD	F7h	ITCNM	-	16	V _	ITCWD	<i>-</i> (_)	-	-
INTINIVIVIDI	Enable	[ [7]]	R				(R ₇ )			
			0	-1		-	(\0/	) ) –	-	-

	,		
lxxM2	lxxM1	lxxM0	Function (Write)
0	0	0	Disables interrupt request.
0	0	1	Sets interrupt request level to "1".
0	1	0	Sets interrupt request level to "2".
0	1	1 (	Sets interrupt request level to "3".
1	0	0	Sets interrupt request level to "4".
1	0	// 1) _	Sets interrupt request level to "5".
1	1 1	0/	Sets interrupt request level to "6".
1	1	1	Disables interrupt request.

Symbol	Name	Address	7	6	5	4		3		2	1	0
		7)	-()	-	_	_	:	_	:	-	IOLE	NMIREE
			Al								R	w
				> -	-	-	:	-		_	0	0
IIMC	INTerrupt Input Mode control	(no PMM)									0: INT0 edge mode 1: INT0 level	1: Oper- ate even a /NMI rise
	~	(no RMW)									mode	edge

Symbol	Name	Address	7	6	5	4	3	2	1	0
	interrupt			<u> </u>		Interrup	t Vector	•		
INTCLR	Clear	F8h	0	0	0	0	0	0	0	0
	Control	(no RMW)		<u>.                                    </u>	<u> </u>	٧	V	<del></del>		
		1		:	:		DMA0 Sta	art Vector		
	DMA 0	1,00	_	-	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	Start Vector	100h					R/	w		
	1		-	-	0	0	0	>0	0	0
				:			DMA1 Sta	art Vector	>	
D04441/	DMA 1	1016	-	<u> </u>	DMA1V5	DMA1V4	DMA1V3	DMA0V2	DMA1V1	DMA1V0
DMA1V	Start Vector	101h					(R/	W/		
			_	_	0	0 <	0 \	( ) b	0	0
				:			DMA2 Sta	art Vector		
D8442V	DMA 2	102h	-	-	DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	Start Vector	10211					R/	w		
			_	-	0	0	0	0	0	0
				;		4	DMA3 Sta	art Vector	4/	>
DMA3V	DMA 3 Start	103h	_	-	DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DIVIASV	Vector	10311		:		(// {)	R/	w (		
			_		0_	0	0	707	⟨/ <b>/</b> 0)	0
				:			DMA4 St	art Vector		
DMA4V	DMA 4 Start	104h	<u>-</u>		DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DIVIAGO	Vector	10411			4/	>	R	(W)		
					0	0	0		0	0
			·	7(			DMA5 St	art Vector		
DMA5V	DMA 5 Start	105h	-		DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
DIVIASV	Vector	10311			~		R/	w		
			- /		0	0	) þ	0	0	0
							DMA6 St	art Vector	_	
DMA6V	DMA 6 Start	106h			DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
DIVIAOV	Vector				`		R.	<b>/W</b>		
			<u> -</u>	<u> </u>	0 (	9/	0	0	0	0
			77/	<u>[</u>				art Vector		
DMA7V	DMA 7 Start	107h	<u>//                                   </u>		DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
511,70	Vector				$O/\Delta$		R	/W		
	_ <<		<u> </u>		(0)	0	0	0	0	0
		$\backslash \backslash $					Burst			
DMAB	DMA	108h	DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
2	Burst					R	W			
	>,<		0	0	0	0	0	0	0	0
		$\forall \prime$	(7				Request	· · · · · · · · · · · · · · · · · · ·		
DMAR	DMA	109h	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
Billian	Request					R	/W			
		(no RMW)	0	0	0	0	0	0	0	0

# (9) Memory controller

Symbol	Name	Address	7	6	5	4	3	2	1	0				
			-	B0WW2	B0WW1	B0WW0	-	B0WR2	B0WR1	B0WR0				
				:	w				W					
	Block 0		_	0	1	0	-	0	1	0				
BOCSL	CS/WAIT Control reg. L	140h (no RMW)		001: 0 wait 010: 1 wait 011: N wai others: (Re	: 110: 3 t		<	001: 0 wait 101: 2 wait 010: 1 wait 110: 3 wait 011: N wait others: (Reserved)						
			B0E	-	-	BOREC	B0OM1	воомо	B0BUS1	B0BUS0				
			W		-	W		7/\ V	N					
	Block 0		0	_	-	0 <	0/\	( ) (	0	0				
BOCSH	CS/WAIT Control reg. H	141h (no RMW)	CS select 1:enable 0:disable			Recovery 0:0 state 1:1 state	00: SRAM/ 01: (Reserv 10: (Reserv 11: (Reserv	ved) ved)	00: 8 bit 01: 16 bit 10: 32 bit 11: (Reserv	ved)				
			M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-V9	M0V8				
MAMRO	Memory Start Address Mask	142h				R/	w							
IVIAIVINU	reg. 0	14211	1	1	1		1	15		1				
	J	l			0: Compa	are enable	1: Compar	e disable						
	_		M0S23	M0522	M0\$21	M0S20	M0S19	M0S18	M0\$17	M0S16				
MSAR0	Memory Start Address	143h			7(	∖\\ R/	w	7						
IVISANO	reg. 0		1											
					Se	t start addre	ess A23 to A	16.//		<u>.</u>				
				B1WW2		B1WW0	(7)	B1WR2	B1WR1	B1WR0				
					W			)	W					
B1CSL	Block 1 CS/WAIT	144h	<u> </u>	<0	1	0	$\sim$	0	1	0				
Brest	Control reg. L	(no RMW)		001: 0 wait 010: 1 wait 011: N wai others: (Re	110: 3 t			001: 0 wai 010: 1 wai 011: N wai others: (Re	t 110: 3 it					
			B1E	$\sim$	<	B1REC	B10M1	B10M0	B1BUS1	B1BUS0				
1			W	))	_	\/W		/	N	_				
DACCU	Block 1	4451	0	7 -	- //		0	0	0_	0				
B1CSH	CS/WAIT Control reg. H	(no RMW)	CS select 1:enable 0:disable			Recovery 0:0 state 1:1 state	00: SRAM/ 01: (Reser 10: DRAM 11: (Reser	ved)	00: 8 bit 01: 16 bit 10: 32 bit 11: (Reserv	ved)				
		~ (	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-V9	M1V8				
MAMR1	Memory Start Address Mask	146h				R/	W							
IVIAIVII	reg. 1	1400/	1		1	1	1	1	1	1				
	- >//				0: Comp		1: Compar	e disable						
		1)	M1523	M1522	M1521	M1S20	M1S19	M1518	M1517	M1S16				
MSAR1	Memory Start Address	147h	M			R.	w							
MINAN	reg. 1	'7/''		1	1	1	1	1	11	1				
		$\wedge$			Se	t start addr	ess A23 to A	.16						

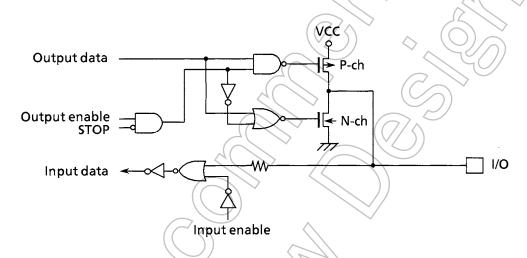
Symbol	Name	Address	7	6	5	4	3	2	1	0			
				B2WW2	B2WW1	B2WW0	<del>.</del> -	B2WR2	B2WR1	B2WR0			
					w				w				
	Block 2		_	0	1	0	_	0	1	0			
B2CSL	CS/WAIT Control reg. L	148h (no RMW)		001: 0 wait 010: 1 wait 011: N wai others: (Re	t 110: 3 t		4	001: 0 wai 010: 1 wai 011: N wa others: (Re	t 110: 3 it				
			B2E	B2M	_	B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0			
			·V	V		W		(( ))	₩				
	Block 2		1	0	-	0	0	., 0	0	0			
B2CSH	CS/WAIT Control reg. H	149h (no RMW)	CS select 1: enable 0: disable	0: 16MB 1: Sets area.		Recovery 0:0 state 1:1 state	00: SRAM 01: (Reser 10: (Reser 11: (Reser	ved) ved)	00: 8 bit 01: 16 bit 10: 32 bit 11: (Reser	ved)			
			M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15			
MAMR2	Memory Start Address Mask	14Ah				· · · · · · · · · · · · · · · · · · ·	W	<b>_</b>					
WANTE	reg. 2	17/3(1	1	11	11	J./	$\sim$	1 (	1(1)	11			
					0: Comp	are enable	1; Compa						
			M2523	M2S22	M2S21	M2520	M2S19	: M2S18	M2S17	M2S16			
MSAR2	Memory Start Address	14Bh				N.	w		<u>///)                                  </u>				
10137 (112	reg. 2	1480	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
							ess A23 to 4						
				B3WW2	B3WW1	B3WW0	- (	B3WR2	B3WR1	BOWRO			
	DI 1 3			-	W				W				
B3CSL	Block 3 CS/WAIT Control reg. L	14Ch (no RMW)		0 001: 0 wai 010: 1 wai 011: N wai others: (Re	t 110: 3 t			0 001: 0 wa 010: 1 wa 011: N wa others: (R	it 110: 3 it				
			B3E \	(-))	<u>! -                                    </u>	B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0			
			W			W	~	,	W				
B3CSH	Block 3 CS/WAIT	14Dh	( 6	5) -	`	0	0	0	0	0			
вэсэп	Control reg. H	(no RMW)	CS select 1: enable 0: disable			Recovery 0:0 state 1:1 state	00: SRAM 01: (Reser 10: DRAM 11: (Reser	ved) 1	00: 8 bit 01: 16 bit 10: 32 bit 11: (Reser				
	//		M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15			
NANADO	Memory Start	14Eh	_7			R	w						
MAINING	MAMR3 Address Mask reg. 3		1 _	1	1	1	1	1	1	1			
					0: Comp	are enable	1: Compa	re disable					
	<\/> </td <td></td> <td>M3523</td> <td>M3S22</td> <td>M3S21</td> <td>M3S20</td> <td>M3S19</td> <td>M3S18</td> <td>M3S17</td> <td>M3S16</td>		M3523	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16			
MSAR3	Memory Start Address	14Fh				R	ŵ						
IVIDARS	reg. 3	14511	1	1	1	1	1	1	1	1			
					Se	t start addr	ess A23 to A	<b>\16</b>					

Symbol	Name	Address	7	6	5	4	3	2	1	0
Зуппоот		7.001.033	<u> </u>	B4WW2	B4WW1	B4WW0	_	B4WR2	B4WR1	B4WR0
				D444442	W	D-444440		DAWNE	W	5-1110
	Bloc k 4			0	1	0		0	1	0
B4CSL	CS/WAIT	150h		001: 0 wait		•		001: 0 wait	·	<u>:</u>
	Control reg. L			010: 1 wait 011: N wai	110: 3 t			010: 1 wait 011: N wai	t 110: 3 t	
		(no RMW)		others: (Re	served)	,	:	others: (Re		
			B4E		-	B4REC	B4OM1	B4OM0	B4BUS1	B4BUS0
			W			W		. \ \	ν'	<del>,</del>
B4CSH	Bloc k 4 CS/WAIT	151h	0		-	0	0	0	0	0
в4С5Н	Control reg. H	(no RMW)	CS select 1: enable 0: disable			Recovery 0:0 state 1:1 state	00: SRAM 01: (Reser 10: (Reser 11: (Reser	ved) ved)	00: 8 bit 01: 16 bit 10: 32 bit 11: (Reserv	ved)
			M3V22	M3V21	M3V20	M3V19	M3V18	∯ M3V17	M3V16	M3V15
	Memory Start				<u> </u>	R	w	•		•
MAMR4	Address Mask reg. 4	15 <b>2</b> h	1	1	1	- A(		1 ^		. 1
	reg. 4			<u>.                                    </u>	0: Compa	are enable	1: Compai	e disable	//	A
-			M3523	: M3S22	M3521	M3520	M3S19	M3518	M3\$17	M3S16
	Memory Start			<u> </u>		$\cdots \longrightarrow$	w	$\cdot (\bigcirc$		<del>i.</del>
MSAR4	Address	153h	1	1			1	TO C		<u> </u>
	reg.4	:		•	Se	t start addr		16	<del></del>	<u></u>
				B5WW2	B5WW1	B5WW0	= ((	B5WR2	B5WR1	B5WR0
					W	·				
	Block 5			0 (		0	(9)	· 0	: 1	: 0
B5CSL	CS/WAIT Control reg. L	154h		001; 0 wai		<u>:</u>		001: 0 wai	<u>:                                    </u>	<u>:                                      </u>
				010: 1 wai				010: 1 wai		
				011: N wai				011: N wai		
		(no RMW)		others: (Re	servea)		) )	others: (Re		
			B5E	$\left\langle \cdot \right\rangle$	<u> </u>	B5REC	B5OM1	B5OM0	B5BUS1	B5BUS0
	Block 5		W			W	<u> </u>	-,	N	<del> </del>
B5CSH	CS/WAIT	155h	0	<u> </u>	- \	0	0	0	0	0
	Control reg. H	(no RMW)	CS select 1: enable 0: disable			Recovery 0:0 state 1:1 state	00: SRAM 01: (Reser 10: (Reser 11: (Reser	ved) ved)	00: 8 bit 01: 16 bit 10: 32 bit 11: (Reser	ved)
		(110)(111)	M5V22	M5V21 /	M5V20	M5V19	M5V18	: M5V17	M5V16	M5V15
	Memory Start	1)	1913 4 2 2	1013421	(/////)	•	W	: 1413417	: 1013 0 10	; 1013 0 13
MAMR5	Address Mask reg. 5	/156h	1	1/	$\sim$	: 1	÷ 1	: 1	: 1	: 1
					0. Carre	i ' are enable	<u>:                                    </u>		<u>:                                    </u>	<u>i                                    </u>
			M5S23	M5S22	: M5\$21	M5S20	M5S19	: M5\$18	M5S17	M5S16
	Memory Start		1013323	: IVIJ322	: 1412321	<del></del>	•	: 1412310	; IVI 33 1 /	i iVI JO I O
MSAR5	Address	/ 157h	1/>	1	1	<u> </u>	∕W 1	1	1	1
	reg. 5		1	1		<u> </u>	•	•	: 1	<u>:                                    </u>
		-	- 7,7	·	<del>,,</del>	t start addr	<del>,</del>		: DD1	: DD0
		_		<u> </u>	-	OPGE	OPWR1	OPWR0	PR1	PR0
		(	(-)	<del>!</del>	<del></del>		: ^	R/W	: 4	: 2
1	Page ROM			-	<del>-</del> -	0	0	0	: 1	. 0
PMEMCR	Control reg.	166h	$\rightarrow$			access 0: Disable	01: 2 CLK 10: 3 CLK	(n-1-1-1 mode (n-2-2-2 mode (n-3-3-3 mode	01: 32 Byt 10: 16 Byt	ie ie
				<u> </u>	:	<u>:</u>	11: (Rese	rved)	11: 8 Byte	·

# (10) DRAM controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
	,		SFRC0	_	BRM0	-	MUXE0	MUXW01	MUXW00	MAC0
						R/	W			
			1	-	0	-	0	0	0	0
DRAMOCRL	DRAM 0 Control Register L	160h	Self- refresh 0: Exec. 1: Rele.		Bus release mode control 0: Rele. 1: Not release		multiplex 0: disable	Multiplexe address 00: 8 bit 01: 9 bit 10: 10 bit 11: 11 bit	ed length	memory access control 0: Disable 1: Enable
	<del></del>		P0WW1	P0WW0	P0WR1	P0WR0	PGEO	$\bigcirc$	-	-
					R/W					
	DRAM 0		1	0	<u>;</u> 1	0	(0)	> _	_	_
DRAM0CRH	Control Register H	161h		n-2-2-2 mode) n-3-3-3 mode)	00: (Reserved) 01: 1wait( 10: 2wait( 11: (Reserved)	(n-2-2-2 mode) (n-3-3-3 mode)		Š		
			SFRC1	<del>-</del>	BRM1	(070	MUXE1	MUXW11	MUXW10	MAC1
				·		(VZ) R	w			•
			1	-	0		0	Q	(/0/	0
DRAM1CRL	DRAM 1 Control Register L	<b>162</b> h	Self- refresh 0: Exec. 1: Rele.		Bus release mode control 0: Rele. 1: Not release		address multiplex 0: disable 1: Enable	00: 8 bit	ed length	memory access control 0: Disable 1: Enable
			P1WW1	P1WW0	P1WR1	P1WR0	PGE1	-	-	
		-			→ R/W		) )			
DD 4 1 4 4 6 D   1	DRAM 1	163h	1	0	1	0	//0	-	-	-
DRAM1CRH	Control Register H	10311		n-2-2-2 mode n-3-3-3 mode	00: (Reser 01: 1wait 10: 2wait 11: (Reser	(n-2-2-2 mode) (n-3-3-3 mode)				
		((	DMO	RS02	RS01	RS00	RW02	RW01	RW00	RC0
	/					→ R	W			
	DRAM 0	( ) _	0	0	(//0	0	0	0	0	0
DRAM0REF	Refresh Control	164h	Dummy cycle 0: Prohibit 1: Execute	000: 001: 1	188 110: 3	246 302 308	Refresh cy 000: 2 001: 3 010: 4 011: 5	100: 6 101: 7 110: 8	, }	Refresh cycle 0: Not insert 1: insert
	7/	$\mathcal{D}$	DM1	RS12	RS11	RS10	RW12	RW11	RW10	RC1
		7				R	/W			
^	DRAM 1		0	0	0	0	0	0	0	0
DRAM1REF	Refresh Control	165h	Dummy cycle 0: Prohibit	000: 001: 1	154 101: 3	246 302	Refresh cy 000: 2 001: 3	100: 6 101: 7	,	Refresh cycle 0: Not
		7/	1: Execute	010: 1 011: 2			010: 4 011: 5			insert 1: insert

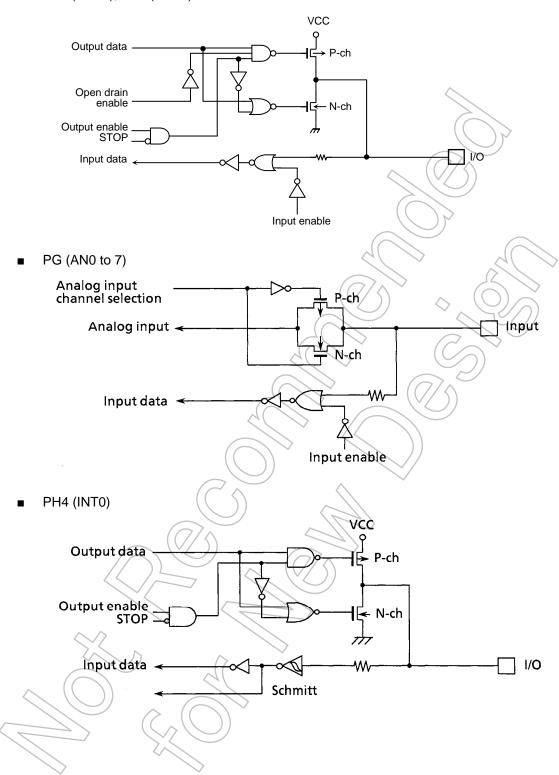
# 6. Port Section Equivalent Circuit Diagram


Reading the circuit diagram

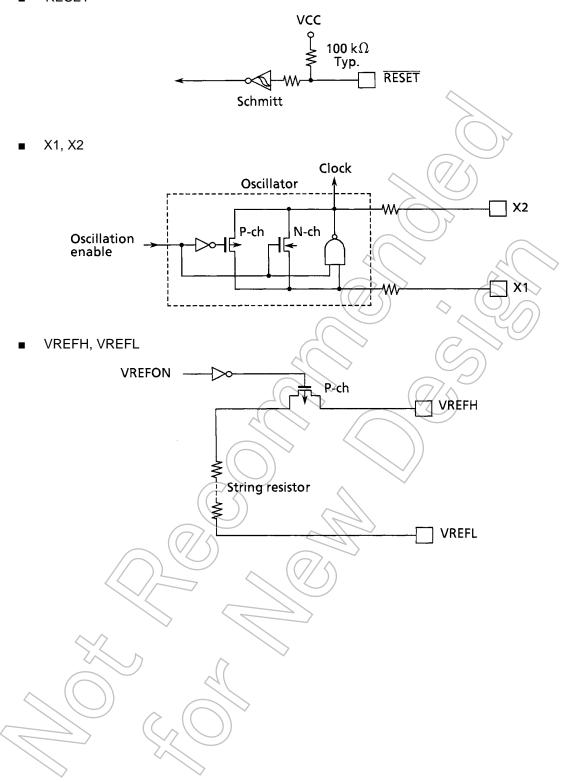
Basically, the gate symbols written are the same as those used for the standard CMOS logic IC (74HCxx) series.

The dedicated signal is described below.

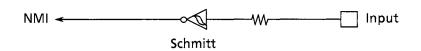
STOP: This signal becomes active "1" when the halt mode setting register is set to the STOP mode (WDMOD<HALTM1:0> = 0, 1) and the CPU executes the HALT instruction. When the drive enable bit WDMOD<DRVE> is set to "1", however, STOP remains at "0".

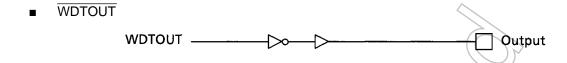

- The input protection resistance ranges from several tens ohms to several hundreds of ohms.
- P0 (D0 to D7), P1 (D8 to D15), P2 (D16 to D23), P3 (D24 to D31), P4 (A0 to A7), P5 (A8 to A15), P6 (A16 to A23), P75 (BUSRQ), P86 (WAIT), PC, PD, PE, PF6 (CTS1, SCLK1), PF5 (RXD1), PF2 (CTS0, SCLK0), PF1 (RXD0), (PH0 to 3), PZ



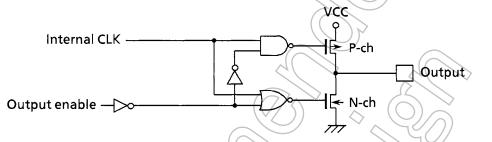

■ P76 (BUSAK), (P70 to P74), (P80 to P85)



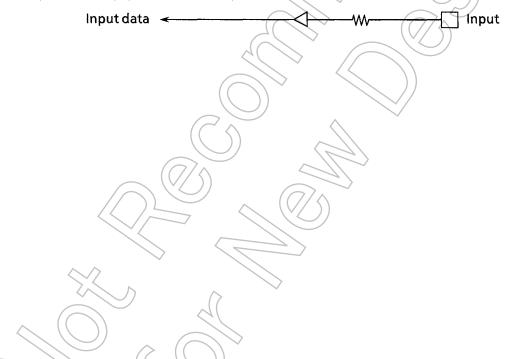

■ PF0 (TXD0), PF4 (TXD1)




# ■ RESET




■ NMI










■ (AM0 to AM1), (TEST0 to TEST1)



#### 7. Care Points and Restriction

#### (1) Special expression

[1] Explanation of a built-in I/O register: Register symbol <Bit Symbol> example: T8RUN<T0RUN>...Bit T0RUN of register T8RUN

[2] Read-modify-write instructions

An instruction which CPU executes following by one instruction: example1: SET 3, (T8RUN) ...set bit3 of TRUN example2: INC 1, (100H) ...increment the data of 100H

The read-modify-write instructions in the TLCS-900

```
SET imm, mem , RES imm, mem
CHG imm, mem , TSET imm, mem
INC imm, mem , DEC imm, mem
RLD A, mem , ADD imm, reg
```

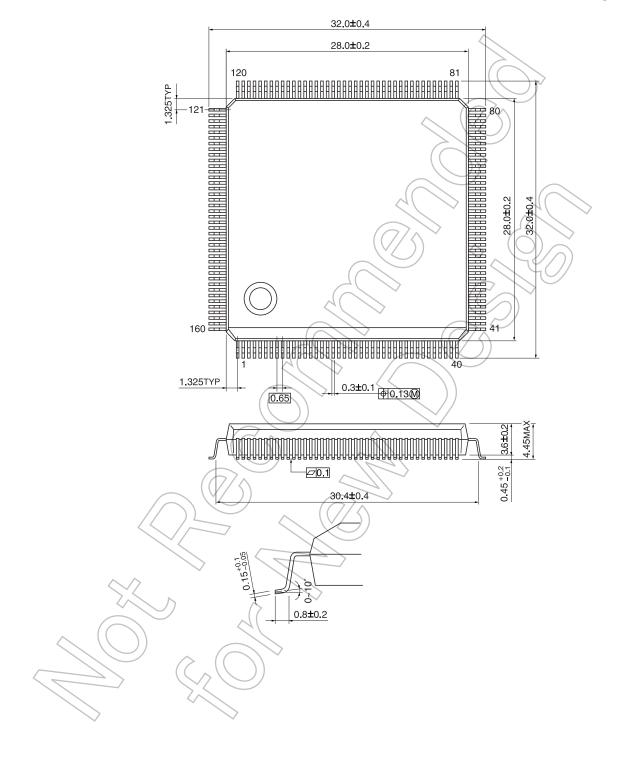
#### (2) Care points

[1] Watchdog timer

As the watchdog timer is enabled after a reset, disable the watchdog timer when it is not required.

Note that during bus release, the I/O block including the watchdog timer, still operate.

- [2] When releasing the external reset using "built-in clock doubler" until the internal reset is released, the requiring time to stabilize the circuit is automatically set. See section 3.1.2 "Reset Operation" for details. Also when releasing standby mode in STOP mode using an interrupt until the internal circuit starts the operation, the stable time of the oscillator is automatically input. See section 3.4 "Standby Function (3) STOP mode" for details.
- [3] Undefined bit in the built-in I/O register
  When reading the undefined bit in the built-in I/O register, the undefined value is output.
  Thus, when creating program, it should not be depending on this bit condition.
- [4] Setting data bus


  When starting up with 8 bit data bus by setting AM0 and AM1 pin after the reset is released, the upper data bus is set to input port, thus, when using the upper data bus, change the port control register of its data bus pin.
- [5] Releasing the HALT mode by requesting an interruption
  Usually, interrupts can release all halts status. However, the interrupts = (\overline{NMI}\) and
  INTO) which can release the HALT mode may not be able to do so if they are input during
  the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP
  mode (RUN is not applicable to this case). (In this case, an interrupt request is kept on
  hold internally)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

# 8. Package Dimensions

QFP160-P-2828-0.65A

Unit: mm



