TOSHIBA

32-Bit TX System RISC

TX19 Family TMP19A63F10XBG

Rev1.1

2008-3-28

32-Bit RISC Microprocessor TX19 Family <u>TMP19A63F10XBG</u>

1. Overview and features

TMP19A63 is equipped with the TX19A processor core that forms a high-performance 32-bit RISC processor series. The core was developed based on the MIPS32ISA that contains a 32-bit instruction set and the MIPS16eISA that contains an instruction set of high code efficiency. TOSHIBA uniquely integrated these two and the MIPS16e-TX TMASE (Application Specific Extension), which includes an extended instruction set of high code efficiency.

TMP19A63 is a 32-bit RISC microprocessor with a TX19A processor core and various peripheral functions integrated into one package. It can operate at low voltage with low power consumption.

Features of TMP19A63 are as follows:

- (1) TX19A processor core
 - 1) Improved code efficiency and operating performance have been realized through the use of two ISA (Instruction Set Architecture) modes 16- and 32-bit ISA modes.
 - The 16-bit ISA mode instructions are compatible with the MIPS16[™]ASE instructions of superior code efficiency at the object level.
 - The 32-bit ISA mode instructions are compatible with the TX39 instructions of superior operating performance at the object level.

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

2) Both high performance and low power dissipation have been achieved.

•High performance

- Almost all instructions can be executed with one clock.
- High performance is possible via a three-operand operation instruction.
- 5-stage pipeline
- Built-in high-speed memory
- DSP function: A 32-bit multiplication and accumulation operation can be executed with one clock.

•Low power consumption

- Optimized design using a low power consumption library
- Standby function that stops the operation of the processor core

3) High-speed interrupt response suitable for real-time control

- Independency of the entry address
- Automatic generation of factor-specific vector addresses
- Automatic update of interrupt mask levels
- (2) Internal program memory and data memory

Product name	Built-in ROM	Built-in RAM
TMP19A63CDXBG	512Kbyte	24Kbyte
TMP19A63F10XBG	1Mbyte(Flash)	48Kbyte

- ROM correction function: 8word×12 block
- (3) External memory expansion
 - Expandable to 16 megabytes (for both programs and data)
 - External data bus:

Separate bus/multiplexed bus : Coexistence of 8- and 16-bit widths is possible. Chip select/wait controller : 4 channels

Added CS recovery function (wait is inserted within RD (WR)[↑] - CS[↑])

(For 1 clock)

External wait X+2N-capable (X=2 to 7)

Changed ALE width

(4) DMA controller

: 8 channels

- Activated by an interrupt or software
- Data to be transferred to internal memory, internal I/O, external memory, and external I/O
 (5)16-bit timer
 36 channels
 - 16-bit interval timer mode
 - 16-bit event counter mode
 - 16-bit PPG output

 - Input capture function

2-phase pulse input counter function (2 channels assigned to perform this function): (6)32-bit timer

- 32-bit input capture register: 4 channels
- 32-bit compare register: 4 channels
- 32-bit time base timer: 2 channels
- (7) General-purpose serial interface: 11 channels
 - Selectable between the UART mode and the synchronization mode
- (8) Serial bus interface: 2 channels
 - Selectable between I²C bus mode/ the clock synchronization mode
- (9) 10-bit A/D converter (with S/H): 32 channels
 - An optional trigger by the internal timer

TOSHIBA

- Fixed channel/scan mode
- Single/repeat mode
- Top-priority conversion mode
- (11) Watchdog timer: 1 channel
- (12) Chip select/ wait controller: 6 channels

(13) Interrupt function

- CPU: 2 factors ...software interrupt instruction
 - Internal 83 factors...The order of precedence can be set over 7 levels (except the watchdog timer interrupt)
 - 39- independent-interrupt factors are included.
- External: 20 factors...The order of precedence can be set over 7 levels.

(Except for NMI interrupt)

```
8 factors, which are KWUP, are united as an interrupt factor.
```

- (14) Input and output ports: 212 pins
- (15) Standby function
 - Two stand-by modes (IDLE, STOP)
- (16) Clock generator
 - Built-in PLL (multiplication by 4)
 - Clock gear function: The high-speed clock can be divided into 1/1, 1/2, 1/4, 1/8.
- (17) Endian: Bi-endian (big-endian/little-endian)
 - Big endian

ng onalan				\sim	
Upper address	31 24	23 16	15 /8	7 0	Word address
	8	9	10	11	8
	4	5	6		4
	0		2	3	0
		< >			-

Lower address

- The most significant byte is 0 (bit 31-24).
- The address of the most significant byte specifies the word address.
- Little endian

Upper address	31 24	23 16	15 8	7 0	Word address
$\uparrow \qquad \qquad$	11	10	Ő	8	8
	7	6	5	4	4
	3	2	1	0	0

Lower address

- The least significant byte is 0 (bit 7-0).
- The address of the least significant byte specifies the word address.
- (18) Operating frequency
 - 54MHz (DVCC15 = 1.35V-1.65V)

(19) Operating voltage range

- Core: 1.35 1.65V
- I/O: 1.65 3.3 V
- ADC: 2.7 3.3 V

(20) Temperature range

- -20°C-85°C
- 0°C -70°C (Flash W/E)

(21) Package

• P-TFBGA289 (11mm×11mm, 0.5mm pitch)

2. Pin Layout and Pin Functions

This section shows the pin layout of TMP19A63 and describes the names and functions of input and output pins.

2.1 Pin Layout (Top view)

Fig. 2.1.1 shows the pin layout of TMP19A63.

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A1Z	A18	A19	A20
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15	B16	B17)	B18	B19	B20
C1	C2														$\overline{)}$			C19	C20
D1	D2		D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	P 17		D19	D20
E1	E2		E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17		E19	E20
F1	F2		F4	F5									(($\overline{)}$	F16	F17		F19	F20
G1	G2		G4	G5		G7	G8	G9	G10	G11	G12	G13	G14		G16	G17		G19	G20
H1	H2		H4	H5		H7	H8	H9	H10	H11	H12	H1,3	TH14)	H16	H17		H19	H20
J1	J2		J4	J5		J7	J8	J9				J13	J14	5	J16	J17	$(\cap$	J19	J20
K1	K2		K4	K5		K7	K8					K13	K14	\sim	K16	K17	\mathbb{Z}	K19	K20
L1	L2		L4	L5		L7	L8					1213	L14		L16	11		<u></u>]	L20
M1	M2		M4	M5		M7	M8				()	M13	M14		M16	MIZ	$)) \land$	M19	M20
N1	N2		N4	N5		N7	N8	N9	N10	N1/	N12	N13	N14		N16	N17		N19	N20
P1	P2		P4	P5		P7	P8	P9	P10	P11	P12	R13	P14		P16	P17	70	P19	P20
R1	R2		R4	R5					~	$(\frown$		~		. (R16	R17		R19	R20
T1	T2		T4	T5	Т6	T7	T8	Т9	T10	ЪЪ	T12	T13	T14	T15	-T16	717		T19	T20
U1	U2		U4	U5	U6	U7	U8	U9	/110	UT1	⊎12	U13	U14/	U15	VU16	Ú17		U19	U20
V1	V2	ľ							7($\overline{}$			(∇))		r	V19	V20
W1	W2	W3	W4	W5	W6	W7	W8	W9(W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20
Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	¥11	Y12	Y13	Y14	Y15	Y16	Y17	Y18	Y19	Y20
							1				-								

Fig. 2.1.1 Pin Layout Diagram (P-FBGA289)

					\wedge		
PIN No.	PIN Name	PIN No.	PIN Name	PIN No.	PIN Name	PIN No.	PIN Name
A1	N.C(GND)	B1	N.C(GND)	C1 /	PL0/TC4IN	D1	PL2
A2	N.C(GND)	B2	N.C(GND)	C2	PL1/TC5IN	D2	PL3/TCOUTB0
A3	RESET	B3 ((PCST0				
A4	PCST1	B4	PC\$T2			D4	DVSS
A5	PCST3	B5	PCST4	$\left(\left(// \right) \right)$		D5	PQ0/DREQ2
A6	DCLK	B6	TOVR	\mathbb{C}		D6	TCK
A7	TDO	B7	TDI	\sim		D7	DINT
A8	PP6/TPC6/TPD6	B8	PP7/TPC7/TPD7	2/		D8	PO6/TPD6
A9	PP4/TPC4/TPD4	В9	PP5/TPC5/TPD5			D9	PO4/TPD4
A10	PP2/TPC2/TPD2	B10	PP3/TPC3/TPD3			D10	PO2/TPD2
A11	PP0/TPC0/TPD0	B11	PP1/TPC1/TPD1	7		D11	PO0/TPD0
A12	PJ4/TC1IN	/B12	PJ5/SO1/SDA1			D12	PJ6/SI1/SCL1
A13	PJ2/SCLK8/CTS8	B13	PJ3/TC0IN			D13	PM6/TCOUTA0
A14	PJ0/TXD8	B14	PJ1/RXD8			D14	PM4/INT4
A15	PF6/SCLK1/CTS1	B15	PF7			D15	PM2/INT2
A16	PF4/TXD1	B16	PF5/RXD1			D16	PM0/INT0
A17 -	PF2/SCLK0/CTS0	B17/	PF3			D17	PG5/RXD3
A18	PF0/TXD0	B18	PF1/RXD0				
A19	N.C(GND)	B19	N.C(GND)	C19	PG7/TBTIN2	D19	PG4/TXD3
A20	N.C(GND)	B20	N.C(GND)	C20	PG6/SCLK3/CTS3	D20	PG3/TBTIN1

Table 2.1.1 Pin Names and Functions (1/3)

DIN No.	DIN Nome	PIN No.	DIN Nome		DIN Nome		DIN Nome
PIN No.	PIN Name	_	PIN Name	PIN No.	PIN Name	PIN No.	PIN Name
E1	PL4/TXD9	F1	PL6/SCLK9/CTS9	G1	P00/D0/AD0	H1	P02/D2/AD2
E2	PL5/RXD9	F2	PL7/TCOUTB1	G2	P01/D1/AD1	H2	P03/D3/AD3
	50//540//2		200/222200	<u> </u>	DI (O // (D) (O		D1(0/1/2)(0
E4	PQ1/DACK2	F4	PQ2/DREQ3	G4	PK0/KEY0	H4	PK2/KEY2
E5	DVSS	F5	PQ3/DACK3	G5	PK1/KEY1	H5	PK3/KEY3
E6	TRST						
E7	TMS			G7	DVSSC	H7	PK4/KEY4
E8	PO7/TPD7			G8	EJE	H8	DVSSD
E9	PO5/TPD5			G9	DVCC33	(H9)	FVCC30
E10	PO3/TPD3			G10	DVCC34	H10	FVCC31
E11	PO1/TPD1			G11	DVCC34	<u>H11</u>	FVCC15
E12	PJ7/SCK1			G12	DVCC34	H12	DVCC15
E13	PM7/TCOUTA1			G13	DVCC32	<u>)</u> ∦13	AVSS1
E14	PM5/INT5			G14	AVSS0	H14	P85/ANA13
E15	PM3/INT3						
E16	PM1/INT1	F16	P77/ANA7	G16	P87/ANA15	H16	P84/ANA12
E17	PG2/SCLK2/CTS2	F17	P76/ANA6	G17	P86/ANA14	H17	P83/ANA11
				_		(
E19	PG1/RXD1	F19	P75/ANA5	G19	P73/ANA3	H19 📈	P71/ANA1
E20	PG0/TXD2	F20	P74/ANA4	G20	P72/ANA2	H20	P70/ANA0
J1	P04/D4/AD4	K1	P06/D6/AD6	L1 (P10/D8/AD8/A8	M1	P12/D10/AD10/A10
J2	P05/D5/AD5	K2	P07/D7/AD7	L2 (P11/D9/AD9/A9	M2)	P13/D11/AD11/A11
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
J4	P50/A0	K4	P52/A2	L4	P54/A4	M4	P56/A6
J5	P51/A1	K5	P53/A3	115	P55/A5	M5	P57/A7
			DI (D // CD) (D				511/2
J7	PK5/KEY5	K7	PK6/KEY6	C L7 🗸	PK7/KEY7	/ M7	BW0
10		1/0	DV/CC20		DV/CC20	~Mo	
J8	DVCC30	K8	DVCC30	1.8	DVCC30	<u></u>	DVCC15
J8 J9		K8	DVCC30	128	DVCC30	<u></u> M8	DVCC15
J9	DVCC30 DVSS						
J9 	DVCC30 DVSS AVCC30	K13	AVREFHO	L13	AVREFH1	M13	AVCC31
J9	DVCC30 DVSS						
J9 J13 J14	DVCC30 DVSS AVCC30 P82/ANA10	K13 K14	AVREFH0 PA7/ANB15	L13 L14	AVREFH1 PA4/ANB12	M13 M14	AVCC31 DVCC15
J9 J13 J14 J16	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9	K13 K14 K16	AVREFH0 PA7/ANB15 PA6/ANB14	L13 L14 L16	AVREFH1 PA4/ANB12 PA3/ANB11	M13 M14 M16	AVCC31 DVCC15 PA1/ANB9
J9 J13 J14	DVCC30 DVSS AVCC30 P82/ANA10	K13 K14	AVREFH0 PA7/ANB15	L13 L14	AVREFH1 PA4/ANB12	M13 M14	AVCC31 DVCC15
J9 J13 J14 J16 J17	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8	K13 K14 K16 K17	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13	L13 L14 L16	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10	M13 M14 M16 M17	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8
J9 J13 J14 J16 J17 J17 J19	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7	K13 K14 K16 K17 K19	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5	L13 L14 L16 L17 L19	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3	M13 M14 M16 M17 M19	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1
J9 J13 J14 J16 J17 J19 J20	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6	K13 K14 K16 K17 K19 K20	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4	L13 L14 L16 L17	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2	M13 M14 M16 M17	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0
J9 J13 J14 J16 J17 J17 J19	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7	K13 K14 K16 K17 K19	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5	L13 L14 L16 L17 L19 L20	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3	M13 M14 M16 M17 M19 M20	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2
J9 J13 J14 J16 J17 J17 J19 J20 N1	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12	K13 K14 K16 K17 K19 K20 P1	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14	L13 L14 L16 L17 L19 L20 R1	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0	M13 M14 M16 M17 M19 M20 T1	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0
J9 J13 J14 J16 J17 J17 J19 J20 N1	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12	K13 K14 K16 K17 K19 K20 P1	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14	L13 L14 L16 L17 L19 L20 R1 R2	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0	M13 M14 M16 M17 M19 M20 T1	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2
J9 J13 J14 J16 J17 J19 J20 N1 N2	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13	K13 K14 K16 K17 K19 K20 P1 P2	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15	L13 L14 L16 L17 L19 L20 R1	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1	M13 M14 M16 M17 M19 M20 T1 T2	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD	K13 K14 K16 K17 K19 K20 P1 P2 R4	AVREFH0 PA7/ANB15 PA6/ANB15 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD	K13 K14 K16 K17 K19 K20 P1 P2 R4	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T4 T5	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4 N5	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR	K13 K14 K16 K17 K19 K20 P1 P2 R4 P5	AVREFH0 PA7/ANB15 PA6/ANB15 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4 N5 N7	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1	K13 K14 K16 K17 K19 K20 P1 P2 R4 P5 P7	AVREFH0 PA7/ANB15 PA6/ANB15 PA6/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4 N5 N7 N8	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1	K13 K14 K16 K17 K19 K20 P1 P2 P2 R4 P5 P7 P8	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7
J9 J13 J14 J16 J17 J19 J20 N1 N2 N1 N2 N4 N5 N7 N8 N9 N10 N11	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15	K13 K14 K16 K17 K19 K20 P1 P2 P2 R4 P5 P7 P8 P9 P10 P11	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4 N5 N7 N8 N9 N10 N11 N12	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL	K13 K14 K16 K17 K19 K20 P1 P2 R4 P5 P7 P8 P9 P10 P11 P12	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4 N5 N7 N8 N9 N10 N11 N12 N13	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL DVSSF	K13 K14 K16 K17 K19 K20 P1 P2 P2 P4 P5 P7 P7 P8 P9 P10 P11 P12 P13	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31 DVCC31 CVSS	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9
J9 J13 J14 J16 J17 J19 J20 N1 N2 N2 N4 N5 N7 N8 N9 N10 N11 N12	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL	K13 K14 K16 K17 K19 K20 P1 P2 R4 P5 P7 P8 P9 P10 P11 P12	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31	L13 L14 L16 L17 L19 L20 R1 R2 R4	AVREFH1 /PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9 PH5/RXD5
J9 J13 J14 J16 J17 J19 J20 N1 N2 N4 N5 N7 N8 N9 N10 N11 N12 N13 N14	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL DVSSF CVCC15	K13 K14 K16 K17 K19 K20 P1 P2 P1 P2 P4 P5 P7 P7 P8 P9 P10 P11 P12 P13 P14	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31 DVCC31 CVSS DVSS	L13 L14 L16 L17 L19 L20 R1 R2 R4 R5	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ P35/*BUSAK	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15	AVCC31 DVCC15 PA1/ANB9 PA0/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9 PH5/RXD5 PH7/INTA
J9 J13 J14 J16 J17 J19 J20 N1 N2 N1 N2 N4 N5 N7 N8 N9 N10 N11 N12 N13 N14 N16	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL DVSSF CVCC15 PC7/TB0FIN1	K13 K14 K16 K17 K19 K20 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P1 P12 P13 P14 P16	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31 DVCC31 CVSS DVSS	L13 L14 L16 L17 L19 L20 R1 R2 R4 R5 R4 R5	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ P35/*BUSAK P35/*BUSAK	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16	AVCC31 DVCC15 PA1/ANB9 PA0/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9 PH5/RXD5 PH7/INTA DVSSG
J9 J13 J14 J16 J17 J19 J20 N1 N2 N4 N5 N7 N8 N9 N10 N11 N12 N13 N14	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL DVSSF CVCC15	K13 K14 K16 K17 K19 K20 P1 P2 P1 P2 P4 P5 P7 P7 P8 P9 P10 P11 P12 P13 P14	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31 DVCC31 CVSS DVSS	L13 L14 L16 L17 L19 L20 R1 R2 R4 R5	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ P35/*BUSAK	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15	AVCC31 DVCC15 PA1/ANB9 PA0/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9 PH5/RXD5 PH7/INTA
J9 J13 J14 J16 J17 J19 J20 N1 N2 N4 N5 N7 N8 N9 N10 N11 N12 N13 N14 N16 N17	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 DVCC15 DVCC15 CVCC15 CVCC15 PLLSEL DVSSF CVCC15 PC7/TB0FIN1 PC6/TB0FIN0	K13 K14 K16 K17 K19 K20 P1 P2 R4 P5 P7 P7 P8 P9 P10 P11 P12 P13 P14 P16 P17	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31 DVCC31 CVSS DVSS PC5/TB0EIN1 PC4/TB0EIN0	L13 L14 L16 L17 L19 L20 R1 R2 R4 R5 R4 R5 R4 R5	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ P35/*BUSAK P35/*BUSAK P35/*BUSAK	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	AVCC31 DVCC15 PA1/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9 PH5/RXD5 PH7/INTA DVSSG PC1/TB0CIN1
J9 J13 J14 J16 J17 J19 J20 N1 N2 N1 N2 N4 N5 N7 N8 N9 N10 N11 N12 N13 N14 N16	DVCC30 DVSS AVCC30 P82/ANA10 P81/ANA9 P80/ANA8 P97/ANB7 P96/ANB6 P14/D12/AD12/A12 P15/D13/AD13/A13 P30/*RD P31/*WR BW1 TEST1 BUSMD FVCC15 DVCC15 PLLSEL DVSSF CVCC15 PC7/TB0FIN1	K13 K14 K16 K17 K19 K20 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P1 P12 P13 P14 P16	AVREFH0 PA7/ANB15 PA6/ANB14 PA5/ANB13 P95/ANB5 P94/ANB4 P16/D14/AD14/A14 P17/D15/AD15/A15 P32/*HWR P33/*WAIT/*RDY TEST2 TEST3 ENDIAN *NMI DVCC31 DVCC31 DVCC31 CVSS DVSS	L13 L14 L16 L17 L19 L20 R1 R2 R4 R5 R4 R5	AVREFH1 PA4/ANB12 PA3/ANB11 PA2/ANB10 P93/ANB3 P92/ANB2 P40/*CS0 P41/*CS1 P34/*BUSRQ P35/*BUSAK P35/*BUSAK	M13 M14 M16 M17 M19 M20 T1 T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16	AVCC31 DVCC15 PA1/ANB9 PA0/ANB9 PA0/ANB8 P91/ANB1 P90/ANB0 P42/*CS2 P43/*CS3 P36/R/*W P61/A9 P63/A11 P65/A13 PN1/INT7 PN3/ADTRG-A PN5/RXDA PN7/ADTRG-B PH1/RXD4 PH3/INT9 PH5/RXD5 PH7/INTA DVSSG

Table 2.1.1 Pin Names and Functions (2/3)



PIN No.	PIN Name	PIN No.	PIN Name	PIN No.	PIN Name	PIN No.	PIN Name
U1	P44/*CS4	V1	P46/SCOUT	W1	N.C(GND)	Y1	N.C(GND)
U2	P45/*CS5	V2	P47	W2	N.C(GND)	Y2	N.C(GND)
				W3	P21/A17/A1/A17	Y3	P20/A16/A0/A16
U4	P37/ALE			W4	P23/A19/A3/A19	Y4	P22/A18/A2/A18
U5	P60/A8			W5	P25/A21/A5/A21	Y5	P24/A20/A4/A20
U6	P62/A10			W6	P27/A23/A7/A23	Y6	P26/A22/A6/A22
U7	P64/A12			W7	P67/A15	YZ	P66/A14
U8	PN0/INT6			W8	PI1/RXD6	Y8	PI0/TXD6
U9	PN2/INT8			W9	PI3/INTB	( (Y9	PI2/SCLK6/CLS6
U10	PN4/TXDA			W10	PI5/RXD7	¥10	PI4/TXD7
U11	PN6/SCLKA/CTSA			W11	PI7	<u>Y11</u>	PI6/SCLK7/CTS7
U12	PH0/TXD4			W12	PE1/TB17OUT	Y12	PE0/TB16OUT
U13	PH2/SCLK4/CTS4			W13	PE3/TB19OUT	/ Y1/3	PE2/TB18OUT
U14	PH4/TXD5			W14	PE5/SO0/SCA0	¥14	PE4/TB1AOUT
U15	PH6/SCLK5/CTS5			W15	PE7/SCKØ	Y15	PE6/SI0/SCL0
U16	PD2/TB11IN0			W16	PD1/TB10IN1	Y16	PD0/TB10IN0
U17	DVSSH			W17	PD4/TB12IN0	Y17	PD3/TB11IN1
				W18	PD6/TB14OUT	Y18	PD5/TB12IN1
U19	PC0/TB0CIN0	V19	PD7/TB15OUT	W19	N.C(GND)	Y19	N.C(GND)
U20	X2	V20	X1	W20	N.C(GND)	Y20 🔿	N.C(GND)

Table 2.1.1 Pin Names and Functions (3/3)

# 2.3 Pin Names and Functions

Tables 2.3 show the names and functions of input and output pins.

Pin name	No. of pins	Input or output	Function
P00~P07	8	Input/output	Port 0: Input/output port that allows input/output to be set in units of bits
D0~D7		Input/output	Data (lower): Data bus 0~7 (separate bus mode)
AD0~D7		Input/output	Address data (lower): Address data bus 0~7 (multiplexed bus mode)
P10~P17	8	Input/output	Port 1: Input/output port that allows input/output to be set in units of bits
D8~D15		Input/output	Data (upper): Data bus 8~15: (separate bus mode)
AD8~AD15		Input/output	Address data (upper): Address data bus 8~15 (multiplexed bus mode)
A8~A15		Output	Address: Address bus 8~15 (multiplexed bus mode)
P20~P27	8	Input/output	Port 2: Input/output port that allows input/output to be set in units of bits
A16~A23		Output	Address: Address bus 16~23 (separate bus mode)
A0~A7		Output	Address: Address bus 0~7 (multiplexed bus mode)
A16~A23		Output	Address: Address bus 16~23 (multiplexed bus mode)
P30	1	Input/output	Port 30:Input/output port (with pull-up)
*RD		Output	Read: Strobe signal for reading external memory
P31	1	Input/output	Port 31:Input/output port (with pull-up)
*WR		Output	Write: Strobe signal for writing data of D0 to D7 pins
P32	1	Input/output	Port 32:Input/output port (with pull-up)
*HWR		Output	Write upper-pin data: Strobe signal for writing data of D8 to D15 pins
P33	1	Input/output	Port 33:Input/output port (with pull-up)
*WAIT		Input	Wait: Pin for requesting CPU to put a bus in a wait state
*RDY		Input	Ready: Pin for notifying CPU that a bus is ready
P34	1	Input/output	Port 34:Input/output port (with pull-up)
*BUSRQ		Input	Bus request: Signal requesting CPU to allow an external master to take the bus control
			authority
P35	1	Input/output	Port 35:Input/output port (with pull-up)
*BUSAK		Output	Bus acknowledge: Signal notifying that CPU has released the bus control authority in response
			to *BUSREQ
P36	1	Input/output	Port 36:Input/output port (with pull-up)
R/*W		Øutput	Read/write: "1" shows a read cycle or a dummy cycle. "0" shows a write cycle.
P37	1	Input/output	Port 37:: Input/output port
ALE	<	Output	Address latch enable (address latch is enabled only if access to external memory is taking
			place, that is multiplex bus mode)
P40	1	Input/output	Port 40:Input/output port (with pull-up)
*CS0	$ \land \land$	Output	Chip select 0:"0" is output if the address is in a designated address area.
P41	X	Input/output	Port 41:Input/output port (with pull-up)
*CS1	$\sim$	Output	Chip select 1:"0" is output if the address is in a designated address area.
P42		Input/output	Port 42:Input/output port (with pull-up)
*CS2	$\left( \right)$	Output	Chip select 2:"0" is output if the address is in a designated address area.
P43		Input/output	Port 43:Input/output port (with pull-up)
*CS3		Output	Chip select 3."0" is output if the address is in a designated address area.
P44	1	Input/output	Port 44:Input/output port (with pull-up)
*CS4		Output	Chip select 4."0" is output if the address is in a designated address area.
P45	1	Input/output	Port 45:Input/output port (with pull-up)
*CS5		Output	Chip select 5:"0" is output if the address is in a designated address area.

Table 2.3 Pin Names ar	nd Functions (1/8)
------------------------	--------------------

Table 2.3 Pin N	ames and Functions	(2/8)
-----------------	--------------------	-------

Pin name	No. of pins	Input or output	Function
P46 SCOUT	1	Input/output Output	Port 46: Input/output port System clock output: Selectable between high- and low-speed clock outputs, as in the case
P47	1	Input/output	of CPU Port 47: Input/output port
P50~P57	8	Input/output	Port 5: Input/output port that allows input/output to be set in units of bits
A0~A7		Output	Address: Address bus 0~7 (separate bus mode)
P60~P67	1	Input/output	Port 60 ~67 :Input/output port
A8~A15		Output	Address: Address bus 4 (separate bus mode)
P70~P77	8	Input	Port 7:Port used exclusively for input
ANA0~ANA7		Input	Analog input: Input from A/D converter
P80~P87	8	Input	Port 8:Port used exclusively for input
ANA8~ANA15		Input	Analog input: Input from A/D converter
P90~P97	8	Input	Port 9:Port used exclusively for input
ANB0~ANB7		Input	Analog input: Input from A/D converter
PA0~PA7	8	Input	Port A: Port used exclusively for input
ANB8~ANB15		Input	Analog input: Input from A/D converter
PB0	1	Input/output	Port B0:Input/output port
TB8IN0		Input	16-bit timer 8 input 0:For inputting the capture trigger of a 16-bit timer 8
PB1	1	Input/output	Port B1:Input/output port
TB8IN1		Input	16-bit timer 8 input 1: For inputting the capture trigger of a 16-bit timer 8
PB2	1	Input/output	Port B2:Input/output port
TB9IN0		Input	16-bit timer 9 input 0:For inputting the capture trigger of a 16-bit timer 9
PB3	1	Input/output	Port B3:Input/output port
TB9IN1	-	Input	16-bit timer 9 input 1:For inputting the capture trigger of a 16-bit timer 9
PB4	1	Input/output	Port B4:Input/output port
TBAIN0		Input	16-bit timer A input 0:For inputting the capture trigger of a 16-bit timer A
PB5	1	Input/output	Port B5:Input/output port
TBAIN1		Input	16-bit timer A input 1:For inputting the capture trigger of a 16-bit timer A
PB6	1	Input/output	Port B6:Input/output port
TBBIN0		Inputoutput	16-bit timer B input 0:For inputting the capture trigger of a 16-bit timer B
PB7	1	Input/output	Port B7:Input/output port
TBBIN1		Input	16-bit timer B input 1:For inputting the capture trigger of a 16-bit timer B
PC0	1 <	Input/output	Port C0:Input/output port
TBCIN0		Input	16-bit timer C input 0:For inputting the capture trigger of a 16-bit timer C/Two-phase counter
IBCINO		Input	input pin
PC1	<u> </u>	Input/output	Port C1:Input/output port
TBCIN1	$\sim 2$	Input	16-bit timer C input 1:For inputting the capture trigger of a 16-bit timer C/Two-phase counter
IDOINT			input pin
PC2		Input/output	Port C2:Input/output port
TBDINO	( )	Input	16-bit timer D input 0:For inputting the capture trigger of a 16-bit timer D
	$\bigcirc$		
PC3		Input/output	Port C3:Input/output port
TBDIN1	$\geq$	Input	16-bit timer D input 1:For inputting the capture trigger of a 16-bit timer D
PC4	1	Input/output	Port C4:Input/output port
TBEIN0		Input	16-bit timer E input 0:For inputting the capture trigger of a 16-bit timer E
PC5	1	Input/output	Port C5:Input/output port
TBEIN1		Input	16-bit timer E input 1:For inputting the capture trigger of a 16-bit timer E
PC6	1	Input/output	Port C6:Input/output port
TBFIN0		Input	16-bit timer F input 0:For inputting the capture trigger of a 16-bit timer F
PC7	1	Input/output	Port C7:Input/output port
TBFIN1		Input	16-bit timer F input 1:For inputting the capture trigger of a 16-bit timer 10
PD0	1	Input/output	Port D0:Input/output port

Din nome	No. of	Input or	Function
Pin name	pins	output	Function
PD1	1	Input/output	Port D1:Input/output port
TB10IN1		Input	16-bit timer 10 input 1:For inputting the capture trigger of a 16-bit timer 10
PD2	1	Input/output	Port D2:Input/output port
TB11IN0		Input	16-bit timer 11 input 0:For inputting the capture trigger of a 16-bit timer 11
PD3	1	Input/output	Port D3:Input/output port
TB11IN1		Input	16-bit timer 11 input 1:For inputting the capture trigger of a 16-bit timer 11
PD4	1	Input/output	Port D4:Input/output port
TB12IN0		Input	16-bit timer 12 input 0:For inputting the capture trigger of a 16-bit timer 12 /Two-phase
			counter input pin
PD5	1	Input/output	Port D5:Input/output port
TB12IN1		Input	16-bit timer 12 input 1:For inputting the capture trigger of a 16-bit timer 12 /Two-phase
			counter input pin
PD6	1	Input/output	Port D6:Input/output port
TB14OUT		Output	16-bit timer 14 output :16bit timer 14 variable PPG output
PD7	1	Input/output	Port D7:Input/output port
TB15OUT		Output	16-bit timer 15 output :16bit timer 15 variable PPG output
PE0	1	Input/output	Port E0:Input/output port
TB16OUT		Output	16-bit timer 16 output :16bit timer 16 variable PPG output
PE1	1	Input/output	Port E1:Input/output port
TB17OUT		Output	16-bit timer 17 output :16bit timer 17 variable PPG output
PE2	1	Input/output	Port E2:Input/output port
TB18OUT		Output	16-bit timer 18 output :16bit timer 18 variable PPG output
PE3	1	Input/output	Port E3:Input/output port
TB19OUT		Output	16-bit timer 19 output :16bit timer 19 variable PPG output
PE4	1	Input/output	Port E4:Input/output port
TB1AOUT		Output	16-bit timer 1A output :16bit timer 1A variable PPG output
PE5	1	Input/output	Port E5:Input/output port
SO0		Output	Pin for sending data if the serial bus interface operates in the SIO mode
SDA0		Input/output	Pin for sending and receiving data if the serial bus interface operates in the I2C mode(Input
			with Schmitt trigger) Open drain output pin
PE6	1	Input/output	Port E6:Input/output port
SI0		Input	Pin for receiving data if the serial bus interface operates in the SIO mode
SCL0		Input/output	Pin for inputting and outputting a clock if the serial bus interface operates in the I2C
		$\sim$	mode(Input with Schmitt trigger)
			Open drain output pin
PE7	<u> </u>	Input/output	Port E7:Input/output port
SCK0	$\sum$	Input/output	Pin for inputting and outputting a clock if the serial bus interface operates in the I2C mode
PF0	$\underline{\langle 1 \rangle}$	Input/output	Port F0:Input/output port
TXD0	$\left( \right)$	Input	Sending serial data 0: Open drain output pin depending on the program used
PF1 ((	(1)	Input/output	Port F1 Input/output port
RXD0	)	Input	Receiving serial data 0
PF2	7	Input/output	Port F2:Input/output port
*SCLK0		Input	Serial clock input/output 0 : Open drain output pin depending on the program used
CTS0		Input	Handshake input pin
PF3	1	Input/output	Port F3:Input/output port
PF4	1	Input/output	Port F0:Input/output port
TXD1		Input	Sending serial data 1: Open drain output pin depending on the program used
PF5	1	Input/output	Port F2 Input/output port
RXD1		Input	Receiving serial data 1
PF6	1	Input/output	Port F3:Input/output port
*SCLK1		Input	Serial clock input/output 1 : Open drain output pin depending on the program used
CTS1		Input	Handshake input pin
PF7	1	Input/output	Port F7:Input/output port

Table 2.3 Pin I	Names and	Functions	(3/8)
-----------------	-----------	-----------	-------

Table 2.3 Pin Names and Functions (4/8)	
-----------------------------------------	--

Pin name	No. of pins	Input or output	Function
PG0	1	Input/output	Port G0:Input/output port
TXD2		Output	Sending serial data 2: Open drain output pin depending on the program used
PG1	1	Input/output	Port G1 Input/output port
RXD2		Input	Receiving serial data 2
PG2	1	Input/output	Port G2:Input/output port
*SCLK2		Input/output	serial clock input/output 2 : Open drain output pin depending on the program used
CTS2		Input	Handshake input pin
PG3	1	Input/output	Port G3:Input/output port
TBTIN1		Input	32-bit time base timer input 1:For inputting a 32-bit time base timer
PG4	1	Input/output	Port G4:Input/output port
TXD3	4	Input	Sending serial data 3: Open drain output pin depending on the program used
PG5	1	Input/output	Port G5 Input/output port
RXD3 PG6	4	Input	Receiving serial data 3
*SCLK3	1	Input/output Input/output	Port G6:Input/output port Serial clock input/output 3: Open drain output pin depending on the program used
CTS3		Input	Handshake input pin
PG7	1	Input/output	Port G7:Input/output port
TBTIN2	'	Input	32-bit time base timer input 2:For inputting a 32-bit time base timer
PH0	1	Input/output	Port H0:Input/output port
TXD4	'	Output	Sending serial data 4: Open drain output pin depending on the program used
PH1	1	Input/output	Port H1 Input/output port
RXD4		Input	Receiving serial data 4
PH2	1	Input/output	Port H2:Input/output port
*SCLK4		Input/output	Serial clock input/output 4 : Open drain output pin depending on the program used
CTS4		Input	Handshake input pin
PH3	1	Input/output	Port H3 Input/output port
INT9		Input	Interrupt request pin 9: Selectable between "H" level, "L" level, rising edge and falling edge
			(Input with Schmitt trigger with Noise filter)
PH4	1	Input/output	Port H4:Input/output port
TXD4		Output	Sending serial data 5: Open drain output pin depending on the program used
PH5	1	Input/output	Port H5 Input/output port
RXD5		Input	Receiving serial data 5
PH6	1	Input/output	Port H6:Input/output port
*SCLK5		Input/output	Serial clock input/output 5 : Open drain output pin depending on the program used
CTS5		Input	Handshake input pin
PH7	1 <	Input/output	Port H7 Input/output port
INTA		Input	Interrupt request pin A: Selectable between "H" level, "L" level, rising edge and falling edge
			(Input with Schmitt trigger with Noise filter)
PI0		Input/output	Port I0:Input/output port
TXD6		Output	Sending serial data 6: Open drain output pin depending on the program used
PI1		Input/output	Port I1 Input/output port
RXD6			Receiving serial data 6
PI2 *SCLK6		Input/output	Port I2:Input/output port Serial clock input/output 6 : Open drain output pin depending on the program used
	$\square$	Input/output Input	
CTS6 PI3	1	Input Input/output	(Handshake input pin Port I3 Input/output port
INTB		Inputouput	Interrupt request pin B: Selectable between "H" level, "L" level, rising edge and falling edge
		mput	(Input with Schmitt trigger with Noise filter)
PI4	1	Input/output	Port I4:Input/output port
TXD7		Output	Sending serial data 7: Open drain output pin depending on the program used
PI5	1	Input/output	Port IS Input/output port
RXD7		Input/output	Receiving serial data 7
PI6	1	Input/output	Port I6:Input/output port
*SCLK7		Input/output	Serial clock input/output 7 : Open drain output pin depending on the program used
CTS7		Input/output	Handshake input pin
010/	I	input	ו ומוועטומגל וווףעג אוו

Pin name	No. of pins	Input or output	Function
PI7	1	Input/output	Port I7:Input/output port
PJ0	1	Input/output	Port J0:Input/output port
TXD8		Output	Sending serial data 8: Open drain output pin depending on the program used
PJ1	1	Input/output	Port J1 Input/output port
RXD8		Input	Receiving serial data 8
PJ2	1	Input/output	Port J2:Input/output port
*SCLK8		Input/output	serial clock input/output 8 : Open drain output pin depending on the program used
CTS8		Input	Handshake input pin
PJ3	1	Input/output	Port J3 Input/output port
TCOIN		Input	For inputting the capture trigger for 32-bit timer
PJ4	1	Input/output	Port J4 Input/output port
TC1IN		Input	For inputting the capture trigger for 32-bit timer
PJ5	1	Input/output	Port J5:Input/output port
SO1		Output	Pin for sending data if the serial bus interface operates in the SIO mode
SDA1		Input/output	Pin for sending and receiving data if the serial bus interface operates in the I2C mode(Input with Schmitt trigger)
			Open drain output pin
PJ6	1	Input/output	Port J6:Input/output port
SI1	1	Input	Pin for receiving data if the serial bus interface operates in the SIO mode
SCL1		Input/output	Pin for inputting and outputting a clock if the serial bus interface operates in the I2C
001		inputoutput	mode(Input with Schmitt trigger)
			Open drain output pin
PJ7	1	Input/output	Port J7:Input/output port
SCK1		Input/output	Pin for inputting and outputting a clock if the serial bus interface operates in the SIO mode
PK0	1	Input/output	Port K0:Input/output port
KEY0		Input	Key On Wake UP input 0 : (Input with Schmitt trigger with pull-up and Noise filter)
PK1	1	Input/output	Port K1:Input/output port
KYE1		Input	Key On Wake UP input 1:(Input with Schmitt trigger with pull-up and Noise filter)
PK2	1	Input/output	Port K2:Input/output port
KEY2		Input	Key On Wake UP input 2:(Input with Schmitt trigger with pull-up and Noise filter)
PK3	1	Input/output	Port K3:Input/output port
KEY3		Input (	Key On Wake UP input 3: (Input with Schmitt trigger with pull-up and Noise filter)
PK4	1	Input/output	Port K4:Input/output port
KEY4		< Input	Key On Wake UP input 4:(Input with Schmitt trigger with pull-up and Noise filter)
PK5	1	Input/output	Port K5:Input/output port
KEY5		Input	Key On Wake UP input 5 :( Input with Schmitt trigger with pull-up and Noise filter)
PK6	^1	Input/output	Port K6:Input/output port
KEY6	$\sim$	Input	Key On Wake UR input 6 :( Input with Schmitt trigger with pull-up and Noise filter)
PK7	4	Input/output	Port K7:Input/output port
KEY7	$\left  \right\rangle$	Input	Key On Wake UP input 7 :( Input with Schmitt trigger with pull-up and Noise filter)
PL0	(1)	Input/output	Port L0:Input/output port
TC4IN	$\searrow$	Input	For inputting the capture trigger for 32-bit timer
PL1		Input/output	Port L1:Input/output port
TC5IN		Input	For inputting the capture trigger for 32-bit timer
PL2	1	Input/output	Port L2:Input/output port
PL3	1	Input/output	Port L3:Input/output port
TCOUTB0		Output	Outputting 32-bit timer if the result of a comparison is a match
PL4	1	Input/output	Port L4:Input/output port
TXD9		Output	Sending serial data 9: Open drain output pin depending on the program used
PL5 RXD9	1	Input/output	Port L5 Input/output port
	4	Input	Receiving serial data 9
PL6	1	Input/output	Port L6:Input/output port
*SCLK9		Input/output	serial clock input/output 9 : Open drain output pin depending on the program used
CTS9	4	Input	Handshake input pin
PL7	1	Input/output	Port L7:Input/output port
TCOUTB1	1	Output	Outputting 32-bit timer if the result of a comparison is a match

#### Table 2.3 Pin Names and Functions (5/8)

Pin name No. of Input or pins output			Function
PM0 INT0	1	Input/output Input	Port M0:Input/output port Interrupt request pin 0: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PM1 INT1	1	Input/output Input	Port M0:Input/output port Interrupt request pin 0: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PM2 INT2	1	Input/output Input	Port M0:Input/output port Interrupt request pin 0: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PM3 INT3	1	Input/output Input	Port M0:Input/output port Interrupt request pin 0: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PM4 INT4	1	Input/output Input	Port M0:Input/output port Interrupt request pin 0: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PM5 INT5	1	Input/output Input	Port M0:Input/output port Interrupt request pin 0: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PM6 TCOUTA0	1	Input/output Output	Port M6:Input/output port Outputting 32-bit timer if the result of a comparison is a match
PM7 TCOUTA1	1	Input/output Output	Port M7:Input/output port Outputting 32-bit timer if the result of a comparison is a match
PN0 INT6	1	Input/output Input	Port N0:Input/output port Interrupt request pin 6: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PN1 INT7	1	Input/output Input	Port N1:Input/output port Interrupt request pin 7: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PN2 INT8	1	Input/output Input	Port N2:Input/output port Interrupt request pin 8: Selectable between "H" level, "L" level, rising edge and falling edge (Input with Schmitt trigger with Noise filter)
PN3 ADTRG-A	1	Input/output Input	Port N3:Input/output port Pin for starting A/D trigger or A/D converter from an external source
PN4 TXDA	1	Input/output Output	Port N4:Input/output port Sending serial data A: Open drain output pin depending on the program used
PN5 RXDA	1 <	Input/output Input	Port N5 Input/output port Receiving serial data A
PN6 *SCLK CTSA	1	Input/output Input/output Input	Port N6:Input/output port serial clock input/output A : Open drain output pin depending on the program used Handshake input pin
PN7 ADTRG-B		Input/output	Port N7:Input/output port Pin for starting A/D trigger or A/D converter from an external source
PO0 TPD0 PO1		Input/output Output Input/output	Port D0:Input/output port Outputting trace data from the data access address: Signal for DSU-ICE Port D1:Input/output port
TPD1 PO2 TPD2	1	Output Input/output Output	Outputting trace data from the data access address: Signal for DSU-ICE Port D2:Input/output port Outputting trace data from the data access address: Signal for DSU-ICE
PO3 TPD3	1	Input/output Output	Port D3:Input/output port Outputting trace data from the data access address: Signal for DSU-ICE
PO4 TPD4	1	Input/output Output	Port D4:Input/output port Outputting trace data from the data access address: Signal for DSU-ICE

Table 2.3 Pin Names and Functions (6/8)

Pin name	No. of pins	Input or output	Function
PO5	1	Input/output	Port D5:Input/output port
TPD5		Output	Outputting trace data from the data access address: Signal for DSU-ICE
PO6	1	Input/output	Port D5:Input/output port
TPD6		Output	Outputting trace data from the data access address: Signal for DSU-ICE
P07	1	Input/output	Port D5:Input/output port
TPD7		Output	Outputting trace data from the data access address: Signal for DSU-ICE
PP0	1	Input/output	Port P0:Input/output port
TPC0 TPD0		Output	Outputting trace data from the program counter: Signal for DSU-ICE Outputting trace data from the data access address; Signal for DSU-ICE
PP1	1	Output Input/output	Port P1:Input/output port
TPC1	1	Output	Outputting trace data from the program counter: Signal for DSU-ICE
TPD1		Output	Outputting trace data from the data access address: Signal for DSU-ICE
PP2	1	Input/output	Port P2:Input/output port
TPC2	•	Output	Outputting trace data from the program counter: Signal for DSU-ICE
TPD2		Output	Outputting trace data from the data access address: Signal for DSU-ICE
PP03	1	Input/output	Port P3:Input/output port
TPC3		Output	Outputting trace data from the program counter: Signal for DSU-ICE
TPD3		Output	Outputting trace data from the data access address: Signal for DSU-ICE
PP4	1	Input/output	Port P4:Input/output port
TPC4		Output	Outputting trace data from the program counter: Signal for DSU-ICE
TPD4		Output	Outputting trace data from the data access address. Signal for DSU-ICE
PP5	1	Input/output	Port P5:Input/output port
TPC5		Output	Outputting trace data from the program counter; Signal for DSU-ICE
TPD5		Output	Outputting trace data from the data access address: Signal for DSU-ICE
PP6	1	Input/output	Port P6:Input/output port
TPC6		Output	Outputting trace data from the program counter: Signal for DSU-ICE
TPD6	-	Output	Outputting trace data from the data access address: Signal for DSU-ICE
PP7	1	Input/output	Port P7:Input/output port
TPC7 TPD7		Output	Outputting trace data from the program counter: Signal for DSU-ICE
PQ0	1	Output Input/output	Outputting trace data from the data access address: Signal for DSU-ICE Port_Q0:Input/output port
DREQ2	1	Input/output	DMA request signal 2: For inputting the request to transfer data by DMA from an external I/O
DREQZ		mput	device to DMA2
PQ1	1	Input/output	Port Q0:Input/output port
DACK2	-	Output	DMA acknowledge signal 2: Signal showing that DREQ2 have acknowledged a DMA
-			transfer request
PQ2	1	Input/output	Port Q2:Input/output port
DREQ3		Input	DMA request signal 3: For inputting the request to transfer data by DMA from an external I/O
			device to DMA3
PQ4	12	Input/output	Port Q3:Input/output port
DACK3		Output	DMA acknowledge signal 3: Signal showing that DREQ3 have acknowledged a DMA
		$\searrow$	transfer request
DCLK	1	Output	Debug clock: Signal for DSU-ICE
*EJE		Input	EJTAG enable: Signal for DSU-ICE(fixed to pull up)
			(Input with Schmitt trigger with Noise filter)
*DINT	1	Input	Debug interrupt: Signal for DSU-ICE(fixed to pull up)
			(Input with Schmitt trigger with Noise filter)
PCST0	1	Output	PC trace status: Signal for DSU-ICE
PCST1	1	Output	PC trace status: Signal for DSU-ICE
PCST2	1	Output	PC trace status: Signal for DSU-ICE
PCST3	1	Output	PC trace status: Signal for DSU-ICE
PCST4	1	Output	PC trace status: Signal for DSU-ICE
*DINT	1	入力	Debug interrupt: Signal for DSU-ICE
TOVR	1	Output	Outputting the status of PD data overflow status: Signal for DSU-ICE
тск	1	Input	Test clock input: Signal for DSU-ICE(fixed to pull up)
TMC	4	lanet	(Input with Schmitt trigger with Noise filter)
TMS	1	Input	Test mode select input: Signal for DSU-ICE(fixed to pull up)
			(Input with Schmitt trigger)

Table 2.3 Pin Names and Functions (7/8)

Pin name	No. of pins	Input or output	Function
TDI	1	Input	Test data input: Signal for DSU-ICE <b>(fixed to pull up)</b> (Input with Schmitt trigger)
TDO	1	Output	Test data output: Signal for DSU-ICE
*TRST	1	Input	Test reset input: Signal for DSU-ICE(fixed to pull down) (Input with Schmitt trigger with Noise filter)
*RESET	1	Input	Reset:Intializing LSI (fixed to pull down) (Input with Schmitt trigger with Noise filter)
X1/X2	2	Input/output	Pin for connecting a high-speed oscillator (X1:Input with Schmitt trigger)
*NMI	1	Input	Non-maskable interrupt request pin :(with Schmitt trigger)
BUSMD	1	Input	Pin for setting an external bus mode: This pin functions as a multiplexed bus by sampling the "H (DVCC15) level" at the rise of a reset signal. It also functions as a separate bus by sampling "L" at the rise of a reset signal. When performing a reset operation, pull it up or down according to a bus mode to be used. Input with Schmitt trigger.
ENDIAN	1	Input	Pin for setting endian: This pin is used to set a mode. It performs a big-endian operation by sampling the "H (DVCC15) level" at the rise of a reset signal, and performs a little-endian operation by sampling "L" at the rise of a reset signal. When performing a reset operation, pull it up or down according to the type of endian to be used. Input with Schmitt trigger.
PLLSEL	1	Input	Pin for setting PLL operation with MASK (Input with Schmitt trigger) High(DVCC15) :11~13.5MHz(=X1) Low:8~11MHz(=X1) When performing a reset operation, pull it up or down according to the type of oscillator to be used.
BW0	1	Input	TEST pin: To be fixed to DVCC15:(Input with Schmitt trigger)
BW1	1	Input	TEST pin: To be fixed to DVCC15:(Input with Schmitt trigger)
TEST1	1	Input	TEST pin: Set to OPEN
TEST2	1	Input	TEST pin: Set to OPEN
TEST3	1	Input	TEST pin: Set to OPEN
AVREFH0	1	Input	Reference power supply pin for the A/D converter (H)
			If the A/D converter is not used, connect (fix) this pin to AVCC3x.
AVREFH1	1	Input	Reference power supply pin for the D/A converter (H)
		6	If the A/D converter is not used, connect (fix) this pin to AVCC3x.
AVSS0	1		GND pin (0 V) for the D/A converter (0V), Connect this pin to GND even if the D/A converter is not used.
AVCC30	1 <		Power supply pin for the A/D converter. Connect this pin to power supply even if the A/D converter is not used.
AVCC31	1		Power supply pin for the A/D converter. Connect this pin to power supply even if the A/D converter is not used.
AVSS1	X	5	GND pin (0 V) for the D/A converter (0V) _o Connect this pin to GND even if the D/A converter is not/used.
CVCC15	(1)		Power supply pin for a high-frequency oscillator: 1.5 V power supply
CVSS	1	-	GND pin (0V) for a high-frequency oscillator
DVCC15	4	~	Power supply pin: 1.5 V power supply
DVCC30	4	(-( ~ )	Rower supply pin: 3 V power supply
DVCC31	- ² 2		Power supply pin: 3 V power supply
DVCC32	1	- ~ ~	Rower supply pin: 3 V power supply
DVCC33	1	-	Power supply pin: 3 V power supply
DVCC34	3	-	Power supply pin: 3 V power supply
DVSS	9	-	Power supply pin: GND pin (0V)
FVCC3	2		Power supply pin: 3 V power supply(for FLASH)
FVCC15	2		Power supply pin: 1.5 V power supply(for FLASH)

2.4 Pin Names and Power Supply Pins

			appliee	
Power		Voltage	Power	
supply	Pin number	range	supply	
P0	DVCC30	PL	DVCC33	
P1	DVCC30	PM	DVCC32	$\langle \rangle$
P2	DVCC30	PN	DVCC31	( )
P3	DVCC30	PO	DVCC34	
P4	DVCC30	PP	DVCC34	()
P5	DVCC30	PQ	DVCC34	$\mathcal{D}$
P6	DVCC30	*NMI	DVCC15	
P7	AVCC30	PCST4~0	DVCC34	
P8	AVCC30	DCLK 📈	DVCC34	
P9	AVCC31	*EJE	DVCC34	0
PA	AVCC31	*TRST/	DVCC34	G
PB	DVCC31	TD	DVCC34	
PC	DVCC31	TDO	DVCC34	
PD	DVCC31	TMS	DVCC34	$\langle \rangle$
PE	DVCC31	TCK	DVCC34	()
PF	DVCC32	*DINT	DVCC34	$\sim$
PG	DVCC32	*RESET	DVCC15	)
PH	DVCC31	PLLSEL	DVCC15	
PI	DVCC31	X1, X2	CVCC15	
PJ	DVCC32	BUSMD	DVCC15	
PK (	DVCC33	BW0, BW1	DVCC15	
				•

Table 2.4 Pin Names and Power Supplies

2.5 Pin Numbers and Power Supply Pins

10002.		
Power		
supply	Pin number	Voltage range
DVCC15	M8,M14,N11,H12	1.35V~1.65V
DVCC3	G9,G10,G11,G12, G13,J8,K8,L8,P11, P12,	2.7V~3.3V
AVCC	J13,M13	2.7V~3.3V
CVCC15	N14	1.35V~1.65V
FVCC15	H11,N10	1.35V~1.65V
FVCC3	H9,H10	2.7V~3.3V

Table 2.5 Pin Numbers and Power Supplies

### 3. Processor Core

The TMP19A63 has a high-performance 32-bit processor core (TX19A processor core). For information on the operations of this processor core, please refer to the "TX19A Family Architecture."

This chapter describes the functions unique to the TMP19A63 that are not explained in that document.

#### 3.1 Reset Operation

To reset the device, ensure that the power supply voltage is in the operating voltage range, the oscillation of the internal high-frequency oscillator has stabilized at the specified frequency and that the  $\overrightarrow{\text{RESET}}$  input has been "0" for at least 12 system clocks (1.78 µs during external 13.5 MHz operation).

Note that the PLL multiplication clock is quadrupled and the clock gear is initialized to the 1/8 mode during the reset period.

- When the reset request is authorized, the system control coprocessor (CP0) register of the TX19A processor core is initialized. For further details, please refer to the chapter about architecture.
- After the reset exception handling is executed, the program branches off to the exception handler. The address to which the program branches off (address where exception handling starts) is called an exception vector address. This exception vector address of a reset exception (for example, non-maskable interrupt) is 0xBFC0_0000H (virtual address).
- The register of the internal I/O is initialized.
- The port pin (including the pin that can also be used by the internal I/O) is set to a general-purpose input or output port mode.

(Note 1) Set the RESET pin to "0" before turning the power on. Perform the reset after the power supply voltage has stabilized sufficiently within the operating range.

(Note 2) The reset operation can alter the internal RAM state, but does not alter data in the backup RAM.

(Note 3) After turning the power on, make sure that the power supply voltage and oscillation have stabilized, wait for 500  $\mu$ s or longer, and perform the reset.

(Note 4) In the FLASH program, the reset period of 0.5  $\mu$ s or longer is required independently of the system clock.

(Note 5) Please be sure to turn the 1.5V power supply for core on first and then turn the 3V power supply for I/O on.

#### TOSHIBA

# 4. Memory Map

Fig. 4.1 & Fig 4.2 shows the memory map of the TMP19A63.

#### 1) For 1024KB ROM/ 48KB Type (TMP19A63F10XBG)



Fig. 4.2 Memory Map

# TOSHIBA



(Note 1)	The internal ROM is mapped to: 0x1FC0_0000~0x1FCF_FFFF (1024KB)
	0x1FC0_0000~0x1FC7_FFFF (512KB) The internal RAM is mapped to: 0xFFFF_2000~0xFFFF_DFFF (48KB) 0xFFFF_8000~0xFFFF_DFFF (24KB)
(Note 2)	For the TMP19A63, a physical space of only 16 MB is available as external address space to be accessed. It is possible to place this 16-MB physical address space in a chip select area of your choice inside the 3.5-GB physical address space of the CPU. However, it is not possible to set internal memory, internal I/O space and reserved areas.
(Note 3)	Do not place an instruction in the last four words of a physical area. Internal ROM: 0x1FCF_FFF0 ~ 0x1FCF_FFFF (1024KB)
	Internal ROM: 0x1FC7_FFF0 ~ 0x1FC7_FFFF (512KB) The last four words of an area where memory is mounted for external ROM extension (this varies depending on the system of the user).

# 5. Clock/Standby Control

#### 5.1 Operation Mode

The system operation modes contain the standby modes in which the processor core operations are stopped to reduce power consumption. Fig. 5.1 State Transition Diagram of Each Operation Mode is shown below



PLLSEL pin:to select frequency that adjusts to PLL depending on the clock frequency connected to X1,X2 pins X1 PLL output Fc PLLSEL 1: 11-13.5MHz => 44-54MHz ====> 44-54MHz

0: 8-11 MHz => 64-88MHz =1/2=> 32-44MHz

# 5.3 Clock System Block Diagram

# 5.3.1 Main System Clock

- Allows for oscillator connection or external clock input.
- Sets PLLON (quadrupled) at reset
- Selects PLL setting that corresponds to X1 input frequency by PLLSEL pin
- <u>Clock gear: 1,1/2, 1/4,1/8 (Default is 1/8)</u>
- Input frequency (high frequency)

<ul> <li>Input</li> </ul>	frequency (high frequency	uency)		$\bigcirc$
	Input frequency range	Maximum operating frequency	Lowest operating frequency	
PLLSEL="H" or "L" (both oscillator and external input)	8~13.5 (MHz)	54 MHz	4 MHz	
			-	))
	Z.			
	$\mathbb{C}$			
	$\sim$		$\rangle$	
		$ \geq $		
		×		
	$\langle \langle 0 \rangle \rangle$			

#### 5.3.2 Clock Gear

- Divides high speed clock into 1/1, 1/2, 1/4 and 1/8.
- The internal I/O prescaler clock oT0: fperiph/2, fperiph/4, fperiph/8 and fperiph/16

#### Fig. 5.3.2 shows a system clock transition diagram.



# 5.4 CG Registers

		7	6	5	4	3	2	1	0
SYSCR0	bit Symbol	XEN		RXEN			WUEF	PRCK1	PRCK0
(0xFFFF_EE00)	Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
	After reset	1	1	1	1	0	Ó	0	0
	Function	High-speed	Write "1".	Write "1".	Write "1".	This can be	Write "0".	Select presca	ler clock
		oscillator				read as "0."	$(\bigcirc$	00:fperiph/16	
		0: Stop						01:fperiph/8	
		1: Oscilla-						10:fperiph/4	
		tion					$( \neg \uparrow \land$	11:fperiph/2	
						$\sim$	$(\sqrt{3})$		
		15	14	13	12	11	10	9	8
SYSCR1	Bit symbol		SYSCKFL	SYSCK	FPSEL	SGEAR	GEAR2	GEAR1	GEAR0
STOCKT	Dit Symbol		G	STOCK	TFOLL	JOLAN	GLANZ	GLARI	GLARU
(0xFFFF_EE01)	Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W
/	After reset	0	0	0	0	0	1 /	$\langle 1 \rangle$	1
	Function	This can be	This can be	Write "0".	Select	Write "0".	Select gear of	high-speed cloc	k (fc)
		read as "0."	read as "0."		fperiph	$\langle \langle \rangle \rangle$		): fc1/2	
					0:fgear	$\bigcirc$	001: reserved		
					1;fc		010: reserved	110: fc1/4	
					$\square( \$	>	011: reserved	111: fc1/8	
		23	22	21	20	19	(18)	17	16
SYSCR2	Bit symbol	DRVOSCH		WUPT1	WUPTO	STBY1	STBY0		DRVE
(0xFFFF_EE02)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
	After reset	0	0	1	) 0	1 (()	// </td <td>0</td> <td>0</td>	0	0
	Function	High-speed	Write "0".	Select oscillat	or warm-up	Select stand-b	y mode	This can be	1: Drive the
		oscillator current		time	> /	00:reserved		read as "0."	pin even at
		control		00:no WUP	·	01:STOP			the STOP
		0: High	(	01:2 ⁸ / oscillat	ing frequency	10:reserved			mode.
		capability	( )	10:214/ oscillat	ting	11:IDLE			
		1: Low		frequency					
		capability	$\square$	11:2 ¹⁶ / oscillat	ing frequency				
		31	30	29	28	27	26	25	24
SYSCR3	Bit symbol		SCOSEL1	SCOSEL0	ALESEL				
(0xFFFF_EE03)	Read/Write	R	R/W	R/W	R/W	7		R	
	After reset	0	0	1	$\rightarrow$	0	0	0	0
	Function	This can be	Select SCOU	T output	Set ALE	This can be re	ad as "0."		
	/	read as "0."	00:reserved	$\sim$ (	output width				
	<	$\square$	01:fperiph		0:fsys×1				
		$\sim$	10:fsys		1:fsysx2				
			11:φΤΟ 🤇	$\sim$	$\geq$				

#### 5.4.1 System Control Registers

• Don't switch the SYSCK and the GEAR<2:0> simultaneously.

• If the system enters the STOP mode with SYSCR2<DRVOSCH> set at 1 (low capability), the setting will change to 0 (high capability) after the STOP mode is released.

SYSCK can be switched when XEN is set to "1."

(Note) Restriction to use clock gear

To activate peripheral I/O, use fc, fc1/2, fc1/4 or fc1/8 for SYSCR1<GEAR2:0>. Otherwise, it cannot operate properly.

#### 5.5 System Clock Controller

By resetting the system clock controller, the controller status switches to single clock mode and is initialized to  $\langle XEN \rangle =$ "1 and  $\langle GEAR2:0 \rangle =$ "111" and the system clock fsys changes to fc/8. (fc=fosc (original oscillation frequency)×4, because the original oscillation is quadrupled by PLL.) For example, when a 13-MHz oscillator is connected to the X1 or X2 pin, fsys becomes 6.25 MHz (=13.5×4×1/8) after the reset.

Similarly, when the oscillator is not connected and an external oscillator is used to input a clock instead, fsys becomes the frequency obtained from the calculation "input frequency×4×1/8."

(Note)Set the system clock frequency to be 4MHz or more as the default.

#### 5.5.1 Oscillation Stabilization Time (Switching between the NORMAL and STOP modes)

The warm-up timer is provided to confirm the oscillation stability of the oscillator when it is connected to the oscillator connection pin. The warm-up time can be selected by setting the SYSCR2<WUPT1:0> depending on the characteristics of the oscillator.

Table 5.5.1 shows warm-up time at switching.

- (Note 1) The time for warm-up is required even when an external clock (oscillator, etc.) is used and providing stable oscillation because the internal PLL is used even in this case.
- (Note 2) The warm-up timer operates according to the oscillation clock, and it can contain errors if there is any fluctuation in the oscillation frequency. Therefore, the warm-up time should be taken as approximate time.

$\supset'$	Table 5.5.1 Warm-up T	īme
	Warm-up time options	High speed clock
	SYSCR2 <wupt1:0></wupt1:0>	(fosc)
$\sim$	01 (2 ⁸ / oscillating frequency)	18.963(µs)
	10 (2 ¹⁴ / oscillating frequency)	1.214(ms)
<u></u>	11 (2 ¹⁶ / oscillating frequency)	4.855(ms)

These values are calculated under the following conditions:fosc = 13.5MHz

<Example 1> Transition from STOP mode to NORMAL mode SYSCR2<WUPT1:0>="xx": Select the warm-up time SYSCR0<XEN>="1" :Enable the high speed oscillation (fosc)

> <u>SYSCR1<SYSCK>="0"</u>:Switch the system clock to high speed (fgear) <u>SYSCR1<SYSCKFLG>Read</u>:"0"(confirm the current system is fgear)

#### 5.5.2 System Clock Pin Output Function

The system clock, fsys, fsys/2 or fs, can be output from the P46/SCOUT pin. By setting the port 4 related registers, P4CR<P46C> to "1" and P4FC<P46F> to "1," the P46/SCOUT pin becomes the SCOUT output pin. The output clock is selected by setting the SYSCR3<SCOSEL1:0>.

Table 5.5.2 shows the pin states in each standby mode when the P46/SCOUT pin is set to the SCOUT output.

	-		
	4.4.1		Stand-by mode
NORMAL		IDLE	STOP
	Reserv	is allowed.	
Out	out the fperiph clo	Fixed to "0" or "1".	
Οι	tput the fsys cloc	Fixed to 0 of 1.	
Output the ФТ0 clock.	Fix to "0".	Output the ΦT0 clock.	Fixed to "0".
	Out Output the	Output the fperiph clo Output the fsys cloc Output the Fix to "0".	IDLE       Reserved. No other setting       Output the fperiph clock.       Output the fsys clock.       Output the Fix to "0".

Table 5.5.2 SCOUT Output State in Each Standby Mode

(Note) The phase difference (AC timing) between the system clock output by the SCOUT and the internal clock is not guaranteed.

### 5.5.3 Reducing the Oscillator Driving Capability

This function is intended for restricting oscillation noise generated from the oscillator and reducing the power consumption of the oscillator when it is connected to the oscillator connection pin.

Setting the SYSCR2<DRVOSCH> to "1" reduces the driving capability of the high-speed oscillator. (low capability).

This is reset to the default setting "0." When the power is turned on, oscillation starts with the normal driving capability (high capability). This is automatically set to the high driving capability state (<DRVOSCH> ="0") whenever the oscillator starts oscillation due to mode transition.

• Reducing the driving capability of the high-speed oscillator



#### 5.6 Prescaler Clock Controller

Each internal I/O (TMRB0 to 23, TMRCA to B, SIO0 to A and SBI0 to 1) has a prescaler for dividing a clock. The clock  $\phi$ T0 to be input to each prescaler is obtained by selecting the "fperiph" clock, which is divided according to the setting of SYSCR0<PRCK1:0>, from the SYSCR1<FPSEL>. After the controller is reset, fperiph/16 is selected as  $\phi$ T0. For details, please refer to Fig. 5.3 System Clock Transition Diagram.

# 5.7 Clock Multiplication Circuit (PLL)

This circuit outputs the fpll clock that is quadruple of the high-speed oscillator output clock, fosc. This lowers the oscillator input frequency while increasing the internal clock speed.

#### 5.8 Standby Controller

The TX19A core has several low-consumption modes. To shift to the STOP or IDLE (Halt or Doze) mode, set the RP bit in the CPO status register, and then execute the WAIT instruction.

Before shifting to the mode, you need to select the standby mode at the system control register (SYSCR2).

The IDLE and STOP modes have the following features:

IDLE: Only the CPU is stopped in this mode.

The internal I/O has one bit of the ON/OFF setting register for operation at the IDLE mode in the register of each module. This enables operation settings at the IDLE mode. When the internal I/O has been set not to operate in the IDLE mode, it stops operation and holds the state when the system enters the IDLE mode.

Table-5.8 shows a list of IDLE setting registers.

Table 5	.8 Internal I/O setting	registers for the IDLE mode
	Internal I/O	IDLE mode setting register
	TMRB0~23	Textron <l2tbx></l2tbx>
	твта~в	TBTxRUN <i2tbt></i2tbt>
	SIO0~A	SCxMOD1 <i2sx></i2sx>
	SBI	SBIxBR0 <i2sbi></i2sbi>
	A/DC A ₇ B	ADxMOD1 <i2ad></i2ad>
	WDT	WDMOD <i2wdt></i2wdt>

(Note 1) The Halt mode is activated by setting the RP bit in the status register to "0," executing the WAIT command and shifting to the standby mode. In this mode, the TX19A processor core stops the processer operation while holding the status of the pipeline. The TX19A gives no response to the bus control authority request from the internal DMA, so the bus control authority is maintained in this mode.

(Note 2) The Doze mode is activated by setting the RP bit in the status register to "1" and shifting to the standby mode. In this mode, the TX19A processor core stops the processer operation while holding the status of the pipeline. The TX19A can respond to the bus control authority request given from the outside of the processor core.

STOP: All the internal circuits are brought to a stop.

# 5.8.1 CG Operations in Each Mode

				•	
Clock source	Mode	Oscillation circuit	PLL	Clock supply to peripheral I/O	Clock supply to CPU
Oscillator	Normal	0	0	0	0
	Idle (Halt)	0	0	Selectable	×
	Idle (Doze)	0	0	Selectable	
	Stop	×	×	×	×

Table 5.8.1	Status of CG in Each Operation Mode

O: ON or clock supply  $\times$ : OFF or no clock supply

# 5.8.2 Block Operations in Each Mode

Table 5.8.2 Block Operating Status in Each Operation Mode

Block	NORMA L	IDLE (Doze)	IDLE (Halt)	STOP	
TX19A processor core DMAC INTC External bus I/F IO port	0 0 0 0 0	× 0 0 0 0	× × 0 × ×		
ADC SIO I2C TMRB TMRC WDT 2-phase counter	0 0 0 0 0 0	ON/OFF see ach module	electable for	* * * * * *	
KWUP CG	0		0		
High speed oscillator <	0	0		$\mathcal{Q}$	

O: ON X: OFF

#### 5.8.3 Releasing the Standby State

The standby state can be released by an interrupt request when the interrupt level is higher than the interrupt mask level, or by the reset. The standby release source that can be used is determined by a combination of the standby mode and the state of the interrupt mask register <IM15:8> assigned to the status register in the system control coprocessor (CPO) of the TX19A processor core. Details are shown in Table 5.8.3 Standby Release Sources and Standby Release Operations.

• Release by an interrupt request

Operations of releasing the standby state using an interrupt request vary depending on the interrupt enabled state. If the interrupt level specified before the system enters the standby mode is equal to or higher than the value of the interrupt mask register, an interrupt handling operation is executed by the trigger after the standby is released, and the processing is started at the instruction next to the standby shift instruction (WAIT instruction). If the interrupt request level is lower than the value of the interrupt mask register, the processing is started with the instruction next to the standby shift instruction (WAIT instruction) without executing an interrupt handling operation. (The interrupt request flag is maintained at "1.") For a non-maskable interrupt, an interrupt handling is executed after the standby state is released irrespectively of the mask register value.

• Release by the reset

Any standby state can be released by the reset. It initializes the setting (the precedent status of the stand-by is maintained in the case of release by the interrupt).

Note that releasing of the STOP mode requires sufficient reset time to allow the oscillator operation to become stable (it must be longer than "the time required for stable oscillation +  $500\mu$ s").

Please refer to "6. Interrupt" for details of interrupts for STOP and IDLE release and ordinary interrupts

	(interrupt level)>(interrupt mask)						
In	Interrupt accepting state		Interrupt enable EI="1"		Interrupt disable EI= "0"		
Stand-by mode		and-by mode	IDLE (programmable)	STOP	IDLE (programmable)	STOP	
		INTNMI	O	Ø	$\bigcirc$	$\odot$	
		INTWDT	Ø	×	Ø	-	
ស្ន		INT0~B	O	$\odot$	o())	> 0	
Stand-by		KWUP00~7	Ø	Ø	0	0	
-by	Inte	INTTB0~23	Ø	×		×	
release	Interrupt	INTTBT/CAPG/CMPG	O	×		×	
ease	pt	INTRX0~A,INTTX0~A	Ø	×	0	×	
		INTADA/INTADHPA/	O	×	( )ø	×	
source		INTADM	Ô	×	0	×	
õ		INTADB/INTADHPB	Ô	×	• ·	×	
		INTDMAx	0	×	0	×	
	RESE	ET	Ø		$\rangle$ $\otimes$ $\angle$	$\bigcirc$	

#### Table 5.8.3 Standby Release Sources and Standby Release Operations

#### (Interrupt level)>(Interrupt mask)

Starts the interrupt handling after the standby mode is released. (The LSI is initialized by the reset.)
Starts the processing at the address next to the standby instruction (without executing the interrupt handling) after the standby mode is released.

x: Cannot be used for releasing the standby mode.

-: Cannot execute masking with an interruption mask when a non-maskable interrupt is selected.

#### 5.8.4 STOP Mode

In the STOP mode, all the internal circuits, including the internal oscillators, are brought to a stop. The pin states in the STOP mode vary depending on the setting of the SYSCR2<DRVE>. Table 5.8.4 shows the pin states in the STOP mode. When the STOP mode is released, the system clock output is started after the elapse of warm-up time at the warm-up counter to allow the internal oscillators to stabilize. After the STOP mode is released, the system returns to the operation mode that was active immediately before the STOP mode (NORMAL), and starts the operation.

It is necessary to make these settings before the instruction to enter the STOP mode is executed. Specify the warm-up time at the SYSCR2<WUPT1:0>.

(Note)To shift from the NORMAL mode to the STOP mode on the TMP19A63, do not set the SYSCR2<WUPT1:0> to "00" or "01" for the warm-up time setting. The internal system recovery time cannot be satisfied when the system recovers from the STOP mode.

Table 5.8.4	Warm-up Settings	or Transitions of	Operation Modes
-------------	------------------	-------------------	-----------------

Transition of	Warm-up setting
operating mode	
NORMAL→IDLE	Not required
NORMAL→STOP	Not required
IDLE→NORMAL	Not required
STOP→NORMAL	Required

#### TOSHIBA

#### 5.8.5 Recovery from the STOP Mode

1. Transition of operation modes: NORMAL -> STOP -> NORMAL



	ates in the STOP Mode in Each State Input/Output		<drve></drve>
Pin name		<drve>=0</drve>	<drve:< th=""></drve:<>
P00~P07	Input mode	-	-
	Output mode	-	Outpu
	AD0~AD7, D0~D7	-	-
P10~P17	Input mode	-	-
	Output mode, A8~A15	- ^	Outpu
	AD8~AD15, D8~D15	-	-
P20~P27	Input mode	- 6	Input
	Output mode, A0~A7/A16~A23	_ ((	Outpu
P30 (*RD), P31	Output pin	-	Outpu
(*WR)		(7/5)	\
P32,P35,P36	Input mode	PU*	Input
	Output mode,*HWR,*BUSAK,R/W_	PU*	Outpu
P33	Input mode,*WAIT,*RDY		Input
1 35	Output mode	PU*	Outpu
P34	Input mode	PU*	Input
F 34	Output mode	PU*	~!!!
	*BUSRQ		Outpu
	Input mode	PU*	Input
P37 (ALE)			Input
	Output mode	- <	Outpu
	ALE(Output mode)	-	$\sim \sim$
P40~P45	Input mode	PU*	Input
	Output mode,CS0~CS5	PU*	)) Outpu
P46 (SCOUT)	Input mode	(The second seco	Input
	Output mode	((/ / 5))	Outpu
P47	Input mode		Input
	Output mode		Outpu
P50~P57	Input mode	))-	Input
	Output mode, A0~A7	_//-	Outpu
P60~P67	Input mode	<u> </u>	Input
	Output mode, A8~A15	-	Outpu
P7, P8, P9,PA	Input pin,ANx0-ANx15	Input	Input
PB0~PB7	Input mode	-	Input
-	Output mode	-	Outpu
	TB8IN0~TBBIN1(Input mode)	-	Input
PC0~PC7	Input mode	-	Input
	Output mode	_	Outpu
$\sim$	TBCIN0~TBFIN1(Input mode)	_	Input
PD0,PD1,PD2,PD3,	Input mode	_	Input
PD4,PD5	Output mode	-	-
FD4,FD3	TB10IN0~TB12IN1(Input mode)	-	Outpu Input
	Input mode	-	
PD6,PD7		-	Input
	Output mode,TB14OUT,TB15OUT	-	Outpu
PE0, PE1, PE2, PE3,	Input mode,	-	Input
PE4	Output mode,TB16OUT,TB17OUT,	-	Outpu
	TB18OUT,TB19OUT,TB1AOUT		
PE5,PE6,PE7	Input mode,SI0/SCL0/SCK0	-	Input
$\geq$	Output mode,SO0/SCA0/SCK0	-	Outpu
PF0~PF2	Input mode,SCLK0,RXD0,*CTS0	-	Input
PF4~PF6	SCLK1,RXD1,*CTS1		
	Output mode,SCLK0,TXD0	-	Outpu
	SCLK1,TXD1		
			Input
PF3 ,PF7	Input mode	-	
PF3 ,PF7	Input mode Output mode	-	
	Output mode	-	Outpu
PG0~PG2	Output mode Input mode,SCLK2,RXD2,*CTS2		Outpu
	Output mode	-	Outpu Input Outpu

. .

Table 5.8.5 Pin St	ates in the STOP Mode in Each State	of SYSCR2 <d< th=""><th>RVE&gt; (2/3)</th></d<>	RVE> (2/3)
Pin name	Input/Output	<drve>=0</drve>	<drve>=1</drve>
PG3,PG7	Input mode, TBTIN1, TBTIN2	-	Input
	Output mode	-	Output
PH0~PH2	Input mode,SCLK4,RXD4,*CTS4	-	Input
PH4~PG6	SCLK5,RXD5,*CTS5	$\sim$	-
	Output mode,SCLK4,TXD4,SCLK5,TXD5	-	Output
PH3,PH7,PI3	Input mode	- (	Input
	Output mode	- ((	Output
	INT9,INTA,INTB(Input mode)	Input	Input
PI0~PI2	Input mode, SCLK6, RXD6,*CTS6	$\sim (7/5)$	Input
PI4~PI6	SCLK7,RXD7,*CTS7	$\langle \langle \vee \rangle$	)
	Output mode,SCLK6,TXD6,SCLK7,TXD7		Output
PI7	Input mode	$\left( \left( \begin{array}{c} \end{array} \right) \right)$	Input
	Output mode		Output
PJ0~PJ2	Input mode,SCLK8,RXD8,*CTS8	<u> </u>	Input
100102	Output mode, SCLK8, TXD8		Output
PJ3,PJ4	Input mode		Input
1 55,1 54	Output mode		Output
	TC0IN,TC1IN(Input mode)		Input
PJ5~PJ7	Input mode,SI1/SCL1/SCK1		
PJ3~PJ7	Output mode,SO1/SCA1/SCK1	$\overline{C}$	Input Output
	Input mode	-(02	
PK0~PK7			Input
	Output mode	$(\overline{\alpha})$	Output
	KEY0~KEY7(Input mode)	(Input	Input
PL0,PL1	Input mode		Input
	Output mode	<u> </u>	Output
	TC4IN,TC5IN(Input mode)	))-	Input
PL2	Input mode (	<u> </u>	Input
	Output mode		Output
PL3,PL7	Input mode	-	Input
	Output mode, TCOUT6, TCOUT7	-	Output
PL4~PL6	Input mode, SCLK9, RXD9, *CTS9	-	Input
	Output mode,SCLK9,TXD9	-	Output
PM0~PM5	Input mode	-	Input
	Output mode	-	Output
	INT0~INT5(Input mode)	Input	Input
PM6,PM7	Input mode	-	Input
	Output mode, TCOUT2, TCOUT3	-	Output
PN0~PN2			
PN3,PN7	Input mode	-	Input
	Output mode	-	Output
	ADTRG-1, ADTRG-2( Input mode)	-	Input
PN4~PN6	Input mode, SCLKA, RXDA, *CTSA	-	Input
	Output mode, SCLKA, TXDA	-	Output
P00~P07	Input mode	_	Input
	Output mode, TPD0~TPD7	_	Output
PR0~PP7	Input mode	_	
	Output mode,TPD0~TPD7	-	Input
	TPC0~TPC7	-	Output
		-	-
PQ0~PQ3	Input mode	-	Input
		-	Output
	DREQ2,DACK2,DREQ3,DACK3		
EJE,	Input pin	Input	Input
DINT,TMS,TCK	Input pin	Input	Input
TRST	Input pin	Input	Input

Table 5.8.5 Pin States in the STOP	Mode in Each State of SYSCR2 <drve> (2/3</drve>	3)	
		<i>-</i> ,	
Pin name	Input/Output	<drve>=0</drve>	<drve>=1</drve>
----------	--------------	------------------	------------------
*NMI	Input pin	Input	Input
*PLLSEL	Input pin	Input	Input
*RESET	Input pin	Input	Input
BUSMD	Input pin	Input	Input
ENDIAN	Input pin	Input	Input
BW0~1	Input pin	Input	Input
TEST1~3	Input pin	Input	Input
X1	Input pin	- (	
X2	Output pin	"H" level output	"H" level output

Table 5.8.5 Pin States in the STOP Mode in Each State of SYSCR2<DRVE> (3/3)

- :Indicates that the input is disabled for the input mode and the input pin and the impedance becomes high for the output mode and the output pin. Note that the input is enabled when the port function register (PxFC) is "1" and the port control register (PxCR) is "0" in case INTx or KWUPx are used for STOP release.
- Input : The input gate is active. To prevent the input pin from floating, fix the input voltage to the "L" or "H" level.
- Output :The pin is in the output state.
- PU^{*} : This is the programmable pull-up pin. The input gate is always disabled. No feedthrough current flows even if the high impedance is selected.

# 6. Exceptions/Interrupts

### 6.1 Overview

The TMP19A63 device is configured with the following 107 maskable interrupt factors and 14 exceptions including NMI. In this section, general exceptions and debug exceptions are described simply as "exceptions" and interrupts are described as "interrupts."

- General exceptions
  - Reset exception
  - Non-maskable interrupt (NMI)
  - Address error exception (instruction fetch)
  - Address error exception (load/store)
  - Bus error exception (instruction fetch)
  - Bus error exception (data access)
  - Co-processor unusable exception
  - Reserved instruction exception
  - Integer overflow exception
  - Trap exception
  - System call exception
  - Breakpoint exception
- Debug exception
  - Single step exception
  - Debug breakpoint exception
- Interrupts
  - Maskable software interrupts (2 factors)

Maskable hardware interrupts: 85 internal factors and 20 external factors (INT0~B,KWUP0~7)

The TMP19A63 device not only processes interrupt requests from internal hardware peripherals and external inputs but also forces transition to exception handling processes as a means of notifying any error status generated in normal instruction sequences.

By using the register bank called "shadow register set" newly implemented in the TX19A processor core, it is now unnecessary to save the general purpose register (GPR) contents elsewhere upon interrupt response thus leading to very fast interrupt response.

The device is capable of handling multiple interrupts according to seven programmable interrupt levels (priority orders). Also, it can mask interrupt requests with a priority level the same or lower than a specified mask level.

 $\Box / \wedge$ 

### 6.2 Exception Vector

The starting address of an exception handler is defined to be "exception vector address." The exception vector address for a reset exception and non-maskable interrupts is  $0xBFC0_0000$ . The exception vector address for a debug exception can be either  $0xBFC0_0480$  (EJTAG ProbEn = 0) or  $0xFF20_0200$  (EJTAG ProbEn = 1) depending on the internal signal <ProbEn>. For other exceptions, the corresponding exception vector addresses are determined depending on the values of Status <BEV> and Cause <IV> of the system control coprocessor register (CP0).

Table 6.1 Exception V	ector Table (Virtu	al Address)	
Exception	BEV=0	BEV=1	
Reset, NMI	0xBFC0_0000	0xBFC0_0000	
Debug exceptions (En=0)	0xBFC0_0480	0xBFC0_0480	G
Debug exceptions (En=1)	0xFF20_0200	0xFF20_0200	21
Interrupts (IV=0)	0x8000_0180	0xBFC0_0380	12
Interrupts (IV=1)	0x8000_0200	0xBFC0_0400	$\bigcirc)/$
Other exceptions	0x8000_0180	0xBFC0_0380	741

(Note) If exception vector addresses are to be placed in internal ROM, set the status bit <BEV> of the system control coprocessor register (CP0) to "1."

#### 6.3 Reset Exception

A reset exception is generated by either setting the external reset pin to "L" or counting the WDT beyond a "reset" count. When a reset exception is generated, peripheral hardware registers and the CP0 register are initialized and it jumps to the exception vector address 0xBFC0_0000. The PC value of reset exception generation will be stored in ErrorEPC of the CP0 register.

Since a reset exception causes to set the status bit <ERL> of the CP0 register to "1" disabling interrupt requests, the Status <ERL> bit must be cleared to "0" in a startup routine (reset exception handler) or by any other means if interrupts are to be used.

Refer to the section "Exception Handling, Reset Exception" of the separate volume "TX19A Core Architecture" for detailed operation upon generation of reset exception.

### 6.4 Non-maskable Interrupt (NMI)

An NMI is generated when WDT is counted to an NMI set count or when a bus error area is accessed by store access including DMA transfer. When an NMI is generated, the status bits <ERL> and <NMI> of the CP0 register are set to "1" and it jumps to the exception vector address 0xBFC0_0000.

The PC value of NMI generation will be stored in ErrorEPC of the CP0 register. Note that any NMI due to a bus error upon a store instruction causes an exception that is not synchronized with instruction sequence. Therefore, the PC value of an instruction being executed at the time of error generation will be stored instead of the PC value for the instruction that actually caused the error. Upon NMI generation, when the shadow register set is enabled, SSCR <CSS> will be overwritten by the value of SSCR <PSS> but the register bank will not be switched because the value of SSCR <CSS> is not updated. The reason why only the SSCR <PSS> value is updated is because it is necessary to prevent the register bank from being changed when SSCR <PSS> is overwritten by the value of SSCR <CSS> due to an ERET instruction executed upon returning from NMI.

The cause of NMI generation can be determined by NMIFLG <WDT> and <WBER> of CG (refer to the Section 6.11, NMI Flag Register). Refer to the section "Exception Handling, Non-Maskable Interruptions" of the separate volume "TX19A Core Architecture" for detailed operation upon generation of NMI.

### 6.5 General Exceptions (Other than Reset Exception and NMI)

A general exception will be generated when a specific instruction such as SYSCALL is executed or when any abnormalities such as an illegal instruction fetch is detected. When a general exception is generated and if Status <BEV> of the CP0 register is "1," it jumps to the exception vector address 0xBFC0_380. The cause of a general exception can be determined by Cause <ExCode> of the CP0 register.

The PC value at a general exception will be stored in EPC of the CP0 register. Note that any bus error exception (data access) is not synchronized with instruction sequence so the PC value of an instruction being executed at the time of error generation will be stored instead of the PC value for the instruction that actually caused the error. Upon a general exception, when the shadow register set is enabled, SSCR <CSS> will be overwritten by the value of SSCR <PSS> but the register bank will not be switched because the value of SSCR <CSS> is not updated. The reason why only the SSCR <PSS> value is updated is because it is necessary to prevent the register bank from being changed when SSCR <PSS> is overwritten by the value of SSCR <CSS> due to an ERET instruction executed upon returning from the exception.

Any illegal address that caused an address error exception (instruction fetch or load/store) or bus error (instruction fetch/data access) will be stored in BadVAddr of the CP0 register.

Refer to the corresponding sections of "Exception Handling" of the separate volume "TX19A Core Architecture" for detailed operation upon generation of general exceptions.

(Note 1) Address error exceptions (load/store) will not be generated in DMS transfer operations. In DMA transfer, address errors can be detected as configuration errors (CSRx <Conf> of DMAC).

(Note 2) Bus errors (data access) may be generated either by load instructions or by load accesses of DMA transfer operations.



Fig. 6.1 Example Sequence of General Exceptions (Other than Reset Exception and NMI)

(Note 1) Since general exceptions (other than reset exception/NMI and excluding trap exceptions, system call exceptions, and breakpoint exceptions) indicate some sort of abnormal conditions, the system tends to be reset.

(Note 2) Upon generation of a general exception other than reset exception/NMI, excluding bus error exceptions (instruction fetch/data access), the PC that caused the exception will be stored in EPC. Therefore, returning the system by simply using ERET may cause the same exception again.

### 6.6 Debug Exceptions

Single step exceptions and debug breakpoint exceptions are the types of debug exceptions. These types of exceptions are seldom used in user programs.

Also note that enabling the shadow register set will not be effective in debug exceptions.

Refer to the section "Exception Handling, Debug Exception" of the separate volume "TX19A Core Architecture" for detailed operation upon generation of debug exceptions.

### 6.7 Maskable Software Interrupts

Two-factor maskable software interrupts (hereinafter referred to simply as "software interrupts") can be generated by individually setting "1" to the Cause <IP [1:0]> bits of the CP0 register.

Software interrupts can be accepted in no less than three clocks after setting values to the Cause <IP [1:0]> bits of the CP0 register.

In order for a software interrupt request to be accepted, it is necessary regarding the CP0 register that its Status <IE> is set to "1" and Status <ERL/EXL> is cleared to "0" while Status <IM [1:0]> is "1." Also, software interrupts can be individually masked by setting Status <IM [1:0]> of the CP0 register to "0." If software and hardware interrupts coincide, the hardware interrupt overrides the software interrupt.

Upon software interrupts, when the shadow register set is enabled, SSCR <CSS> will be overwritten by the value of SSCR <PSS> but the register bank will not be switched because the value of SSCR <CSS> is not updated. The reason why only the SSCR <PSS> value is updated is because it is necessary to prevent the register bank from being changed when SSCR <PSS> is overwritten by the value of SSCR <CSS> due to an ERET instruction executed upon returning from the software interrupt. Software interrupts are processed in a process flow such as shown in Fig. 6.2.

(Note) "Software interrupt" is different from the idea of "software set" to be used as one of hardware interrupt factors, as described later. The idea of "Software set" is to generate a hardware interrupt by setting "01" to IMR00 <EIM00>.



### 6.8 Maskable Hardware Interrupts

#### 6.8.1 Features

The maskable hardware interrupts (hereinafter referred to as "hardware interrupts") are 63 factor interrupt requests for which the interrupt controller (INTC) can individually assign one of seven interrupt (priority) levels.

In order for a hardware interrupt request to be accepted, it is necessary regarding the CP0 register that its Status <IE> is set to "1" and Status <ERL/EXL> is cleared to "0" while Status <IM [4:2]> is set to "1."

If more than one interrupts are generated at the same time, the hardware interrupts are accepted in accordance with the priority order of the interrupt levels. If more than one interrupts of a same interrupt level are generated at the same time, these interrupts are accepted in the order of the interrupt number as listed in Table 6.2.

When an interrupt request is accepted, the Status <EXL> bit of the CP0 register is set to "1," further interrupts are disabled, and ILEV<CMASK> of INTC is automatically updated to the interrupt level set for the interrupt request. Note that Status <IE> of the CP0 register remains set to "1" in interrupt response operations.

In processing hardware interrupts, each interrupt level is associated with a register bank called a "shadow register set" which is enabled when CP0 register SSCR<SSD>="0". When an interrupt request is accepted, the register bank is switched to the register bank of which number is the same as with the corresponding interrupt level. Through this mechanism, it is unnecessary for the user program to save the general purpose register (GPR) contents elsewhere upon interrupt response thus ensuring fast interrupt response.

For accepting multiple interrupts, Status <EXL> of the CP0 register is cleared to "0" to permit further interrupts. In this, because ILEV <CMASK> of INTC has been updated to the interrupt level set for the interrupt request already accepted, only further interrupts of which level is higher than the present interrupt level can be accepted. Refer to Section 6.9.3 "Example of Multiple Interrupt Setting" for more details of multiple interrupts.

Also, by appropriately setting the ILEV <CMASK> register of INTC, you can mask interrupt requests of which interrupt level is lower than a programmed mask level.

Any interrupt request can be used as a trigger to start a DMA transfer sequence.

While detailed operation of hardware interrupts is provided below, please also refer to the section "Exception Handling, Maskable Interrupts (Interrupts)" of the separate volume "TX19A Core Architecture" for more details.



Fig. 6.2 Interrupt Notification Diagram

Interrupt Number	IVR[7:0]		Interrupt Control Register	Address
0	0x000	Software set	IMC0	0xFFFF_E000
1	0x004	INTO		
2	0x008	INT1	~	
3	0x00C	INT2		
4	0x010	INT3	IMC1	0xFFFF_E004
5	0x014	INT4		
6	0x018	INT5		
7	0x01C	INT6		0 5555 5000
8	0x020	INT7	IMC2	0xFFFF_E008
9 10	0x024 0x028	INT8 INT9		
11	0x028 0x02C	INTA		
12	0x020	INTB	IMC3	0xFFFF_E00C
13	0x034	KWUP		
14	0x038	INTRX0 :		
15	0x03C	INTTX0 :		
16	0x040	INTRX1 :	MMC4	0xFFFF_E010
17	0x044	INTTX1 :		~
18	0x048	INTRX2 :		
19	0x04C			
20 21	0x050 0x054	INTSBIA : INTADHPA :	IMC5	0xFFFF_E014
21	0x054 0x058	INTADHPA . INTADHPB :		
22	0x058 0x05C	INTADIFE :	$\mathcal{C}$	
24	0x060	INTTBO0:	IMC6	0xFFFF_E018
25	0x064	INTTB08 :		
26	0x068	INTTB12:		
27	0x06C	INTTB14 :		
28	0x070	INTTB01-07 :	IMC7	0xFFFF_E01C
29	0x074	INTTB09-0F:		
30	0x078	INTTB10-17:		
31 32	0x07C 0x080	INTTB18-1F: INTTB20-23:	IMC8	0xFFFF_E020
32 33	0x080 0x084	INT I B20-23. INTCAPG :	INCO	UXFFFF_EU2U
34	0x088	INTCMPGR :		
35	0x08C	INTTBT :		
36	0x090	Reserved	IMC9	0xFFFF_E024
37	0x094	INTRX3 :		
38	0x098	INTTX3:		
39	0x09C	INTRX4 : ( // <		
40	0x0A0		IMCA	0xFFFF_E028
41	0x0A4			
42 43	0x0A8 0x0AC	INTTX5:		
43	0x0AC	INTIX6:	IMCB	0xFFFF_E02C
45	0x0B4	INTRX7	INICE	0001111_E020
46	0x0B8	INRTX7 :		
47	0x0BC	INTRX8 :		
48	0x0C0	INTTX8 :	IMCC	0xFFFF_E030
49	0x0C4	INTRX9 :		
50	0x0C8			
51				
52 53	0x0D0 0x0D4	INTRXA : INTTXA :	IMCD	0xFFFF_E034
53	0x0D4 0x0D8	INTERA.		
55	0x0DC	INTDMA1		
56	0x0E0	INTDMA2:	IMCE	0xFFFF_E038
57	0x0E4	INTDMA3 :		
58	0x0E8	INTDMA4 :		
59	0x0EC	INTDMA5 :		
60	0x0F0	INTDMA6 :	IMCF	0xFFFF_E03C
61 62	0x0F4			
62 63	0x0F8			
63	0x0FC	INTADB :		

### Table 6.8.2 List of Hardware Interrupt Factors

(Note 1) While IMCxx is a 32 bit register, 8 bit/16 bit access is also accepted.

### (Note 2) Each factor can clear the IDLE mode.

Number	Interrupt Factor	Note
0	INTO	External interrupt 0
1	INT1	External interrupt 1
2	INT2	External interrupt 2
3	INT3	External interrupt 3
4	INT4	External interrupt 4
5	INT5	External interrupt 5
6	INT6	External interrupt 6
7	INT7	External interrupt 7
8	INT8	External interrupt 8
9	INT9	External interrupt 9
10	INTA	External interrupt A
11	INTB	External interrupt B
12	KWUP	Key On Wake up interrupt
13	Reserved	
14	Reserved	
15	Reserved	$\langle \langle \rangle \rangle$

* Number 0 to 12 interrupt factors can cancel Stop and Idle modes.

# 6.8.2 Interrupt Grouping Registers

		_	-	_		-	-		
		7	6	5	4	3	2	1	0
	Bit Symbol							INTADMB	INTADMA
	Read/Write					ર			
ADCINT						۲. 			
-	After Reset							0	0
(0xFFFF_E700)	Function						~	:Interrupt	: Interrupt
	1 unction							-	-
								0: No	0: No
							$\sim$	1: Yes	1: Yes
							* AD monitor	ring function	for interrupt
		15	14	13	12	11	10	9	8
	Dit Cumhal							IMINTADMB	IMINTADMA
	Bit Symbol						107-	TIVIIINTADIVIB	IIVIINTADIVIA
	Read/Write				R	w _	$\left( \left( \right) \right) $		
	After Reset							0	0
							$\rightarrow$	:With MASK	-
	Function						$\sim$	:WITH MASK	:With MASK
								0: No	0: No
								1: Yes	1: Yes
								1. 163	1. 163
								$\frown$	
		7	6	5	4		2	1	0
							2		0
	Bit Symbol	INTTB07	INTTB06	INTTB05	INTTB04	INTTB03	TINTB02	INTTB01	$\sim$
	Read/Write				_	R		(	
TMRBINTA	After Reset	0	0	0	0	7/0	0		
(0xFFFF_E704)			-	-					
(	Function	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	
		0: No	0: No	0: No	0: No	0: No	0: No	0: No / /	
		1: Yes	1: Yes	1: Yes	1 Yes	1: Yes	1: Yes	1: Yes	
							$\langle \rangle$	$\sim$	
				10					
		15	14	13 🖉	12	11	(10)	9	8
	Bit Symbol	IMINTTB07	IMINTTB06	IMINTTB05	IMINTTB04	IMINTTB03	TIMINTB02	/ IMINTTB01	
	Read/Write		1			W (	$\sim$		
			r	$-(\bigcirc$			7/A	1	1
	After Reset	0	0	0	0	0 ((	0	0	
	Function	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	With MASK	: With MASK	
	. anotion				O: No				
		0: No	0: No	0: No	0: No	0: No	0: No	0: No	
		1: Yes	1: Yes	1: Yes	1: Yes 🗸 🗸	1: Yes	1: Yes	1: Yes	
		1							
		7	6	) 5	4	3	2	1	0
	Bit Symbol								0
	Bit Symbol	7 INTTB0F	6 INTTBOE	5 INTTBOD	INTTB0C	INTTB0B	2 TINTB0A	1 INTTB09	0
	Read/Write	INTTB0F	INTTBOE	INTTBOD	INTTB0C	INTTB0B R	TINTB0A	INTTB09	0
TMRBINTB					INTTB0C	INTTB0B			0
TMRBINTB (0xFFFF_E708)	Read/Write After Reset	INTTBOF 0	INTTBOE 0	INTTBOD 0	INTTBOC	INTTBOB R 0	TINTB0A 0	INTTB09 0	0
	Read/Write	INTTB0F 0 : Interrupt	INTTB0E 0 : Interrupt	INTTBOD 0 : Interrupt	INTTBOC 0 : Interrupt	INTTB0B R 0 Interrupt	TINTB0A 0 : Interrupt	INTTB09 0 : Interrupt	0
	Read/Write After Reset	INTTBOF 0	INTTBOE 0	INTTBOD 0	INTTBOC	INTTBOB R 0	TINTB0A 0	INTTB09 0	0
	Read/Write After Reset	INTTB0F 0 : Interrupt 0: No	INTTB0E 0 : Interrupt 0: No	INTTBOD 0 : Interrupt 0: No	INTTBOC 0 : Interrupt 0: No	INTTB0B R 0 Interrupt 0: No	0 0 0: Interrupt 0: No	0 INTTB09 Interrupt 0: No	0
	Read/Write After Reset	INTTB0F 0 : Interrupt	INTTB0E 0 : Interrupt	INTTBOD 0 : Interrupt	INTTBOC 0 : Interrupt	INTTB0B R 0 Interrupt	TINTB0A 0 : Interrupt	INTTB09 0 : Interrupt	0
	Read/Write After Reset	INTTB0F 0 : Interrupt 0: No	INTTB0E 0 : Interrupt 0: No	INTTBOD 0 : Interrupt 0: No	INTTBOC 0 : Interrupt 0: No	INTTB0B R 0 Interrupt 0: No	0 0 0: Interrupt 0: No	0 INTTB09 Interrupt 0: No	0
	Read/Write After Reset	INTTB0F 0 : Interrupt 0: No	INTTB0E 0 : Interrupt 0: No	INTTBOD 0 : Interrupt 0: No	INTTBOC 0 : Interrupt 0: No	INTTB0B R 0 Interrupt 0: No	0 0 0: Interrupt 0: No	0 INTTB09 Interrupt 0: No	8
	Read/Write After Reset Function	INTTBOF 0 : Interrupt 0: No 1: Yes 15	INTTBOE 0 : Interrupt 0: No 1: Yes 14	INT BOD 0 : Interrupt 0: No 1: Yes 13	INTTBOC 0 : Interrupt 0: No 1: Yes 12	INTTB0B R 0 Interrupt 0: No 1: Yes 11	TINTBOA 0 : Interrupt 0: No 1: Yes 10	INTTB09 0 : Interrupt 0: No 1: Yes 9	
	Read/Write After Reset Function Bit Symbol	INTTBOF 0 : Interrupt 0: No 1: Yes	INTTBOE 0 : Interrupt 0: No 1: Yes	INT BOD 0 : Interrupt 0: No 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTBOC	INTTBOB R Interrupt 0: No 1: Yes 11 IMINTTBOB	TINTBOA 0 : Interrupt 0: No 1: Yes	INTTB09 0 : Interrupt 0: No 1: Yes	
	Read/Write After Reset Function	INTTBOF 0 : Interrupt 0: No 1: Yes 15	INTTBOE 0 : Interrupt 0: No 1: Yes 14	INT BOD 0 : Interrupt 0: No 1: Yes 13	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTBOC	INTTB0B R 0 Interrupt 0: No 1: Yes 11	TINTBOA 0 : Interrupt 0: No 1: Yes 10	INTTB09 0 : Interrupt 0: No 1: Yes 9	
	Read/Write After Reset Function Bit Symbol	INTTBOF 0 : Interrupt 0: No 1: Yes 15	INTTBOE 0 : Interrupt 0: No 1: Yes 14	INT BOD 0 : Interrupt 0: No 1: Yes 13	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTBOC	INTTBOB R Interrupt 0: No 1: Yes 11 IMINTTBOB	TINTBOA 0 : Interrupt 0: No 1: Yes 10	INTTB09 0 : Interrupt 0: No 1: Yes 9	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMINTTBOF	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINTTBOD 0	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0	
	Read/Write After Reset Function Bit Symbol Read/Write	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0 : With MASK	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMINTTBOF	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINTTBOD 0	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINITBOD 0 : With MASK 0: No	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0 : With MASK 0: No	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0 : With MASK	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINITBOD 0 : With MASK 0: No	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0 : With MASK 0: No	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1; Yes	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes	INTTBOD 0 Interrupt 0: No 1: Yes 13 IMINTBOD 0 With MASK 0: No 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0 : With MASK 0: No 1: Yes	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No	
	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMINTTBOF 0 : With MASK 0: No 1: Yes 7	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R. 0 : With MASK 0: No	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK 0: No 1: Yes 1	8
	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1; Yes	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes	INTTBOD 0 Interrupt 0: No 1: Yes 13 IMINTBOD 0 With MASK 0: No 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes	8
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMINTTBOF 0 : With MASK 0: No 1: Yes 7	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes	INTTBOD 0 : Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK 0: No 1: Yes 1	8
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1; Yes 7 INTTB17	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes M 0 : With MASK 0: No 1: Yes 3 INTTB13 R	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1: Yes	8 0 INTTB10
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTB0F 0 : With MASK 0: No 1; Yes 7 INTTB17 0	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0	INTTBOD 0 i Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK 0: No 1: Yes 1 INTTB11 0	8 0 INTTB10 0
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16	INTTBOD 0 Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : INTTB11     0     : Interrupt	8 0 INTTB10 0 : Interrupt
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTB0F 0 : With MASK 0: No 1; Yes 7 INTTB17 0	INTTBOE 0 : Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0	INTTBOD 0 i Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK 0: No 1: Yes 1 INTTB11 0	8 0 INTTB10 0
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No	8 0 INTTB10 0 : Interrupt 0: No
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16	INTTBOD 0 Interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : INTTB11     0     : Interrupt	8 0 INTTB10 0 : Interrupt
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No	8 0 INTTB10 0 : Interrupt 0: No
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes	8 0 INTTB10 0 : Interrupt 0: No 1: Yes
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 14 14 14 15 16 17 16 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes 13	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTFBOC R. 0 : With MASK 0: No 1: Yes 4	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 11 12 13 13 14 14 15 15 15 15 15 15 15 15 15 15	TINTBOA 0 : Interrupt 0: No 1: Yes 10 TIMINTBOA 0 : With MASK 0: No 1: Yes	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK 0: No 1: Yes 1 INTTB11 0 : Interrupt 0: No 1: Yes 9	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Bit Symbol	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes	8 0 INTTB10 0 : Interrupt 0: No 1: Yes
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 14 14 14 15 16 17 16 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes 13	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 11 11 12 13 13 14 14 15 15 15 15 15 15 15 15 15 15	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09 0 : Interrupt 0: No 1: Yes 9 IMINTTB09 0 : With MASK 0: No 1: Yes 1 INTTB11 0 : Interrupt 0: No 1: Yes 9	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15 IMINTTB17	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 INTTB16	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes 13 IMINTTB15	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes     9     IMINTTB11	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8 IMINTTB10
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTB0F 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15 IMJNTTB17 0 : Interrupt 0 : No 1: Yes	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 IMINTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 0 0 0 0 0 0 0 0 0 0 0	INTTBOD 0 1 Interrupt 0: No 1: Yes 13 IMINTTBOD 0 2: With MASK 0: No 1: Yes 5 INTTB15 0 2: Interrupt 0: No 1: Yes 13 IMINTTB15 0 1: Yes 13 IMINTTB15 0 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes     9     IMINTTB11     0	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8 IMINTTB10 0
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15 IMINTTB17	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 INTTB16	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes 13 IMINTTB15	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes     9     IMINTTB11	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8 IMINTTB10
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMINTBOF 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15 IMINTTB17 0 : With MASK	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 IMINTB16 0 : Nterrupt 0: No 1: Yes 14 IMINTTB16 0 : With MASK	INTTBOD 0 1 Interrupt 0: No 1: Yes 13 IMINTTBOD 0 2: With MASK 0: No 1: Yes 5 INTTB15 0 2: Interrupt 0: No 1: Yes 13 IMINTTB15 0 2: Interrupt 0: No 1: Yes 13 IMINTTB15 0 2: Interrupt 0: No 1: Yes	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes     9     IMINTTB11     0     : With MASK	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8 IMINTTB10 0 : With MASK
(0xFFFF_E708)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	INTTBOF 0 : Interrupt 0: No 1: Yes 15 IMJNTTB0F 0 : With MASK 0: No 1: Yes 7 INTTB17 0 : Interrupt 0: No 1: Yes 15 IMJNTTB17 0 : Interrupt 0 : No 1: Yes	INTTBOE 0 Interrupt 0: No 1: Yes 14 JMINTTBOE 0 : With MASK 0: No 1: Yes 6 INTTB16 0 : Interrupt 0: No 1: Yes 14 IMINTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 INTTB16 0 0 0 0 0 0 0 0 0 0 0 0 0	INTTBOD 0 interrupt 0: No 1: Yes 13 IMINTTBOD 0 : With MASK 0: No 1: Yes 5 INTTB15 0 : Interrupt 0: No 1: Yes 13 IMINTTB15 0 : Interrupt 0: No 1: Yes 13 IMINTTB15 0 0 : Interrupt 0 : No 1: Yes 0 0 : With MASK 0 0 : With MASK 0 : With MASK 0 : With MASK 0 : With MASK 0 : No 1: Yes 5 INTTB15 0 : Interrupt 0 : Interrupt 0 : With MASK 0 : With MASK 0 : No 1: Yes 0 : With MASK 0 : No 1: Yes 0 : Interrupt 0 : Interrupt 0 : Interrupt 0 : No 1: Yes 0 : Interrupt 0 : No 1: Yes 0 : No 1: Yes 0 : No 1: Yes 0 : O : Interrupt 0 : No 1: Yes 0 : O 0 : O 0 : O 0 : O 0 : Interrupt 0 : O 0 : O 0 0 : O 0 0 : O 0 0 : O 0 0 : O 0 0 0 0 : O 0 0 0 0 0 0 0 0 0 0 0 0 0	INTTBOC 0 : Interrupt 0: No 1: Yes 12 IMINTTBOC R 0 : With MASK 0: No 1: Yes 4 12 12	INTTBOB R 0 Interrupt 0: No 1: Yes 11 IMINTTBOB W 0 : With MASK 0: No 1: Yes 3 INTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes 11 IMINTTB13 R 0 : Interrupt 0: No 1: Yes	TINTBOA     0     : Interrupt     0: No     1: Yes     10     TIMINTBOA     0     : With MASK     0: No     1: Yes     2	INTTB09     0     : Interrupt     0: No     1: Yes     9     IMINTTB09     0     : With MASK     0: No     1: Yes     1     0     : With MASK     0: No     1: Yes     1     0     : Interrupt     0: No     1: Yes     9     IMINTTB11     0	8 0 INTTB10 0 : Interrupt 0: No 1: Yes 8 IMINTTB10 0

	~		-		•				
		7	6	5	4	3	2	1	0
	Bit Symbol	INTTB1F	INTTB1E	INTTB1D	INTTB1C	INTTB1B	TINTB1A	INTTB19	INTTB18
TMRBINTD	Read/Write		•		•				
(0xFFFF_E710)	After Reset	0	0	0	0	0	0	0	0
(0	Function	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt
		0: No	0: No	0: No	0: No	0: No	0: No	0: No	0: No
		1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes
		15	14	13	12	11	10	9	8
	Bit Symbol	IMINTTB1	IMINTTB1	IMINTTB1	IMINTTB1	IMINTTB1	TIMINTB1	HMINTTB1	IMINTTB1
	Read/Write				R/W				
	After Reset	0	0	0	0	0	0	Ø	0
	Function	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK
		0: No	0: No	0: No	0: No	0: No	0: No	0: No	0: No
		1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes
						(	$\sim$		
		7	6	5	4	3	2	1	0
	Bit Symbol	INTCPT	INTCPT	INTCPT	INTCPT	INTTB23	TINTB22	INTTB21	INTTB20
	Read/Write	0B	0A	09	08		R		
TMRBINTE	After Reset		1		1		0	0	0
(0xFFFF_E714)	Function	: Interrupt	: Interrupt	: Interrupt	: Interrupt		-		
	FUNCTION	: Interrupt	: Interrupt		: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt
		0: No	0: No	0: No	0: No	0: No 1: Yes	0: No	0: No	0: No
		1: Yes	1: Yes	1: Yes	1: Yes	1. res	1: Yes	1: Yes	1: Yes
	<u> </u>	15	14	13	12	11	10	9	8
	Bit Symbol	IMINT	I4 IMINT	IMINT	IMINT	IMINTTB2	TIMINTB2	JMINTTB2	o IMINTTB2
	Bit Symbol	CPT0B	CPT0A	CPT09	CPT08	3	2	1	0
	Read/Write					/W		77	
	After Reset					0		0	0
	Function	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	: With MASK
		0: No	0: No	0: No	0: No	0: No	0: No	0: No	0: No
		1: Yes	1: Yes	1: Yes	1; Yes	1: Yes	1: Yes	1: Yes	1: Yes
						$\langle \rangle$			
		7	6	5	4	3	2	1	0
	Bit Symbol	7	6	INTCAP	INTCAP	3	2	INTCAP	INTCAP
		7	6		INTCAP B0		2		-
	Read/Write	7	6	INTCAP B1	INTCAP B0	3	2	INTCAP A1	INTCAP A0
<b>CAPINT</b> (0xFFFF_E718)		7	6	INTCAP B1 0	INTCAP B0 0		2	INTCAP A1 0	INTCAP A0 0
-	Read/Write After Reset	7	6	INTCAP B1 0 : Interrupt	INTCAP B0 F 0 : Interrupt		2	INTCAP A1 0 : Interrupt	INTCAP A0 0 : Interrupt
-	Read/Write	7	6	INTCAP B1 0 : Interrupt 0: No	INTCAP B0 F 0 : Interrupt 0: No		2	INTCAP A1 0 : Interrupt 0: No	INTCAP A0 0 : Interrupt 0: No
-	Read/Write After Reset		6	INTCAP B1 0 : Interrupt	INTCAP B0 F 0 : Interrupt		2	INTCAP A1 0 : Interrupt	INTCAP A0 0 : Interrupt
-	Read/Write After Reset			INTCAP B1 0 : Interrupt 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes		/	INTCAP A1 0 : Interrupt 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes
-	Read/Write After Reset Function	7	6	INTCAP B1 0 : Interrupt 0: No 1: Yes 13	INTCAP B0 Interrupt 0: No 1: Yes		10	INTCAP A1 0 : Interrupt 0: No	INTCAP A0 : Interrupt 0: No 1: Yes 8
-	Read/Write After Reset			INTCAP B1 0 : Interrupt 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes		/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9	INTCAP A0 : Interrupt 0: No 1: Yes
-	Read/Write After Reset Function			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP	INTCAP B0 Interrupt 0: No 1: Yes 12 IMINTCAP B0		/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP	INTCAP A0 : Interrupt 0: No 1: Yes 8 IMINTCAP
-	Read/Write After Reset Function			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP	INTCAP B0 Interrupt 0: No 1: Yes 12 IMINTCAP B0	11	/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP	INTCAP A0 : Interrupt 0: No 1: Yes 8 IMINTCAP
-	Read/Write After Reset Function Bit Symbol Read/Write After Reset			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1	INTCAP B0 Interrupt 0: No 1: Yes 12 IMINTCAP B0	11	/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1	INTCAP A0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0
-	Read/Write After Reset Function Bit Symbol Read/Write			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0	INTCAP B0 Interrupt 0: No 1: Yes MINTCAP B0 R/ 0	11	/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0	INTCAP A0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0
-	Read/Write After Reset Function Bit Symbol Read/Write After Reset			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK	INTCAP B0 Interrupt 0: No 1: Yes 12 IMINTCAP B0 R/ 0 : With MASK	11	/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK	INTCAP A0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 : With MASK
-	Read/Write After Reset Function Bit Symbol Read/Write After Reset			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No	INTCAP B0 Interrupt 0: No 1: Yes 12 IMINTCAP B0 R/ 0 : With MASK 0: No	11	/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No
-	Read/Write After Reset Function Bit Symbol Read/Write After Reset			INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No	INTCAP B0 Interrupt 0: No 1: Yes 12 IMINTCAP B0 R/ 0 : With MASK 0: No	11	/	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No
-	Read/Write After Reset Function Bit Symbol Read/Write After Reset	15 15 7 INTCMP	14 6 INTCMP	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes MINTCAP B0 R/ 0 : With MASK 0: No 1: Yes	11 W 3 INTCMP	10 10 2 INTCMP	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol	7		INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1	10	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	15 15 INTCMP B1	6 INTCMP B0	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1	10 INTCMP A0	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Bit Symbol Read/Write After Reset	7 INTCMP B1 0	6 INTCMP B0 0	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1 R 0	10 10 INTCMP A0 0	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	7 INTCMP B1 0 : Interrupt	6 INTCMP B0 0 : Interrupt	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1 R 0 : Interrupt	10 10 INTCMP A0 : Interrupt	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Bit Symbol Read/Write After Reset	7 INTCMP B1 0 : Interrupt 0: No	6 INTCMP B0 0 Interrupt 0; No	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1 R 0 : Interrupt 0: No	10 10 INTCMP A0 : Interrupt 0: No	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Bit Symbol Read/Write After Reset	7 INTCMP B1 0 : Interrupt	6 INTCMP B0 0 : Interrupt	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1 R 0 : Interrupt	10 10 INTCMP A0 : Interrupt	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Bit Symbol Read/Write After Reset	7 INTCMP B1 0 : Interrupt 0: No 1: Yes	6 INTCMP B0 0 Interrupt 0: No 1: Yes	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes MINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1 R 0 : Interrupt 0: No 1: Yes	10 10 INTCMP A0 : Interrupt 0: No 1: Yes	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15	6 INTCMP B0 Interrupt 0: No 1: Yes 14	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes	INTCAP B0 Interrupt 0: No 1: Yes IMINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W INTCMP A1 C Interrupt 0: No 1: Yes 11	2 INTCMP A0 : Interrupt 0: No 1: Yes 10	INTCAP A1 0 : Interrupt 0: No 1: Yes 9 IMINTCAP A1 0 : With MASK 0: No 1: Yes	INTCAP A0 : Interrupt 0: No 1: Yes MINTCAP A0 : With MASK 0: No 1: Yes
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Bit Symbol Read/Write After Reset	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15 IMINTCM	6 INTCMP B0 0 : Interrupt 0: No 1: Yes 14 IMINTCM	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes MINTCAP B0 R/ 0 : With MASK 0: No 1: Yes 4	11 W 3 INTCMP A1 3 0 : Interrupt 0: No 1: Yes 11 IMINTCM	10 10 INTCMP A0 : Interrupt 0: No 1: Yes 10 IMINTCM	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Bit Symbol	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15	6 INTCMP B0 Interrupt 0: No 1: Yes 14	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes No 1: Yes With MASK 0: No 1: Yes 4	11 W 11 W 11 W 11 INTCMP A1 3 0 : Interrupt 0: No 1: Yes 11 IMINTCM PA1	2 INTCMP A0 : Interrupt 0: No 1: Yes 10	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15 IMINTCM PB1	14 14 6 INTCMP B0 0 : Interrupt 0: No 1: Yes 14 IMINTCM PB0	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes No 1: Yes With MASK 0: No 1: Yes 4	11 W 11 W 11 W 11 11 11 11 11	10 10 INTCMP A0 : Interrupt 0: No 1: Yes 10 IMINTCM PA0	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15 IMINTCM PB1 0	6 INTCMP B0 0 : Interrupt 0: No 1: Yes 14 IMINTCM PB0 0	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes No 1: Yes With MASK 0: No 1: Yes 4	A 11 W 11 W 11 W 11 0: No 1: Yes 11 IMINTCM PA1 W 0 0	10 10 INTCMP A0 : Interrupt 0: No 1: Yes 10 IMINTCM PA0 0	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15 IMINTCM PB1 0 : With MASK	14 14 14 14 14 14 10 10 10 10 10 10 10 10 10 10	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes No 1: Yes With MASK 0: No 1: Yes 4	3 INTCMP A1 3 0 : Interrupt 0: No 1: Yes 11 IMINTCM PA1 W 0 : With MASK	10 10 INTCMP A0 : Interrupt 0: No 1: Yes 10 IMINTCM PA0 0 : With MASK	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0
(0xFFFF_E718)	Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset Function Bit Symbol Read/Write After Reset	7 INTCMP B1 0 : Interrupt 0: No 1: Yes 15 IMINTCM PB1 0	6 INTCMP B0 0 : Interrupt 0: No 1: Yes 14 IMINTCM PB0 0	INTCAP B1 0 : Interrupt 0: No 1: Yes 13 IMINTCAP B1 0 : With MASK 0: No 1: Yes 5	INTCAP B0 Interrupt 0: No 1: Yes No 1: Yes With MASK 0: No 1: Yes 4	A 11 W 11 W 11 W 11 0: No 1: Yes 11 IMINTCM PA1 W 0 0	10 10 INTCMP A0 : Interrupt 0: No 1: Yes 10 IMINTCM PA0 0	INTCAP A1 0 : Interrupt 0: No 1: Yes IMINTCAP A1 0 : With MASK 0: No 1: Yes 1	INTCAP A0 0 : Interrupt 0: No 1: Yes 8 IMINTCAP A0 0 : With MASK 0: No 1: Yes 0

		7	6	5	4	3	2	1	0
	Bit Symbol	INTCPT 11	INTCPT 10	INTCPT 0F	INTCPT 0E	INTCPT 0D		INTTBTB	INTTBTA
TBTINT	Read/Write			-		R			
(0xFFFF_E720)	After Reset							0	0
/		: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt		: Interrupt	: Interrupt
	Function	0: No	0: No	0: No	0: No	0: No	$\sim$	0: No	0: No
		1: Yes	1: Yes	1: Yes	1: Yes	1: Yes		1: Yes	1: Yes
		45	4.4	40	40	44			0
	Dit Cumbal	15 IMAINIT	14 IMINT	13	12	11 IMINT	10	9 IMINT	8 IMINT
	Bit Symbol	IMINT CPT11	CPT10	IMINT CPT0F	IMINT CPT0E	CPT0D		ТВТВ	TBTA
	Read/Write					W ~	(7/4)		
	After Reset						$\langle \langle O \rangle$	0	0
		: With MASK	: With MASK	: With MASK	: With MASK	: With MASK	$\sim$	: With MASK	: With MASK
	Function	0: No	0: No	0: No	0: No	0: No		0: No	0: No
		1: Yes	1: Yes	1: Yes	1: Yes	1: Yes		1: Yes	1: Yes
						$\square$			
						$\langle \rangle$	>		
		7	6	5	4	3	2	$\wedge$	0
	Bit Symbol	KEYINT7	KEYINT6	KEYINT5	KEYIN74	KEYINT3	KEYINT2	KEYINT1	KEYINT0
/UPST	Read/Write				((/ß		$\sim$ (	$\bigcirc$	
FFF_F910)	After Reset	0	0	0	0	0	<u> </u>	$\langle 0 \rangle$	0
	Function	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt	: Interrupt
		0: No	0: No	0: No	01 No	0: No	0: No	0: No	0: No
		1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes	1: Yes
							75		
			C				)		
				))					
			$(( \uparrow \uparrow)$	)					
			$\sim$		12	$\geq$			
		( (	7/~			~			
	/	$\sim$ (V	())		$\sim$				
		$\frown$	$\subseteq$	. (C	7/~				
				$<$ $\lor$	( ))				
		$\bigvee$	_/						
		$\langle \langle \rangle$		$ \longrightarrow $					
			<pre> &lt; </pre>		7				
	$\sim$ $\sim$	~							
		Л	$\land$	$\sim$					
		)							
	$( \bigcirc )$		$\langle \langle \langle \rangle \rangle$						
			$\frown$	>					
		$\land$ (	$\langle \ \rangle$	/					
			())						
			$\bigcirc$						

### 6.8.3 Detecting Interrupt Requests

Each of interrupt factors has its own interrupt detection sequence as described in Table 6.8.4. Upon detection, an interrupt request is notified to INTC for priority arbitration and then notified to the TX19A processor core. Refer to Table 6.8.5 for the detection level available for each interrupt factor.

Interrupt	Detected by	Interrupt Notification Route
(1) Interrupts from	CG	$PORT \rightarrow CG(detection) \rightarrow INTC(arbitration) \rightarrow TX19A \ Core$
external pins INT0~INTB	INTC	PORT $\rightarrow$ INTC (detection/ arbitration) $\rightarrow$ TX19A Core
(2)Other interrupts	INTC	Peripheral circuit $\rightarrow$ INTC (detection/ arbitration) $\rightarrow$ TX19A
		Core

Table 6.8.4 Location of Interrupt Request Detection	(	1
Table 0.0. T Ecoadon of interrupt requeet Deteoder		

#### 6.8.4 Interrupt Priority Arbitration

1. Seven levels of interrupt priority

Each of interrupt factors can be individually set to one of the seven interrupt priority levels by INTC.

The interrupt level to be applied is set by IMCxx <ILxxx> of INTC. The higher the interrupt level set, the higher the priority. If the value is set to "000" meaning interrupt level of 0, no interrupts will be generated by the factor. Also note that any factors of interrupt level 0 are not suspended.

#### 2. Interrupt Level Notification

When an interrupt request is generated, INTC compares the interrupt level with the mask level. If the interrupt level is higher than the mask level set in ILEV <CMASK>, it notifies the TX19A processor of the interrupt request.

If more than one interrupts are generated at the same time, the interrupts are notified in accordance with the priority order of these interrupt levels. If more than one interrupts of a same interrupt level are generated at the same time, these interrupts are notified in the order of the interrupt number as listed in Table 6.2.

When an interrupt request of the same interrupt factor is received again before the previous interrupt has been cleared, only the first interrupt can be accepted.

3. INTC Register Update

When an interrupt request is accepted by the TX19A core, the highest interrupt level at that point in time will be set to ILEV <CMASK> and the corresponding vector value is set to IVR. Once CMASK and IVR are set, any interrupt with a higher interrupt level cannot update them or cause notification to the core until the IVR value is read.

(Note) Be sure to read the IVR value before attempting to change the ILEV value. If the ILEV value is changed before reading IVR, an unexpected interrupt request may be generated.

### 6.8.5 Hardware Interrupt Operation

When a hardware interrupt is generated, the TX19A core will go through the following steps to jump to the corresponding exception vector address as given in Table 6.1 according to the Status <BEV> and Cause <IV> bits of the CP0 register.

- (1) Sets Status <EXL> of CP0 register to "1."
- (2) Sets the PC value at the interrupt generation to EPC of the CP0 register.
- (3) If the shadow register set is enabled (CP0 register SSCR <SSD> = 0), SSCR <CSS/PSS> of the CP0 register will be updated and it switches to the register bank of the same interrupt level number.
- (4) The values of ILEV <CMASK/PMASKx> of INTC will be updated and the mask level is set to the interrupt level of the interrupt request accepted.
- (5) Sets IVR [7:0] to the corresponding value listed in Table 6.8.2.



### 6.9.1 Initialization for Interrupts

Before using interrupts, it is necessary to appropriately configure them. Necessary settings that have to be made regardless of the interrupt factors are described in Section 6.9.1.1 "Common Initialization" and settings specifically required for certain factors and applications are described in Section 6.9.1.2 "Initialization for Individual Interrupt Factors".

#### 6.9.1.1 Common Initialization

In order to use interrupts, the following settings are necessary:

- (1) Set Status <IM [4:2]> of CP0 register to "111."
- (2) Set the base address of the interrupt vector table to IVR [31:8] of INTC.
- (3) Set the interrupt handler addresses for the respective interrupt factors to the addresses obtained as the sum of the base address of "the interrupt vector table and the IVR [7:0] values corresponding to the respective interrupt factors."

Example of the above step (1): When the interrupt exception vector address 0xBFC00400 is used

lui	r2,0x1040	; CU0=1 ,BEV =1 (r2 =0x1040_xxxx)
addiu	r2,r2,0x1C00	; IM4,IM3,IM2 =1 (r2 =0x1040_1C00)
mtc0	r2,r12	

Example of the above step (2): If Vector Table is used as the label of the interrupt vector table

lui	r3,hi(VectorTable)	
addiu	r3,r3,lo(VectorTable)	; r3 =VectorTable address
lui	r2,hi(IVR)	; r2 =0xFFFF_xxxx(Upper 16 bits of IVR address)
sw	r3,lo(IVR)(r2)	; Set address of Vector Table to IVR[31:8]
	$(\vee /)$	$\sim$

Example of the above step (3): If the base address of interrupt vector is set to 0xBFC20000 _VectorTable section code isa32 abs=0xBFC20000

	VectorTa	able:		
	dw	_\$WINT	~	; 0 software interrupt
	dw		$\mathcal{A}$	; 1 INT0
	(dw	_INT1		; 2 INT1
_	dw			; 3 INT2
$\langle$	dw	⊇_INT3 🚫	Z	; 4 INT3
	dw	_INT4		; 5 INT4
	dw	_INT5		; 6 INT5
	dw	_INT6		; 7 INT6
	dw	_INT7		; 8 INT7

(Note) The above examples assume the use of Assembler made by Toshiba. If any third party Assembler is used, it may generate syntax errors; you are advised to modify the above statements according to the Assembler to be used.

### 6.9.1.2 Initialization for Individual Interrupt Factors

The registers to be set in using different interrupt factors are as listed below:

		-	
Interrupt	Detected at	Registers to be Set	Interrupt detection levels available (setting in active condition)
(1) Interrupts from external pins INT0~INTB	INTC	PxFC(PORT) PxCR(PORT) IMCxx(INTC)	With INTC, "L" and "H" levels and falling and rising edges can be set.
	CG	PxFC(PORT) PxCR(PORT) IMCGx(CG) IMCxx(INTC)	If it is to be used for recovery from Standby mode, it must be set to "H" with INTC. With CG, "L" and "H" levels and falling/rising edges can be set.
(2) Two-phase counter interrupts	INTC	PxFC(PORT) PxCR(PORT) IMCxx(INTC)	It must be set to rising edge with INTC.
(3) Other interrupts	INTC	IMCxx(INTC)	With INTC, "L" and "H" levels and falling and rising edges can be set.

Table 6.8.5	Dogiotoro	toho	Sof for	Dotooting	Intorrunto
	Redisters	lo be	Sector	Delecting	Interrubts

(Note 1) In level detection, the value is checked at internal clock timing each time. Edge detection is made by comparing the previous value with the current value at internal clock timing. As for CG edge detection, the edge of the input signal is detected without using internal clock.

(Note 2) In interrupt initialization, follow the order of the interrupt detection route as indicated in Table 6.8 before enabling the interrupts with the CP0 register. If any different setting order is used, an unexpected interrupt may be generated. So, be sure to clear interrupt factors before setting interrupt permission. Similarly, if interrupts are to be disabled, first disable the interrupt by the CP0 register and then set the registers accordingly in the reverse order of interrupt detection.

TMP19A63

- (1)Interrupts from external pins INT0~INTB
  - Use PORT PxCR and PxIE to enable an input port. (Refer to 7. Port Function)
  - Use PORT PxFC to set pin functions to INT0 INTB. (Refer to 7. Port Function)
  - Use PORT PxPUP to set pull-up connections as appropriate. (Refer to 7. Port Function)
  - Use INTC IMCx <EIMxx> to set active state. (Refer to 5.3.3 Interrupt-related Registers)
  - Use IMCGx <EMCGxx> of CG for setting to enable/disable clearing of standby modes. (Refer to INTCG Registers, Interrupts to Clear STOP and IDLE)
  - Use INTC IMCx <EIMxx> to set active state of internal interrupt signals to be notified from CG. If rising or falling edge is set with INTC IMCx < EIMxx>, set it to falling edge (set IMCx <EIMxx> to "10"). For H/L level setting, set it to "L" level (set IMCx <EIMxx> to "00". Refer to 6.9.4. Registers).

An example setting when an external interrupt "INT3" is used to clear Stop by the falling edge:

Status <ie> ="0"</ie>	; Interrupt is disabled
PMCR <pm3c> ="0"</pm3c>	; The port is set to an input port
PMFC <pm3f> ="0"</pm3f>	; The port is assigned to INT3
IMCGA <emcg32:30> ="010"</emcg32:30>	; INT3 is set to falling edge
IMCGA <int3en> ="1"</int3en>	; INT3 is set to clear Standby mode
EICRCG <icrcg3:0> ="0011"</icrcg3:0>	; Clears the INT3 standby clear request
IMC1 <eim41:40> ="01"</eim41:40>	; INT3 is set to level detection
INTCLR <eiclr7:0> ="010"</eiclr7:0>	; Clears the INT3 interrupt request
IMC1 <il42:40> ="101"</il42:40>	; Interrupt level of INT3 is set to "5."
ILEV <mlev>/<cmask> ="1"/"xxx"</cmask></mlev>	; Mask level is set to "xxx."
	(To be set simultaneously with ILEV <mlev>)</mlev>
SYNC instruction	; Stall until interrupt settings are enabled.
Status <ie> ="1"</ie>	; Interrupt is enabled

· An example setting when an external interrupt "INT3" is to be disabled:

Status</E>="0" IMC1<IL42:40> ="000" ; Interrupt is disabled.

; INT3 interrupt is disabled.

INTCLR<EICLR7:0> ="010"

; Clears the INT3 interrupt request.

(2)Other hardware interrupts

- Settings are made to use peripheral hardware devices.
- Set INTC IMCxx <EIMxx> (refer to 6.9.4 Registers).

(Note) In interrupt initialization, set INTC registers before enabling interrupts with the CP0 register. Similarly, if interrupt is to be disabled, first disable interrupt by the CP0 register and then set INTC.

### 6.9.1.3 Interrupt Enable

In order for an interrupt request to be accepted, all the following three parameters must be set to enable the interrupt in addition to the initial settings described in Section 6.9.11 "Initialization for Interrupts".

- Status <ERL> of the CP0 register is set to "0."
- Status <EXL> of the CP0 register is set to "0."
- Status <IE> of the CP0 register is set to "1."

By these settings, interrupt is enabled two clocks after execution of the instruction and the registers are set. Note that one of the following four methods may be used in setting Status <IE> of the CP0 register to "1."

- Set Status<IE> of the CP0 register to "1" using the MTC0 instruction (32 bit ISA instruction)
- 2. Set IER of the CP0 register to any value other than "0" using the MTC0 instruction (32 bit ISA instruction). (Note 1)
- 3. Set Status<IE> of the CP0 register to "1" using the MTC0 instruction (16 bit ISA instruction).
- 4. Execute the El instruction of 16 bit ISA. (Note 2)

(Note 1) This method is recommended for 32 bit ISA because it enables the minimum code increase and high speed processing. If Toshiba C compiler is used, this is executed by the 32 bit ISA instruction "__EI() embedded function."

(Note 2) This method is recommended for 16 bit ISA because it enables the minimum code increase and high speed processing. If Toshiba C compiler is used, this instruction is executed by the 16 bit ISA instruction "__EI() embedded function."

#### 6.9.1.4 Interrupt Disable

To disable interrupts, either one of the following setting procedures must be performed in addition to the settings described in Section 6.9.1 "Initialization for Interrupts." When interrupts are disabled, any interrupt request will be suspended. Also note that TMP19A43 doesn't suspend any interrupt factor that is set to interrupt level 0.

- Set Status <ERL> of the CP0 register to "1."
- Set Status <EXL> of the CP0 register to "1."
- Set Status <IE> of the CP0 register to "0."

By these settings, interrupts are disabled immediately after execution of the instruction and the registers are set two clocks later.

Status <ERL> and <EXL> of CP0 register are automatically set by an interrupt or an exception and cleared by ERET instruction. These bits are automatically cleared by ERET instruction. Therefore we recommend setting Status <IE> of CP0 register to "0" to prohibit normal interrupts. Please refer to "6.9.3 Example of Multiple Interrupt Setting" for disabling interrupts using multiple interrupt. Note that one of the following methods may be used in setting Status <IE> of the CP0 register to "0."

- 1. Set Status <IE> of the CP0 register to "0" using the MTC0 instruction of 32 bit ISA.
- 2. Set IER of the CP0 register to "0" using the MTC0 instruction of 32 bit ISA. (Note 1)
- 3. Set Status <IE> of CP0 register to "0" using 16 bit ISA.
- 4. Execute DI instruction of 16 bit ISA (Note 2)

(Note 1) This method is recommended for 32 bit ISA because it enables the minimum code increase and high speed processing. If Toshiba C compiler is used, this instruction is executed by the 32 bit ISA instruction "__DI() embedded function."

(Note 2) This method is recommended for 16 bit ISA because it enables the minimum code increase and high speed processing. If Toshiba C compiler is used, this instruction is executed by the 32 bit ISA instruction "__DI() embedded function."

If the factors once enabled are to be individually disabled again after setting interrupt levels by IMCx <ILxxx> of INTC, first set the Status <ERL/EXL/EI> bits of the CP0 register to disable interrupts and then disable relevant factors individually.

Example statements to individually disable interrupt factors:

mtc0	r0, IER	; Interrupt is disabled (Status <ie> ="0").</ie>
sb	r0, IMCxx	; Interrupt factor is disabled.
sync		; Stall until it is write-enabled.
mtc0	r29, IER	; Interrupt is enabled (Status <ie> ="1").</ie>

(Note 1) The above examples assume use of Assembler made by Toshiba. If any third party Assembler is used, it may generate syntax errors; you are advised to modify the above statements according to the Assembler to be used.

### 6.9.2 Interrupt Processing

This section describes detailed operation of interrupt processing using the basic flow chart of Fig. 6.4.

#### 6.9.2.1 Interrupt Response and Return

① Hardware processes to accept interrupts

After interrupt request arbitration, INTC sets the interrupt vector and interrupt level of the interrupt request accepted to IVR and ILEV<CMASK>, respectively, to notify the TX19A processor core of the interrupt level. When the interrupt level is notified, the TX19A processor core sets Status <EXL> of the CP0 register to "1" to disable interrupts and saves the PC value at the interrupt generation to EPC. If the shadow register set is enabled (CP0 register SSCR <SSD> = 0), the processor core sets the interrupt level to SSCR <CSS> of the CP0 register and switches the register bank.

When an interrupt is accepted, any ongoing execution is suspended and it automatically jumps to the exception vector address (for interrupts). Fig. 6.5 shows the sequence of accepting interrupts.





Processes to be performed by the exception handler

After an interrupt request is accepted, it automatically jumps to the exception handler where the interrupt vector address is read from INTC IVR and the user program generates the address of the interrupt handler. As in the example statements presented in Section 6.9.1, "Initialization for Interrupts" the interrupt vector base address is set to IVR[31:8] so that the IVR value becomes the interrupt vector address.

After reading the INTC IVR value, the interrupt factor is cleared. If the interrupt factor is cleared before IVR is read, correct value cannot be read because the IVR value is also cleared.

Example exception handler statement: Exception vector address (interrupt) is 0xBFC0_0400.

VECTOR_INT section code isa32 abs=0xBFC00400

Interru	ptVector:	
lui	r26,hi(IVR)	
lw	r26,lo(IVR)(r26)	; Read IVR for interrupt vector address
lui	r27,hi(INTCLR)	
sh	r26,lo(INTCLR)(r27)	; Interrupt request is cleared
lw	r26,0(r26)	; Read interrupt handler address from interrupt vector
jr	r26	; Jump to interrupt handler
nop		

(Note 1) The above example assumes use of Assembler made by Toshiba. If any third party Assembler is used, it may generate syntax errors; you are advised to modify the above statement according to the Assembler to be used.

③ Processes to be performed by the interrupt handler

Typical tasks of the interrupt handler are to save appropriate registers and to process interrupts. If the shadow register set is enabled (CP0 register SSCR  $\langle SSD \rangle = 0$ ), the general purpose register values other than r26, r27, r28, and r29 (Shadow Register Set number 1 to 7) are automatically saved so the user program doesn't have to save these. Refer to the separate volume "TX19A Core Architecture" for details of general purpose registers that are to be automatically saved.

In general, registers other than GPR are dependent on user programs. The Status, EPC, SSCR, HI, LO, Cause, and Config values of the CP0 register shall be saved as appropriate.

For using multiple interrupts, interrupts are enabled by clearing Status <EXL> of the CP0 register to "0" after appropriate saving processes.

(Note 1) Note that general exceptions can be accepted even when interrupts are disabled. So, even when you don't use multiple interrupts, it is desirable to save any general purpose register and the CP0 register that could be overwritten by general exceptions.

to

Example interrupt handler settings to be necessary:

Save from SSCR to stack	; Save SSCR values (as appropriate)
NOP instruction	; Stall until SSCR is switched
NOP instruction	; Stall until SSCR is switched
Save from EPC to stack	; Save EPC values (as appropriate)
Save from Status to stack	; Save Status values (as appropriate)
NOP instruction	; Stall before executing ERET instruction
NOP instruction	; Stall before executing ERET instruction
Status <exl> ="0"</exl>	; Interrupt enable (only for multiple interrupts)

(Note 1) After overwriting SSCR of the CP0 register, wait for two cycles to allow for register bank switching before attempting a register access.

④ Returning from the interrupt handler

For returning from the interrupt handler to the main process, return the register values saved at the top of the interrupt handler process and set "0" to INTC ILEV <MLEV> to clear the interrupt mask level. By executing the ERET instruction after all the return tasks are completed, Status <EXL> of the CP0 register is cleared to "0" and the EPC address returns to PC for the main process to be resumed. If the shadow register set has been enabled (CP0 register SSCR <SSD> = 0), SSCR <CSS> is updated by the ERET instruction and the Shadow Register Set number is automatically decremented for automatically returning the general purpose registers saved in the register bank. If multiple interrupts are used, it is necessary to set Status <EXL> of the CP0 register to "1" to disable interrupts prior to executing the return process.

Example settings to return from the int	errupt hander:
Status <exl> ="1" ; Interrup</exl>	ot disable (only for multiple interrupts)
ILEV <mlev> ="0"</mlev>	; Decrement the mask level
SYNC instruction	; Stall until mask level is decremented
Return to SSCR	; Return SSCR values saved (as appropriate)
NOP instruction	; Stall until SSCR is switched
NOP instruction	; Stall until SSCR is switched
Return to EPC	; Return SSCR values saved (as appropriate)
Return to Status	; Return Status values saved (as appropriate)
NOP instruction	; Stall before executing ERET instruction
NOP instruction	; Stall before executing ERET instruction
ERET instruction	; Status <exl> ="0", EPC to PC, SSCR<pss></pss></exl>
SSCR <css></css>	

(Note 1) After overwriting SSCR of the CP0 register, wait for two cycles to allow for register bank switching before attempting a register access.

(Note 2) Don't access the CP0 register two instructions prior to executing the ERET instruction.

### 6.9.3 Example of Multiple Interrupt Setting

In "multiple interrupt" processing, a higher interrupt level interrupt is processed while an interrupt is being processed. With TMP19A63, multiple interrupts are processed through the interrupt priority arbitration function of INTC. When an interrupt request is accepted, ILEV <CMASK> of INTC is automatically updated to the interrupt level of the interrupt accepted to enable arbitration to use the priority preset by the user program.

① Additional processes required for multiple interrupts

When an interrupt is accepted, Status <EXL> of the CP0 register is set to "1" disabling further interrupts. In order to allow multiple interrupts, it is necessary to save the registers that could be overwritten by the second and the following interrupts before enabling the multiple interrupt process. For this purpose, in addition to the typical exception handler and interrupt handler processes, save the following registers before setting Status <EXL> of the CP0 register to "0" to enable interrupts.

CP0 registers that must be saved:

• EPC

•

- SSCR
- Status

(Note) Some of the registers may be automatically saved and returned by using some interrupt function of Toshiba C compiler. Refer to "TX19A C Compiler Reference" provided with the Toshiba C compiler for more details.

Save the HI, LO, Cause, and Config registers as appropriate.

#### 2 Additional return processes required for multiple interrupts

Before returning registers in the interrupt return process, it is necessary to disable interrupts using the method described in Section 6.9.1.4 "Interrupt Disable". This is to prevent the returned register values from being corrupted by multiple interrupts. Note that the ERET instruction automatically clears Status <EXL> of the CP0 register to "0." So, by setting Status <EXL> of the CP0 register to "1" to disable interrupts in the returning process, you can return from the interrupt with interrupts enabled automatically.

#### ③ Proper use of Status <EXL> and Status <IE>

While there is no significant distinction between the Status <EXL> and Status <IE> parameters, Status <EXL> is automatically set to "1" upon interrupt generation and cleared to "0" by the ERET instruction automatically. In saving and returning register values at the initial and final phases of an interrupt process, where interrupts have to be disabled, hardware controlled Status <EXL> is normally used. Status <IE> is used for other general interrupt enable/disable control functions.

Applicable interrupt enable/disable control sequences are described in Section 6.9.3.1, "Interrupt Control for Multiple Interrupts".



### 6.9.3.1 Interrupt Control for Multiple Interrupts

Fig. 6.6 Interrupt Enable/Disable Control Sequence for Multiple Interrupts

① Status<IE>=1

Interrupts can be enabled by setting Status <IE> of the CP0 register to "1" while Status <EXL> is set to "0." This optional setting is made by the software program when it is necessary.

#### ② Interrupt generation

When an interrupt is generated, Status <EXL> of the CP0 register is set to "1" disabling further interrupts. This process is automatically performed by hardware.

③ Status<EXL>=0

If multiple interrupts are to be enabled, it is necessary to set Status <EXL> of the CP0 register to "0" to enable interrupts after relevant registers are saved. If interrupts are enabled before saving registers, a higher priority level interrupt could corrupt the register data. This optional setting is made by the software program when it is necessary.

```
④ Multiple interrupts enabled
```

This is the period multiple interrupts are enabled. Interrupts with a level higher than the present interrupt level (ILEV <CMASK>) are to be accepted. If it is desired to disable interrupts during this period, set Status <IE> of the CP0 register to "0."

```
⑤ Status<EXL>=1
```

If multiple interrupts are enabled, it is necessary to set Status <EXL> of the CP0 register to "1" to disable interrupts before returning relevant register values. If registers are saved before disabling interrupts, a higher priority level interrupt could corrupt the register data. This optional setting is made by the software program when it is necessary.

⑥ ERET instruction

This instruction returns the system to the state before the interrupt generation. If this instruction is executed while Status <EXL> of the CP0 register is set to "1," the Status <EXL> will be automatically set to "0" and interrupt is enabled (provided that Status <IE> of the CP0 register is set to "1").

#### ⑦ Status<IE>=0

Interrupts can be disabled by setting Status <IE> of the CP0 register to "0." This optional setting is made by the software program when it is necessary.

# 6.9.4 Registers

# 6.9.4.1 Register Map

		Table 6.6 INTC Register Map	
Address	Register symbol	Register	Corresponding interrupt number
0xFFFF_E000	IMC0	Interrupt mode control register 00	0~3
0xFFFF_E004	IMC1	Interrupt mode control register 04	) 4 ~ 7
0xFFFF_E008	IMC2	Interrupt mode control register 08	8 ~ 11
0xFFFF_E00C	IMC3	Interrupt mode control register 12	12 ~ 15
0xFFFF_E010	IMC4	Interrupt mode control register 16	16 ~ 19
0xFFFF_E014	IMC5	Interrupt mode control register 20	20 ~ 23
0xFFFF_E018	IMC6	Interrupt mode control register 24	24 ~ 27
0xFFFF_E01C	IMC7	Interrupt mode control register 28	28 ~ 31
0xFFFF_E020	IMC8	Interrupt mode control register 32	32 ~ 35
0xFFFF_E024	IMC9	Interrupt mode control register 36	36~39
0xFFFF_E028	IMCA	Interrupt mode control register 40	40~43
0xFFFF_E02C	IMCB	Interrupt mode control register 44	44 ~ 47
0xFFFF_E030	IMCC	Interrupt mode control register 48	) 48 ~ 51
0xFFFF_E034	IMCD	Interrupt mode control register 52	52 ~ 55
0xFFFF_E038	IMCE	Interrupt mode control register 56	56 ~ 59
0xFFFF_E03C	IMCF	Interrupt mode control register 60	60 ~ 63
0xFFFF_E040	IVR	Interrupt vector register	
0xFFFF_E060	INTCLR	Interrupt request clear register	
0xFFFF_E10C	ILEV	Interrupt mask level register	

Table	66	INTC	Register	Map
Tuble	0.0	11110	regiotor	iviup

(Note 1) While the interrupt mode control register (IMCxx) is a 32 bit register, 8 bit/16 bit access is also accepted.

# 6.9.4.2 Interrupt Vector Registers (IVR)

For an interrupt generated, the IVR register indicates the interrupt vector address of the corresponding interrupt factor. When an interrupt request is accepted, the corresponding value as listed in Table 6.2 is set to IVR [7:0]. By setting the base address of interrupt vectors to IVR [31:8], a read/write register, simply reading the IVR value can provide the corresponding interrupt vector address.

			Interrup	ot Vector F	Register		$\square$	~	
		7	6	5	4	3((	7/(2	1	0
IVR	Bit Symbol	IVR7	IVR6	IVR5	IVR4	IVR3	WR2	IVR1	IVR0
(0xFFFF_E040)	Read/Write				F	2			
	After Reset	0	0	0	0	(0)	0	0	0
	Function		The vector o	f the interrup	t factor gene	erated is set.		Always rea	ds "0."
		15	14	13	12	Ĭ	10	9	8
	Bit Symbol	IVR15	IVR14	IVR13	IVR12	IVR11	IVR10	IVR9	IVR8
	Read/Write				R/W	$\searrow$	6		R
	After Reset	0	0	0	$\langle 0 \rangle$		$\sum_{\alpha}$	0	0
	Function			G	$\sim$		7	1	Always
				4		/		$\bigcirc$	reads "0."
		23	22	21	20	19 ((	18	17	16
	Bit Symbol	IVR23	IVR22	IVR21	ÌVR20	IVR19	JVR18	IVR17	IVR16
	Read/Write			$( \land )$	> R/	W (7/	$\wedge$		
	After Reset	0	0		0		)) 0	0	0
	Function		20			$\sim$			
		31	30	29	28	27	26	25	24
	Bit Symbol	IVR31	IVR30	IVR29	IVR28	IVR27	IVR26	IVR25	IVR24
	Read/Write		$\bigcirc$		R/	W			
	After Reset	0	~ Q	0	<u> </u>	0	0	0	0
	Function	((	))						

# 6.9.4.3 Interrupt Level Register (ILEV)

ILEV is the register to control the interrupt level to be used by INTC in notifying interrupt requests to the TX19A processor core.

Interrupts with interrupt levels not higher than ILEV <CMASK> are suspended. The interrupt priority level "7" is the highest priority and "1" the lowest. Note that any interrupt with interrupt level 0 is not suspended.

When a new interrupt is generated, the corresponding interrupt level is stored in <CMASK> and any previously stored values are incremented in mask levels such that the previous CMASK is saved in PMASK0 and PMASK0 is saved in PMASK1 and so on. For writing a new value to <CMASK>, set "1" to <MLEV> and write <CMASK> simultaneously. Writing a new value to <PMASKx> cannot be made.

When <MLEV> is set to "0," the interrupt mask levels in the register shift back to the previous state such that PMASK0 is moved to CMASK and PMASK1 is moved to PMASK0, and so on. The last <PMASK6> is set to "000." If it is used in returning from an interrupt process, be sure to set <MLEV> to "0" before executing the ERET instruction. <MLEV> always reads "0."



Interrupt Level Register

# 6.9.4.4 Interrupt Mode Control Registers (IMCxx)

IMCxx is comprised of <ILxx>, which determines the interrupt levels of individual interrupt factors, <DMxx>, which is used to set activation factors of DMA transfer, and <EIMxx>, which determines active state of interrupt requests.

	$\sim$	7	6	F	4	2		4	0
		7	6	5	4	3	2	1	0
	Bit Symbol		EIM01	EIM00	DM0		IL02	IL01	IL00
(0xFFFF_E000)	Read/Write	R		R/W		R		R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always		ive state of	DMAC	Always reads "0."	If $DM0 = 0$ ,		lavel for
		reads "0."	interrupt rec 00: "L" level	•	activation	reads 0.		e interrupt umber 0 (soft	
			00: L level		factor.			able interrup	
			10: Disable		0: Non		000. Dis		L
			11: Disable		activation factor		If $DM0 = 1$ ,		
			Be sure to		1: Interrupt		/ 1	DMAC chanr	nel
			20 00.0 10		number 0	$\sim$	000~011		
					is set as the	$\langle \rangle$	100~111	1: 4-7	
					activation		~	$\leq \langle \rangle$	/
					factor			$\langle \rangle$	
		15	14	13	12//	5) 11	<u>∧</u> 10((	)) 9	8
	Bit Symbol		EIM11	EIM10	DM1	$\sum$	↓L12	(Z)(L1))	IL10
	Read/Write	R		R/W	$( \land )$	R		R/W	
	After Reset	0	0	0		0	$\bigcirc$	0	0
	Function	Always	Selects act	ive state of	Set as	Always	If $DM1 = 0$ ,		
		reads "0."	interrupt rec		DMAC	reads "0."		e interrupt	
			00: "L" level		activation	$( \cap$	/ / \ ·	umber 1 (INT	,
			01: "H" leve		factor. 0: Non			able interrup	t
			10: Falling e		activation		001~111	1: 1~7	
			11: Rising e		factor		If DM1 = 1,		
			using CG.	"0" when	1: Interrupt number 1			DMAC chanr	nel
			using CG.		is set as	> //	000~011 100~111		
				))	the	~/	100~111	1.4~7	
			$\frown$		activation	~			
			$( \frown \land$						
		23	22	21	factor	19	18	17	16
	Bit Symbol	23	22) FIM21	21 FIM20	factor 20	19	18 II 22	17 II 21	16 II 20
	Bit Symbol Read/Write		22 EIM21	EIM20	factor		18 IL22	IL21	16 IL20
	Read/Write	23 R	EIM21		factor 20	19 	IL22	IL21 R/W	IL20
	Read/Write After Reset	R	EIM21	EIM20 R/W	factor 20 DM2 0	R 0	IL22 0	IL21	
	Read/Write	R 0 Always	EIM21	EIM20 R/W 0 ive state of	factor 20 DM2 0 Set as DMAC	R	IL22 0 If DM2 = 0,	IL21 R/W 0	IL20 0
	Read/Write After Reset	R	EIM21 0 Selects act	EIM20 R/W 0 ive state of juest:	factor 20 DM2 0 Set as DMAC activation	R 0 Always	IL22 0 If DM2 = 0, select th	IL21 R/W	IL20 0 level for
	Read/Write After Reset	R 0 Always	EIM21 0 Selects acti interrupt rec	EIM20 R/W 0 ive state of juest:	factor 20 DM2 0 Set as DMAC activation factor.	R 0 Always	IL22 0 If DM2 = 0, select th interrupt i	IL21 R/W 0 ne interrupt	IL20 0 level for T1)
	Read/Write After Reset	R 0 Always	EIM21 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e	EIM20 R/W 0 ive state of uest:	factor 20 DM2 0 Set as DMAC activation	R 0 Always	IL22 0 If DM2 = 0, select th interrupt 1 000: Di 001~11	IL21 R/W 0 ne interrupt number 2 (IN isable interru	IL20 0 level for T1)
	Read/Write After Reset	R 0 Always	EIM21 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	EIM20 R/W 0 ive state of guest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor	R 0 Always	IL22 0 If DM2 = 0, select th interrupt 1 000: Di 001~11 If DM2 = 1,	IL21 R/W 0 ne interrupt number 2 (IN sable interru 11: 1~7	IL20 0 level for T1) pt
	Read/Write After Reset	R 0 Always	EIM21 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	EIM20 R/W 0 ive state of uest:	factor 20 DM2 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt	R 0 Always	IL22 0 If DM2 = 0, select th interrupt 1 000: Di 001~11 If DM2 = 1, select the	IL21 R/W 0 ne interrupt number 2 (IN isable interru 11: 1~7 e DMAC char	IL20 0 level for T1) pt
	Read/Write After Reset	R 0 Always	EIM21 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	EIM20 R/W 0 ive state of guest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor	R 0 Always	IL22 0 If DM2 = 0, select th interrupt 1 000: Di 001~11 If DM2 = 1, select the 000~011	IL21 R/W 0 ne interrupt number 2 (IN isable interru 11: 1~7 e DMAC char I: 0~3	IL20 0 level for T1) pt
	Read/Write After Reset	R 0 Always	EIM21 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	EIM20 R/W 0 ive state of guest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the	R 0 Always	IL22 0 If DM2 = 0, select th interrupt 1 000: Di 001~11 If DM2 = 1, select the	IL21 R/W 0 ne interrupt number 2 (IN isable interru 11: 1~7 e DMAC char I: 0~3	IL20 0 level for T1) pt
	Read/Write After Reset	R 0 Always	EIM21 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	EIM20 R/W 0 ive state of guest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation	R 0 Always	IL22 0 If DM2 = 0, select th interrupt 1 000: Di 001~11 If DM2 = 1, select the 000~011	IL21 R/W 0 ne interrupt number 2 (IN isable interru 11: 1~7 e DMAC char I: 0~3	IL20 0 level for T1) pt
	Read/Write After Reset	R 0 Always reads "0."	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG.	EIM20 R/W 0 ive state of uest: l edge edge "0" when	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor	R 0 Always reads "0."	IL22 0 If DM2 = 0, select th interrupt i 000: Di 001~11 If DM2 = 1, select the 000~011 100~111	IL21 R/W 0 ne interrupt number 2 (IN sable interru 11: 1~7 e DMAC char 1: 0~3 1: 4~7	IL20 0 level for T1) pt
	Read/Write After Reset Function	R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" level 10: Falling e 11: Rising e Set it to using CG. 30	EIM20 R/W 0 ive state of uest: dge dge "0" when	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28	R 0 Always	IL22 0 If DM2 = 0, select th interrupt n 001~11 If DM2 = 1, select the 000~011 100~111	IL21 R/W 0 ne interrupt number 2 (IN isable interru 11: 1~7 DMAC char 1: 0~3 1: 4~7 25	IL20 0 level for T1) pt nnel
	Read/Write After Reset Function Bit Symbol	R 0 Always reads "0."	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG.	EIM20 R/W 0 ive state of uest: dge dge "0" when 29 EIM30	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor	R 0 Always reads "0." 27	IL22 0 If DM2 = 0, select th interrupt i 000: Di 001~11 If DM2 = 1, select the 000~011 100~111	IL21 R/W 0 ne interrupt number 2 (IN sable interru 11: 1~7 DMAC char 1: 0~3 1: 4~7 25 IL31	IL20 0 level for T1) pt
	Read/Write After Reset Function Bit Symbol Read/Write	R 0 Always reads "0."	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31	EIM20 R/W 0 ive state of uest: edge dge "0" when 29 EIM30 R/W	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3	R 0 Always reads "0." 27 R	IL22 0 If DM2 = 0, select th interrupt n 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 11: 1~7 DMAC char 1: 0~3 1: 4~7 25 IL31 R/W	IL20 0 level for T1) pt nnel 24 IL30
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0	EIM20 R/W 0 ive state of uest: dge dge "0" when 29 EIM30 R/W 0	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3	R 0 Always reads "0." 27 R 0	IL22 0 If DM2 = 0, select th interrupt n 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0	IL21 R/W 0 ne interrupt number 2 (IN sable interru 11: 1~7 DMAC char 1: 0~3 1: 4~7 25 IL31	IL20 0 level for T1) pt nnel
	Read/Write After Reset Function Bit Symbol Read/Write	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti	EIM20 R/W 0 ive state of uest: edge dge "0" when 29 EIM30 R/W 0 ive state of	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt n 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0,	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 11: 1~7 e DMAC char 1: 0~3 1: 4~7 25 IL31 R/W 0	IL20 0 level for T1) pt nnel 24 IL30 0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec	EIM20 R/W 0 ive state of uest: edge dge dge dge <b>**0</b> * when 29 EIM30 R/W 0 ive state of uest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as	R 0 Always reads "0." 27 R 0	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	IL21 R/W 0 ne interrupt isable interrupt 11: 1~7 DMAC char Co-3 1: 0~3 1: 4~7 25 IL31 R/W 0 nterrupt level	IL20 0 level for T1) pt nnel 24 IL30 0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti	EIM20 R/W 0 ive state of uest: dge dge "0" when 29 EIM30 R/W 0 ive state of uest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt i 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0, select the ir number 3	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char : 0~3 : 4~7 25 IL31 R/W 0 nterrupt level 3 (INT2)	IL20 0 level for T1) pt nnel 24 IL30 0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec 00: "L" level	EIM20 R/W 0 ive state of uest: dge dge dge "0" when 29 EIM30 R/W 0 ive state of uest:	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor. 0: Non 1: Interrupt number 2 is set as the activation factor. 0: Non activation factor. 0: Non 1: Interrupt number 2 is set as the activation factor. 0: Non 1: Interrupt number 2 is set as the activation factor. 0: Non 1: Interrupt number 2 is set as the activation factor. 0: Non 0 Set as DMAC activation factor. 0: Non 0 Set as DMAC activation factor. 0: Non 0 Set as DMAC activation factor. 0 Set as DMAC activation factor. 0 Set as DMAC activation factor. 0 Non Set as DMAC activation factor. 0 Non Set as DMAC activation factor. 0 Non	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt i 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0, select the ir number 3	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char : 0~3 : 4~7 25 IL31 R/W 0 nterrupt level 3 (INT2) ble interrupt	IL20 0 level for T1) pt nnel 24 IL30 0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec 00: "L" level 01: "H" level 01: "H" level	EIM20 R/W 0 ive state of uest: dge dge dge "0" when 29 EIM30 R/W 0 ive state of uest: l edge	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor	R 0 Always reads "0." 27 R 0 Always	IL22   0   If DM2 = 0,   select th   interrupt i   000: Di   001~11   If DM2 = 1,   select the   000~011   100~111   26   IL32   0   If DM3 = 0,   select the ir   number 3   000: Disa	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char : 0~3 : 4~7 25 IL31 R/W 0 nterrupt level 3 (INT2) ble interrupt	IL20 0 level for T1) pt nnel 24 IL30 0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	EIM20 R/W 0 ive state of uest: dge dge dge "0" when 29 EIM30 R/W 0 ive state of uest: l edge	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 1: Interrupt NM3	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt i 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0, select the ir number 3 001~111: If DM3 = 1,	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char : 0~3 : 4~7 25 IL31 R/W 0 nterrupt level 3 (INT2) ble interrupt	IL20 0 level for T1) pt nnel 24 IL30 0 for interrupt
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	EIM20 R/W 0 ive state of juest: edge dge "0" when 29 EIM30 R/W 0 ive state of juest: l edge	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor 1: Non activation factor 1: Non activation factor 1: Non 1: Non 1	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt i 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0, select the ir number 3 001~111: If DM3 = 1, select the I	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char : 0~3 : 4~7 25 IL31 R/W 0 nterrupt level 3 (INT2) ble interrupt 1~7	IL20 0 level for T1) pt nnel 24 IL30 0 for interrupt
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	EIM20 R/W 0 ive state of juest: edge dge "0" when 29 EIM30 R/W 0 ive state of juest: l edge	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 1: Interrupt NM3	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt i 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0, select the ir number 3 001~111: If DM3 = 1, select the I 000~0	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char 25 IL31 R/W 0 nterrupt level 3 (INT2) ble interrupt 1~7 DMAC chann	IL20 0 level for T1) pt nnel 24 IL30 0 for interrupt
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	R 0 Always reads "0." 31 R 0 Always	EIM21 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to using CG. 30 EIM31 0 Selects acti interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	EIM20 R/W 0 ive state of juest: edge dge "0" when 29 EIM30 R/W 0 ive state of juest: l edge	factor 20 DM2 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 2 is set as the activation factor 28 DM3 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 3 is set as below 1: Interrupt number 3 is set as DMAC 1: Interrupt number 3 is set as DMAC 1: Interrupt number 3 is set as DMAC 1: Interrupt number 3 is set as DMAC 1: Interrupt number 3 I: Set as DMAC 1: Interrupt number 3 I: Set as DMAC 1: Interrupt number 3 I: Set as DMAC I: Interrupt I: Interupt I: Interrupt I: Interrupt I: Interrupt I:	R 0 Always reads "0." 27 R 0 Always	IL22 0 If DM2 = 0, select th interrupt i 001~11 If DM2 = 1, select the 000~011 100~111 26 IL32 0 If DM3 = 0, select the ir number 3 001~111: If DM3 = 1, select the I 000~0	IL21 R/W 0 ne interrupt number 2 (IN isable interrupt 1: 1~7 DMAC char CINT2) ble interrupt level 3 (INT2) ble interrupt 1~7 DMAC chann 11: 0~3	IL20 0 level for T1) pt nnel 24 IL30 0 for interrupt

	~								
		7	6	5	4	3	2	1	0
IMC1	Bit Symbol		EIM41	EIM40	DM4		IL42	IL41	IL40
(0xFFFF_E004)	Read/Write	R		R/W		R		R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always		ive state of		Always	If $DM4 = 0$ ,		
		reads "0."	interrupt red		DMAC	reads "0."		nterrupt level	for interrupt
			00: "L" leve		activation		number 4	· · ·	
			01: "H" leve 10: Falling e		factor.		000: Disa	able interrupt	
			10: Failing e	-	0: Non activation		1001 - 111		
				"0" when	factor			DMAC chann	el
			using CG.	• • • • • • • • • • • • • • • • • • • •	1:			11:0~3	
			-		Interrupt	/	100~1	11: 4~7	
					number 4	$\sim$ (			
					is set as		$\langle \cup \rangle$		
					the				
					activation factor		$\langle \gamma \rangle$		
	$\sim$	15	14	13	12	1	10	9	8
	Dit Currels al	15							
	Bit Symbol Read/Write	R	EIM51	EIM50 R/W	DM5	R	IL52	R/W	IL50
	After Reset	0 R	0	R/W 0	0	R 0	0	R/VV	0
	Function	Always	-	Ţ	Set as	Always	If DM5 = 0,		U
		reads "0."	interrupt red		DMAC	reads "0."		terrupt level	for interrupt
			00: "L" leve		activation		number 5		
			01: "H" leve	· · · · · · · · · · · · · · · · · · ·	factor.			ble interrupt	
			10: Falling		0: Non		001~111:	1~7	
			11: Rising e		activation		If $DM5 = 1$ ,		-1
			using CG.	"0" when	factor 1: Interrupt	$\left( \right)$		DMAC chann 11: 0~3	ei
			using CO.	$\Delta$	number 5			11: 4~7	
				$\langle \bigcirc \rangle$	is set as				
				$\swarrow$	the				
					activation				
					factor		10	47	4.0
		23	22	//21	20	19	18	17	16
	Bit Symbol		EIM61	EIM60	DM6		IL62	IL61	IL60
	Read/Write	R		R/W		R	0	R/W	0
	After Reset Function	0 Always	0 Selecte est	0 ive state of	Cot no	0	0 If DM6= 0,	0	0
	FUNCTION	reads "0."	interrupt rec		DMAC	Always reads "0."		nterrupt level	for interrunt
	6	reads U.	00: "L" level		activation	10003 0.	number 6	•	
			01: "H" leve		factor.			ble interrupt	
					ιαφιφι.		000. 0130		
			10: Falling e	edge	0: Non		001~111:	1~7	
		$\langle -$	10: Falling e 11: Rising e	edge			001~111: If DM6 = 1,		
			10: Falling e 11: Rising e Set it to	<u> </u>	0: Non activation factor		001~111: If DM6 = 1, select the	DMAC chann	el
			10: Falling e 11: Rising e	edge	0: Non activation factor 1: Interrupt		001~111: If DM6 = 1, select the 000~0	DMAC chann 11: 0~3	el
			10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt number 6		001~111: If DM6 = 1, select the 000~0	DMAC chann	el
			10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt		001~111: If DM6 = 1, select the 000~0	DMAC chann 11: 0~3	el
			10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt number 6 is set as		001~111: If DM6 = 1, select the 000~0	DMAC chann 11: 0~3	el
$\sim$ (			10: Falling e 11: Rising e Set it to using CG.	edge "0" when	0: Non activation factor 1: Interrupt number 6 is set as the		001~111: If DM6 = 1, select the 000~0	DMAC chann 11: 0~3	el
		31 (	10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt number 6 is set as the activation	27	001~111: If DM6 = 1, select the 000~0	DMAC chann 11: 0~3	el 24
	Bit Symbol	31	10: Falling e 11: Rising e Set it to using CG.	edge "0" when	0: Non activation factor 1: Interrupt number 6 is set as the activation factor	27	001~111: If DM6 = 1, select the 000~0 ⁻ 100~1 ⁻	DMAC chann 11: 0~3 11: 4~7	
	Bit Symbol Read/Write	R	10: Falling e 11: Rising e Set it to using CG. 30 EIM71	edge "0" when 29	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7	R	001~111: If DM6 = 1, select the 000~0' 100~1' <u>26</u> IL72	DMAC chann 11: 0~3 11: 4~7 25	24 IL70
	Read/Write After Reset	R	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0	29 EIM70 R/W 0	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7	R 0	001~111: If DM6 = 1, select the 000~0 100~1 26 IL72 0	DMAC chann 11: 0~3 11: 4~7 25 IL71	24
	Read/Write	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act	29 EIM70 R/W 0 ive state of	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as	R 0 Always	001~111: If DM6 = 1, select the 000~0' 100~1' 26 IL72 0 If DM7= 0,	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0	24 IL70 0
	Read/Write After Reset	R	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC	R 0	001~111: If DM6 = 1, select the   000~0' 100~1' 26 IL72 0 If DM7= 0, select the in	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 nterrupt level	24 IL70 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation	R 0 Always	001~111: If DM6 = 1, select the   000~0' 100~1' 26 IL72 0 If DM7= 0, select the in number 7	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 nterrupt level 7 (INT6)	24 IL70 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor.	R 0 Always	001~111: If DM6 = 1, select the   000~0' 100~1' 100~1' 0 IL72 0 If DM7= 0, select the in number 7 000: Disa	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt	24 IL70 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor. 0: Non	R 0 Always	001~111: If DM6 = 1, select the 000~0' 100~1' 26 IL72 0 If DM7= 0, select the in number 7 000: Disa 001~111:	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt	24 IL70 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor.	R 0 Always	001~111: If DM6 = 1, select the   000~0' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 100~1' 111: 100~1' 111: 100~1' 100~1' 111: 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 1000' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 100' 10'	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt	24 IL70 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor. 0: Non activation	R 0 Always	001~111: If DM6 = 1, select the 000~0' 100~1' 26 IL72 0 If DM7= 0, select the in number 7 000: Disa 001~111: If DM7 = 1, select the	DMAC chann 11: 0~3 11: 4~7 II: 4~7 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt 1~7	24 IL70 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor. 0: Non activation factor	R 0 Always	001~111: If DM6 = 1, select the 000~0' 100~1' 26 IL72 0 If DM7= 0, select the in number 7 000: Disa 001~111: If DM7 = 1, select the	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt 1~7 DMAC chann 11: 0~3	24 IL70 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 7 is set as	R 0 Always	001~111: If DM6 = 1, select the 000~0° 100~1° 26 IL72 0 If DM7= 0, select the in number 7 000: Disa 001~111: If DM7 = 1, select the 000~0°	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt 1~7 DMAC chann 11: 0~3	24 IL70 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 7 is set as the	R 0 Always	001~111: If DM6 = 1, select the 000~0° 100~1° 26 IL72 0 If DM7= 0, select the in number 7 000: Disa 001~111: If DM7 = 1, select the 000~0°	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt 1~7 DMAC chann 11: 0~3	24 IL70 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIM71 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIM70 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number 6 is set as the activation factor 28 DM7 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 7 is set as	R 0 Always	001~111: If DM6 = 1, select the 000~0° 100~1° 26 IL72 0 If DM7= 0, select the in number 7 000: Disa 001~111: If DM7 = 1, select the 000~0°	DMAC chann 11: 0~3 11: 4~7 25 IL71 R/W 0 hterrupt level 7 (INT6) ble interrupt 1~7 DMAC chann 11: 0~3	24 IL70 0 for interrupt

	< _	1	1	r					
		7	6	5	4	3	2	1	0
IMC2	Bit Symbol		EIM81	EIM80	DM8		IL82	IL81	IL80
(0xFFFF_E008)	Read/Write	R		R/W	1	R		R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always reads "0."				Always	If $DM8 = 0$ ,		forinterest
		reads "0."	interrupt ree 00: "L" leve		DMAC activation	reads "0."	number 8	nterrupt level	for interrupt
			00. L leve		factor.			ble interrupt	
			10: Falling		0: Non		001~111:		
			11: Rising e		activation		If DM8 = 1,		
				"0" when	factor			DMAC chann	el
			using CG.		1:			11:0~3	
					Interrupt	(	100~1	11: 4~7	
					number 8	$\langle \langle \rangle$	$\sqrt{5}$		
					is set as the		$\bigcirc$		
					activation				
					factor		) 🖓		
		15	14	13	12		10	9	8
	Bit Symbol	$\sim$	EIM91	EIM90	DM9	$\sim$	IL92	(IL91	IL90
	Read/Write	R		R/W		R		R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always	Selects act	ive state of		Always	If DM9 = 0,	)) $$	
		reads "0."	interrupt red	quest:	DMAC	reads "0."	select the ir	terrupt level	for interrupt
			00: "L" leve		activation	-	number 9		
			01: "H" leve		factor.			ble interrupt	
			10: Falling e 11: Rising e		0: Non activation		001~111: If DM9 = 1,	1~/	
				"O" when				DMAC chann	el
			using CG.		1: Interrupt	$(\mathcal{O})$		11: 0~3	01
			Ū	al ì	number 9	$\sim \vee$	))100~11	1: 4~7	
			<	1( >)	is set as	$\sim$			
					the				
			$( \cap$	$\mathcal{I}\mathcal{I}$	activation				
		23	22	2)21	factor 20	19	18	17	16
	Bit Symbol		EIMA1	EIMA0	DMA	$\sim$	ILA2	ILA1	ILA0
	Read/Write	R	$\left(\begin{array}{c} \end{array}\right)$	R/W		R		R/W	
	After Reset	0		0	(10)	0	0	0	0
	Function	Always	Selects act	ive state of		Always	If $DMA = 0$ ,		
		reads "0."	interrupt rec		DMAC	reads "0."		nterrupt level	for interrupt
			00: "L" level		activation		number 1		
		$)) \sim$	04 10 10 10		(-).).				
			01: "H" leve		factor.		000: Disa		
			10: Falling e	edge	0: Non		000: Disa 001~111:	1~7 ່	
			10: Falling e 11: Rising e	edge	0: Non activation		000: Disa 001~111: If DMA = 1,	1~7	el
			10: Falling e 11: Rising e	edge	0: Non activation factor		000: Disa 001~111: If DMA = 1, select the I	1~7 ່	el
			10: Falling e 11: Rising e Set it to	edge	0: Non activation		000: Disa 001~111: If DMA = 1, select the I	1~7 DMAC chann 11: 0~3	el
			10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt number10 is set as		000: Disa 001~111: If DMA = 1, select the I 000~0	1~7 DMAC chann 11: 0~3	el
			10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt number10 is set as the		000: Disa 001~111: If DMA = 1, select the I 000~0	1~7 DMAC chann 11: 0~3	el
~			10: Falling e 11: Rising e Set it to	edge	0: Non activation factor 1: Interrupt number10 is set as the activation		000: Disa 001~111: If DMA = 1, select the I 000~0	1~7 DMAC chann 11: 0~3	el
			10: Falling e 11: Rising e Set it to using CG.	edge edge "0" when	0: Non activation factor 1: Interrupt number10 is set as the activation factor	27	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11	1~7 DMAC chann 11: 0~3 11: 4~7	
	Bit Suppol	31	10: Falling e 11: Rising e Set it to using CG.	edge "0" when 29	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28	27	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11	1~7 DMAC chann 11: 0~3 1: 4~7 25	24
	Bit Symbol ReadWrite	$\mathcal{H}$	10: Falling e 11: Rising e Set it to using CG.	edge "0" when 29 EIMB0	0: Non activation factor 1: Interrupt number10 is set as the activation factor		000: Disa 001~111: If DMA = 1, select the I 000~0 100~11	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> ILB1	
	Read/Write	R	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1	29 EIMB0 R/W	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB	R	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> ILB1 R/W	24 ILB0
	Read/Write After Reset	RO	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1	29 EIMB0 R/W 0	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB	R 0	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> ILB1	24
	Read/Write	R	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1	29 EIMB0 R/W 0 ive state of	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB	R	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0,	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> ILB1 R/W	24 ILB0 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0,	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> ILB1 R/W 0 nterrupt level	24 ILB0 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> <u>ILB1</u> <u>R/W</u> 0 nterrupt level 1 (INTA) ble interrupt	24 ILB0 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111:	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> <u>ILB1</u> <u>R/W</u> 0 nterrupt level 1 (INTA) ble interrupt 1~7	24 ILB0 0
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1,	1~7 DMAC chann 11: 0~3 1: 4~7 <u>25</u> <u>ILB1</u> <u>R/W</u> 0 nterrupt level 1 (INTA) ble interrupt 1~7	24 ILB0 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation factor	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1, select the I	1~7 DMAC chann 11: 0~3 11: 4~7 <u>25</u> <u>ILB1</u> <u>R/W</u> 0 nterrupt level 1 (INTA) ble interrupt 1~7 DMAC chann	24 ILB0 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1, select the I 000~01	1~7 DMAC chann 11: 0~3 11: 4~7 25 ILB1 R/W 0 hterrupt level 1 (INTA) ble interrupt 1~7 DMAC chann 11: 0~3	24 ILB0 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1, select the I	1~7 DMAC chann 11: 0~3 11: 4~7 25 ILB1 R/W 0 hterrupt level 1 (INTA) ble interrupt 1~7 DMAC chann 11: 0~3	24 ILB0 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1, select the I 000~01	1~7 DMAC chann 11: 0~3 11: 4~7 25 ILB1 R/W 0 hterrupt level 1 (INTA) ble interrupt 1~7 DMAC chann 11: 0~3	24 ILB0 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 11 is set as	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1, select the I 000~01	1~7 DMAC chann 11: 0~3 11: 4~7 25 ILB1 R/W 0 hterrupt level 1 (INTA) ble interrupt 1~7 DMAC chann 11: 0~3	24 ILB0 0 for interrupt
	Read/Write After Reset	R 0 Always	10: Falling e 11: Rising e Set it to using CG. 30 EIMB1 0 Selects act interrupt rec 00: "L" level 01: "H" leve 10: Falling e 11: Rising e Set it to	29 EIMB0 R/W 0 ive state of quest:	0: Non activation factor 1: Interrupt number10 is set as the activation factor 28 DMB 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 11 is set as the	R 0 Always	000: Disa 001~111: If DMA = 1, select the I 000~0 100~11 26 ILB2 0 If DMB = 0, select the ir number 1 000: Disa 001~111: If DMB = 1, select the I 000~01	1~7 DMAC chann 11: 0~3 11: 4~7 25 ILB1 R/W 0 hterrupt level 1 (INTA) ble interrupt 1~7 DMAC chann 11: 0~3	24 ILB0 0 for interrupt



IMC3 (0xFF

		7	c	5	4	2	2	1	0
		1	6		4	3		1	0
MC3	Bit Symbol		EIMC1	EIMC0	DMC		ILC2	ILC1	ILC0
(0xFFFF_E00C)	Read/Write	R	-	R/W	1	R		R/W	
	After Reset	0	0 Calasta ast	0	0	0	0	0	0
	Function	Always reads "0."	interrupt rec	ive state of	Set as DMAC	Always reads "0."	If $DMC = 0$ ,	nterrupt level	for interrupt
		Teaus 0.	00: "L" level		activation	Teaus 0.	number 1		ior interrupt
			01: "H" leve		factor.			ble interrupt	
			10: Falling e	edge	0: Non		001~111:		
			11: Rising e		activation		If DMC = 1,	$\langle \rangle$	
				"0" when	factor			DMAC chann	el
			using CG.		1: Interrupt	. (		11:0~3	
					number	$\langle \langle \rangle$	100~11	1: 4~7	
					12 is set as the				
					activation				
					factor		) )^		
	$\sim$	15	14	13	12	$\overline{1}$	10	9	8
	Bit Symbol		EIMD1	EIMD0		$\sim$	ILD2	/ILD1	> ILD0
	Read/Write	R		R/W	Billb	R		R/W	1200
	After Reset	0	0	0	077	∧ Õ	0		0
	Function	Always		ive state of		Always	(Ìf DMD = 0,		
		reads "0."	interrupt rec	quest:	DMAC	reads "0."	select the in	nterrupt level	for interrupt
			01: "H" leve		activation			3 (KWUP)	
				(	factor.			ble interrupt	
				40	0: Non		001~111:		
					activation factor	6	If DMD = 1,	DMAC chann	ol
				1	1: Interrupt			11: 0~3	ei
				$( \land )$	number		//	11: 4~7	
			<	$\langle \rangle \rangle$	13 is set as				
					the				
					activation	$\setminus$ //			
	<				factor				
		23	22	21	20	19	18	17	16
	Bit Symbol		EIME1	EIME0	DME		ILE2	ILE1	ILE0
	Read/Write	R		R/W	$ \longrightarrow $	R	-	R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always reads "0."	interrupt rec	ive state of	Set as DMAC	Always reads "0."	If DME= 0,	nterrupt level	for interrupt
		leaus U.	11: Rising e		activation	ieaus 0.		4 (INTRX0)	ioi interrupt
					factor.			ble interrupt	
				//	0: Non		001~111:		
					activation		If $DME = 1$ ,		
		$\sim$			factor			DMAC chann	el
	$\bigtriangledown$				1: Interrupt			11:0~3	
	75 1		~	$\sim$	number		100~11	1:4~/	
	$\sim$		(7		14 is set as the				
(	$\frown$		91		activation				
$\langle \rangle$	) )		$\langle \rangle$		factor				
	$\searrow$	/31 ((	30	29	28	27	26	25	24
	Bit Symbol	$t \leftarrow d$	EIMF1	EIMF0	DMF	/	ILF2	ILF1	ILF0
	Read/Write	R	$\bigcirc$	R/W	·	R		R/W	
	After Reset	0	0	0	0	0	0	0	0
$\checkmark$	Function	Always		ive state of		Always	If $DMF = 0$ ,		
		reads "0."	interrupt rec		DMAC	reads "0."		nterrupt level	for interrupt
			11: Rising e	dge	activation			5 (INTTX0)	
					factor.		000: Disa 001~111:	ble interrupt	
					0: Non activation		If DMF = 1,	1~1	
					factor			DMAC chann	el
					1: Interrupt			11: 0~3	
					number		100~11	1: 4~7	
					15 is set as				
					the				



(Note) Default values of EIMxx0 and EIMxx1 are different from the values to be used. Properly set them to the specified values before use.

# 

		7	6	5	4	3	2	1	0
IMC5	Bit Symbol	<u> </u>	EIM141	EIM140	DM14	· /	IL142	IL141	IL140
(0xFFFF_E014)	Read/Write	R		R/W	1	R		R/W	
, ,	After Reset	0	0	0	0	0	0	0	0
	Function	Always	Selects act	tive state of	Set as DMAC	Always	If DM14= 0,		
		reads "0."	interrupt red	quest:	activation	reads "0."		nterrupt level	for interrupt
			11: Rising e	edge	factor.			0 (INTSBIO)	
			Be sure to	set "11."	0: Non		000: Disa	ble interrupt	
					activation		001~111:		
					factor		If DM14 = 1		
					1: Interrupt			DMAC chann	el
					number			11:0~3	
					20 is set as	(	100~11	1: 4~7	
					the	$\sim$ (	// 5)		
					activation		$\bigcirc$		
		15	14	13	factor 12	11	10	9	8
	Bit Symbol	$\sim$	EIM151	EIM150	DM15	A.	/ IL152	IL151	IL150
	Read/Write	R	LIWITST	R/W	DIVITS	R		R/W	12130
	After Reset	0	0	0	0		0		0
	Function	Always	-	Ţ	Set as DMAC		If DM15 = 0		~ ~
		reads "0."	interrupt rec		activation	reads "0."		, iterrupt level :	for interrupt
		0.	11: Rising e		factor.	$\langle \rangle$		1 (INTADHP	
			Be sure to		0: Non	//		ble interrupt	,
					activation		001~111:		
					factor		If DM15 = 1		
				20	1: Interrupt			DMAC chann	el
					number			11:0~3	
					21 is set as	6	100~11	1: 4~7	
				$ ( \ ) $	the		$(\mathbf{S})$		
			~	$( \land )$	activation factor		)		
		23	22	21	20	19	18	17	16
	Bit Symbol	25	EIM161	EIM160	20 DM16		IL162	IL161	IL160
	Read/Write	R		R/W		R		R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM16 = 0	,	
		reads "0."	interrupt rec	quest:	activation	reads "0."	select the in	terrupt level	for interrupt
			11: Rising e		factor.		number 2	2 (INTADHP	B)
		$(\mathcal{O})$	Be sure to	set "11." <	0: Non			ble interrupt	
		$\sim \vee$	))	6	activation		001~111:		
		> > > > > > > > > > > > > > > > > > >	シ	. (7)	factor		If DM16 = 1	-	- 1
			$\sim$	$\sim \lor$	1: Interrupt			DMAC chann	el
					number 22 is set as			11: 0~3 11: 4~7	
				$ \longrightarrow $	the		100~1	11.4~7	
		$\sim$			activation				
	$\langle \rangle \rangle$				factor				
		31	30	29	28	27	26	25	24
	Bit Symbol	$\sim$	EIM171	EIM170	DM17		IL172	IL171	IL170
. (	Read/Write	R	17	R/W		R	_	R/W	
$\langle \rangle$	After Reset	0		0	0	0	0	0	0
	Function	Always (	Selects act	tive state of	Set as DMAC	Always	If DM17= 0,		
		reads "0."	interrupt red	quest:	activation	reads "0."		nterrupt level	for interrupt
	/	$\sum$	01: "H" leve	el l	factor.		number 2	23 (INTADM)	
					0: Non			ble interrupt	
$\sim$			7		activation		001~111:		
					factor		If DM17 = 1	,	
					1: Interrupt			DMAC chann	el
					number			11:0~3	
					23 is set as		100~11	1:4~/	
					the				
					activation factor				
			1		140101	1	1		

(Note) Default values of EIMxx0 and EIMxx1 are different from the values to be used. Properly set them to the specified values before use.



	$\sim$	7	0	-	4	0	0	4	0
IMOC	Dit Cumh al	7	6	5	4	3	2	1	0
IMC6	Bit Symbol Read/Write	R	EIM181	EIM180 R/W	DM18	R	IL182	IL181 R/W	IL180
(0xFFFF_E018)	After Reset	<u>к</u> 0	0	R/W 0	0	<u>к</u> 0	0	R/W	0
	Function	Always	-	-	Set as DMAC	Always	If DM18 = 0	-	0
	1 unction	reads "0."	interrupt red		activation	reads "0."	select the		level for
		roude e.	11: Rising e		factor.	10000 0.		number 24 (I	
			Be sure to		0: Non			ble interrupt	
					activation		001~111:	1~7	
					factor		If DM18 = 1		
					1: Interrupt			DMAC chanr	nel
					number	(	000~0	11:0~3	
					24 is set as the	$\langle \langle   \rangle$	100~11	11.4~/	
					activation				
					factor				
		15	14	13	12	N	) 10	9	8
	Bit Symbol		EIM191	EIM190	DM19	$\approx$	IL192	/L191	IL190
	Read/Write	R		R/W	7	R		R/W	>
	After Reset	0	0	0	0	0	0 (	0	0
	Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM19 = 0	$\sim$	
		reads "0."	interrupt rec	quest:	activation	reads "0."	select the interrupt level for interrupt		
			11: Rising e	-	factor.	)		5 (INTTB8)	
			Be sure to	set "11."	0: Non			ble interrupt	
				G	activation		001~111: If DM19 = 1		
				$\leq \langle \langle \rangle \rangle$	factor 1: Interrupt			, DMAC chann	
					number	6	000~0		
					25 is set as	(())	100~11		
				$( \land )$	the	$\sim$ $\lor$	$\mathcal{I}$		
			<	$\langle \rangle \rangle$	activation	/ /			
					factor				1.5
		23	22	21	20	19	18	17	16
		/			/				
	Bit Symbol		EIM1A1	EIM1A0	DM1A	$\checkmark$	IL1A2	IL1A1	IL1A0
	Read/Write	R	EIM1A1	EIM1A0 R/W	DM1A	R	IL1A2	IL1A1 R/W	IL1A0
	Read/Write After Reset	0	EIM1A1	EIM1A0 R/W 0	DM1A	R 0	IL1A2 0	IL1A1 R/W 0	
	Read/Write	0 Always	EIM1A1 0 Selects acti	EIM1A0 R/W 0 ive state of	DM1A 0 Set as DMAC	R 0 Always	1L1A2 0 If DM1A = 0	IL1A1 R/W 0	IL1A0 0
	Read/Write After Reset	0	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A	R 0	1L1A2 0 If DM1A = 0	IL1A1 R/W 0 ), hterrupt level	IL1A0 0
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26	IL1A1 R/W 0 ), hterrupt level	IL1A0 0
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor.	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111:	IL1A1 R/W 0, hterrupt level (INTTB12) ble interrupt 1~7	IL1A0 0
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor. 0: Non activation factor	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1	IL1A1 R/W 0, hterrupt level (INTTB12) ble interrupt 1~7	IL1A0 0 for interrupt
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I	IL1A1 R/W 0, iterrupt level (INTTB12) ble interrupt 1~7 , DMAC chann	IL1A0 0 for interrupt
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0	IL1A1 R/W 0, iterrupt level (INTTB12) ble interrupt 1~7 , DMAC chann 11: 0~3	IL1A0 0 for interrupt
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 26 is set as	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I	IL1A1 R/W 0, iterrupt level (INTTB12) ble interrupt 1~7 , DMAC chann 11: 0~3	IL1A0 0 for interrupt
	Read/Write After Reset	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0	IL1A1 R/W 0, iterrupt level (INTTB12) ble interrupt 1~7 , DMAC chann 11: 0~3	IL1A0 0 for interrupt
	Read/Write After Reset	0 Always reads "0."	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to	EIM1A0 R/W 0 ive state of juest: dge set "11."	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 26 is set as the	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0	IL1A1 R/W 0, iterrupt level (INTTB12) ble interrupt 1~7 , DMAC chann 11: 0~3	IL1A0 0 for interrupt iel
	Read/Write After Reset Function	0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of quest: edge	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 26 is set as the activation	R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0	IL1A1 R/W 0, iterrupt level (INTTB12) ble interrupt 1~7 , DMAC chann 11: 0~3	IL1A0 0 for interrupt
~ (	Read/Write After Reset Function	0 Always reads "0." 31	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to	EIM1A0 R/W 0 ive state of uest: set "11." 29 EIM1B0	DM1A 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 26 is set as the activation factor	R 0 Always reads "0."	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     25     IL1B1	IL1A0 0 for interrupt iel
	Read/Write After Reset Function Bit Symbol Read/Write	0 Always reads "0." 31 R	EIM1A1 0 Selects actiniterrupt rec 11: Rising e Be sure to 30 EIM1B1	EIM1A0 R/W 0 vive state of guest: set "11." 29 EIM1B0 R/W	DM1A O Set as DMAC activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B	R 0 Always reads "0." 27 R	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11 26 IL1B2	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     1: 4~7     25     IL1B1     R/W	IL1A0 0 for interrupt iel 24 IL1B0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0	EIM1A1 0 Selects actiniterrupt rec 11: Rising e Be sure to 30 EIM1B1	EIM1A0 R/W 0 vive state of uest: set "11." 29 EIM1B0 R/W 0	DM1A 0 Set as DMAC activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0	R 0 Always reads "0." 27 R 0	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11 26 IL1B2 0	IL1A1     R/W     0     otterrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     LL1B1     R/W     0	IL1A0 0 for interrupt rel 24
	Read/Write After Reset Function Bit Symbol Read/Write	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects actiniterrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects acti	EIM1A0 R/W 0 vive state of guest: set "11." 29 EIM1B0 R/W 0 vive state of	DM1A O Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC	R 0 Always reads "0." 27 R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11 26 IL1B2 0 If DM1B= 0	IL1A1     R/W     0     ohterrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     25     IL1B1     R/W     0	IL1A0 0 for interrupt rel 24 IL1B0 0
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 8 Be sure to 30 EIM1B1 0 Selects act interrupt rec	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest:	DM1A O Set as DMAC activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation	R 0 Always reads "0." 27 R 0	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11 26 IL1B2 0 If DM1B= 0 select the	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     LL1B1     R/W     0     ittrape	IL1A0 0 for interrupt eel 24 IL1B0 0 level for
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor.	R 0 Always reads "0." 27 R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11 26 IL1B2 0 If DM1B= 0 select the interrupt	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     LL1B1     R/W     0     ,	IL1A0 0 for interrupt eel 24 IL1B0 0 level for
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 8 Be sure to 30 EIM1B1 0 Selects act interrupt rec	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor. 0: Non	R 0 Always reads "0." 27 R 0 Always	IL1A2     0     If DM1A = 0     select the in     number 26     000: Disa     001~111:     If DM1A = 1     select the I     000~0     100~11     26     IL1B2     0     If DM1B= 0     select the     interrupt     000: Disa	IL1A1 R/W 0 o, interrupt level (INTTB12) ble interrupt 1~7 0MAC chann 1: 0~3 1: 4~7 25 IL1B1 R/W 0 , e interrupt number 27 (I ble interrupt	IL1A0 0 for interrupt eel 24 IL1B0 0 level for
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor.	R 0 Always reads "0." 27 R 0 Always	IL1A2 0 If DM1A = 0 select the in number 26 000: Disa 001~111: If DM1A = 1 select the I 000~0 100~11 26 IL1B2 0 If DM1B= 0 select the interrupt	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     IL1B1     R/W     0     i. 4~7	IL1A0 0 for interrupt eel 24 IL1B0 0 level for
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor. 0: Non activation	R 0 Always reads "0." 27 R 0 Always	IL1A2     0     If DM1A = 0     select the in     number 26     000: Disa     001~111:     If DM1A = 1     select the I     000~0     100~11     26     IL1B2     0     If DM1B= 0     select the     interrupt     000: Disa     001~111:     If DM1B= 1	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     IL1B1     R/W     0     i. 4~7	IL1A0 0 for interrupt eel 24 IL1B0 0 level for NTTB14)
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor. 0: Non activation factor. 0: Non activation factor	R 0 Always reads "0." 27 R 0 Always	IL1A2     0     If DM1A = 0     select the in     number 26     000: Disa     001~111:     If DM1A = 1     select the I     000~0     100~11     26     IL1B2     0     If DM1B= 0     select the     interrupt     000: Disa     001~111:     If DM1B= 1     select the	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     IL1B1     R/W     0     i,     e interrupt     1~7     1,	IL1A0 0 for interrupt eel 24 IL1B0 0 level for NTTB14)
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor. 0: Non activation factor. 0: Non activation factor 1: Interrupt	R 0 Always reads "0." 27 R 0 Always	IL1A2     0     If DM1A = 0     select the in     number 26     000: Disa     001~111:     If DM1A = 1     select the I     000~0     100~11     26     IL1B2     0     If DM1B= 0     select the     interrupt     000: Disa     001~111:     If DM1B= 1     select the I     000~0'	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     25     IL1B1     R/W     0     i,     construction     interrupt     1.120     interrupt     0     i,     DMAC chann	IL1A0 0 for interrupt eel 24 IL1B0 0 level for NTTB14)
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 12 Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 27 is set as the	R 0 Always reads "0." 27 R 0 Always	IL1A2     0     If DM1A = 0     select the in     number 26     000: Disa     001~111:     If DM1A = 1     select the I     000~0     100~11     26     IL1B2     0     If DM1B= 0     select the     interrupt     000: Disa     001~111:     If DM1B= 1     select the I     000~0'	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     Q     i. 4~7     L1B1     R/W     0     i,     1: 4~7     IL1B1     R/W     0     i,     DMAC chann     1: 1~7     1,     DMAC chann     11: 0~3	IL1A0 0 for interrupt eel 24 IL1B0 0 level for NTTB14)
	Read/Write After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	EIM1A1 0 Selects acti interrupt rec 11: Rising e Be sure to 30 EIM1B1 0 Selects act interrupt rec 11: Rising e	EIM1A0 R/W 0 ive state of guest: set "11." 29 EIM1B0 R/W 0 ive state of guest: edge	DM1A Set as DMAC activation factor 0: Non activation factor 1: Interrupt number 26 is set as the activation factor 28 DM1B 0 Set as DMAC activation factor. 0: Non activation factor. 0: Non activation factor 1: Interrupt number 27 is set as	R 0 Always reads "0." 27 R 0 Always	IL1A2     0     If DM1A = 0     select the in     number 26     000: Disa     001~111:     If DM1A = 1     select the I     000~0     100~11     26     IL1B2     0     If DM1B= 0     select the     interrupt     000: Disa     001~111:     If DM1B= 1     select the I     000~0'	IL1A1     R/W     0     interrupt level     (INTTB12)     ble interrupt     1~7     ,     DMAC chann     11: 0~3     11: 4~7     Q     i. 4~7     L1B1     R/W     0     i,     1: 4~7     IL1B1     R/W     0     i,     DMAC chann     1: 1~7     1,     DMAC chann     11: 0~3	IL1A0 0 for interrupt eel 24 IL1B0 0 level for NTTB14)

(Note) Default values of EIMxx0 and EIMxx1 are different from the values to be used. Properly set them to the specified values before use.


	/	7	6	5	4	3	2	1	0		
IMC7	Bit Symbol		EIM1C1	EIM1C0	DM1C		IL1C2	IL1C1	IL1C0		
(0xFFFF_E01C)	Read/Write	R		R/W		R		R/W			
	After Reset	0	0	0	0	0	0	0	0		
	Function	Always			Set as DMAC	Always	If $DM1C = C$				
		reads "0."	interrupt rec 01: "H" leve		activation	reads "0."		terrupt level			
					factor. 0: Non		number 28 (INTTBT01-07) 000: Disable interrupt				
					activation		000. 1034				
					factor		If DM1C = 1				
					1: Interrupt			DMAC chann	el		
					number	(		11: 0~3			
					28 is set as	$\langle \langle   \rangle$	100~11	1: 4~7			
					the activation		$\bigcirc$				
					factor						
	/	15	14	13	12	1	/) 10	9	8		
	Bit Symbol	/	EIM1D1	EIM1D0	DM1D	$\sim$	IL1D2	/L1D1	IL1D0		
	Read/Write	R		R/W	2	R		R/W	>		
	After Reset	0	0	0	0	0	0	0	0		
	Function	Always			Set as DMAC	Always	If $DM1D = 0$ ,				
		reads "0."	interrupt rec 01: "H" leve	•	activation factor.	reads "0."		terrupt level 9 (INTTB09-			
					o; Non			ble interrupt	UF)		
				_	activation		001~111:				
				20	factor		If DM1D = 1				
					1: Interrupt			DMAC chann	el		
					number	$\bigcap$	000~011: 0~3 100~111: 4~7				
				$\Delta$	29 is set as the		())100~11	1:4~/			
			5	$\langle \bigcirc \rangle$	activation		)				
				$\sim$	factor						
		23	22	21	20	19	18	17	16		
	Bit Symbol		EIM1E1	EIM1E0	DM1E		IL1E2	IL1E1	IL1E0		
	Read/Write	R		R/W	Ô	R	0	R/W	0		
	After Reset Function	0 Always		0 ivo stato of	0 Set as DMAC	0 Always	0 If DM1E = 0	0	0		
	Function	reads "0."	interrupt req		activation	reads "0."		, iterrupt level	for interrupt		
		$\left( \mathcal{O} \right)$	01: "H" leve	· ~	factor.			0 (INTTB10-			
		$\sim \mathbb{V}$	))		0: Non			ble interrupt			
		)) >		. ((/)	activation		001~111: 1~7				
				> > <	factor 1: Interrupt		If DM1E = 1	, DMAC chann	ol		
					number			11: 0~3	ei		
			$\langle \langle \langle \rangle \rangle$	$ \rightarrow $	30 is set as		100~11				
	~ ~	$\sim$			the						
	$\leq$ .			$\searrow$	activation						
		31	30	29	factor 28	27	26	25	24		
(	Bit Symbol	31	EIM1F1	EIM1F0	Z0 DM1F	21	IL1F2	IL1F1	IL1F0		
$\langle \langle \rangle$	Read/Write	R		R/W		R	IL1FZ	R/W			
	After Reset	>0 ((	0	0	0	0	0	0	0		
	Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM1F = 0				
	/	reads "0."	interrupt rec	•	activation	reads "0."		nterrupt level			
			01: "H" leve		factor.			31 (INTTB18-	1F)		
$\checkmark$			Y		0: Non			ble interrupt			
					activation		001~111: If DM1F = 1				
					factor 1: Interrupt			, DMAC chann	el		
					number		000~01				
					31 is set as		100~11				
					the						
					activation						
					factor						



IMC6         Bit Symbol         EIM201         EIM200         DM20         R         L202         L201			7	6	5	4	3	2	1	0		
After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td>EIM201</td><td></td><td>DM20</td><td></td><td>IL202</td><td></td><td>IL200</td></th<>				EIM201		DM20		IL202		IL200		
Function         Navays reads "0."         Selects active state of set as DMAC include         Navays reads "0."         If DM20 = 0.         If DM20 = 0.           01: "H" level         District active include         District active include         The active include         The active include         The active include         The active include           15         14         13         12         11         10         9         8           Bit Symbol         EIM211         EIM210         DM21         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	(0xFFFF_E020)	Read/Write			R/W				R/W			
Interrupt request: 01:"H" level         chuston factor 10:"H" level         select the interrupt august 000-Disable interrupt 000-Disable interrupt 000-Disab			-	-	-		-			0		
Image: State of the second state of the sec		Function										
Disk         Disk <thdisk< th="">         Disk         Disk         <thd< td=""><td></td><td></td><td>reads "0."</td><td></td><td>•</td><td></td><td>reads "0."</td><td></td><td></td><td></td></thd<></thdisk<>			reads "0."		•		reads "0."					
activation factor         007-111: 1-7 interrupt 32 is set as be bet the DMAC channel 000-011: 0-3         007-111: 1-7 select the DMAC channel 000-011: 0-3           15         14         13         12         11         10         9         8           Bit Symbol         EIM211         EIM210         DM21         112: 12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11         12: 11				01: "H" leve	el			000: Disable interrupt				
Interrupt 1: Interrupt 22 is set as be activation         If DM20 = h, select the DMAC channel 000-0f1: 0-3           15         14         13         12         11         10         9         8           Bit Symbol         EIM211         EIM210         DM21         11         102         12         121         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212         1212												
Interrupt number 32 is set as the activation         Interrupt number 32 is set as the activation         Isselect the DMMC channel 22 is set as the activation         Select the INFMC channel 22 is set as the activation           15         14         13         12         11         10         9         8           Bit Symbol         EIM211         EIM210         DM21         IL212         IL214         IL224												
Image: Second constraints         Image: Second constraint         Image: Second constraints         Ima												
32 is set as meter         100-111: 4-7           15         14         13         12         11         10         9         8           Bit Symbol         EIM211         EIM210         DM21         LL212         L1211         LL212         L1211         LL210           Read/Write         R         R/W         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td>												
Its         Its <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~ ()</td> <td></td> <td></td> <td></td>							~ ()					
15         14         13         12         11         10         9         8           Bit Symbol         EIM211         EIM210         DM21         IL212         /L211         IL212         /L211         IL214         IL216         IL214         IL214         IL214         IL214         IL216         IL214         IL214         IL214         IL216         IL221         IL2211         IL220         IL231 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>$\langle \langle \rangle$</td><td>YZ J]</td><td></td><td></td></td<>							$\langle \langle \rangle$	YZ J]				
15         14         13         12         11         10         9         8           Bit Symbol         EIN211         EIN210         DM21         IL:12         IL:212         IL:214         <						activation						
Bit Symbol         EIM211         EIM210         DM21         R         IL212         /IL211         IL210           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<						factor						
Read/Write         R         RW         R         RW           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0			15	14	13	12	<u></u>	/ 10	9	8		
After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td>Bit Symbol</td><td></td><td>EIM211</td><td>EIM210</td><td>DM21</td><td></td><td>IL212</td><td>/L211</td><td>IL210</td></th<>		Bit Symbol		EIM211	EIM210	DM21		IL212	/L211	IL210		
Function         Always reads "0."         Selects active state of interrupt request: 01: "H" level         Selects active state of provide (1: "H" level         Always reads "0."         If DM21=0, reads "0."         If DM21=0, reads "0."           01: "H" level         01: "H" level         01: "H" level         01: "H" level         00: Disable interrupt rectivation factor         00: Disable factor/ 00: Disable factor/ 10: The factor         00: Disable factor/ 10: The factor           23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         IL222         IL221         IL221           Read/Write         R         RW         R         RW         R         RW           After Reset         0         0         0         0         0         0           01: "H" level         01: "H" level         01: "H" level         01: The rupt request: factor         12: factor         select the interrupt level for interrupt number 34 (INTCMPGR)           00: Disable interrupt 00: The DM22 = 0, select the DMAC channel o00: Disable interrupt         100: 111: 4-7         100: 111: 4-7           8         31         30         29         28         27         26         25         24           10: Th" level <t< td=""><td></td><td>Read/Write</td><td>R</td><td></td><td>R/W</td><td>4</td><td>R</td><td></td><td></td><td>&gt;</td></t<>		Read/Write	R		R/W	4	R			>		
reads "0."         interrupt request: 01: "H" level         activation partor         reads "0."         beliet the interrupt fevel for interrup number 33 (INTGAPG) 000. Deable interrupt 001-111: 1-7           01: "H" level         0: "Non activation factor         0: "H" level         0: "Non activation factor           23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM221         DM26         IL222         IL221         IL220           Read/Write         R         RW         R         RW         R         RW           After Reset         0         0         0         0         0         0           01: "H" level         01: "H" level         0: Non- factor         100-111: 4-7         select the interrupt level for interrupt number 34 (INTCMPCR)         select the interrupt level for interrupt number 34 (INTCMPCR)         00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td>After Reset</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td>		After Reset	-	0	0	0	0	0	2	0		
reads "0."         interrupt request: 01: "H" level         activation pation         reads "0."         select the interrupt fevel for interrup number 33 (INTGAPG) 00: Disable interrupt 00: Disable interrupt           01: "H" level         0: "H" level         0: "H" level         0: "H" level         0: "H" level           02: The activation factor         1: Interrupt scitivation factor         1: Interrupt scitivation factor         1: Interrupt scitivation factor         1: Interrupt scitivation factor         1: Interrupt scitivation factor         1: Interrupt scitivation factor           23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         II.222         II.221         II.220           Read/Write         R         RWW         R         RWW         Reads "0."         If DM22 = 0, scitchaiton factor         scitchaiton factor         scitchaiton factor         100: Disable interrupt ourber 34 (INTCMPGR)         00: Disable interrupt ourber 34 (INTCMPGR)           00: Disable interrupt reads "0."         1: Interrupt scitvation factor         1: Interrupt scitvation factor         0: O         0         0         0           10: TH" level         0         0         0         0         0         0         0           231         30<		Function	Always	Selects act	ive state of	Set as DMAC	Always					
01: "H" level         jsator.         number 33 (MFTGAPG)           00: Disable interrupt         00: Disable interrupt         00: Disable interrupt           00: 11: "H" level         00: 00: 00: 00: 00: 00: 00: 00: 00: 00:				interrupt rec	quest:			select the in	terrupt level	for interrupt		
23         22         21         20         19         18         17         16           31         32         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         112         122         11220           Read/Write         R         RW         Atter Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1111				01: "H" leve				number 3	3 (INTCAPG			
Image: Symbol         23         22         21         22         21         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122 <th12< th=""> <th12< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th12<></th12<>												
It: Interrupt Dumber         Select the DMAC channel           23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         IL222         IL221         IL202           Read/Write         R         R/W         R         R/W         R         R/W           Atter Reset         0         0         0         0         0         0         0           Function         Always         Selects active state of Set as DMAC Always reads "0."         If DM22 = 0, select the interrupt level for interrupt number 34 (INTCMPGR)         000-011: 0-3         100-111: 1-7         If DM22 = 1, select the interrupt level for interrupt number 34 is set as the activation factor         01-111: 1-7         If DM22 = 1, select the DMAC channel         000-011: 0-3           31 a 30         29         28         27         26         25         24           Bit Symbol         EIM231         EIM230         DM23         IL232         IL231         IL230           Read/Write         R         R/W         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0					G							
Image: Second					$\mathcal{A}($					- 1		
33 is set as the activation factor         100-111: 4-7           23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         IL222         IL221         IL221         IL220           ReadWrite         R         RW         R         RW         R         RW           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0										e		
the activation activ							$( \cap$					
23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         IL222         IL221         IL220           Read/Write         R         R/W         R         R/W         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0					$\leq$	7		))100~11	1.4~1			
Image: constraint of the				~	$\langle \bigcirc \rangle$			2				
23         22         21         20         19         18         17         16           Bit Symbol         EIM221         EIM220         DM26         IL222         IL221         IL220           Read/Write         R         R/W         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td></td><td></td><td></td><td>$\langle \rangle \sim$</td><td></td><td></td><td></td><td></td><td></td></td<>					$\langle \rangle \sim$							
Bit Symbol         EIM221         EIM220         DM26         IL222         IL221         IL232         IL231         IL320         Select the interrupt of onterrupt of onterrupt of activation factor         Interrupt of activation factor         Interrupt of activation factor         Interrupt activation factor         Interrupt activation factor         IL232         IL232 <thil331< th=""> <th< td=""><td></td><td></td><td>23</td><td>22</td><td>21</td><td></td><td>19</td><td>18</td><td>17</td><td>16</td></th<></thil331<>			23	22	21		19	18	17	16		
Read/Write         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>Bit Symbol</td> <td>$\backslash$</td> <td></td> <td><u></u></td> <td></td> <td>$\sim 4$</td> <td></td> <td></td> <td></td>		Bit Symbol	$\backslash$		<u></u>		$\sim 4$					
After Reset       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th< td=""><td></td><td></td><td>R</td><td>20</td><td>R/W</td><td></td><td>R</td><td></td><td></td><td></td></th<>			R	20	R/W		R					
reads "0."       interrupt request: 01; "H" level       activation factor. 0; Non activation factor       reads "0."       select the interrupt number 34 (INTCMPGR) 000: Disable interrupt 001: 111: 1-7         If DM22 = 1, select the DMAC channel 000-011: 0-3       select the DMAC channel 000-011: 0-3       000-011: 0-3         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W       R       R/W         After Reset       0       0       0       0       0       0       0         Function       Always reads "0."       Selects active state of Set as DMAC activation factor       Always reads "0."       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)       select the DMAC channel 000-011: 0-3         001 - 111: 1-7       If DM23 = 1, select the DMAC channel 000-011: 0-3       select the DMAC channel 000-011: 0-3       000-011: 0-3				$\bigcirc 0 \land$		0	0	0	0	0		
reads "0."       interrupt request: 01; "H" level       activation factor. 0; Non activation factor       reads "0."       select the interrupt number 34 (INTCMPGR) 000: Disable interrupt 001-111: 1-7         If DM22 = 1, select the DMAC channel 000-011: 0-3       select the DMAC channel 000-011: 0-3       000-011: 0-3         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W         Atter Reset       0       0       0       0       0         Function       Always reads "0."       Selects active state of activation factor.       Selects active state of select the interrupt level for interrupt number 35 (INTTBT)       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)         001-111: 1-7       If DM23 = 1, select the DMAC channel 000-011: 0-3       001-111: 1-7         If DM23 = 1, select the DMAC channel 000-011: 0-3       001-111: 1-7         If DM23 = 1, select the DMAC channel 000-011: 0-3       000-011: 0-3         35 is set as the       100-111: 4-7		Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM22 = 0	,			
0: Non activation factor     000: Disable interrupt 001-111: 1-7 If DM22 = 1, select the DMAC channel 000-011: 0-3 100-111: 4-7       31     30     29     28     27     26     25     24       Bit Symbol     EIM231     EIM230     DM23     IL232     IL231     IL230       Read/Write     R     R/W     R     R/W       After Reset     0     0     0     0     0       Function     Always reads "0."     Selects active state of activation factor     Selects active state of set as DMAC activation factor     Always reads "0."     If DM23 = 0, select the interrupt level for interrupt 001-111: 1-7 If DM23 = 1, select the DMAC channel 000-011: 0-3 100-111: 4-7							-	select the in	terrupt level	for interrupt		
activation factor       activation factor       001-111: 1-7 If DM22 = 1, select the DMAC channel 000-011: 0-3 100-111: 4-7         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL232         Read/Write       R       R/W       R       R/W       R       R/W         After Reset       0       0       0       0       0       0       0         Function       Always reads "0."       Selects active state of interrupt request: 01: "H" level       Selects active state of activation factor       Select as DMAC activation factor       Always reads "0."       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)       select the interrupt level for interrupt number 35 (INTTBT)       000-D11: 0-3 100-111: 0-3 100-111: 0-3         001-111: 1-7       If DM23 = 1, select the DMAC channel 000-011: 0-3 100-111: 0-3       100-111: 0-3 100-111: 0-3       100-111: 0-3			$(\mathcal{O})$	01: "H" leve		factor.		number 3	4 (INTCMPC	SR)		
factor       1: Interrupt number       If DM22 = 1, select the DMAC channel         000-011: 0-3       34 is set as the activation factor       100-111: 4-7         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W         After Reset       0       0       0       0       0       0         Function       Alway\$       Selects active state of interrupt request: 01: "H" level       Set as DMAC activation factor.       Always reads "0."       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)         000: Disable interrupt 001-111: 1-7       If DM23 = 1, select the DMAC channel 000-011: 0-3       001-111: 1-7         If DM23 = 1, select the DMAC channel 000-011: 0-3       100-111: 4-7			$\sim \vee$		Ē	0: Non		000: Disal	ble interrupt			
1: Interrupt number 34 is set as the activation factor       select the DMAC channel 000-011: 0-3 100-111: 4-7         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W       R       R/W         After Reset       0       0       0       0       0       0       0       0         Function       Always reads "0."       interrupt request: 01: "H" level       factor.       O: Non activation factor.       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)       select the interrupt level for interrupt number 35 is set as the       If DM23 = 1, select the DMAC channel 000-011: 0-3 100-111: 4-7			$\gamma \gamma \sim$	シ	(7)	activation						
number 34 is set as the activation factor         000-011: 0-3 100-111: 4-7           31         30         29         28         27         26         25         24           Bit Symbol         EIM231         EIM230         DM23         IL232         IL231         IL230           Read/Write         R         R/W         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0           Function         Always reads "0."         Selects active state of oit "H" level         Set as DMAC factor.         Always reads "0."         If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)         select the interrupt level for interrupt number 35 (INTTBT)         000: Disable interrupt 001-111: 1-7         100-111: 1-7           If DM23 = 1, select the DMAC channel 000-011: 0-3 100-111: 0-3         100-111: 0-3 100-111: 4-7         100-111: 4-7				. <		//			-			
34 is set as the activation factor       100-111: 4-7         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W         After Reset       0       0       0       0       0       0         Function       Always reads "0."       Selects active state of interrupt request: 01: "H" level       Set as DMAC factor       Always reads "0."       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)         000: Disable interrupt 001~111: 1~7       00: Disable interrupt factor       001~111: 1~7         If DM23 = 1, 35 is set as the       100~111: 0~3       100~111: 4~7										ei		
the activation factor       the activation factor         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W       R       R/W         After Reset       0       0       0       0       0       0       0         Function       Always       Selects active state of interrupt request: 01: "H" level       Selects active state of activation factor.       Select the interrupt level for interrupt o01~111: 1~7       select the DMAC channel 000~011: 0~3         1       Interrupt number 35 is set as the of factor       Si is set as the of factor       Select the DMAC channel 000~011: 0~3					$ \longrightarrow $							
activation factor       activation factor         31       30       29       28       27       26       25       24         Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         Read/Write       R       R/W       R       R/W         After Reset       0       0       0       0       0       0       0         Function       Always       Selects active state of interrupt request: 01: "H" level       Selects active state of factor.       Select the interrupt level for interrupt request: 01: "H" level       01: "H" level       0: Non activation factor.       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)       000: Disable interrupt level for interrupt number 35 (INTTBT)         001 - 111: 1-7       If DM23 = 1, select the DMAC channel 000~011: 0~3       100~111: 4~7       100~111: 4~7			$\sim$					100~11	1.4~1			
factor         factor           31         30         29         28         27         26         25         24           Bit Symbol         EIM231         EIM230         DM23         IL232         IL231         IL230           Read/Write         R         R/W         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0         0           Function         Always         Selects active state of interrupt request: 01: "H" level         Set as DMAC activation factor.         Always         If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT) 000: Disable interrupt number 35 (INTTBT) 000: Disable interrupt 001~111: 1~7           01: "H" level         0: Non activation factor         1: Interrupt number 35 is set as 100~01: 0~3         100~111: 0~3		$\langle \rangle$										
31         30         29         28         27         26         25         24           Bit Symbol         EIM231         EIM230         DM23         IL232         IL231         IL230           Read/Write         R         R/W         R         R/W         R         R/W           After Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td>2/ 1</td><td>2</td><td>$\wedge$</td><td>$\sim$</td><td></td><td></td><td></td><td></td><td></td></td<>		2/ 1	2	$\wedge$	$\sim$							
Bit Symbol       EIM231       EIM230       DM23       IL232       IL231       IL230         ReadWrite       R       R/W       R       R/W       R       R/W         After Reset       0       0       0       0       0       0       0       0         Function       Always reads "0."       Selects active state of interrupt request: 01: "H" level       Set as DMAC factor.       Always reads "0."       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT)         00: Disable interrupt 001~111: 1~7       0: Non factor       0: Non activation factor       I: Interrupt number       000~01~111: 1~7         1: Interrupt number       35 is set as the       100~111: 4~7       Select the DMAC channel			31	30	29		27	26	25	24		
Read/Write       R       R/W         After Reset       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>. (</td> <td>Bit Symbol</td> <td>$\sim$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	. (	Bit Symbol	$\sim$									
After Reset       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th< td=""><td>$\langle \rangle$</td><td></td><td>R</td><td></td><td></td><td>DIVIZO</td><td>R</td><td>12202</td><td>-</td><td>12200</td></th<>	$\langle \rangle$		R			DIVIZO	R	12202	-	12200		
Function       Always reads "0."       Selects active state of interrupt request: 01: "H" level       Set as DMAC activation factor.       Always reads "0."       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT) 000: Disable interrupt 001~111: 1~7         0: Non activation factor 1: Interrupt number 35 is set as the       If DM23 = 0, select the interrupt level for interrupt number 35 (INTTBT) 000: Disable interrupt 001~111: 1~7				0		0		0		0		
reads "0." Interrupt request: 01: "H" level activation factor. 1: Interrupt 0: Non factor 1: Interrupt 0: Non factor 1: Interrupt 0: Non factor 1: Interrupt 0: Non factor 1: Interrupt 0: Non factor 1: Interrupt 0: Non 1: Interrupt 1:					-		-					
01: "H" level factor. 0: Non activation factor 1: Interrupt number 35 is set as the 01: "H" level factor. 0: Non activation factor 1: Interrupt 1: Interupt 1: Interrupt 1: Interrupt 1: Interrupt 1: Interrupt										for interrupt		
0: Non activation factor 1: Interrupt number 35 is set as the 000: Disable interrupt 001~111: 1~7 If DM23 = 1, select the DMAC channel 000~011: 0~3 100~111: 4~7												
activation factor001~111: 1~7factorIf DM23 = 1,1: Interrupt numberselect the DMAC channel000~011: 0~335 is set as100~111: 4~7the	$\sim$			>					· · · ·			
factor If DM23 = 1, 1: Interrupt number 000~011: 0~3 35 is set as 100~111: 4~7 the	*								•			
1: Interrupt numberselect the DMAC channel 000~011: 0~3 100~111: 4~7 the												
number         000~011: 0~3           35 is set as         100~111: 4~7           the         100~111: 4~7										el		
the												
						35 is set as		100~11	1: 4~7			
activation						the						
						activation						
factor						factor						



		_		_					•
		7	6	5	4	3	2	1	0
IMC9	Bit Symbol								
(0xFFFF_E024)	Read/Write				F	1			
	After Reset Function	0	0	0	0	0	0	0	0
	Function				Always I	eads "0."			
	/	15	14	13	12	11	<_10	9	8
	Bit Symbol	/	EIM251	EIM250	DM25		IL252	IL251	IL250
	Read/Write	R		R/W		R	(	R/W	
	After Reset	0	0	0	0	0	0	0 1	0
	Function	Always		ive state of		Always	If DM25 = 0		
		reads "0."	interrupt rec		DMAC	reads "0."		nterrupt level	for interrupt
			11: Rising e Be sure to	eage set "11 "	activation factor.			87 (INTRX3) ble interrupt	
			De Sule lo	561 11.	0: Non		000. Disa 001~111:		
					activation		If DM25 = 1		
					factor			DMAC chann	el
					1: Interrupt	$\bigcirc$		11:0~3	
					number		100~11	1:4~7	>
					37 is set as			$\langle \rangle \rangle$	
					the activation		(C	$)) \sim$	
					factor	$\mathcal{I}$		(//)	
		23	22	21	20	19	18	47	16
	Bit Symbol		EIM261	EIM260	DM26		1L262	V IL261	IL260
	Read/Write	R		R/W		R	$(\mathcal{S})$	R/W	
	After Reset	0	0	0	0	0	0	0	0
	Function	Always		ive state of		Always	If $DM26 = 0$		for interrupt
		reads "0."	interrupt rec 11: Rising ec		DMAC activation	reads "0."		nterrupt level 88 (INTTX3)	for interrupt
			Be sure to s		factor.			ble interrupt	
					0: Non		001~111:		
					activation	$\geq //$	If DM26 = 1		
				))	factor	$\sim$		DMAC chann	el
			$\mathcal{P}$		1: Interrupt		000~0 100~11	11:0~3	
			(())		number 38 is set as		100~11	1.4~1	
					the				
		$(\mathcal{O})$	7	<	activation				
		$\sim $	))		factor				
		31	30	29( /	28	27	26	25	24
	Bit Symbol		EIM271	EIM270	DM27		IL272	IL271	IL270
	Read/Write	R		R/W		R		R/W	
	After Reset	0	Q Calanta an		0	0	0	0	0
	Function	Always reads "0."	interrupt red	ive state of	Set as DMAC	Always reads "0."	If $DM27 = 0$	, nterrupt level	for interrunt
			11: Rising ed		activation	Teaus U.		39 (INTRX4)	
			Be sure to s		factor.			ble interrupt	
	$\bigcirc$		21		0: Non		001~111:	1~7	
$\sim$	()				activation		If DM27 = 1		
		$\wedge$ ((	$\sim \sim$		factor			DMAC chann	el
		$( \land \land$			1: Interrupt			11:0~3	
					number 39 is set as		100~111	1.4~1	
$\sim$			$\geq$		activation				
					factor				
		2//	$\geq$						



(0xFFFF_E028) Read After Fund Bit S Read	Symbol d/Write r Reset ction	7 R 0 Always reads "0."	6 EIM281 0 Selects act interrupt red 11: Rising e <b>Be sure to</b> <b>Be sure to</b>	quest: edge	4 DM28 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 40 is set as the activation factor	3 R 0 Always reads "0."	number 4 000: Disa 001~111: If DM28 = 1	hterrupt level 10 (INTTX4) ble interrupt 1~7 DMAC chann 11: 0~3		
(0xFFFF_E028) Read After Fund Bit S Read After	d/Write r Reset ction / r Symbol d/Write r Reset ction /	0 Always reads "0." 15 R	0 Selects act interrupt red 11: Rising e <b>Be sure to</b>	R/W 0 ive state of quest: edge set "11."	0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 40 is set as the activation	0 Always	0 If DM28 = 0 select the ir number 4 000: Disa 001~111: If DM28 = 1 select the I 000~01	R/W 0 hterrupt level 0 (INTTX4) ble interrupt 1~7 DMAC chann 11: 0~3	0 for interrupt	
After Func Bit S Reac After	r Reset ction / r Symbol d/Write r Reset ction /	0 Always reads "0." 15 R	Selects act interrupt rec 11: Rising e <b>Be sure to</b> 14	0 ive state of quest: edge set "11."	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 40 is set as the activation	0 Always	If DM28 = 0 select the ir number 4 000: Disa 001~111: If DM28 = 1 select the I 000~01	0 hterrupt level 0 (INTTX4) ble interrupt 1~7 DMAC chann 11: 0~3	for interrupt	
Fund Bit S Reac After	Ction / r Symbol d/Write r Reset Ction /	Always reads "0." 15 R	Selects act interrupt rec 11: Rising e <b>Be sure to</b> 14	ive state of quest: edge set "11."	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 40 is set as the activation	Always	If DM28 = 0 select the ir number 4 000: Disa 001~111: If DM28 = 1 select the I 000~01	), hterrupt level 10 (INTTX4) ble interrupt 1~7 DMAC chann 11: 0~3	for interrupt	
Read After	Symbol d/Write r Reset ction	15 R	interrupt red 11: Rising e <b>Be sure to</b> 14	quest: edge <b>set "11."</b>	activation factor. 0: Non activation factor 1: Interrupt number 40 is set as the activation		select the in number 4 000: Disa 001-111: If DM28 = 1 select the I 000-01	hterrupt level 10 (INTTX4) ble interrupt 1~7 DMAC chann 11: 0~3		
Read After	d/Write r Reset ction	R	Be sure to	set "11."	0: Non activation factor 1: Interrupt number 40 is set as the activation		000: Disa 001~111: If DM28 = 1 select the I 000~01	ble interrupt 1~7 DMAC chann 11: 0~3	Iel	
Read After	d/Write r Reset ction	R	14		activation factor 1: Interrupt number 40 is set as the activation		001~111: If DM28 = 1 select the I 000~01	1~7 DMAC chann 11: 0~3	el	
Read After	d/Write r Reset ction	R		13	factor 1: Interrupt number 40 is set as the activation		If DM28 = 1 select the I 000~01	, DMAC chann 11: 0~3	iel	
Read After	d/Write r Reset ction	R		13	1: Interrupt number 40 is set as the activation		select the I 000~01	DMAC chann 11: 0~3	iel	
Read After	d/Write r Reset ction	R		13	number 40 is set as the activation		000~01	11: 0~3	nel	
Read After	d/Write r Reset ction	R		13	40 is set as the activation					
Read After	d/Write r Reset ction	R		13	the activation	$\langle \langle \rangle$	100~11			
Read After	d/Write r Reset ction	R		13	activation		$(\zeta ) / ($	1. 4~7		
Read After	d/Write r Reset ction	R		13						
Read After	d/Write r Reset ction	R		13	Tacioi					
Read After	d/Write r Reset ction		EIM291	10	12		7 10	9	8	
After	r Reset			EIM290	DM29	$\sim$	IL292	/L291	IL290	
	ction /			R/W	2	R		R/W	>	
Fund			0	0	0	0	0 ()	Q	0	
	r	Always	Selects act	ive state of	Set as DMAC	Always	If DM29 = 0		_	
		reads "0."	interrupt rec		activation	reads "0."		nterrupt level	for interrupt	
			11: Rising e		factor.			1 (INTRX5)		
			Be sure to	set "11."	0; Non			ble interrupt		
				G	activation		001~111: If DM29 = 1			
				40	factor 1: Interrupt			, DMAC chann		
					number		000~0		ei	
					41 is set as		100~11			
				$\alpha$	the	$\sim$	$\mathcal{O}$			
			<	$\langle \rangle \rangle$	activation	$\sim$				
-					factor					
		23	22	21	20	19	18	17	16	
	Symbol		EIM2A1	EIM2A0	DM2A		IL2A2	IL2A1	IL2A0	
	d/Write r Reset	R 0	00	R/W 0	0	R 0	0	R/W 0	0	
Fund		Always		•	Set as DMAC	-	0 If DM2A = 0	-	0	
T unc		reads "0."	interrupt rec		activation	reads "0."			for interrupt	
			11: Rising e	· ~	factor.	10000 0.	select the interrupt level for interrupt number 42 (INTTX5)			
		$\langle \langle V \rangle$	Be sure to	0	0: Non			ble interrupt		
		$\mathcal{N} \mathcal{L}$	<u>ک</u>	$(\mathcal{O})$	activation		001~111: 1~7 If DM2A = 1,			
		1	$\langle \rangle$		factor					
				//	1: Interrupt			DMAC chann	el	
		$\langle \rangle$			number			11:0~3		
		$\searrow$			42 is set as		100~11	1:4~/		
$\sim$	$\land$			$\langle \rangle$	the activation					
2	$\sim$ $h$		~	$\searrow$	factor					
	$\sim$	31	30	29	28	27	26	25	24	
Bit S	Symbol		EIM2B1	EIM2B0	DM2B		IL2B2	IL2B1	IL2B0	
	d/Write	R	$\sim$	R/W		R		R/W		
	r Reset	∕>0 ((	0	0	0	0	0	0	0	
Func	ction	Always	Selects act	ive state of	Set as DMAC	Always	If DM2B = 0	),		
		reads "0."	interrupt rec	quest:	activation	reads "0."		nterrupt level	for interrupt	
		$\sim$	11: Rising e		factor.			3 (INTTX6)		
			Be sure to	set "11."	0: Non			ble interrupt		
					activation		001~111:			
					factor		If DM2B = 1			
					1: Interrupt			DMAC chann	el	
					number					
								11:0~3 1:4 7		
					43 is set as		100~0 100~11			



		7	6	5	4	3	2	1	0		
	Bit Symbol		EIM2C1	EIM2C0	DM2C		IL2C2	IL2C1	IL2C0		
F_E02C)	Read/Write	R		R/W	ł	R		R/W	-		
ſ	After Reset	0	0	0	0	0	0	0	0		
ſ	Function	Always	Selects act	tive state of	Set as DMAC	Always	If DM2C =	0,			
		reads "0."	interrupt re	quest:	activation	reads "0."	select the interrupt level for interrupt				
			11: Rising e	edae	factor.			44 (INTTX6)	•		
			Be sure to	0	0: Non			able interrupt			
					activation		001~111				
					factor		If DM2C =				
					1: Interrupt			DMAC chanr	el		
					number			011: 0~3			
					44 is set as	~ (		11: 4~7			
					the	$\langle \langle \rangle$	// .), .				
					activation						
					factor	$(\bigcirc$					
ļ		15	14	13	12	N	7 10	9	8		
	Bit Symbol		EIM2D1	EIM2D0	DM2D		IL2D2	/L2D1	IL2D0		
	Read/Write	R		R/W	DivizD	R	ILZDZ	R/W	ILZDU		
	After Reset	0	0	0	0		0	0	0		
	Function	Always		÷	Set as DMAC	Always	If DM2D =		U		
		reads "0."	interrupt red		activation	reads "0."	If $DM2D = 0$ , select the interrupt level for interrupt				
			11: Rising e		factor.		number 45 (INTRX7)				
			Be sure to		0: Non			ble interrupt			
			De Sure to	500 m	activation		001~111				
				.((	factor		If DM2D =				
				$\leq \langle \langle \rangle \rangle$	1: Interrupt		select the DMAC channel				
					number		$\sim$ /	11: 0~3	01		
					45 is set as	$(\mathcal{O})$		11: 4~7			
-				C	the		$\mathcal{D}$				
			~	$\langle \langle \rangle \rangle$	activation						
				$\sim$	factor						
		23	22	21	20	19	18	17	16		
	Bit Symbol		EIM2E1	EIM2E0	DM2E		IL2E2	IL2E1	IL2E0		
	Read/Write	R		R/W		R		R/W			
	After Reset	0	$\bigcirc 0 \land \bigcirc$	0	0	0	0	0	0		
	Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM2E = 0	).			
		reads "0."	interrupt red		activation	reads "0."		nterrupt level	for interrupt		
		$( \cap$	11. Rising e		factor.			46 (INTTX7)	•		
		$\sim (V)$	Be sure to		0: Non			ble interrupt			
		$\sim$	$\sim$	$( \cap$	activation		000. Disable interrupt 001~111: 1~7				
			$\sim$	$\langle \langle \langle \rangle \rangle$	factor		If DM2E =				
		///		$// \langle c \rangle$	1: Interrupt			., DMAC chann	el		
		$\leq$			number			11: 0~3			
			$\langle \langle \langle \rangle$	$ \rightarrow \rangle$	46 is set as			11: 4~7			
		$\sim$			the						
	$\langle / \rangle$				activation						
		5	$\wedge$	$\checkmark$	factor						
)	$\sim$	31	30	29	28	27	26	25	24		
/·	Bit Symbol		EIM2E1	EIM2F0	DM2F		IL2F2	IL2F1	IL2F0		
~ ()	Read/Write	R	$\langle \rangle =$	R/W		R		R/W	-		
		∕>o ((	0	0	0	0	0	0	0		
$\bigcirc$	After Reset		Selects act	ive state of	Set as DMAC	Always	If DM2F = (	),			
	After Reset Function	Always	0010013 401		activation	reads "0."			for interrup		
		Always reads "0."									
					factor.		number 47 (INTRX8)				
			interrupt red	edge				ble interrupt			
			interrupt red 11: Rising e	edge	factor.			ble interrupt			
			interrupt red 11: Rising e	edge	factor. 0: Non		000: Disa	ble interrupt 1~7			
			interrupt red 11: Rising e	edge	factor. 0: Non activation factor		000: Disa 001~111: If DM2F = 1	ble interrupt 1~7 I,	el		
			interrupt red 11: Rising e	edge	factor. 0: Non activation factor 1: Interrupt		000: Disa 001~111: If DM2F = 7 select the	ble interrupt 1~7 I, DMAC chann	el		
			interrupt red 11: Rising e	edge	factor. 0: Non activation factor 1: Interrupt number		000: Disa 001~111: If DM2F = 7 select the 000~0	ble interrupt 1~7 I, DMAC chann 11: 0~3	el		
			interrupt red 11: Rising e	edge	factor. 0: Non activation factor 1: Interrupt number 47 is set as		000: Disa 001~111: If DM2F = 7 select the 000~0	ble interrupt 1~7 I, DMAC chann	el		
			interrupt red 11: Rising e	edge	factor. 0: Non activation factor 1: Interrupt number 47 is set as the		000: Disa 001~111: If DM2F = 7 select the 000~0	ble interrupt 1~7 I, DMAC chann 11: 0~3	el		
			interrupt red 11: Rising e	edge	factor. 0: Non activation factor 1: Interrupt number 47 is set as		000: Disa 001~111: If DM2F = 7 select the 000~0	ble interrupt 1~7 I, DMAC chann 11: 0~3	el		



ſ		7	6	5	4	3	2	1	0
	Bit Symbol		EIM301	EIM300	DM30	/	IL302	IL301	IL300
30)	Read/Write	R		R/W		R		R/W	
ŕ	After Reset	0	0	0	0	0	0	0	0
	Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM30 = 0	,	
		reads "0."	interrupt ree	•	activation	reads "0."		nterrupt level	for interrup
			11: Rising e	0	factor.			8 (INTTX8)	
			Be sure to	set "11."	0: Non			ble interrupt	
					activation		001~111:		
					factor		If DM30 = 1	1 1	
					1: Interrupt			DMAC chann	el
					number	(	000~01		
					48 is set as	$\langle \langle \rangle$	100~11	1:4~/	
					the				
					activation				
ŀ		45	4.4	40	factor		10	0	0
		15	14	13	12	11	ノ 10	9	8
	Bit Symbol		EIM311	EIM310	DM31		IL312	/L311	IL310
	Read/Write	R		R/W	$\sim$	R		R/W	>
_	After Reset	0	0	0	0	0	0	0	0
	Function	Always	Selects act	ive state of	Set as DMAC	Always	If DM31 = 0		
		reads "0."	interrupt red		activation	reads "0."		nterrupt level	for interrup
			11: Rising e		factor.	$\mathcal{I}$		9 (INTRX9)	
			Be sure to	set "11."	0: Non			ole interrupt	
				6	activation		001~111:		
				20	factor		(If DM31 = 1		
					1: Interrupt	(	$\sim$ /	DMAC chann	el
					number	$( \cap$	000~01		
					49 is set as		100~11	1: 4~7	
				$\langle \bigcirc \rangle$	the		$\mathcal{I}$		
			<	$\sim j_{j}$	activation				
ŀ		23	22	21	factor 20	19	18	17	16
		23		21	20	19	10		10
	Bit Symbol		$\mathcal{H}$				/		
								D // //	
	Read/Write	R	$\mathcal{C}$	R/W		R	-	R/W	
	After Reset	0		0	0	0	0	0	0
-		0 Always	Selects act	0 ive state of	Set as DMAC	0 Always	If DM32 = 0	0 ,	
-	After Reset	0	Selects act interrupt rec	0 ive state of quest:	Set as DMAC activation	0	If DM32 = 0 select the ir	0 , nterrupt level	
-	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor.	0 Always	If DM32 = 0 select the ir number 5	0 , nterrupt level ;0(INTTX9)	
	After Reset	0 Always	Selects act interrupt rec	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non	0 Always	If DM32 = 0 select the ir number 5 000: Disa	0 , nterrupt level i0(INTTX9) ble interrupt	
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111:	0 hterrupt level 0(INTTX9) ble interrupt 1~7	
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1	0 hterrupt level 0(INTTX9) ble interrupt 1~7 ,	for interrup
-	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I	0 hterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann	for interrup
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01	0 interrupt level co(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3	for interrup
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I	0 interrupt level co(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3	for interrup
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01	0 interrupt level co(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3	for interrup
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01	0 interrupt level co(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3	for interrup
	After Reset	0 Always	Selects act interrupt rec 11: Rising e	0 ive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation	0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01	0 interrupt level co(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3	for interrup
	After Reset Function	0 Always reads "0."	Selects act interrupt rec 11: Rising e Be sure to	0 ive state of quest: edge set "11."	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor	0 Always reads "0."	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11	0 interrupt level co(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7	for interrup
	After Reset	0 Always reads "0."	Selects act interrupt rec 11: Rising e Be sure to	0 ive state of quest: edge set "11." 29	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28	0 Always reads "0."	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11	0 hterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25	for interrup el 24
	After Reset Function Bit Symbol Read/Write	0 Always reads "0." 31	Selects act interrupt rec 11: Rising e Be sure to	0 ive state of quest: edge set "11." 29 EIM330	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28	0 Always reads "0."	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11	0 , nterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331	for interrup el 24
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0	Selects act interrupt rec 11: Rising e Be sure to Be sure to 30 EIM331	0 ive state of quest: edge set "11." 29 EIM330 R/W 0	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33	0 Always reads "0." 27 R 0	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0	0 , nterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0	for interrup el 24 IL330
	After Reset Function Bit Symbol Read/Write	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to 30 EIM331 0 Selects act	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0	0 , nterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0	for interrup el IL330
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0	Selects act interrupt rec 11: Rising e Be sure to Be sure to Selects act interrupt rec	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest:	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC	0 Always reads "0." 27 R 0	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir	0 , nterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , nterrupt level	for interrup el IL330
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to 30 EIM331 0 Selects act	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5	0 , nterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0	for interrup el IL330
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor.	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5	0 , nterrupt level 0(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , nterrupt level 51 (INTSBI1) ble interrupt	for interrup el IL330
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor. 0: Non activation	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111:	0 , interrupt level io(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , interrupt level 51 (INTSBI1) ble interrupt 1~7	for interrup el IL330
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor. 0: Non activation factor.	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111: If DM33 = 1	0 , interrupt level io(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , iterrupt level 51 (INTSBI1) ble interrupt 1~7 ,	for interrup el IL330 for interrup
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111: If DM33 = 1 select the I	0 interrupt level interrupt level interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , interrupt level 51 (INTSBI1) ble interrupt 1~7 , DMAC chann	for interrup el IL330 for interrup
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111: If DM33 = 1 select the I select the I 000~0	0 , interrupt level io(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , iterrupt level 51 (INTSBI1) ble interrupt 1~7 , DMAC chann 1: 1.0~3	for interrup el IL330 for interrup
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 51 is set as	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111: If DM33 = 1 select the I	0 , interrupt level io(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , iterrupt level 51 (INTSBI1) ble interrupt 1~7 , DMAC chann 1: 1.0~3	for interrup el IL330 for interrup
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor <b>28</b> DM33 <b>0</b> Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 51 is set as the	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111: If DM33 = 1 select the I select the I 000~0	0 , interrupt level io(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , iterrupt level 51 (INTSBI1) ble interrupt 1~7 , DMAC chann 1: 1.0~3	for interrup el IL330 for interrup
	After Reset Function Bit Symbol Read/Write After Reset	0 Always reads "0." 31 R 0 Always	Selects act interrupt rec 11: Rising e Be sure to Be sure to Be sure to Be sure to Selects act interrupt rec 11: Rising e	0 ive state of quest: edge set "11." 29 EIM330 R/W 0 tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 50 is set as the activation factor 28 DM33 0 Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 51 is set as	0 Always reads "0." 27 R 0 Always	If DM32 = 0 select the ir number 5 000: Disa 001~111: If DM32 = 1 select the I 000~01 100~11 26 IL332 0 If DM33 = 0 select the ir number 5 000: Disa 001~111: If DM33 = 1 select the I select the I 000~0	0 , interrupt level io(INTTX9) ble interrupt 1~7 , DMAC chann 1: 0~3 1: 4~7 25 IL331 R/W 0 , iterrupt level 51 (INTSBI1) ble interrupt 1~7 , DMAC chann 1: 1.0~3	for interrup el IL330 for interrup

(Note 2) The access to the DMAC register by DMAC is prohibited.



7 5 2 1 6 4 3 Ω IMCD Bit Symbol EIM341 EIM340 DM34 IL342 IL341 IL340 (0xFFFF_E034) Read/Write R R/W R R/W After Reset 0 0 0 0 0 0 Always Always If DM34 = 0. Function Selects active state of Set as DMAC reads "0." reads "0." interrupt request: activation select the interrupt level for (interrupt number 52 (INTRXA) 11: Rising edge factor. Be sure to set "11." 000: Disable interrupt 0: Non activation 001~111.1~7 If DM34 = 1. factor select the DMAC channel 1: Interrupt 000~011: 0~3 number 52 is set as 100~111: 4~7 the activation factor 15 14 13 12 11 10 9 8 EIM351 EIM350 DM35 IL352 1L351 IL350 Bit Symbol Read/Write R R/W R R/W After Reset 0 0 0 0 0 0 0 0 Function Selects active state of Set as DMAC Always If DM35 = 0, Always reads "0." reads "0." interrupt request: activation select the interrupt level for interrupt number 53 (INTTXA) 11: Rising edge factor. Be sure to set "11." 000: Disable interrupt ); Non 001~111: 1~7 activation factor If DM35  $\pm$  1, select the DMAC channel 1: Interrupt number 000~011:0~3 100~111: 4~7 53 is set as the activation factor 23 22 21 19 18 17 16 20 Bit Symbol EIM361 EIM360 DM36 IL362 IL361 IL360 Read/Write R R/W R R/W After Reset 0 0 0 0 0 0 0 0 Function Selects active state of Always If DM36 = 0, Alwavs Set as DMAC reads "0." reads "0. interrupt request: activation select the interrupt level for interrupt number 54 (INTDMA0) 10: Falling edge factor. Be sure to set "10." 000: Disable interrupt 9; Non activation 001~111: 1~7 If DM36 = 1, factor select the DMAC channel 1: Interrupt 001~111: 1~7 number 54 is set as 000: Not setting allowed the activation factor 29 31 30 28 27 26 25 24 DM37 Bit Symbol E1M371 EIM370 IL372 IL371 IL370 Read/Write R R/W R R/W After Reset 0 0 0 0 0 0 0 0 Always If DM37 = 0, Function Selects active state of Set as DMAC Always reads "0." reads "0." interrupt request: select the interrupt level for interrupt activation 10: Falling edge number 55 (INTDMA1) factor. Be sure to set "10." 000: Disable interrupt 0: Non 001~111: 1~7 activation If DM37 = 1, factor select the DMAC channel 1: Interrupt number 000,002~111:0,2~7 001: Not setting allowed 55 is set as the activation factor (Note 1) Default values of EIMxx0 and EIMxx1 are different from the values to be used. Properly set them to the specified values before use.

(Note 2) The access to the DMAC register by DMAC is prohibited.



		7	6	5	4	3	2	1	0	
	Bit Symbol	/	EIM381	EIM380	DM38		IL382	IL381	IL380	
FF_E038)	Read/Write	R		R/W		R		R/W		
_ ,	After Reset	0	0	0	0	0		0		
	Function	Always reads "0."	Selects act interrupt red 10: Falling Be sure to s	edge	activation factor. 0: Non activation	Always reads "0."	number 000: Disa 001~111	nterrupt level 56 (INTDMA able interrupt	2)	
					factor 1: Interrupt number 56 is set as the activation		000,001,	1, DMAC chanı 011~111: 0,′ setting allow	1,3~7	
		15	14	13	factor 12	1	7 10	9	8	
	Bit Symbol		EIM391	EIM390	DM39		IL392	/L391	IL390	
	Read/Write	R	LINDAL	R/W	Divi39	R	ILJ9Z	R/W	12390	
	After Reset	0	0	0	0	0	0 (	0	0	
	Function	Always reads "0."	-	tive state of quest: edge	Set as DMAC activation factor. 0: Non activation factor. 1: Interrupt number 57 is set as		If DM39 = 0, select the interrupt level for interru number 57 (INTDMA3) 000: Disable interrupt 001~111: 1~7 If DM39 = 1, select the DMAC channel 000~010,100~111: 0~2,4~7 011: Not setting allowed			
		23	22	21	the activation factor 20	19	18	17	16	
	Bit Symbol	/	EIM3A1	EIM3A0	DM3A	$\checkmark$	IL3A2	IL3A1	IL3A0	
	Read/Write	R		R/W	~	R		R/W		
	After Reset	0		0	Q	0	0	0	0	
	Function	Always reads "0."	Be sure to	quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 58 is set as the activation factor	Always reads "0."	number 8 000: Disa 001~111 If DM3A = select the 000~011	nterrupt level 58 (INTDMA able interrupt : 1~7	4) nel ~3,5~7	
	$\sim$	31	30	29	28	27	26	25	24	
$\wedge$	Bit Symbol		EIM3B1	EIM3B0	DM3B		IL3B2	IL3B1	IL3B0	
	Read/Write	R	$\overline{\langle}$	R/W		R		R/W		
	After Reset	0	0	0	0	0	0	0	0	
	Function	Always reads "0."	Selects act interrupt rec 10: Falling o Be sure to	quest: edge	Set as DMAC activation factor. 0: Non activation factor 1: Interrupt number 59 is set as the	Always reads "0."	If DM3B = 0, select the interrupt level for internumber 59(INTDMA5) 000: Disable interrupt 001~111: 1~7 If DM3B = 1, select the DMAC channel 000~100,110~111: 0~4,6~7 101: Not setting allowed			

(Note 2) The access to the DMAC register by DMAC is prohibited.



	$\sim$	7	G	F	4	2	2	1	0		
			6	5	4	3	2	1	0		
IMCF	Bit Symbol		EIM3C1	EIM3C0	DM3C		IL3C2	IL3C1	IL3C0		
(0xFFFF_E03C)	Read/Write	R	0	R/W		R		R/W			
	After Reset	0	0 Calanta ant	0	0	0	K DM00	0			
	Function	Always reads "0."			Set as DMAC	Always reads "0."	If DM3C =	o, e interrupt	loval for		
		reads 0.	interrupt rec 10: Falling e		activation	reads 0.					
			Be sure to s	eage	factor. 0: Non		(interrupt number 60 (INTDMA6) 000: Disable interrupt				
			De sule to a		activation		000. 5132				
					factor		If DM3A =				
					1: Interrupt			DMAC chan	nel		
					number			,111: 0~5,7	-		
					60 is set as	$\sim$ (		setting allow	ved		
					the		$(\bigcirc)$	-			
					activation						
					factor						
		15	14	13	12		/ 10	9	8		
	Bit Symbol		EIM3D1	EIM3D0	DM3D	$\sim$	IL3D2	IL3D1	IL3D0		
	Read/Write	R		R/W	4	R		R/W	>		
	After Reset	0	0	0	0	0	0 (	0	0		
	Function	Always	-	-	Set as DMAC	Always	If DM3D = 0		<u> </u>		
		reads "0."	interrupt red		activation	reads "0."			for interrupt		
	10: Falling edge factor. number 61 (INTD)										
	Be sure to set "10." 0; Non 000: Disable interrupt										
				6	activation		001~111:	1~7			
				A(	factor		If DM3D =	1,			
					1: Interrupt		select the DMAC channel				
					number	$\left( \right)$	000~110				
				$\lambda$	61 is set as		111: Not	setting allow	ed		
				$\left( \bigcap \right)$	the		$\square$				
			<	$\sim$ $_{>}$	activation						
					factor						
		23	22	21	20	19	18	17	16		
	Bit Symbol		EIM3È1	EIM3E0	DM3E		IL3E2	IL3E1	IL3E0		
	Read/Write	R	$\bigcirc$	R/W		R		R/W			
	After Reset	0		0	0	0	0	0	0		
	Function	Always			Set as DMAC	Always	If DM3E = 0				
		reads "0."	interrupt red		activation	reads "0."			for interrupt		
			11: Rising e	0	factor.			62(INTADA)			
		$\sim$ / $<$	Be sure to	set "11."	0; Non			ble interrupt			
					activation		001~111:				
				$\mathcal{O}(\mathcal{A})$	factor		If DM3E = $^{\circ}$	r, DMAC chanr			
		(<			1: Interrupt number			11: 0~3	lei		
			$\langle \langle \langle \rangle$		62 is set as			11: 0~3 11: 4~7			
		$\sim$			the		100-1	11. +-1			
	$\langle \rangle$				activation						
		7	$\sim$	$\sim$	factor						
	$\sim$	31	30	29	28	27	26	25	24		
. (	Bit Symbol	$\sim$	EIM3F1	EIM3F0	DM3F	<u> </u>	IL3F2	IL3F1	IL3F0		
$\langle \langle \rangle$	Read/Write	R		R/W		R		R/W	12010		
	After Reset		0	0	0	0	0	0	0		
	Function	Always	*	-	U Set as DMAC	-	If DM3F = 0		0		
	Function	reads "0."	interrupt red		Set as DMAC activation	Always reads "0."			for interrupt		
		Toque 0.	11: Rising e		factor.	10003 0.		63(INTADB)	ior menupt		
$\sim$			Be sure to		0: Non			ble interrupt			
*			20 5010 10		activation		001~111:				
					factor		If DM3F = 1				
					1: Interrupt			., DMAC chanı	nel		
					number			011: 0~3			
					63 is set as			11: 4~7			
					the						
					activation						
					factor						
<u> </u>					-						
(Note 1) Defa					ifferent fro	om the val	ues to be	e used. Pr	operly set		
then	n to the sp	ecified va	lues befo	re use.							

(Note 1)	Please ensure that the type of active state is selected before enabling an interrupt request.
(Note 2)	When making interrupt requests DMAC activation factors, please ensure that you put the DMAC into standby mode after setting the INTC.
(Note 3)	An active condition must be changed after putting the interrupt output of the corresponding device into the state of negate especially when it is changed to the level detection.
	<ol> <li>Change the setting from IL="other than 0" to IL="0".</li> <li>Change the detection condition (EIM).</li> <li>Clear corresponding interrupt by INTCLR.</li> <li>Set IL to "other than 0".</li> </ol>

#### 6.9.4.5 Interrupt Request Clear Registers (INTCLR)

When it is desired to clear any interrupt request being suspended, you can do so by setting the IVR [7:0] for the corresponding interrupt factor into the INTCLR register. When an interrupt request is cleared, the IVR value is also cleared and the interrupt factor cannot be determined anymore. Do not clear an interrupt request before reading the IVR value.

Set the IVR <IVR7:0> value that corresponds to the interrupt request that you would like to clear

		7	6	5 (	4	3	2	1	0
INTCLR	Bit Symbol	EICLR7	EICLR6	EICLR5	EICLR4	EICLR3	EICLR2	EICLR1	EICLR0
(0xFFFF_E060)	Read/Write			$( \land )$	R/	w (7)	$\langle \wedge \rangle$		
	After Reset	0	0	$\langle 0 \rangle$	0	0	$\mathcal{I}_{0}$	0	0
	Function	Set the IV	'R <ivr7:0></ivr7:0>	value that co	orresponds to	the interrup	t request that	t you would l	ike to clear.
		15	14	13	12	11	10	9	8
	Bit Symbol		Į	Į		$\downarrow$			
	Read/Write			)	F	र 🔍			
	After Reset		$( \land \land )$		$\langle \rangle$	)			
	Function				Always	reads "0."			
		23	22	21 🗸	20	19	18	17	16
	Bit Symbol	$\downarrow \downarrow \downarrow$	$\frac{1}{2}$		$\downarrow$				
	Read/Write	レン	J	$(\alpha)$	7F	R			
	After Reset	1				)			
	Function				Always	reads "0."			
		31	30	29	28	27	26	25	24
	Bit Symbol		$\mathbb{Z}$						
	Read/Write			$\searrow$	F	R			
	After Reset	7	$\left( \right)$		(	)			
	Function		21		Always	reads "0."			

# (Note 1) Clear the interrupt request regardless of the active state setting of INTC IMCx <EIMxx>, i.e., either "H" level, "L" level, rising edge, or falling edge, in order to maintain interrupt factors.

(Note 2) Bit manipulation instructions cannot be used to access this register.

- (Note 3) External transfer requests due to DMAC interrupt factors are not cleared. Once an external transfer request is accepted, it will not be canceled until the DMA transfer is executed. Therefore, any unnecessary external transfer request should be cleared by executing DMA transfer or disabling interrupts using IMCx <ILxxx> or by canceling the corresponding DMAC activation factors using IMCx<DMxx> before accepting the external transfer requests.
- (Note 4) Be sure to clear the corresponding interrupt number with INTCLR after setting IMCx register.



#### 6.10 **INTCG Registers (Interrupts to Clear STOP and IDLE)**

INT0 to INTB, KWUP0 to 7 (Interrupts to Clear Stop and Idle modes)

		7	6	5	4	3	2	1	0
IMCGA	Bit Symbol			EMCG01	EMCG00		A	/	INT0EN
(0xFFFF_EE10)	Read/Write	F	2	R/			R		R/W
、 _ ,	After Reset	0	0	1	0	0	0	0	0
	Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	ar request. I edge	Always reads "0."	Always reads	Always reads "0."	INT0 Clear input 0: Disable 1: Enable
	/	15	14	13	12		2 10	9	8
	Bit Symbol			EMCG11	EMCG10	$\sum$			INT1EN
	Read/Write	F	2	R/	W		R	120	R/W
	After Reset	0	0	1	0	0	0	50	0
	Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	ar request.	Always reads "0."	Always reads. "0."	Always reads "0,"	INT1 Clear input 0: Disable 1: Enable
		23	22	21	20	19 ( /	/ (18	17	16
	Bit Symbol			EMCG21	EMCG20	$\sim$	$\rightarrow \rightarrow$		INT2EN
	Read/Write	F	2	R/	w //		R		R/W
	After Reset	0	0		0	0	0	0	0
	Function	Always reads "0."	Always reads	Set active s standby cle 00: "L" level 01: "H" leve 10: Falling e 11: Rising e	ar request.	Always reads "0."	Always reads "0."	Always reads "0."	INT2 Clear input 0: Disable 1: Enable
	/	31, 🗸 /	30	29	28	27	26	25	24
	Bit Symbol		$\leq$	EMCG31	EMCG30				INT3EN
	Read/Write	F	× <	R/	w))		R		R/W
	After Reset	0	0	1	0	0	0	0	0
	Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" leve 10: Falling e	ar request.	Always reads "0."	Always reads "0."	Always reads "0."	INT3 Clear input 0: Disable 1: Enable
$\langle \rangle$	$(\bigcirc)$			11: Rising e	edge				



IMCGB

(0xFFFF_EE14)
---------------

Γ		7	6	5	4	3	2	1	0
ſ	Bit Symbol	/		EMCG41	EMCG40				INT4EN
ľ	Read/Write	R		R/	N		R		R/W
ľ	After Reset	0	0	1	0	0	0	0	0
	Function	Always reads "0."	Always reads "0."	standby cle 00: "L" level 01: "H" level 10: Falling e	Set active state of INT4 Alv standby clear request. 00: "L" level 01: "H" level 10: Falling edge 11: Rising edge		Always reads "0."	Always reads "0."	INT4 Clear input 0: Disable 1: Enable
		15	14	13	12	11		9	8
	Bit Symbol			EMCG51	EMCG50		$\forall \rightarrow \downarrow$		INT5EN
	Read/Write	R		R/W			R		R/W
	After Reset	0	0	1	0	0	0	0	0
	Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" level 10: Falling e 11: Rising e	ar request.	Always reads "0."	Always reads "0."	Always reads "0."	INT5 Clear input 0: Disable 1: Enable
		23	22	21	20	19	18	((rx))	16
ſ	Bit Symbol			EMCG61	EMCG60			L L	INT6EN
	Read/Write	R		RA	$\mathcal{M}$			$\checkmark$	R/W
	After Reset	0	0	1	0	0	$\bigcirc 0$	0	0
	Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" level 10: Falling e 11: Rising e	ar request.	Always reads "0"	Always reads	Always reads "0."	INT6 Clear input 0: Disable 1: Enable
ſ		31	30	29	28	27	26	25	24
ſ	Bit Symbol	/	17	EMCG71	EMCG70	×		$\sim$	INT7EN
I	Read/Write	R	$\left( \left( \right) \right)$	R/	N		R		R/W
I	After Reset	0	0	1	10	0	0	0	0
	Function	Always reads	Always reads	Set active s standby cle 00: "L" level 01: "H" level 10: Falling e 11: Rising e	ar request.	Always reads "0."	Always reads "0."	Always reads "0."	INT7 Clear input 0: Disable 1: Enable



IMCGC

(0xFFFF	_EE18)
---------	--------

	7	6	5	4	3	2	1	0
Bit Symbol			EMCG81	EMCG80				INT8EN
Read/Write	R R	2	R/	W		R		R/W
After Reset	0	0	1	0	0	0	0	0
Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" level 10: Falling e 11: Rising ec	ar request. I edge	Always reads "0."	Always reads	Always reads "0."	INT8 Clear input 0: Disable 1: Enable
	15	14	13	12	11		9	8
Bit Symbol			EMCG91	EMCG90		$\swarrow \downarrow \downarrow$		INT9EN
Read/Write	F	2	R/	R/W		R		R/W
After Reset	0	0	1	0	0	0	0	0
Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" level 10: Falling e 11: Rising ec	ar request.	Always reads	Always reads "0."	Always reads "0."	INT9 Clear input 0: Disable 1: Enable
	23	22	21	20	19	18	(rx))	16
Bit Symbol			EMCGA1	EMCGA0		$\sim$	J.	INTAEN
Read/Write	F	2	R/	$\sim$		R	$\checkmark$	R/W
After Reset	0	0	1	0	0	$\bigcirc ))$	0	0
Function	Always reads "0."	Always reads "0."	Set active s standby cle 00: "L" level 01: "H" level 10: Falling e 11: Rising edd	ar request.	Always reads. "0."	Atways reads	Always reads "0."	INTA Clear input 0: Disable 1: Enable
	31	30	)/29	28	27	26	25	24
Bit Symbol	/		EMCGB1	EMCGB0				INTBEN
Read/Write	F	$\left( \left( \right) \right)$	R/	W		R		R/W
After Reset	0	0	1	10	0	0	0	0
Function	Always reads Always reads Set active state of INTE "0." "0." "0." "0." "10" standby clear request. 00: "L" level 10: Falling edge 11: Rising edge		ar request.	Always reads "0."	Always reads "0."	Always reads "0."	INTB Clear input 0: Disable 1: Enable	

		7	6	5	4	3	2	1	0
IMCGD	Bit Symbol	_	, 	EMCGC1	EMCGC0	,		-	KWUPE N
(0xFFFF_EE1C)	Read/Write		R N	R/	W		R		R/W
,	After Reset	0	0	1	0	0	0	0	0
	Function	Always reads	s "0."	Set active sta standby clea 01: "H" level	r request.	Α	Always reads "	0."	KWUP Clear input 0: Disable
				Be sure to	set "01."			$\langle \rangle$	1: Enable
		15	14	13	12	11	10	9	8
	Bit Symbol	/					$\overline{\mathcal{A}}$	/	
	Read/Write		R	R/	N	$\langle$	(V/R))		R/W
	After Reset	0	0	1	0	0	0	0	0
	Function	Always reads	s "0."	Always reads "1."			Nways reads "	D."	
		23	22	21	20	(19)	18	17	16
	Bit Symbol				$\langle \rangle$	$\sqrt{\lambda}$		4	
	Read/Write		R	R/	W	$\sum$	R	$\langle \rangle \langle \rangle$	R/W
	After Reset	0	0	1	0(7)	$\langle \wedge \rangle$	0 (	$\mathcal{A}$	0
	Function	Always reads	s "0."	Always reads "1."		J .	Always reads '	°	
		31	30	29	[_] (28)	27	26	25	24
	Bit Symbol				Å	/	$\mathcal{M}$		
	Read/Write		R	R/	Ŵ		R		R/W
	After Reset	0	0		0	(()	7/0		0
	Function	Always reads	s "0."	Always reads "1."	> (		Iways reads "	0."	

Note: Default values for standby clearing request of IMCGD are different from the values to be used. Properly set them to the specified values before use.

Be sure to set active state of the clear request if interrupt is enabled for clearing the Stop or Idle mode.

(Note1) When using interrupts, be sure to follow the following sequence of action:

If shared with other general ports, enable the target interrupt input.

- ② Set active state, etc., upon initialization.
- ③ Clear interrupt requests.
- ④ Enable interrupts

(Note 2) Settings must be performed while interrupts are disabled.

(Note 3) For clearing the Stop mode with TMP19A63, 13 factors, i.e., INT0 to INTB and KWUP0 to 7 are available as clearing interrupts. Whether or not INT0 to INTB are to be used as Stop/ Idle clearing interrupts as well as active state edge/level selection is set with CG.

(Note 4) Among the above 13 factors to be assigned as Stop/Idle clear request interrupts, INT0 to INTB don't have to be set with CG if they are to be used as normal interrupts. Use INTC to specify either H/L level, rising/falling edge, or both edges. If KWUP0 to 7 are to be used as normal interrupts, set the active level by KWUPSTn and set High level with INTC. No CG setting is necessary.

Interrupt factors other than those assigned as Stop/Idle clear requests are set in the INTC block.

		7	6	5	4	3	2	1	0		
EICRCG	Bit Symbol	/	/	/	/	ICRCG3	ICRCG2	ICRCG1	ICRCG0		
(0xFFFF_EE20)	Read/Write		F	2			R/	W	•		
	After Reset		(	)		0					
	Function	Always read				0001: INT1 0010: INT2 0011: INT3		5 1011: INTE 1100: KWU 5 1101:	3		
	/	15	14	13	12	11	10	9	8		
	Bit Symbol	/	/	/	/	$\mathcal{H}$	7	/			
	Read/Write	R									
	After Reset										
	Function	Always reads "0."									
		23 22 21 20 19 18 17 1									
	Bit Symbol			/	TY-		5-4	MA-			
	Read/Write			(			$\sim$	3///			
	After Reset			4	$\langle \rangle$		$\alpha$				
	Function			20	Always	reads "0."	$(\Delta)$	*			
		31	30	29	28	27	26/	25	24		
	Bit Symbol			T A		$\mathcal{A}$					
	Read/Write		(			$\sim$	$\mathcal{I}$				
	After Reset		4	$\langle \rangle$		0					
	Function				Always	reads "0."					

# (Note) To clear interrupt request of the above 13 factors that are assigned to clear Stop/ Idle modes,

① For KWUP, use KWUPS

② For INT0 to INTB, use the EICRCG register in the above CG block and then use the INTCLR register in theINTC block.



# TOSHIBA

#### 6.11 **NMI Flag Register**

NMIFLG (0xFFFF_EE24)

	7	6	5	4	3	2	1	0
Bit Symbol		/	/			NMI	WDT	WBER
Read/Write				F	2			
After Reset	0	0	0	0	0	<b>0</b>	0	0
Function		Al	ways reads	"0."		NMI factor	NMI factor	NMI factor
						1: NMI	1: NMI	1: NMI
						generated	generated by	generated by write bus
						by input	WDT interrupt	error
						from NMI pin		0.101
	15	14	13	12	M	( 10	9	8
Bit Symbol					$\rightarrow$			
Read/Write				F	२ ((	$\langle \rangle$		
After Reset	0	0	0	0	0	0	0	0
Function				Always r	eads "0."			
	23	22	21	20	19	18	(17	16
Bit Symbol				$\overline{\gamma}$			$\downarrow$	
Read/Write				( // I	<b>ર</b> )	$ \land ( ($		
After Reset	0	0	0	0	0		(0))	0
Function				Always r	eads "0."	$\sim$		
	31	30	29	28	27	26	25	24
Bit Symbol		$\backslash$	$\mathbb{N}$			$\searrow$		
Read/Write					r (7	2		
After Reset	0	0		0	0	))0	0	0
Function		2	$( \ )$	Always r	eads "0."	<u> </u>		

(Note) WDT and WBER are cleared to "0" when they are read.

#### 6.12 Cautions in Using Interrupts

The following paragraphs describe some points to be kept in mind in using interrupts. User programs must be written in a manner to satisfy the following details.

#### 6.12.1 Cautions Related to TX19A Processor Core

- Exceptions cannot be disabled. Note that there are some cases where two different instructions can be distinguished only by exception generation. So, properly use them according to the specific usage.
- Software interrupts are different from the "software set" to be used as one of hardware interrupt factors.
- Immediately after overwriting SSCR of the CP0 register, add two NOP instructions to allow for register bank switching as it takes two clock cycles.
- In case multiple interrupts of the same interrupt level are accepted by changing ILEV <CMASK>, the register bank will not be switched. The users need to program an additional process for saving the contents of the register.
- Only 32-bit ISA access can be used to access IER of the CP0 register.
- Different stack pointers (r29) are used for Shadow Register Set number 0 and Shadow Register Set numbers 1 to 7; it is necessary to set them separately (twice). If it is desired to use a common stack pointer, you can do so by setting SSCR<CSS> to "1" in the main process to use Shadow Register Set number 1. In this case, when a level 1 interrupt is accepted, the register bank will not be switched. The users need to program an additional process for saving the contents of the register..
- If an ERET instruction is executed while interrupts are disabled by setting Status <ERL> of the CP0 register to "1," it returns to the main process by using ErrorEPC of the CP0 register as the return address. As the TX19A processor core saves the interrupt return address to EPC, you should be careful if Status <ERL> is to be used for disabling interrupts.
- Don't execute an ERET instruction within two clock cycles after accessing Status, ErrorEPC, EPC, or SSCR of the CP0 register.
- If Status <ERL/EXL/IE> of the CP0 register is set to disable interrupts, interrupts are disabled at the time of instruction execution (E stage) but any value set to the register is reflected only two clocks later.
  - If Status <ERL/EXL/IE> of the CP0 register is set to enable interrupts, interrupts are enabled two clocks after the instruction execution (E stage); any value set to the register is also reflected two clocks after the instruction execution (E stage).

#### 6.12.2 Cautions Related to INTC

- If more than one interrupts of a same interrupt level are generated at the same time, interrupts are accepted from the factor of the smallest interrupt number.
- Any factor of interrupt level 0 is not suspended.
- If it is desired to individually disable interrupt factors (by setting interrupt level 0), you can do so only while interrupts are disabled.
- Default settings of IMCx <EIMxx> of INTC may be different from the settings to be used.
- The INTC ILEV register must be 32-bit accessed.
- The INTC INTCLR register must be 32-bit accessed.
- When enabling interrupts, be sure to do so in the order of the detection route (from external to internal). When disabling, use the reverse order of the detection route (from internal to external).
- When a new value is written to INTC ILEV <CMASK>, set <MLEV> to "1" at the same time.

# 7. Input/Output Ports

- 7.1 Port registers
- Px :Port register

To read/ write port data.

# PxCR :Output control register

Need to enable the input with PxIE register even when input is set.

# PxFCn :Function register

To set functions. An assigned function can be activated by setting "1".

# PxOD :Open drain control register

To switch the input of a register that can be set as programmable open drain.

# PxPUP :Pull-up control register

To control program pull-ups.

# PxSEL :Serial setting register

Needs to be set when using serial function.

# PxIE :Input control enable register

To control inputs. "0" cannot be set as a default to avoid through current.

All the ports other than P0 and P1 require the setting. "1" is input if IE="0".

# 7.2 Port 0 (P00~P07)

The port 0 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register P0CR. A reset allows all bits of P0CR to be cleared to "0" and the port 0 to be put in output disable mode.

Besides the general-purpose input/output function, the port 0 performs other functions: D0 through D7 function as a data bus and AD0 through AD7 function as an address data bus. When external memory is accessed, all bits of P0FC1 are set to "1."

If the BUSMD pin is set to "L" level, the port 0 is put in separate bus mode (D0 to D7). If it is set to "H" level, the port 0 is put in multiplexed mode (AD0 to AD7).



(0xFFFF_F000)	Bit Symbol Read/Write After reset Bit Symbol Read/Write After reset Function Bit Symbol Read/Write After reset Function	7 P07 7 P07C 0 7 P07FC1 0	6 P06C 0	t 0 control 5 P05C 0 0: 0 0 function 5 P05FC1 0	4 P04C R/ 0 utput disable	3 P03C W 0 1: Output er 3 P03FC1 W 0	2 P02C 0 able 2 P02FC1	1 P01 1 P01C 0 1 P01FC1 0	0 P00 0 P00C 0 0 P00FC1 0
(0xFFFF_F000) POCR (0xFFFF_F001) POFC1 (0xFFFF_F002) /	Read/Write After reset Bit Symbol Read/Write After reset Function Bit Symbol Read/Write After reset	7 P07C 0 7 P07FC1	Por 6 P06C 0 Port 0 6 P06FC1	Output t 0 control 5 P05C 0 0: 0 0 function 5 P05FC1 0	R/ register 4 P04C R/ 0 utput disable register 1 4 P04FC1 R/ 0	W er is cleared 3 P03C W 0 1: Output er 3 P03FC1 W 0	to "0." 2 P02C 0 nable 2 P02FC1	1 P01C 0	0 P00C 0 P00FC1
POCR (0xFFFF_F001) POFC1 (0xFFFF_F002)	After reset Bit Symbol Read/Write Function Bit Symbol Read/Write After reset After reset	P07C 0 7 P07FC1	6 P06C 0 Port 0 6 P06FC1	t 0 control 5 P05C 0 0: 0 0 function 5 P05FC1 0	register 4 P04C R/ 0 utput disable register 1 4 P04FC1 R/ 0	3 P03C W 0 1: Output er 3 P03FC1 W 0	2 P02C 0 able 2 P02FC1	0 1 P01FC1	0 0 P00FC1
P0CR (0xFFFF_F001) F P0FC1 (0xFFFF_F002)	Bit Symbol Read/Write After reset Function Bit Symbol Read/Write After reset	P07C 0 7 P07FC1	6 P06C 0 Port 0 6 P06FC1	t 0 control 5 P05C 0 0: 0 0 function 5 P05FC1 0	register 4 P04C R/ 0 utput disable register 1 4 P04FC1 R/ 0	3 P03C W 0 1: Output er 3 P03FC1 W 0	2 P02C 0 able 2 P02FC1	0 1 P01FC1	0 0 P00FC1
(0xFFFF_F001) // / P0FC1 (0xFFFF_F002) /	Read/Write After reset Function Bit Symbol Read/Write After reset	P07C 0 7 P07FC1	6 P06C 0 Port 0 6 P06FC1	5 P05C 0 0: 0 0 function 5 P05FC1 0	4 P04C R/ 0 utput disable register 1 4 P04FC1 R/	P03C W 0 1: Output er 3 P03FC1 W 0	P02C 0 able 2 P02FC1	0 1 P01FC1	0 0 P00FC1
(0xFFFF_F001) // / P0FC1 (0xFFFF_F002) /	Read/Write After reset Function Bit Symbol Read/Write After reset	P07C 0 7 P07FC1	P06C 0 Port 0 6 P06FC1	0 0:0 0 function 5 P05FC1 0	P04C R/ 0 utput disable register 1 4 P04FC1 R/ 0	P03C W 0 1: Output er 3 P03FC1 W 0	P02C 0 able 2 P02FC1	0 1 P01FC1	0 0 P00FC1
(0xFFFF_F001) // / P0FC1 (0xFFFF_F002) /	Read/Write After reset Function Bit Symbol Read/Write After reset	0 7 P07FC1	0 Port ( 6 P06FC1	0 0: 0 0 function 5 P05FC1 0	R/ 0 utput disable register 1 4 P04FC1 R/ 0	W 0 1: Output er 3 P03FC1 W 0	0 able 2 P02FC1	0 1 P01FC1	0 0 P00FC1
(0xFFFF_F001) / P0FC1 (0xFFFF_F002) /	Read/Write After reset Function Bit Symbol Read/Write After reset	7 P07FC1	Port ( 6 P06FC1	0: O 0 function 5 P05FC1 0	0 utput disable register 1 4 P04FC1 R/	0 1: Output er 3 P03FC1 W 0	2 P02FC1	1 P01FC1	0 P00FC1
/ F P0FC1 E (0xFFFF_F002) F	After reset Function Bit Symbol Read/Write After reset	7 P07FC1	Port ( 6 P06FC1	0: O 0 function 5 P05FC1 0	0 utput disable register 1 4 P04FC1 R/	0 1: Output er 3 P03FC1 W 0	2 P02FC1	1 P01FC1	0 P00FC1
P0FC1 <u>F</u> (0xFFFF_F002) F	Bit Symbol Read/Write After reset	P07FC1	6 P06FC1	0 function 5 P05FC1 0	register 1 4 P04FC1 R/	3 P03FC1 W 0	2 P02FC1	P01FC1	P00FC1
(0xFFFF_F002)	Read/Write After reset	P07FC1	6 P06FC1	5 P05FC1 0	4 P04FC1 R/	0 P03FC1 W	P02FC1	P01FC1	P00FC1
(0xFFFF_F002)	Read/Write After reset	P07FC1	6 P06FC1	5 P05FC1 0	4 P04FC1 R/	0 P03FC1 W	P02FC1	P01FC1	P00FC1
(0xFFFF_F002)	Read/Write After reset	P07FC1	P06FC1	P05FC1	P04FC1 R/	0 P03FC1 W	P02FC1	P01FC1	P00FC1
(0xFFFF_F002)	Read/Write After reset		i	0	R/	w o		20	
4	After reset	0	0		0	0			0
		0	0					0	0
LF	Function			0:1	PORT 1: Exte	ernal bus set	ting		
						6	$\sum_{n}$		
							3		

# 7.3 Port 1 (P10~P17)

The port 1 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Output can be set by using the control register P1CR and the function registers P1FC1 and P1FC2. A reset allows all bits of the output latch P1, P1CR, P1FC1 and P1FC2 to be cleared to "0" and the port 1 to be put in output disable mode.

Besides the general-purpose input/output function, the port 1 performs other functions: D8 through D15 function as a data bus, AD8 through AD15 function as an address data bus, and A8 through A15 function as an address bus. To access external memory, registers P1CR, P1FC1 and P1FC2 must be provisioned to allow the port 1 to function as either an address bus or an address data bus.

If the BUSMD pin is set to "L" level during a reset, the port 1 is put in separate bus mode (D8 to D15). If it is set to "H" level during a reset, the port 1 is put in multiplexed mode (AD8 to AD15 or A8 to A15).



	Port 1 register												
		7	6	5	4	3	2	1	0				
P1	Bit Symbol	P17	P16	P15	P14	P13	P12	P11	P10				
(0xFFFF_F001)	Read/Write				R/	W							
	After reset			Input mode (	output latch	register is cle	eared to "0.")						
			Port	t 1 control	register								
		7	6	5	4	3	2	) 1	0				
P1CR	Bit Symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C				
(0xFFFF_F011)	Read/Write				R/	w< (	$\langle \rangle \rangle \rangle$						
	After reset	0	0	0	0	0	Ő	0	0				
	Function 0: output disable 1: output enable												
Port 1 function register 1													
		7	6	5	4	3	2		0				
P1FC1	Bit Symbol	P17F1	P16F1	P15F1	P14F1	P13F1	P12F1	P11F1	P10F1				
(0xFFFF_F012)	Read/Write				R/	w/		$\mathcal{D}$					
	After reset	0	0	0	0	0	0	9.00/	0				
	Function			0: PORT 1:	external bus	setting (AD/I	08~AD/D15)	$\geq$					
			Port	1 function	register2	6	$\mathcal{O}$						
		7	6	5	2 4	3	))2	1	0				
P1FC2	Bit Symbol	P17F2	P16F2 🔇	P15F2	P14F2	P13F2	P12F2	P11F2	P10F2				
(0xFFFF_F013)	Read/Write				<r <="" td=""><td><u>w )                                     </u></td><td></td><td></td><td></td></r>	<u>w )                                     </u>							
	After reset	0	0	Õ	0	0	0	0	0				
	Function			) 0: PORT	1: external b	ous setting (A	A8 ~A15)						
	Note) You	u cannot s	et "1" to P	1FC1 and	F1FC2-sir	nultaneou	slv.						

Note) You cannot set "1" to P1FC1 and F1FC2 simultaneously.

# 7.4 Port 2 (P20~P27)

The port 2 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register P2CR and the function registers P2FC1 and P2FC2. A reset allows all bits of the output latch P2 to be set to "1," all bits of P2CR, P2FC1 and P2FC2 to be cleared to "0," and the port 2, to be an input port though it is input/output disabled.

Besides the general-purpose input/output port function, the port 2 performs another function: A0 through A7 function as an address bus and A16 through A23 function as another address bus. To access external memory, registers P2CR, P2FC1 and P2FC2 must be provisioned to allow the port 2 to function as an address bus.

If the BUSMD pin is set to "L" level during a reset, the port 2 is put in separate bus mode (A16 to A23). If it is set to "H" level during a reset, the port 2 is put in multiplexed mode (A0 through A7 or A16 through A23).



Fig. 7.3 Port 2(P20~P27)

				Port 2 reg	jister				
		7	6	5	4	3	2	1	0
P2	Bit Symbol	P27	P26	P25	P24	P23	_P22	P21	P20
(0xFFFF_F020)	Read/Write				R	/W			
	After reset			Input mod	le (output lat	ch register is	set to "1.")		
								))	
			Por	t 2 control	register	~ (	(7)		
		7	6	5	4	3	2	1	0
P2CR	Bit Symbol	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
(0xFFFF_F021)	Read/Write				R	/w	) ٢		
	After reset	0	0	0	0	0	0	0	0
	Function			0: c	output disable	e 1: output er	nable	$\langle \rangle$	
								$\langle \rangle \rangle$	
			Port	2 function	register 1	$\left( \right)$	$\diamond$ (C		
		7	6	5	4	3	2	GU	0
P2FC1	Bit Symbol	P27F1	P26F1	P25F1	P24F1	P23F1	P22E1	P21F1	P20F1
(0xFFFF_F022)	Read/Write			2(	R	/W	$(\bigcirc)$		
	After reset	0	0	0	0	0	0	0	0
	Function			0: POR	T 1: externa	l bus setting	(A0~A7)		
				$\langle \bigcirc \rangle$		$\sim$	$\mathcal{I}$		
			Port 2	2 Function	register 2				
		7	6	5	4	3	2	1	0
P2FC2	Bit Symbol	P27F2	P26F2	P25F2	P24F2	P23F2	P22F2	P21F2	P20F2
(0xFFFF_F023)	Read/Write		$(C \land$		R	/W		1	
	After reset	0	0)	0	0	0	0	0	0
	Function	6		0: PORT	1: external	bus setting (	A16~A23)		
	6	$ \leq \mathbb{N} $	))	6					
			Port 2 Inp	ut enable	control reg	jister			
	$\mathbb{N}$	7	6	5	4	3	2	1	0
P2IE	Bit Symbol	P27IE	P26IE	P25IE	P24IE	P23IE	P22IE	P21IE	P20IE
(0xFFFF_F02E)	Read/Write				R	/W			
	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
. (	$\square$	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
$\langle \rangle$	$\left( \bigcup \right)$	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
	$\sim$	$\left( \right)$							
		$\langle \langle \rangle \rangle$	$\subseteq$						
$\sim$			7						

# 7.5 Port 3 (P30~P37)

The port 3 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register P3CR and the function register P3FC1. In addition to above functions, a function of inputting and outputting the control and status signals of CPU is provided. If the P30 pip is next to  $\overline{PD}$  aignal output mode ( $rP30Fe^{-1/2}$ ), the  $\overline{PD}$  attack is output only when

provided. If the P30 pin is set to  $\overline{RD}$  signal output mode (<P30F>="1"), the  $\overline{RD}$  strobe is output only when an external address area is accessed. Likewise, if the P31 pin is set to  $\overline{WR}$  signal output mode (<P31F>="1"), the  $\overline{WR}$  strobe is output only when an external address area is accessed.

Set IE to input mode when using WAIT/BUSREQ input function.



Fig. 7.4 Port 3 (P30~P32, P36)







				Port 3 reg	ister				
		7	6	5	4	3	2	1	0
P3	Bit Symbol	P37	P36	P35	P34	P33	P32	P31	P30
(0xFFFF_F030)	Read/Write		•		R	/W			
	After reset	0		Inpu	it mode (outp	out latch regi	ster is set to	"1.")	
								7(	
			Por	t 3 control	register	(			
	/	7	6	5	4	3	2	1	0
P3CR	Bit Symbol	P37C	P36C	P35C	P34C	P336	P32C	P31C	P30C
(0xFFFF_F031)	Read/Write				R	w (C	17		
	After reset	0	0	0	0		0	0	0
	Function			0: o	utput disable	e 1: output er	nable		
							C		
			Port	3 function	register 1	$\langle \gamma \rangle$	$\sim$ (C	$\mathcal{D}$	
		7	6	5	4	3	2		0
P3FC1	Bit Symbol	P37F1	P36F1	P35F1	P34E1	P33F1	P32F1	P31F1	P30F1
(0xFFFF_F032)	Read/Write		1	40	R	/W	$(\Box )$	~	
	After reset	0	0	0	Ó	0		0	0
	Function	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT
		1:ALE	1R/W	1:BUSACK	1:BUSREQ	/WAIT 1:RDY	1:HWR	1:WR	1:RD
			ζ.						
			Port 3 F	Pull-up con	trol registe	er			
		7	6	5	4	3	2	1	0
P3PUP	Bit Symbol	P37UP	P36UP	P35UP	P34UP	P33UP	P32UP	P31UP	P30UP
(0xFFFF_F03B)	Read/Write		$\bigcirc$			/W			
	After reset	0	0	0 <	6	0	0	0	0
	Function	$\searrow$ ( $\checkmark$	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
		$) \sim$	0:off	0:off	0:off	0:off	0:off	0:off	0:off
			1:Pull-Up	1:Pull-Up	-1;Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up
			Port 3 Inp	ut enable o	control reg	ister			
	$\mathbb{A}$	7	6	5	4	3	2	1	0
P3IE	Bit Symbol	P37IE	P36IE	P35IE	P34IE	P33IE	P32IE	P31IE	P30IE
(0xFFFF_F03E)	Read/Write		91		R/	/W	1	1	
$\langle \rangle$	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
	$\rightarrow$	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
$\sim$			>						

-+ -> odic

#### 7.6 Port 4 (P40~P47)

The port 4 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register P4CR and the function register P4FC1.

Besides the general-purpose input/output port function, the port 4 performs other functions: P40 through P45 output the chip select signal ( $\overline{CS0}$  to  $\overline{CS5}$ ), P46 functions as the SCOUT output pin for outputting internal clocks.



Fig. 7.8 Port 4 (P40~P45)





				Port 4 reg	ister						
		7	6	5	4	3	2	1	0		
P4	Bit Symbol	P47	P46	P45	P44	P43	P42	P41	P40		
(0xFFFF_F040)	Read/Write				R	W					
	After reset			Input mod	le (output late	ch register is	set to "1.")				
			Por	t 4 control	register		$\langle \rangle$	$\overline{\mathbf{Y}}$			
		7	6	5	4	3	2	1	0		
P4CR	Bit Symbol	P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C		
(0xFFFF_F041)	Read/Write				R	w >	$\bigcirc$				
	After reset	0	0	0	0	0	0	0	0		
				0: o	utput disable	1: output er	nable				
	<u> </u>		Port 4	4 function	register 1				>		
		7	6	5	(47/	3	2		0		
P4FC1	Bit Symbol	P47F1	P46F1			P43F1	P42F1	P41F1	P40F1		
(0xFFFF_F042)	Read/Write	R/	W	R/	Ŵ		R	Mr C/			
	After reset	0	0	0	0	0	0	0	0		
	Function		0: PORT	0: PORT	0: PORT	0: PORT	0: PORT	0: PORT	0: PORT		
			1: SCOUT	1: CS5	1: CS4	1: CS3	1: CS2	1: CS1	1: CS0		
	Port 4 Pull-up control register										
	/	7	6	5	4	3	2	1	0		
P4PUP	Bit Symbol	P47UP	P46UP	P45UP	P44UP	P43UP	P42UP	P41UP	P40UP		
(0xFFFF_F04B)	Read/Write			$\mathcal{I}$		R/	W				
	After reset		$\mathcal{C}$	0	<u>(0</u>	0	0	0	0		
	Function		$\bigcirc$	Pull-up 0:off	Pull-up 0:off	Pull-up 0:off	Pull-up 0:off	Pull-up 0:off	Pull-up 0:off		
		$\overline{\alpha}$	$\gamma_{\wedge}$	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up		
	6	$\sim \mathbb{M}$	Port 4 Inp		control reg				u op		
		12	6 <	5	) 4	3	2	1	0		
P4IE	Bit Symbol	P47IE	P46IE	P45IE	P44IE	P43IE	P42IE	P41IE	P40IE		
(0xFFFF_F04E)	Read/Write		$\overline{\langle}$			Ŵ					
	After reset	0	0	0	0	0	0	0	0		
	Function	Input	Input	Input	Input	Input	Input	Input	Input		
	$\sim$	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled		
~ (	$\bigcirc$	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled		

Port 4 register

## 7.6 Port 5 (P50~P57)

The port 5 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register P5FC1 and the control register P5CR. A reset allows all bits of the output latch P5 to be set to "1," all bits of P5CR and P5FC1 to be cleared to "0," and the port 5 to be put in output disable mode.

The port 5 also functions as an address bus (A0 through A7). To access external memory, P5CR and P5FC1 must be provisioned to allow the port 5 to function as an address bus.



Fig. 7.11 Port 5 (P50~P57)
				Port	5 register				
		7	6	5	4	3	2	1	0
P5	Bit Symbol	P57	P56	P55	P54	P53	_ P52	P51	P50
(0xFFFF_F050)	Read/Write				R/	/W			
	After reset			Input mod	e (output lato	ch register is	set to "1.")		
			Por	t 5 control	register	(			
		7	6	5	4	3	(2)	1	0
P5CR	Bit Symbol	P57C	P56C	P55C	P54C	P53C	P52C	P51C	P50C
(0xFFFF_F051)	Read/Write				R/	w (	7(		
	After reset	0	0	0	0	0	0	0	0
	Function			0: o	utput disable	1: output er	nable		
			Port	5 function	register 1				
		7	6	5	4	3	2	(1)	0
P5FC1	Bit Symbol	P57F1	P56F1	P55F1	P54F1	P53F1	P52F1	P51F1	P50F1
(0xFFFF_F052)	Read/Write			20	R	Ŵ	$(\bigcirc$	~	
	After reset	0	0	0	0	0		0	0
	Function			0: POR	T 1: external	bus setting	(A0~A7)		
				$\langle \rangle$	V		))		
			Port 5 inp	ut enable o	control reg	ister	$\mathcal{D}$		
		7	Port 5 inp	ut enable o	control reg 4	ister 3	2	1	0
P5IE	Bit Symbol	1					2 P52IE	1 P51IE	0 P50IE
P5IE (0xFFFF_F05E)	Bit Symbol Read/Write	7	6	5	4 P54IE	3)			
		7	6	5	4 P54IE	3 R53/E			
	Read/Write	7 P57IE 0 Input	6 P56IE	5 P55IE	4 P54IE R/	3 P53IE W	P52IE	P51IE	P50IE
	Read/Write After reset	7 P57IE 0 Input 0: disabled	6 P56IE 0 Input 0: disabled	5 P55IE 0 Input 0: disabled	4 P54IE R/ 0 Input 0: disabled	3 R53IE W 0 Input 0: disabled	P52IE 0	P51IE 0 Input 0: disabled	P50IE 0 Input 0: disabled
	Read/Write After reset	7 P57IE 0 Input	6 P56IE 0 Input	5 P55IE 0 Input	4 P54IE R/ 0 Input	3 P531E W 0 Input	P52IE 0 Input	P51IE 0 Input	P50IE 0 Input

#### 7.7 Port 6 (P60~P67)

The port 6 is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register P6FC1 and the control register P6CR. A reset allows all bits of the output latch P6 to be set to "1," all bits of P6CR and P6FC1 to be cleared to "0," and the port 6 to be put in output disable mode.

The port 6 also functions as an address bus (A8 through A15). To access external memory, P6CR and P6FC1 through P6FC4 must be provisioned to allow the port 6 to function as an address bus.



Fig. 7.12 Port 6 (P60~P67)

				Port	6 register				
		7	6	5	4	3	2	1	0
P6	Bit Symbol	P67	P66	P65	P64	P63	P62	P61	P60
(0xFFFF_F060)	Read/Write				R/	W			
	After reset			Input mod	e (output lato	ch register is	set to "1.")		
			Por	t 6 control	register	/		$))^{>}$	
		7	6	5	4	3	2	1	0
P6CR	Bit Symbol	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
(0xFFFF_F061)	Read/Write	1010	1 000	1 000		w ((		1010	1 000
· _ /	After reset	0	0	0	0	0	0	0	0
	Function			0: 0	utput disable	1: output en	able		
			Port	6 function	register 1				
		7	6	5	4	3	2	$\left( \frac{1}{1} \right)$	0
P6FC1	Bit Symbol	P67F1	P66F1	P65F1	P64F1	P63F1	P62F1	P61F1	P60F1
(0xFFFF_F062)	Read/Write			20		W	$(C_{A})$	$\checkmark$	
	After reset	0	0	0	0	0		0	0
	Function			0: PORT	1: external	bus setting (	A8~A15)		
				$\langle \rangle$	3 	$\sim$ $\lor$	$\mathcal{D}$		
			Port 6 inp	ut enable c	control reg	ister			
		7	6	5	4	3)	2	1	0
P6IE	Bit Symbol	P67IE	P66IE	P65IE	P64IE	P63IE	P62IE	P61IE	P60IE
(0xFFFF_F06E)	Read/Write		$\overline{C}$		R/	Ŵ	i	i	
	After reset	0	(0))	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
		0:disabled	0:disabled	0:disabled	0:disabled	0:disabled	0:disabled	0:disabled	0:disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
			, <	$> \lor <$	$\mathcal{D}$				
			$\langle \langle \langle \rangle \rangle$						
	$ \land \land$	*							
		N	~	$\searrow$					
			$\sim$						
$\sim$ (			$\langle \langle \rangle$						
	$\bigcirc$	$\wedge ($	$\sim >$						
		$( \land \land$							
		~ //	>						
$\sim$			~						

## 7.8 Port 7 (P70~P77)

The port 7 is an 8-bit, analog input port for the A/D converter. Although the port 7 is an input port during a reset, any inputs are disabled.

Set the corresponding input enable control register when you use the port 7 as an input port.

Set the register to be input disabled when you use it as an AD function port.



Fig. 7.13 Port 7 (P70~P77)

				Port 7 reg	ister				
		7	6	5	4	3	2	1	0
P7	Bit Symbol	P77	P76	P75	P74	P73	P72	P71	P70
(0xFFFF_F070)	Read/Write				I	R	$\langle \rangle$		
	After reset				Pin condition	can be read			
			Port 7 Inp	ut enable o	control reg	ister		$\mathcal{F}$	
		7	6	5	4	3	(/2)	1	0
P7IE	Bit Symbol	P77IE	P76IE	P75IE	P74IE	P73IE	P721E	P71IE	P70IE
(0xFFFF_F07E)	Read/Write				R	/w (	$\sim$		
	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
		0:disabled	0:disabled	0:disabled	0:disabled	0:disabled	0:disabled	0:disabled	0:disabled
		1:enabled	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled	1:enabled
						$\mathcal{D}$		20	
				G			$\mathcal{C}$	$\rightarrow$	
				40			()		
					$\geq$	$\overline{(7)}$	7		
			~		) C	$\sim$	$\mathcal{D}$		
			<	$\langle \rangle$					
			C	$\bigcirc$					
				$\mathcal{I}$					
			$(C \land$		$\langle \rangle$				
					$\langle \rangle$				
		(7)	7	<					
	$\int \int dr$	$\mathcal{A}$	Ŋ	$\overline{\alpha}$	7~				
		1	, <	$>$ $\vee$	))				
		$\searrow$	/7						
	$\bigtriangledown$								
		)	$\wedge$	$\sim$					
(	$\frown$		21						
$\langle \langle \rangle$	()	6							
		(							
			$\bigcirc$						
		$\sim$							
$\sim$			~						

## 7.9 Port 8 (P80~P87)

The port 8 is an 8-bit, analog input port for the A/D converter.

Although the port 8 is an input port during a reset, any inputs are disabled. Set the corresponding input enable control register when you use the port 8 as an input port.



Fig. 7.14 Port 8 (P80~P87)

				Port 8 reg	ister				
		7	6	5	4	3	2	1	0
P8	Bit Symbol	P87	P86	P85	P84	P83	P82	P81	P80
(0xFFFF_F080)	Read/Write					R	$\frown$		
	After reset				Pin condition	o can be read	. )		
			Port 8 Inp	ut enable o	control reg	ister			
		7	6	5	4	3 (	(/2)	1	0
P8IE	Bit Symbol	P87IE	P86IE	P85IE	P84IE	P83IE	P82IE82	P81IE	P80IE
(0xFFFF_F08E)	Read/Write				R	/w (			
	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
		0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
							5		

## 7.10 Port 9 (P90~P97)

The port 9 is an 8-bit, analog input port for the A/D converter.

Although the port 9 is an input port during a reset, any inputs are disabled. Set the corresponding input enable control register when you use the port 9 as an input port.



Fig. 7.15 Port 9 (P90~P97)

				Port 9 reg	ister				
		7	6	5	4	3	2	1	0
P9	Bit Symbol	P97	P96	P95	P94	P93	P92	P91	P90
(0xFFFF_F090)	Read/Write					R	$\frown$		
	After reset				Pin condition	i can be read			
			Port 9 Inp	ut enable o	control reg	ister			
		7	6	5	4	3 (	(/2)	1	0
P9IE	Bit Symbol	P97IE	P96IE	P95IE	P94IE	P93IE	P921E	P91IE	P90IE
(0xFFFF_F09E)	Read/Write				R	/w (	$\sim$		
	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
		0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
						)	$\diamond \langle \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle \rangle \langle \langle \langle \langle \rangle \rangle \rangle \rangle $		
					$\langle \rangle$		$\sim$		
				20	$\sim$		$(C_{\frown})$	$\checkmark$	
							$\sum D$		
					$\searrow$	$(\mathcal{O})$	$\sim$		
				()	× _	$\sim$ $\lor$	$\mathcal{I}$		
			<	$\langle \ \rangle$					
			6						
						$\searrow$			
				9	~	$\sim$			
			$( \bigcirc \land)$						
			$\bigcup$		$\langle \mathcal{A} \rangle$				
		$(\mathcal{O})$	7	<					
	6	$\supset$ (V(	$\mathcal{I}$	6	$\sim$				
				$\langle \langle \langle / \rangle \rangle$	$(\mathbf{S})$				
				$// \leq$	J				
		$\langle \rangle$							
		$\searrow$							
	$\langle \rangle$								
		7	$\wedge$	$\sim$					
/	$\bigcirc$	/	21						
$\sim$ (	())								
		$\wedge$ ((	$\sim \sim \sim$						
		$( \land \land$	$\bigcirc$						
	/								
			>						
$\sim$									

## 7.11 Port A (PA0~PA7)

The port A is an 8-bit, analog input port for the A/D converter.

Although the port A is an input port during a reset, any inputs are disabled. Set the corresponding input enable control register when you use the port A as an input port.



Fig. 7.16 Port A (PA8~PA15)

				Port A reg	ister				
		7	6	5	4	3	2	1	0
PA	Bit Symbol	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
(0xFFFF_F0A0)	Read/Write				ļ	R	$\frown$		
	After reset				Pin condition	i can be read	I		
			Port A Inp	ut enable o	control reg	ister			
		7	6	5	4	3	(/2)	1	0
PAIE	Bit Symbol	PA7IE	PA6IE	PA5IE	PA4IE	PA3IE	PA2IE	PA1IE	PA0IE
(0xFFFF_F0AE)	Read/Write				R	/w (	$\sum$		
	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
		0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
							5		

## 7.12 Port B (PB0~PB7)

Port B is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register PBFC1 and the control register PBCR. A reset allows all bits of the output latch PB to be set to "0," all bits of PBCR and PBFC1 to be cleared to "0," and the port B to be put in output disable mode.



Fig. 7.17 Port B (PB0~PB7)

				Port B reg	ister				
		7	6	5	4	3	2	1	0
PB	Bit Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
(0xFFFF_F0B0)	Read/Write				R	/W	~		
	After reset			Input mod	e (output late	ch register is	set to "1.")		
			Por	t B control	register		$\langle \rangle$		
		7	6	5	4	3	2	1	0
PBCR	Bit Symbol	PB7C	PB6C	PB5C	PB4C	PB3C	PB2C	PB1C	PB0C
(0xFFFF_F0B1)	Read/Write					$\sim$	$\bigcirc$		
	After reset	0	0	0	0	(0	0	0	0
	Function			0: o	utput disable	1: output en	able		
			Port I	B function	register 1		Ś		>
		7	6	5	4	)) 3	⊘ 2((		0
PBFC1	Bit Symbol	PB7F1	PB6F1	PB5F1	RB4F1	PB3F1	PB2F1	RB1F1	PB0F1
(0xFFFF_F0B2)	Read/Write				R	/W	$\square$		
	After reset	0	0	0/(	0,	0	0	0	0
	Function	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT
		1:TBBIN1	1:TBBIN0	1:TBAIN1	1:TBAIN0	1:TB9IN1	1:TB9IN0	1:TB8IN1	1: TB8IN0
	~		Port B Inp	ut enable o	control reg	ister	9		
		7	6	5	4	3)	2	1	0
PBIE			PB6IE	PB5IE	PB4IE	PB3IE	PB2IE	PB1IE	PB0IE
	Bit Symbol	PB7IE	PBOIE		I D4IL		IDZIE		1 BOIL
(0xFFFF_F0BE)	Bit Symbol Read/Write	PB/IE	PBOIE			w			1 BOIL
(0xFFFF_F0BE)		0 0		0			0	0	0
(0xFFFF_F0BE)	Read/Write	0 Input	$C \wedge$		R/	W	i		
(0xFFFF_F0BE)	Read/Write After reset	0 Input 0: disabled	0 Input 0: disabled	0 Input 0: disabled	R/ 0 Input 0: disabled	W 0 Input 0: disabled	0 Input 0: disabled	0 Input 0: disabled	0 Input 0: disabled
(0xFFFF_F0BE)	Read/Write After reset	0 Input	0 Input	0 Input	R/ 0 Input	W 0 Input	0 Input	0 Input	0 Input

# 7.13 Port C (PC0~PC7)

Port C is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register PCFC and the control register PCCR. A reset allows all bits of the output latch PC, PCCR and PCFC1 to be cleared to "0," and the port C to be put in output disable mode.



Fig. 7.18 Port C (PC0~PC7)

Port C register										
		7	6	5	4	3	2	1	0	
PC	Bit Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	
(0xFFFF_F0C0)	Read/Write				R	/W	~~~~~			
	After reset			Input mod	e (output late	ch register is	set to "1.")			
			Por	t C control	register			7		
		7	6	5	4	3	2	1	0	
PCCR	Bit Symbol	PC7C	PC6C	PC5C	PC4C	PG3C	PC2C	PC1C	PC0C	
(0xFFFF_F0C1)	Read/Write		_	_	R	$\sim$		_		
	After reset	0	0	0	0	0	0	0	0	
	Function			0: o	utput disable	1: output en	able			
			Port (	C function	register 1		(		>	
		7	6	5	4	) 3	∧ 2 (C		0	
PCFC1	Bit Symbol	PC7F1	PC6F1	PC5F1	PC4F1	PC3F1	PC2F1	PC1F1	PC0F1	
(0xFFFF_F0C2)	Read/Write	10/11	10011	10011		/W			10011	
(	After reset	0	0	0	Q	0	$(\bigcirc$	0	0	
	Function	0:PORT								
		1:TBFIN1	1:TBFIN0	1:TBEIN1	1:TBEIN0	1:TBDIN1	1:TBDIN0	1:TBCIN1	1: TBCIN0	
		1		ut enable o			9	1		
		7	6	5	4	3	2	1	0	
PCIE	Bit Symbol	PC7IE	PC6IE	PC5IE	PC4IE	PC3IE	PC2IE	PC1IE	PC0IE	
(0xFFFF_F0CE)	Read/Write		$( \frown \land ]$			/W	i			
	After reset	0	0)	0	0	0	0	0	0	
	Function	Input								
		0: disabled 1: enabled								
					))					

# 7.14 Port D (PD0~PD7)

Port D is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register PDFC1 and the control register PDCR. A reset allows all bits of the output latch PD to be set to "0," all bits of PDCR and PCFC1 to be cleared to "0," and the port D to be put in output disable mode.

Besides the input/output port function, the port D performs other functions: PD0 through PD5 input a 16-bit timer and PD6 and PD7 output a 16-bit timer.



Fig. 7.19 Port D (PD0~PD5)



				Port D reg	ister				
		7	6	5	4	3	2	1	0
PD	Bit Symbol	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
(0xFFFF_F0D0)	Read/Write				R/	Ŵ			
	After reset			Input mod	e (output lato	ch register is	set to "1.")		
			Por	t D control	register		$\langle \rangle$		
		7	6	5	4	3		1	0
PDCR	Bit Symbol	PD7C	PD6C	PD5C	PD4C	PD3C	PD2C	PD1C	PD0C
(0xFFFF_F0D1)	Read/Write				R/	w >			
	After reset	0	0	0	0	0	0	0	0
	Function			0: o	utput disable	1: output en	able		
			Dout				~		>
	<u> </u>	_	1	D function					
		7	6	5	4	)) 3		25	0
PDFC1	Bit Symbol	PD7F1	PD6F1	PD5F1	PD4F1	PD3F1	PD2F1	PD1F1	PD0F1
(0xFFFF_F0D2)	Read/Write			G		W	$\mathbb{C}$		
	After reset	0	0	0/(	0,	0	$\mathcal{S}$	0	0
	Function	0:PORT 1:TB15OUT	0:PORT 1:TB14OUT	0:PORT 1:TB12IN1	0:PORT 1:TB12IN0	0:PORT 1:TB11IN1	0:PORT 1:TB11IN0	0:PORT 1:TB10IN1	0:PORT
				- TOP PIZER	1.10121140			1.1010111	1: TB10IN0
							$\sum$	1.1010111	1. TETOINO
			~	ut enable o		$\mathbb{Y}_{\mathbb{Z}}$		1.1010111	1. 1510140
			~	$\langle \rangle$		$\mathbb{Y}_{\mathbb{Z}}$	2	1	0
PDIE	Bit Symbol		Port D inp	ut enable o	control reg	ister	Ŋ		
PDIE (0xFFFF_F0DE)	Bit Symbol Read/Write	7	Port D inp	ut enable o	control reg 4 PD4IE	ister 3	2	1	0
		7	Port D inp	ut enable o	control reg 4 PD4IE	ister 3 PD3IE	2	1	0
	Read/Write	7 PD7IE 0 Input	Port D inp 6 PD6IE	ut enable o 5 PD5IE	control reg 4 PD4IE R/	ister 3 PD3IE W	2 PD2IE	1 PD1IE	0 PD0IE
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0	2 PD2IE 0 Input 0: disabled	1 PD1IE 0	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input	Port D inp 6 PD6IE 0	ut enable o 5 PD5IE 0 Input	control reg 4 PD4IE R/ 0 Input	ister 3 PD3IE W 0 Input	2 PD2IE 0 Input	1 PD1IE 0 Input	0 PD0IE 0 Input
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled
	Read/Write After reset	7 PD7IE 0 Input 0: disabled	Port D inp 6 PD6IE 0 Input 0; disabled	ut enable o 5 PD5IE 0 Input 0: disabled	Control reg 4 PD4IE R/ 0 Input 0: disabled	ister 3 PD3IE W 0 Input 0: disabled	2 PD2IE 0 Input 0: disabled	1 PD1IE 0 Input 0: disabled	0 PD0IE 0 Input 0: disabled

# 7.15 Port E (PE0~PE7)

Port E is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register PEFC1 and the control register PECR. A reset allows all bits of the output latch PE, PECR and PEFC1 to be cleared to "0," and the port E to be put in output disable mode.

Besides the input/output port function, the port E performs other functions: PE0 through PE4 output a 16-bit timer, PE5 and PE6 have I2C function and PE5 through PE7 have SIO function.



Fig. 7.21 Port E (PE0~PE4)





$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					Port E reg	ister				
Read/Write     R/W       After reset     Input mode (output latch register is set to *1.*)       Port E control register       PECR     Bit Symbol     PE7C     PE6C     PE5C     PE4C     PE3C     PE1C     PE0C       Read/Write     R/W     R/W     Read/Write     R/W     R/W     Read/Write     R/W     R/W     Read/Write     R/W     R/W     R/W     Read/Write     R/W     R/W </td <td></td> <td></td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2</td> <td>1</td> <td>0</td>			7	6	5	4	3	2	1	0
Read/Write     R/W       After reset     Input mode (output latch register is set to "t.")       Port E control register       PECR (0xFFFF_F0E1)     T     6     5     4     3     2     1     0       Read/Write     Read/Write     R/W     Read/Write     R/W     R/W     Read/Write <td>PE</td> <td>Bit Symbol</td> <td>PE7</td> <td>PE6</td> <td>PE5</td> <td>PE4</td> <td>PE3</td> <td>PE2</td> <td>PE1</td> <td>PE0</td>	PE	Bit Symbol	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port E control register       PECR (0xFFFF_F0E1)     7     6     5     4     3     2     1     0       Bit Symbol     PETC     PE6C     PE5C     PE4C     PE3C     PE3C	(0xFFFF_F0E0)					R	/W	$\sim$		
PECR (0xFFFF_F0E1)     7     6     5     4     3     2     1     0       Bit Symbol     PE7C     PE6C     PE5C     PE4C     PE3C     PE2C     PE1C     PE0C       Read/Write     R/W     After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0		After reset			Input mod	e (output late	ch register is	set to "1.")		
PECR (0xFFFF_F0E1)     Bit Symbol     PE7C     PE6C     PE3C     P				Por	t E control	register			7	
PECR (0xFFFF_F0E1)     Bit Symbol     PETC     PE6C     PE5C     PE4C     PE3C     PE2C     PE1C     PE0C       ReadWrite     R/W     After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0			7	6	5	4	3 (	2	1	0
Image: Construction     Read/Write     R/W     R/W       After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	PECR	Bit Symbol	PE7C	PE6C	PE5C	PE4C	PE3C		PE1C	PE0C
After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Function     0: input 1: output       Port E function register 1     Port E function register 1       PEFC1     Bit Symbol     PE7F1     PE6F1     PE5F1     PE4F1     PE3F1     PE2F1     PE1F1     PE0F1       Read/Write     R/W     After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0<	· _ /		0	0	0			0 S	0	0
PEFC1 (0xFFFF_F0E2)     7     6     5     4     3     2     1     0       Bit Symbol     PE7F1     PE6F1     PE5F1     PE3F1     PE2F1     PE1F1     PE0F1       Read/Write     R/W     After reset     0     0     0     0     0     0       Function     0.Port     1.TB160U     1.TB170U     1.TB160U     1.TB170U     1.TB160U     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     D     D     D<		Function				0: input	1: output	2		
PEFC1 (0xFFFF_F0E2)     7     6     5     4     3     2     1     0       Bit Symbol     PE7F1     PE6F1     PE5F1     PE3F1     PE2F1     PE1F1     PE0F1       Read/Write     R/W     After reset     0     0     0     0     0     0       Function     0.Port     1.TB160U     1.TB170U     1.TB160U     1.TB170U     1.TB160U     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     D     D     D<	•					~	( )			
PEFC1 (0xFFFF_F0E2)     Bit Symbol     PE7F1     PE6F1     PE3F1     PE3F1     PE2F1     PE1F1     PE0F1       Read/Write     R/W     After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0				Port I	E function	register 1		(		>
Read/Write     R / W       After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td></td> <td></td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2 (○</td> <td></td> <td>0</td>			7	6	5	4	3	2 (○		0
After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th< td=""><td>PEFC1</td><td>Bit Symbol</td><td>PE7F1</td><td>PE6F1</td><td>PE5F1</td><td>PE4F1</td><td>PE3F1</td><td>PE2F1</td><td>PE1F1</td><td>PE0F1</td></th<>	PEFC1	Bit Symbol	PE7F1	PE6F1	PE5F1	PE4F1	PE3F1	PE2F1	PE1F1	PE0F1
Function     0:Port 1:SCK0     0:Port 1:SCL0     0:Port 1:SDA0     0:Port 1:B1AO UT     0:Port 1:TB190U T     0:Port 1:TB180U T     0:Port 1:TB170U T     0:Port 1:TB160U T       PEOD (0xFFFF_FOEA)     7     6     5     4     3     2     1     0       Bit Symbol     PE6OD     PE5OD	(0xFFFF_F0E2)	Read/Write				R	/ W	$\square$		
I:SCK0     I:SCL0     I:SDA0     I:TB1400     I:TB1900     I:TB1700     I:TB160U       Port E open drain (OD) control register       PEOD     7     6     5     4     3     2     1     0       Bit Symbol     PE6OD     PE5OD                                                                                       <		After reset	0	0	0	0	0	0	0	0
PEOD (0xFFFF_F0EA)     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T     T		Function	0:Port	0:Port	$\frown$	0:Port		_ /- /	0:Port	0:Port
Port E open drain (OD) control register       PEOD (0xFFFF_FOEA)     7     6     5     4     3     2     1     0       Bit Symbol     PE6OD     PE5OD     Image: Color of the second sec			1:SCK0	1:SCL0	1:SDA0			$Y < \gamma$		
PEOD (0xFFFF_F0EA)     7     6     5     4     3     2     1     0       Bit Symbol     PE6OD     PE5OD     Image: Control residence in the set of the set o								_))T	Т	Т
PEOD (0xFFFF_F0EA)     Bit Symbol     PE6OD     PE5OD     Image: Constraint of the sector of th		<b>~</b>	Po	ort E open	drain (OD	) control re	egister		1	
Read/Write     R/W       After reset     0     0     0       Function     0:CMOS     0:CMOS     0       Port E select control register     0     0     0       PESEL     7     6     5     4     3     2     1     0       PESEL     0     0     0     0     0     0     0     0       Mathematical control register     7     6     5     4     3     2     1     0       PESEL     No     PESEL     PESEL     PESEL     No			7			4	3	2	1	0
After reset     0     0     0       Function     0:CMOS     0:CMOS     0:CMOS       1:OD     1:OD     1:OD     1:OD       Port E select control register     7     6     5     4     3     2     1     0       PESEL (0xFFFF_F0ED)     Bit Symbol     PE7SEL     PE6SEL     PE5SEL	PEOD	Bit Symbol		PE6QD	PE5OD					
Function     0:CMOS 1:OD     0:CMOS 1:OD     0       Port E select control register       PESEL (0xFFFF_F0ED)     7     6     5     4     3     2     1     0       Bit Symbol     PE7SEL     PE6SEL     PE5SEL           (0xFFFF_F0ED)     Read/Write     R/W	(0xFFFF_F0EA)	Read/Write			2	R/	$w \sim$	1	i	
Image: Non-Stress of the select control register     Image: Non-Stress of the select control register       Pesel (0xFFFF_F0ED)     Perset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0		After reset			-					
Port E select control register       PESEL (0xFFFF_F0ED)     7     6     5     4     3     2     1     0       Bit Symbol     PE7SEL     PE6SEL     PE5SEL		Function				$\langle \ominus \rangle$				
PESEL (0xFFFF_F0ED)     7     6     5     4     3     2     1     0       Bit Symbol     PE7SEL     PE6SEL     PE5SEL     Image: Constraint of the symbol			$(\mathcal{O})$							
Bit Symbol     PE7SEL     PE6SEL     PE5SEL     Image: Constraint of the symbol     PE7SEL     PE6SEL     PE5SEL     Image: Constraint of the symbol     Image: Consthe symbol <th< td=""><td></td><td></td><td></td><td></td><td>$(\Omega)$</td><td></td><td></td><td></td><td>1</td><td></td></th<>					$(\Omega)$				1	
Read/Write     R/W       After reset     0     0     0     0     0     0       Function     SIO0     SIO0     SIO0     0     0     0     0		$\rightarrow$				)) 4	3	2	1	0
After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th< td=""><td></td><td></td><td>PE7SEL</td><td>PE6SEL</td><td>PE5SEL</td><td></td><td></td><td></td><td></td><td></td></th<>			PE7SEL	PE6SEL	PE5SEL					
Function SIO0 SIO0   0:off 0:off 0:off	(0xFFFF_F0ED)			$\langle \overline{\langle} \overline{\langle} \rangle$		1	1	i	i	
0:off 0:off						0	0	0		0
		Function								
		$\sim$								
	. (		1:5CKU		1:500					
Port Einput control register		$\bigcirc$	$\rho$	Port E	input cont	rol registe	r			
	$\langle - \rangle$		$\langle \hat{\boldsymbol{\pi}} \rangle$			U U		2	1	0
PEIE Bit Symbol PÉ7IE PE6IE PE5IE PE4IE PE3IE PE2IE PE1IE PE0IE	PFIF	Bit Symbol	PE71E							
(0xFFFF_F0EE) Read/Write R/W						•				
After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th< td=""><td></td><td></td><td>0</td><td>0</td><td>0</td><td>1</td><td></td><td>0</td><td>0</td><td>0</td></th<>			0	0	0	1		0	0	0
Function Input Input Input Input Input Input Input Input										
0: disabled 0: dis				-	-	-	-	-	-	-
1: enabled										

## 7.16 Port F (PF0~PF7)

Port F is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the function register PFFCx and the control register PFCR. A reset allows all bits of PF, PFCR and PFFC1 to be cleared to "0," and the port F to be put in output disable mode.

Besides the input/output port function, the port F performs other functions: PF0 through PF2, PF4 through PF6 have a serial communication function (SIO/UART ch0 and ch1).

If the port F is used as UART/SIO function port, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set as the port, please do not set any other function.







Fig. 7.26 Port F (PF2,PF6)



Port F register									
	/	7	6	5	4	3	2	1	0
PF	Bit Symbol	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
(0xFFFF_F0F0)	Read/Write				R/	W	$\sim$		
	After reset			Input mod	e (output lato	ch register is	set to "1.")		
			Port	t F control	register			5	
		7	6	5	4	3	2	1	0
PFCR	Bit Symbol	PF7C	PF6C	PF5C	PF4C	PE3C	PF2C	PF1C	PF0C
(0xFFFF_F0F1)	Read/Write				R/	W	$\sim$		
	After reset	0	0	0	0	0	) P O	0	0
	Function				0:Input 1	: Output	)		
			Port F	- function	register 1		(7		>
		7	6	5	(4//	3	~ 2((	)1	0
PFFC1	Bit Symbol		PF6F1	PF5F1	PF4F1	9	PF2F1	PF1F1	PF0F1
(0xFFFF_F0F2)	Read/Write				R	/W			
	After reset		0	0	0		0	0	0
	Function		0:Port	0:Port	0:Port	(	0:Port	0:Port	0:Port
			1:SCLK1	1:RXD1	1:TXD1	$-\left( \overline{a}\right) $	1:SCLK0	1:RXD0	1:TXD0
			Port	function			9		
		7	6	5	4	3))	2	1	0
PFFC2	Bit Symbol		PF6F2	))			PF2F2		
(0xFFFF_F0F3)	Read/Write		$\mathbb{R}$	/	R /	w Š	T		
	After reset		(0)		$\sim$		0		
	Function		0:Port	~	$\langle \langle \rangle \rangle$		0:Port		
		$\langle \langle \langle \rangle \rangle$	A:CTS 1	~	$\rightarrow$		1:CTS0		
		P	ort F open	drain (OD	) control re	egister			
		< 7	6	5	4	3	2	1	0
PFOD	Bit Symbol	$\searrow$	PF60D		PF4OD		PF2OD		PF0OD
(0xFFFF_F0FA)	Read/Write			$\square$	R/	W			
	After reset	)	0	$\sim$	0		0		0
	Function		0:CMOS		0:CMOS		0:CMOS		0:CMOS
$\wedge$			1: OD		1: OD		1: OD		1: OD
		()	Port F s	select con	trol registe	r			
		$\sum_{i=1}^{n}$	6	5	4	3	2	1	0
PFSEL	Bit Symbol		PF6SEL		PF4SEL		PF2SEL		<b>PF0SEL</b>
(0xFFFF_F0FD)	Read/Write				R/	W			
	After reset	0	0	0	0	0	0		0
	Function		SCLK1		TXD1		SCLK0		TXD0
			0: off		0: off		0: off		0: off
			1:SCLK		1:TXD		1:SCLK		1:TXD

Port F register

	< <u> </u>			input com		1			
		7	6	5	4	3	2	1	0
PFIE	Bit Symbol	PF7IE	PF6IE	PF5IE	PF4IE	PF3IE	PF2IE	PF1IE	<b>PF0IE</b>
(0xFFFF_F0FE)	Read/Write			1		/W	$\sim$		
	After reset	0	0	0	0	0	0	0	0
	Function	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
						$\sim$ (	$\mathbb{Z}$		
						>//			
						$( \bigcirc$	$\searrow$		
							グ		
					$\bigwedge$				
						$\langle \rangle$	C	$\leq \langle \rangle$	7
					(77	$\langle \rangle$	~ (	$\mathcal{I} \gg$	
						ノ	y s	$\mathcal{Y}$	
					$\langle \rangle$	-			
				AC	$\swarrow$		$(\mathcal{C})$	$\checkmark$	
					$\sim$		$\sum \mathcal{J}$		
				$\square$	$\geq$	$( \bigcirc )$	$\langle \uparrow \rangle$		
						$\sum$	9		
				$\searrow$					
			$( \subset $	$\mathcal{I}_{\mathcal{A}}$					
				リ		$\searrow$			
			$(\mathcal{C} \wedge$	/	$\langle \rangle$				
					$\langle \rangle$				
		$\overline{(\alpha)}$	$\sim$	<	$\mathbb{N}$				
	6	$>$ $\vee$	))	6					
				$\langle \langle \langle / \rangle \rangle$	$\left( \right)$				
				$\backslash/$	シ				
			$\langle \langle \langle \rangle \rangle$	$ \longrightarrow $					
	$\frown$	$\checkmark$							
		7	$\wedge$	$\searrow$					
		/	$\mathcal{A}($						
$\sim$	()								
	$\bigcirc$	0 ((	$\mathcal{I}_{\mathcal{A}}$						
	$\geq$	$\langle \langle \rangle \rangle$	$\bigcirc$						
$\sim$			$\geq$						

Port F input control register

## 7.17 Port G (PG0~PG7)

The port G is a general-purpose, 8-bit input/output port. For this port, outputs can be specified in units of bits by using the control register PGCR and the function register PGFCx. A reset allows all bits of the PG, PGCR, PGFC1 and PGFC2 to be cleared to "0," and the port G to be put in output disable mode.

Besides the input/output port function, the port C performs other function: PG0 through PG2 and PG4 through PG6 have a serial communication function (SIO/UART ch2 and ch3).

If the port G is used as UART/SIO function port, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set as the port, please do not set any other function.







Fig. 7-30 Port G (PG2,PG6)



	Port G register												
		7	6	5	4	3	2	1	0				
PG	Bit Symbol	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0				
(0xFFFF_F100)	Read/Write	R/W											
	After reset	Input mode (output latch register is set to "1.")											
	Port G control register												
PGCR (0xFFFF_F101)		7	6	5	4	3	72	1	0				
	Bit Symbol	PG7C	PG6C	PG5C	PG4C	PG3C	PG2C	PG1C	PG0C				
	Read/Write	R/W											
	After reset	0	0	0	0	0	0 4	0	0				
	Function	0: input 1: output											
Port G function register 1													
		7	6	5	4	3	2	)	0				
PGFC1	Bit Symbol	PG7F1	PG6F1	PG5F1	PG4F1	PG3F1	PG2F1	PG1F1	PG0F1				
(0xFFFF_F102)	Read/Write					/W	$\cap$						
	After reset	0	0	0	0	0	0	0	0				
	Function	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port				
		1:TBTIN2	1:SCLK3	1:RXD3	1:TXD3	1:TBTIN1	1:SCLK2	1:RXD2	1:TXD2				
Port G function register 2													
		7	6	5	4	3))	2	1	0				
PGFC2	Bit Symbol		PG6F2				PG2F2						
(0xFFFF_F103)	Read/Write	R/W											
	After reset		(0)				0						
	Function		0: Port	~	$\langle \langle \rangle$		0: Port						
		(Q)	1: CTS 3	4	$\rightarrow$		1: CTS2						
		Pc	ort G open	drain (QD	) control re	egister							
		7	6	5	4	3	2	1	0				
PGOD	Bit Symbol	$\langle \rangle$	PG60D		PG40D		PG2OD		PGF0OD				
(0xFFFF_F10A)	Read/Write	R/W											
	After reset	}	0	$\sim$	0		0		0				
	Function	r	0:CMOS		0:CMOS		0:CMOS		0:CMOS				
$\sim$ (	( ) )		1: OD		1: OD		1: OD		1: OD				
Port G select control register													
	/	ZZ (	6	5	4	3	2	1	0				
PGSEL	Bit Symbol		PG6SEL		PG4SEL		PG2SEL		PG0SEL				
(0xFFFF_F10D)	Read/Write	R/W											
	After reset	0	0	0	0	0	0		0				
	Function		SCLK3		TXD3		SCLK2		TXD2				
			0: off		0: off		0: off		0: off				
			1:SCLK		1:TXD		1:SCLK		1:TXD				

Port G register

				input com		1			
		7	6	5	4	3	2	1	0
PGIE	Bit Symbol	PG7IE	PG7IE	PG5IE	PG4IE	PG3IE	PG2IE	PG1IE	PG0IE
(0xFFFF_F10E)	Read/Write		<u> </u>			/W	$\frown$	<u>^</u>	<u> </u>
	After reset Function	0 Input	0 Input	0 Input	0 Input	0 Input	0 Input	0 Nnput	0 Input
		0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
						$\sim$ (	$(// \Lambda)$		
							Ľ)		
						$( \bigcirc$	5		
							5		
					~	$\sim$	-	$\bigcirc$	
					<		~	<u> </u>	>
					$\overline{\Omega}$			$\leq$	
						))	0.0	20	
								401	
				G			$\mathcal{C}$	>	
				$\leq \langle$			()		
					$\diamond$	$\overline{\cap}$	7		
					> _	(V	())		
			<	( )		$\sim$	シ		
				$\langle \rangle$					
						$\searrow$			
				シ	~				
			$( \bigcirc \land )$						
		$\frown$	$\bigcirc$		$\langle \not \rangle$				
		(7)	1	<	$ \mathcal{N}_{\mathcal{N}}$				
	$\int dr$	$\supset$ (K	ノノ	$\overline{\Omega}$					
		1			))				
					ン				
			$\langle \langle \langle \langle \rangle \rangle$						
	$\frown$	~							
		7	$\sim$	$\searrow$					
	, v	/	$\mathcal{A}($						
$\sim$ (	()		) <u>'</u>						
	$\bigcirc$	$\sim ($	/ >						
		(	$\bigcirc$						
			>						
*									

Port G input control register

#### 7.18 Port H (PH0~PH7)

The port H is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PHCR and the function register PHFCx. A reset allows all bits of the PH to be set to "1," all bits of PHCR, PHFC1 and PHFC2 to be cleared to "0," and the port H to be put in output disable mode.

Besides the input/output port function, the port H performs other functions: PH0 through PH2 and PH4 through PH6 have a serial communication function (SIO/UART ch4 and ch5). PH3 and PH7 input external interrupt (INT9 and INTA).

If the port H is used as UART/SIO function port, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set as the port, please do not set any other function.



Fig. 7.32 Port H (PH0,PH4)




Fig. 7.34 Port H (PH2,PH6)

				Port H reg	ister						
		7	6	5	4	3	2	1	0		
PH	Bit Symbol	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0		
(0xFFFF_F110)	Read/Write				R/	W					
	After reset			Input mod	e (output lato	h register is	set to "1.")				
			Port	: H control	register			5			
		7	6	5	4	3	72	1	0		
PHCR	Bit Symbol	PH7C	PH6C	PH5C	PH4C	PH3C	PH2C	PH1C	PH0C		
(0xFFFF_F111)	Read/Write				R/	w 🦳	$\sim$	1			
	After reset	0	0	0	0	0	0 9	0	0		
	Function				0: input	1: output	)				
			Port I	H function	register 1		C		>		
		7	6	5	4//	3	2		0		
PHFC1	Bit Symbol	PH7F1	PH6F1	PH5F1	PH4F1	PH3F1	PH2F1	PH1F1	PH0F1		
(0xFFFF_F112)	Read/Write				R						
	After reset	0	0	0	0	0		0	0		
	Function	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port		
		1:INTA	1:SCLK5	1:RXD5	1:TXD5	1:INT9	1:SCLK4	1:RXD4	1:TXD4		
Port H function register 2											
		7	6	5	4	3	2	1	0		
PHFC2	Bit Symbol		PH6F2	))			PH2F2				
(0xFFFF_F113)	Read/Write		$ \square $		R /	w	1	1			
	After reset		(0)				0				
	Function		0:Port	~	$\langle \langle \rangle$		0:Port				
		_ (77	1:CTS 5	4	$\rightarrow$		1:CTS4				
		Pc	ort H open	drain (OD	) control re	egister					
		7	6	5	4	3	2	1	0		
PHOD	Bit Symbol	$\searrow$	PH6OD		PH4OD		PH2OD		PH0OD		
(0xFFFF_F11A)	Read/Write				R/	W			1		
	After reset	)	0	$\sim$	0		0		0		
	Function	,	0:CMOS		0:CMOS		0:CMOS		0:CMOS		
$\sim$ (	( ) )		1: OD		1: OD		1: OD		1: OD		
		()	Port H	select con	trol registe	er					
		7	6	5	4	3	2	1	0		
PHSEL	Bit Symbol		PH6SEL		PH4SEL		PH2SEL		PH0SEL0		
(0xFFFF_F11D)	Read/Write				R/	W					
	After reset	0	0	0	0	0	0		0		
	Function		SCLK5		TXD5		SCLK4		TXD4		
			0: off		0: off		0: off		0: off		
			1:SCLK		1:TXD		1:SCLK		1:TXD		

	<u> </u>			input cont	-				
		7	6	5	4	3	2	1	0
PHIE	Bit Symbol	PH7IE	PH6IE	PG5IE	PH4IE	PH3IE	PH2IE	PH1IE	PHOIE
(0xFFFF_F11E)	Read/Write		· · · · ·	· · · · · ·		/W	$\frown$		
	After reset	0	0	0	0	0	0	0	0
	Function	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
						$\sim$ ((	//		
						$\mathcal{N}$	Ľ.		
						$( \$	5		
							リ		
					_(	$\sim$	~	$\bigcirc$	
					<		~	<u> </u>	>
					$\overline{\Omega}$			$\leq$	
						)) .	$\diamond$ (C	シー	
				(	$\sim$	/	$\sim$	401	
				Ĝ			$\mathcal{C}$	$\rightarrow$	
				40			()		
					$\diamond$	$\overline{\Box}$	7,~~		
					> _	(V )	))		
			<	$i(\bigcirc)$	1	$\sim \sim \sim$	シ		
				$\langle \rangle$					
						$\searrow$			
				シ	~				
			$( \bigcirc \land)$		$\sim$				
		$\frown$			$\langle \langle \langle \rangle \rangle$				
		(7/	$\sim$	$\leq$	$ \mathcal{A} $				
	$\int f$	$\mathcal{N} \subset$	ノ	$\overline{\alpha}$	7				
		1		$\leq W$	))				
		$\chi$			J				
		$\searrow$	$\langle \in$						
	$\sim$	Ť		$\geq$					
		7	$\land$	$\searrow$					
	$\sim$	/	$\mathcal{A}($						
$\sim$ (	())								
		$\mathcal{O}(\mathcal{O})$	$\mathcal{I}_{\mathcal{A}}$						
		( ) ( )	$\bigcirc$						
$\sim$	r		>						

### Port H input control register

### 7.19 Port I (PI0~PI7)

The port I is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PICR and the function register PIFCx. A reset allows all bits of the PI to be set to "1," all bits of PICR, PIFC1 and PIFC2 to be cleared to "0," and the port I to be put in output disable mode.

Besides the input/output port function, the port I performs other functions: PI0 through PI2 and PI4 through PI6 have a serial communication function (SIO/UART ch6 and ch7). PI3 input external interrupt (INTB).

If the port I is used as UART/SIO function port, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set as the port, please do not set any other function.





Fig. 7.36 Port I (PI1,PI5,PI3)



Fig. 7.37 Port I (PI2,PI6)



				Port I regi	ster						
		7	6	5	4	3	2	1	0		
PI	Bit Symbol	PI7	PI6	PI5	PI4	PI3	Pl2	PI1	PI0		
(0xFFFF_F120)	Read/Write				R/	W	$\sim$				
	After reset			Input mod	e (output lato	ch register is	set to "1.")				
			Por	t I control	register			7			
		7	6	5	4	3	2	1	0		
PICR	Bit Symbol	PI7C	PI6C	PI5C	PI4C	PI3C	PI2C	PI1C	PI0C		
(0xFFFF_F121)	Read/Write				R/	W	$\bigcirc$				
	After reset	0	0	0	0	0	) > o	0	0		
	Function				0: input	1: output	)				
			Port	l function r	egister 1		G		>		
		7	6	5	(4//	3	~ 2((	)1	0		
PIFC1	Bit Symbol	PI7F1	PI6F1	PI5F1	PI4F1	PI3F1	PI2F1	PI1F1	PI0F1		
(0xFFFF_F122)	Read/Write				R	′ W	$\cap$				
	After reset	0	0	0	0	0	$\left( \begin{array}{c} 0 \end{array} \right)$	0	0		
	Function		0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0: Port		
			1:SCLK7	1:RXD7	1:TXD7	1:INTB	1:SCLK6	1:RXD6	1:TXD6		
Port I function register 2											
		7	6	চ	4	3))	2	1	0		
PIFC2	Bit Symbol		PI6F2	))		$\bigtriangledown$	PI2F2				
(0xFFFF_F123)	Read/Write		$\overline{\mathcal{A}}$		R /	w 🗸		1			
	After reset		(0)				0				
	Function		0: Port	~	$\langle \langle \rangle$		0:Port				
			A:CTS 7	~	$\rightarrow$		1:CTS6				
		P	ort I open	drain (OD)	control re	gister					
		7	6	5	4	3	2	1	0		
PIOD	Bit Symbol	$\sim$	PI6OD		PI4OD		PI2OD		PI0OD		
(0xFFFF_F12A)	Read/Write				R/	W					
	After reset	7	0	$\sim$	0		0		0		
	Function	/	0:CMOS		0:CMOS		0:CMOS		0:CMOS		
$\sim$ (	()		1: OD		1: OD		1: OD		1: OD		
		()	Port I s	select cont	rol registe	r					
		$\mathcal{A}$	6	5	4	3	2	1	0		
PISEL	Bit Symbol		PI6SEL		PI4SEL		PI2SEL		PI0SEL		
(0xFFFF_F12D)	Read/Write				R/	W					
	After reset	0	0	0	0	0	0		0		
	Function		SCLK7		TXD7		SCLK6		TXD6		
			0: off		0:off		0:off		0: off		
			1:SCLK		1:TXD		1:SCLK		1:TXD		

Port I register

			FUILT	input conti	orregister				
		7	6	5	4	3	2	1	0
PIIE	Bit Symbol	PI7IE	PI6IE	PI5IE	PI4IE	PI3IE	PI2IE	PI1IE	PI0IE
(0xFFFF_F12E)	Read/Write					/W			
	After reset	0	0	0	0	0	0	0	0
	Function	Input	Input	Input	Input	Input	Input	Input	Input
		0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled
						$\langle \langle \rangle$	$\langle O \rangle$		
							$\sim$		
							7(		
					/	$\sim$			
					4	$\langle \rangle$		$\langle \rangle \rangle$	>
							Sa		
					(7/		(C	)	
						ノ		$(\mathcal{V}_{\mathcal{N}})$	
					$\langle \rangle$				
				20	$\sim$		$(C \rightarrow)$	~	
					$\sim$		$\sum D$		
				$\square$	$\sim$	(7)			
			~	$( \land )$		$\gg$	ノ		
			<	$\sim$ )					
			$\bigcap$	$\langle \rangle$					
				))		$\searrow$			
			$\mathcal{C}$	ン	$\land$	$\checkmark$			
			(( ))		$\sim$				
		Ē	$\sim$	-	$\langle \langle \rangle$	•			
		_ (7/	$\langle \uparrow \rangle$	<	$ \geq 1 $				
		$\mathcal{Y}$	シ	$\overline{\Omega}$	7~~				
		1	. <	$ \leq  V  $	$\mathcal{I}$				
		12 -		$\backslash / $					
		$\searrow$	$\langle \langle \langle \rangle$						
	$\bigtriangledown$			$\langle$					
		7	$\sim$	$\searrow$					
	$\sim$	/	$\mathcal{A}($						
$\sim$ (	()								
		$\wedge ($	$\sqrt{2}$						
		$( \land ) \land$	$\bigcirc$						
	,		>						
~									

Port I input control register

## 7.20 Port J (PJ0~PJ7)

The port J is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PJCR and the function register PJFCx. A reset allows all bits of the PJ, PJCR, PJFC1 and PJFC2 to be cleared to "0," and the port J to be put in output disable mode.

Besides the input/output port function, the port J performs other functions: PJ0 through PJ2 and PJ5 through PJ7 have a serial bus I/F function (SBI2). PJ3 and PJ4 input 32-bit timer capture trigger (TC0IN and TC1IN).

If the port J is used as a port UART/SIO function or serial bus I/F function, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set as the port, please do not set any other function.





Fig. 7.40 Port J (PJ1,PJ3,PJ4)



Fig. 7.41 Port J (PJ2)





				Port J regi	ister				
	/	7	6	5	4	3	2	1	0
PJ	Bit Symbol	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
(0xFFFF_F130)	Read/Write				R	/W	$\wedge$		
	After reset			Input mod	e (output late	ch register is	set to "1.")		
			Por	t J control	register			7	
		7	6	5	4	3	2	1	0
PJCR	Bit Symbol	PJ7C	PJ6C	PJ5C	PJ4C	PJ3C	PJ2C	PJ1C	PJ0C
(0xFFFF_F131)	Read/Write				R/	w	$\sim$		
	After reset	0	0	0	0	0	DP 0	0	0
	Function				0: input	1: output	<i>J</i>		
	_		Port	J function	register 1		G		>
		7	6	5	4	3	<u> </u>	))1	0
PJFC1	Bit Symbol	PJ7F1	PJ6F1	PJ5F1	PJ4F1	PJ3F1	PJ2F1	PJ1F1	PJ0F1
(0xFFFF_F132)	Read/Write				R	/ W	$\sim$		
	After reset	0	0	0	0	0	$(\bigcirc)$	0	0
	Function	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port
		1:SCK1	1:SI1	1:SQ1	1:TC1IN	1:TCOIN	1:SCLK8	1:RXD8	1:TXD8
				J function			9		
		7	6	5	4	3))	2	1	0
PJFC2	Bit Symbol			))			PJ2F2		
(0xFFFF_F133)	Read/Write		R	_	R	/w `	1	1	1
	After reset		(( ))		$\sim$		0		
	Function	$(\overline{a})$		~	$\langle \langle \rangle \rangle$		0:Port		
			(		$\rightarrow$		1:CTS8		
		P	ort J open	drain (OD)	) control re	egister			
		7	6	5	4	3	2	1	0
PJOD	Bit Symbol	$\searrow$	PJ60D	PJ50D			PJ2OD		PJ0OD
(0xFFFF_F13A)	Read/Write				R	W		. <u></u>	
	After reset	7	0	Ó			0		0
	Function	/	0:CMOS	0:CMOS			0:CMOS		0:CMOS
$\sim$ (			1:0D	1:OD			1:OD		1:0D
		()	Port J	select cont	trol registe	٢			
			6	5	4	3	2	1	0
PJSEL	Bit Symbol	PJ7SEL	PJ6SEL	PJ5SEL	PJ4SEL		PJ2SEL		<b>PJ0SEL</b>
(0xFFFF_F13D)	Read/Write				R	/W			
	After reset	0	0	0	0	0	0		0
	Function	SIO1	SIO1	SIO1			SCLK6		TXD6
		0: off	0: off	0: off			0: off		0: off
		1:SCK1	1:SI1	1:SO1			1:SCLK		1:TXD

	<	,		input cont					
		7	6	5	4	3	2	1	0
PJIE	Bit Symbol	PJ7EI	PJ6EI	PJ5EI	PJ4EI	PJ3EI	PJ2EI	PJ1EI	PJ0EI
(0xFFFF_F13E)	Read/Write		ſ	ſ		/W		·	
	After reset	0	0	0	0	0	0	0	0
	Function	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled	Input 0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
						~ ((	$\mathcal{I} \wedge$		
						$( \land )$	<u> </u>		
						$\sim$	グ		
					_(	$\sim$	-	$\bigcirc$	
					<	$\langle \rangle$	~	$\mathcal{A}(\mathcal{A})$	>
					$\overline{\Omega}$			$\langle \rangle \rangle$	
						)) ·	0.6	シー	
				(		/	$\langle \rangle$	40/	
				Ĝ	$\langle \rangle$		$C \sim$	$\rightarrow$	
				40	$\langle \rangle$		()		
					$\diamond$	$\overline{\Omega}$	7		
					> _	$\sim$ (V/	$\mathcal{D}$		
			<	$\sqrt{2}$	11	$\sim$			
			( =		$\sim$				
						$\searrow$			
			R	シ	$\wedge$	$\checkmark$			
			$((\uparrow \uparrow))$						
		$\frown$	$\mathbf{i}$		$\langle \langle \rangle$				
	. —	_ (7/	$\langle \uparrow \rangle$	$\leq$					
	$\int r$	N K	ノ	$\overline{\Omega}$	7~~				
		1		$\leq W$	))				
	$\sim$	12		$\sum_{i=1}^{n}$	/				
		$\searrow$	$\langle \langle \langle \langle \rangle \rangle$						
	$\langle \rangle$			$\langle \rangle$					
		7	$\land$	$\checkmark$					
/	$\frown$	/							
$\langle \langle \rangle$	())	/	_//_						
	$\sim$	$\mathcal{O}(\mathcal{O})$	$\mathcal{N}_{\mathcal{A}}$						
		$\langle \langle \rangle \rangle$	$\subseteq$						
$\searrow$		<u> </u>	2						

Port J input control register

### 7.7 Port K (PK0~PK7)

The port K is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PKCR and the function register PKFCx. A reset allows all bits of the PK, PKCR and PKFC1 to be set to "0," and the port K to be put in output disable mode.

Besides the input/output port function, the port K has Key on wake-up function (KEY0 through KEY7).



Fig. 7.44 Port K (PK0~PK7)

	Port K register										
		7	6	5	4	3	2	1	0		
PK	Bit Symbol	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0		
(0xFFFF_F140)	Read/Write				R	/W					
	After reset			Input mod	e (output late	ch register is	set to "1.")				
			Por	t K control	register		$\langle \rangle$	$\langle \cdot \rangle$			
		7	6	5	4	3	2	1	0		
PKCR	Bit Symbol	PK7C	PK6C	PK5C	PK4C	Фкзс \	PK2C	PK1C	PK0C		
(0xFFFF_F141)	Read/Write				R	w >					
	After reset	0	0	0	0	0	0	0	0		
	Function			0: o	utput disable	1: output er	nable				
			Port I	< function	register 1			$\sim$	>		
		7	6	5	477	3	2	1	0		
PKFC1	Bit Symbol	PK7F1	PK6F1	PK5F1	PK4F1	PK3F1	PK2F1	PK1F1	PK0F1		
(0xFFFF_F142)	Read/Write				R	<u>í</u> w		401			
	After reset	0	0	0	$\bigcirc$	0		0	0		
	Function	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port		
		1:KEY7	1:KEY6	1:KEY5	1:KEY4	1:KEY3	1:KEY2	1:KEY1	1:KEY0		
Port K Pull-up control register											
		7	6	5	4	3	2	1	0		
PKPUP	Bit Symbol	PK7UP	PK6UP	PK5UP	PK4UP	РКЗИР	PK2UP	PK1UP	PK0UP		
(0xFFFF_F14B)	Read/Write			))	R	MV					
	After reset	0		0	0	0	0	0	0		
	Function	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up		
		0: off	0: off	0: off	0: off	0: off	0: off	0: off	0: off		
		1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up		
			Port K	Input cont	rol registe	r					
		7	6	5	4	3	2	1	0		
PKIE	Bit Symbol	PK7EI	PK6EI	PK5EI	PK4EI	PK3EI	PK2EI	PK1EI	PK0EI		
(0xFFFF_F14E)	Read/Write	$\sim$			R	/W					
	After reset	0	0	0	0	0	0	0	0		
	Function	Input	Input	Input	Input	Input	Input	Input	Input		
		0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled		
$\langle \rangle$	$\left( \bigcup \right)$	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled		
		S.C.	>								

# 7.22 Port L (PL0~PL7)

The port L is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PLCR and the function register PLFCx. A reset allows all bits of the PL, PLCR, PLFC1 and PLFC2 to be cleared to "0," and the port L to be put in output disable mode.

Besides the input/output port function, the port L performs other functions: PL0 and PL1 input 32-bit timer capture trigger. PL3 and PL7 output 32-bit timer compare match. PL4 through PL6 have UART/SION function.

If the port L is used as a port UART/SIO function, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set as the port, please do not set any other function.







STOP/RESET





				Port L regi	ister						
		7	6	5	4	3	2	1	0		
PL	Bit Symbol	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0		
(0xFFFF_F150)	Read/Write				R	/W					
	After reset			Input mod	e (output late	ch register is	set to "1.")				
			Por	t L control	register			7			
		7	6	5	4	3 (	72	1	0		
PLCR	Bit Symbol	PL7C	PL6C	PL5C	PL4C	PL3C	PL2C	PL1C	PL0C		
(0xFFFF_F151)	Read/Write					w					
	After reset	0	0	0	0	0	DP 0	0	0		
	Function				0: input	1: output	<i>J</i>				
			Port	L function	register 1		(7		>		
		7	6	5	4//	3	~ 2((		0		
PLFC1	Bit Symbol	PL7F1	PL6F1	PL5F1	PL4F1	PL3F1	PL2F1	PL1F1	PL0F1		
(0xFFFF_F152)	Read/Write		1 201 1	1 201 1		/ W			1 201 1		
· _ /	After reset	0	0	0	0	0	0	0	0		
	Function	0:Port	0:Port	0:Port	0:Port	0:Port		0:Port	0:Port		
		1:TCOUT	1:SCLK9	1:RXD9	1:TXD9	1:TCOUT	$\overline{2}$	1:TC5IN	1:TC4IN		
		7				6	))				
Port L function register 2											
		7	6		-	3	2	4	0		
		/		)) 5	4	<b>)</b>	2	1	0		
PLFC2	Bit Symbol		PL6F2			/ W					
(0xFFFF_F153)	Read/Write After reset		$\langle \rangle$		R	/ //	1				
	Function		0:Port	5							
	1 diriotion	$\sim (\vee$	1:CTS9		$\langle \rangle$						
							L				
				drain (OD)		-		4			
		7	6	5	4	3	2	1	0		
PLOD	Bit Symbol		PL6OD		PL4OD						
(0xFFFF_F15A)	Read/Write	>		$\checkmark$		/W	<u> </u>				
	After reset		0		0						
$\sim$ (	Function		0:CMOS		0:CMOS 1: OD						
		$\sim ($	1: OD		1:00						
		$\mathbb{Z}($	Port L	select cont	trol registe	er					
		7	6	5	4	3	2	1	0		
PLSEL	Bit Symbol		PL6SEL		PL4SEL						
(0xFFFF_F15D)	Read/Write			•		/W					
	After reset		0		0						
	Function		SCLK7		TXD7						
			0: off		0: off						
			1:SCLK		1:TXD						

						1				
Read/Write     Read/Write     R/W       After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <t< th=""><th></th><th></th><th>7</th><th>6</th><th>5</th><th>4</th><th>3</th><th>2</th><th>1</th><th>0</th></t<>			7	6	5	4	3	2	1	0
After reset0000000FunctionInputInputInputInputInputInputInputInputInputInput0: disabled0: disabled0: disabled0: disabled0: disabled0: disabled0: disabled0: disabled0: disabled	PLIE		PL7IE	PL6IE	PL5IE			PL2IE	PL1IE	PL0IE
Function     Input	(0xFFFF_F15E)			0	0			$\bigtriangleup$	0	0
0: disabled 0: dis								~ ~ ~		
1: enabled										
			1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
							$\langle \langle \rangle$	$\langle / \rangle$		
								9		
						(				
						4	$\langle \rangle$	~	$\langle \rangle \rangle$	>
						$\overline{\Omega}$		S		
							))	$\diamond$ (C		
									901	
					Ĝ			$\mathcal{C}$	>	
					40			()		
						$\geq$	$\overline{\alpha}$	7		
						> _	$\sim$ $\lor$	$\mathcal{D}$		
				<	$\langle \rangle >$					
				$\square$	$\langle \rangle \rangle$					
					))		$\bigvee$			
				$\mathcal{C}$		$\land$	$\checkmark$			
				$(\bigcirc)$						
			$\overline{\Box}$		C	$\mathbb{Z}$				
		(-	$\sim \mathbb{N}$	))						
					_ ((//	$\langle \hat{\gamma} \rangle$				
					$// \sim$	<u>ال</u>				
				$\langle \in$	$ \rightarrow $					
		$\frown$	$\checkmark$							
			7	$\wedge$	$\searrow$					
			/	$\mathcal{A}($						
		())								
		$\square$	$\mathcal{O}(\mathcal{O})$	$\mathcal{I}_{\mathcal{A}}$						
			$\langle \langle \rangle \rangle$	$\bigcirc$						
				_						
	$\searrow$			7						

Port L input control register

#### 7.23 Port M (PM0~PM7)

The port M is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PMCR and the function register PMFCx. A reset allows all bits of the PM, PMCR, PMFC1 to be cleared to "0," and the port M to be put in output disable mode.

Besides the input/output port function, the port M performs other functions: PM0 through PM5 input external interrupt (INT0~INT5). PM6 and PM7 output 32-bit timer compare match.





# TOSHIBA

Port M register

7 PM7 7 PM7C 0 0 7 PM7F1 0 0 PM7F1 0 0:Port 1:TCOUT 3	6 PM6C 0	t M control 5 PM5C 0	4 PM4C R/ 0 utput disable	3 PM3C W 0 1: output en 3 PM3F1	2 PM2C	1 PM1 1 PM1C 0	0 PM0 0 PM0C 0
7 PM7C 0 7 PM7F1 0 0:Port 1:TCOUT	Port 6 PM6C 0 Port M 6 PM6F1	Input mod t M control 5 PM5C 0 0:ou VI function 5 PM5F1	R/ e (output lato register 4 PM4C R/ 0 utput disable register 1 4 PM4F1	W ch register is PM3C W 0 1: output en 3 PM3F1	set to "1.") 2 PM2C 0 able	1 PM1C 0	0 PM0C 0
7 PM7C 0 0 PM7F1 9 0 PM7F1 0 0:Port 1:TCOUT	6 PM6C 0 Port 1 6 PM6F1	t M control 5 PM5C 0 0:00 VI function 5 PM5F1	e (output lato register 4 PM4C R/ 0 utput disable register 1 4 PM4F1	3 PM3C W 0 1: output en 3 PM3F1	2 PM2C able	РМ1С 0	0
PM7C       0       7       PM7F1       0       0:Port       1:TCOUT	6 PM6C 0 Port 1 6 PM6F1	t M control 5 PM5C 0 0:00 VI function 5 PM5F1	register 4 PM4C R/ 0 utput disable register 1 4 PM4F1	3 PM3C W 0 1: output en 3 PM3F1	2 PM2C able	РМ1С 0	0
PM7C       0       7       PM7F1       0       0:Port       1:TCOUT	6 PM6C 0 Port 1 6 PM6F1	5 PM5C 0 0:ou M function 5 PM5F1	4 PM4C R/ 0 utput disable register 1 4 PM4F1	PM3C W 0 1: output en 3 PM3F1	PM2C 0 able 2	РМ1С 0	0
PM7C       0       7       PM7F1       0       0:Port       1:TCOUT	PM6C 0 Port 1 6 PM6F1 0	PM5C 0 0:00 0:00 0:00 0 0:00 0 0 0 0 0 0 0	PM4C R/ 0 utput disable register 1 4 PM4F1	PM3C W 0 1: output en 3 PM3F1	PM2C 0 able 2	РМ1С 0	0
0 7 PM7F1 0 0:Port 1:TCOUT	0 Port I 6 PM6F1 0	0 0:ou M function 5 PM5F1	R/ 0 utput disable register 1 4 PM4F1	W 0 1: output en 3 PM3F1	o able	0	0
7 PM7F1 0 0:Port 1:TCOUT	Port f 6 PM6F1 0	0:ou VI function 5 PM5F1	0 utput disable register 1 4 PM4E1	0 1: output en 3 PM3F1	able 2		>
7 PM7F1 0 0:Port 1:TCOUT	Port f 6 PM6F1 0	0:ou VI function 5 PM5F1	register 1 4 PM4E1	1: output en 3 PM3F1	able 2		>
PM7F1 0 0:Port 1:TCOUT	6 PM6F1	M function 5 PM5F1	register 1 4 PM4E1	3 PM3F1	2		>
PM7F1 0 0:Port 1:TCOUT	6 PM6F1	5 PM5F1	4 PM4E1	PM3F1			0
PM7F1 0 0:Port 1:TCOUT	PM6F1 0	PM5F1	PM4F1	PM3F1			0
0 0:Port 1:TCOUT	0				PM2F1		
0:Port 1:TCOUT		0	R/			CPM1F1	PM0F1
0:Port 1:TCOUT		0		W		90	
1:TCOUT	0:Port		0	0	0	0	0
		0:Port	0:Port	0:Port	0:Port	0:Port	0:Port
	1:TCOUT 2	1:1NT5	1:INT4	1:INT3	1:fNT2	1:INT1	1:INT0
7					2	1	0
							PEIM0
		T EINIO				1 2 1011	
0		0	(0)	0	0	0	0
Input	Input	Input <	Input	Input	Input	Input	Input
0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
	0 Input 0: disabled	7 6   PEIM7 PEIM6   0 0   Input Input   0: disabled 0: disabled	7 6 5   PEIM7 PEIM6 PEIM5   0 0 0   Input Input Input   0: disabled 0: disabled 0: disabled	7 6 5 4   PEIM7 PEIM6 PEIM5 PEIM4   R/ 0 0 0   Input Input Input   0: disabled 0: disabled 0: disabled	PEIM7 PEIM6 PEIM5 PEIM4 PEIM3   R/W 0 0 0 0   Input Input Input Input Input   0: disabled 0: disabled 0: disabled 0: disabled 0: disabled	7 6 5 4 3 2   PEIM7 PEIM6 PEIM5 PEIM4 PEIM3 PEIM2   R/W 0 0 0 0 0   Input Input Input Input Input   0: disabled 0: disabled 0: disabled 0: disabled 0: disabled	7     6     5     4     3     2     1       PEIM7     PEIM6     PEIM5     PEIM4     PEIM3     PEIM2     PEIM1       R/W     0     0     0     0     0     0     0       Input     Input     Input     Input     Input     Input     0: disabled     0: disabled

#### 7.23 Port N (PN0~PN7)

The port N is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PNCR and the function register PNFCx. A reset allows all bits of the PN, PNCR, PNFC1 and PNFC2 to be cleared to "0," and the port N to be put in output disable mode.

Besides the input/output port function, the port N performs other functions: PN0 through PN2 input external interrupt (INT6~INT8). PN3 and PN7 input A/D converter external start request. PL4 through PL6 have UART/SIO function.

If the port N is used as a port UART/SIO function, select the function with the function register of the corresponding port and set the open drain control register along with the select control register. When the function registers 1 and 2 are set, the setting in the register 1 is prioritized.







				Port N reg	ister							
	/	7	6	5	4	3	2	1	0			
PN	Bit Symbol	PN7	PN6	PN5	PN4	PN3	PN2	PN1	PN0			
(0xFFFF_F170)	Read/Write				R	/W	$\wedge$					
	After reset			Input mod	e (output late	ch register is	set to "1.")					
			Por	t N control	register			70				
		7	6	5	4	3 (	2	1	0			
PNCR	Bit Symbol	PN7C	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C			
(0xFFFF_F171)	Read/Write		1			w						
· _ /	After reset	0	0	0	0	0	0 S	0	0			
	Function				0: input	1: output	)					
			Port I	N function	register 1		C		>			
		7	6	5	4.7/	3	~ 2(		0			
PNFC1	Bit Symbol	PN7F1	PN6F1	PN5F1	PN4F1	PN3F1	PN2F1	PN1F1	PN0F1			
(0xFFFF_F172)	Read/Write			111011		/ W			111011			
· _ /	After reset	0	0	0	0	0	0	0	0			
	Function	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port			
		1:ADTRG	1:SCLKA	1/RXDA	1:TXDA	1:ADTRG	1:INT8	1:INT7	1:INT6			
		В			>	A	) )					
Port N function register 2												
			Port	N function	register 2							
		7	6	)) 5	4	3	2	1	0			
PNFC2	Bit Symbol		PN6F2		$\wedge$	$\sim$						
(0xFFFF_F173)	Read/Write		$\left( \begin{array}{c} \\ \end{array} \right)$		R	/ W	i					
	After reset		0		$\left( \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$							
	Function	_ (7/	0:Port 1:CTSA									
	//	$\gamma$		((7/	$\overline{\mathbf{A}}$							
		P	ort N open	drain (OD	) control r	egister						
		7	6	5	4	3	2	1	0			
PNOD	Bit Symbol		PN6OD		PN4OD							
(0xFFFF_F17A)	Read/Write			$\searrow$		/W	·					
	After reset	(	0		0							
$\sim$ (	Function		0:CMOS		0:CMOS							
			1:0D		1:OD							
		$( \langle \rangle \langle \rangle \langle \rangle \rangle )$	Port N	select con	trol reaiste	ər						
		7	6	5	4	3	2	1	0			
PNSEL	Bit Symbol		PN6SEL	-	PN4SEL	-						
(0xFFFF_F17D)	Read/Write		. HOULL	1		/W	1	1				
(***** <u>-</u> )	After reset		0		0							
	Function		SCLKA		TXDA							
			0: off		0: off							
			1:SCLK		1:TXD							

		-	1	-	ioi registe		c.		
		7	6	5	4	3	2	1	0
PNIE	Bit Symbol	PN7IE	PN6IE	PN5IE	PN4IE	PN3IE	PN2IE	PN1IE	PN0IE
(0xFFFF_F17E)	Read/Write		<u> </u>	<u> </u>		/W	$\frown$	0	<u> </u>
	After reset Function	0 Input	0 Input	0 Input	0 Input	0 Input	0 Input	0 Input	0 Input
		0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
		1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled	1: enabled
						$\langle \langle ($	$\langle \rangle \rangle$		
							))		
					2			$\sim$	>
							<u>j</u>		/
						$\int$	$\diamond$ (C		
				(				40)	
				Â			$\mathbb{C}$	$>$ $\smile$	
					$\sim$		$\sum $		
				$ \leq \bigcirc $	$\rightarrow$	$(\bigcirc)$	$\langle  \rangle$		
			<		$\square$	$\sim$	9		
					$\sim$				
				))		$\bigvee$			
			$C \wedge$		$\langle \rangle$	$\checkmark$			
					$\langle \rangle$				
		$\sim (7)$	1	~					
		$\mathcal{N}$	シ	. (7)	$\sim$				
	$\langle \langle \rangle$			)/V	シ				
		$\searrow$	$\langle \langle \langle \langle \rangle \rangle$						
	$\langle \rangle$	$\checkmark$							
	$\sim$	>	$\langle \rangle$	$\checkmark$					
~ (	$\bigcirc$		4						
	$\bigcirc$	0							
		$( \langle \rangle \langle \rangle \langle \rangle \rangle )$	$\bigcirc$						
		1	_						
$\sim$			~						

Port N input control register

# 7.24 Port O (PO0~PO7)

The port O is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register POCR. A reset allows all bits of the PO and POCR to be cleared to "0," and the port O to be put in output disable mode.

Besides the input/output port function, the port O performs other functions: PO0 through PO7 function as a signal for DSU-ICE (TPD0~TPD7). If the port O is used for the DSU-ICE signal, it cannot be used as the input/output mode.



				Port O reg	ister				
		7	6	5	4	3	2	1	0
PO	Bit Symbol	PO7	PO6	PO5	PO4	PO3	PO2	PO1	PO0
(0xFFFF_F180)	Read/Write	R/W							
	After reset Input mode (output latch register is set to "1.")								
			Por	t O control	register				
		7	6	5	4	_3 (	<u>/2</u>	1	0
POCR	Bit Symbol	PO7C	PO6C	PO5C	PO4C	PO3C	PO2C	PO1C	PO0C
(0xFFFF_F181)	Read/Write				R/	W (			
	After reset	0	0	0	0	0	)) o	0	0
	Function				0: input	1: output	/		
Port O input control register									
		7	6	5	4	)) 3	◊ 2 (		0
POIE	Bit Symbol	PO7IE	PO6IE	PO5IE	PO4IE	PO3IE	PO2IE	PO1/E	PO0IE
(0xFFFF_F18E)	Read/Write	R/W							
	After reset	0	0	02(	0	0	0	0	0
			Innut	lanut -	Sealar 1	la su d	Input	Input	Input
	Function	Input	Input	Input	Input	Input	Subar	mpat	input
	Function	0: disabled	0: disabled 1: enabled	0: disabled	0: disabled 1: enabled	0: disabled	0: disabled 1: enabled	0: disabled 1: enabled	0: disabled 1: enabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled
	Function	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled	0: disabled

# 7.25 Port P (PP0~PP7)

The port P is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PPCR. A reset allows all bits of the PP and PPCR to be cleared to "0," and the port O to be put in output disable mode.

Besides the input/output port function, the port P performs other functions: PP0 through PP7 function as a signal for DSU-ICE (TPD0~TPD7/ TPC0~TPC7). If the port P is used for the DSU-ICE signal, it cannot be used as the input/output mode.


				Port P reg	ister				
		7	6	5	4	3	2	1	0
PP	Bit Symbol	PP7	PP6	PP5	PP4	PP3	PP2	PP1	PP0
(0xFFFF_F190)	Read/Write					/W			
	After reset			Input mod	e (output late	ch register is	set to "1.")		
			Por	t P control	register				
	/	7	6	5	4	3	2	1	0
PPCR	Bit Symbol	PP7C	PP6C	PP5C	PP4C	PP3C	PP2C	PP1C	PP0C
(0xFFFF_F191)	Read/Write		•		R/	w 🦳			
	After reset	0	0	0	0	0	) > o	0	0
	Function				0: input	1: output	)		
			Port P	input cont	rol registe		(		>
		7	6	5	4	3	~ 2((		0
PPIE	Bit Symbol	PP7IE	PP6IE	PP5IE	PR4IE	PP3IE	PP2IE	PP1/E	PP0IE
(0xFFFF_F18E)	Read/Write				R	/W			
	After reset	0	0	0	0	0	0	0	0
	Function	Input 0: disabled 1: enabled							

## 7.26 Port Q (PQ0~PQ3)

The port Q is a general-purpose, 4-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Outputs can be set by using the control register PQCR and the function register PQFC1. A reset allows all bits of the PQ, PQCR and PQFC1 to be cleared to "0," and the port Q to be put in output disable mode.

Besides the input/output port function, the port Q performs other functions: PQ0 and PQ2 function as DREQ2 and DREQ3. PQ1 and PQ3 function as DACK2 and DACK3.







# 8.External Bus Interface

The TMP19A63 has a built-in external bus interface function to connect to external memory, I/Os, etc. This interface consists of an external bus interface circuit (EBIF), a chip selector (CS) and a wait controller.

The chip selector and wait controller designate mapping addresses in a 6-block address space and also control wait states and data bus widths (8- or 16-bit) in these and other external address spaces.

The external bus interface circuit (EBIF) controls the timing of external buses based on the chip selector and wait controller settings. The EBIF also controls the dynamic bus sizing and the bus arbitration with the external bus master.

• External bus mode

Selectable address, data separator bus mode and multiplex mode

Wait function

This function can be enabled for each block.

- A wait of up to 7 clocks can be automatically inserted.
- A wait can be inserted via the WAIT / RDY pin.
- ( Data bus width

Either an 8- or 16-bit width can be set for each block.

(Recovery cycle (read/write)

If external bus cycles occur continuously, a dummy cycle of up to 2 clocks can be inserted and this dummy cycle can be specified for each block.

(Recovery cycle (chip selector)

When an external bus is selected, a dummy cycle of up to 31 clocks can be inserted and this dummy cycle can be specified for each block.

Bus arbitration function

#### .8.1 Address and Data Pins

#### (1) Address and data pin settings

The TMP19A63 can be set to either separate bus or multiplexed bus mode. Setting the BUSMD pin to the "L" level at a reset activates the separate bus mode, and setting the pin to the "H" level activates the multiplexed bus mode. Port pins 0, 1, 2, 5 and 6, which are to be connected to external devices (memory), are used as address buses, data buses and address/data buses (see Table 8.1).

	Separate	Multiplex
	BUSMD="L"	BUSMD="H"
Port 0 (P00-P07)	D0-D7	AD0-AD7
Port 1 (P10-P17)	D8-D15	AD8-AD15/A8-A15
Port 2 (P20-P27)	A16-A23	A0-A7/A16-A23
Port 5 (P50-P57)	A0-A7	General-purpose port
Port 6 (P60-P67)	A8-A15	General-purpose port
Port 37 (P37)	General-purpose por	ALE 🔿

To access an external device, set the address and data bus functions by using the port control register (PnCR) and the port function register (PnFC).

In the multiplex mode, the four types of functions can be selected, as shown in Table 8.1.2, by setting the port registers (PnCR and PnFCx).

		(1)	(2)	(3)	(4)	
Number of address		max.24 (~16MB)	max.24 (~16MB)	max.16 (~64KB)	max.8 (~256B)	
buses				4		
Number of data buses		8 (( )	16	8	16	
Number of						
address/da		(87/	16	0	0	
multiplexed buses						
Port	Port 0	AD0~AD7	AD0~AD7	AD0~AD7	AD0~AD7	
function	Port 1 🗸	A8~A15	AD8~AD15	A8~A15	AD8~AD15	
Tunction	Port 2	A16~A23	A16~A23	A0~A7	A0~A7	
	$\langle \rangle$	A23~8 A23~8	A23~16 A23~16	A15~	A7~0	
Timing Dia	gram	AD7~0 (A7~0) (D7~0)	AD15~0 $\begin{pmatrix} A15 \\ -0 \end{pmatrix} \begin{pmatrix} D15 \\ -0 \end{pmatrix}$	AD7~0 $\left< \begin{array}{c} \text{(Note 1)} \\ \text{(A7~0)} \\ \text{(D7~0)} \end{array} \right>$	AD15~0 $\begin{pmatrix} \text{(Note 1)} \\ \text{A15} \\ \text{~0} \end{pmatrix} \begin{pmatrix} \text{D15} \\ \text{~0} \end{pmatrix}$	
			ALE			
		RD				

### Table 8.1.2 Address and Data Pins in the Multiplex Mode

(Note 1): Even in cases of (3) and (4), address outputs are available as the data bus pins are also used for address buses.

(Note 2): Ports 0 to 2 are put into input modes after a reset, and they do not serve as address or data bus pins.

(Note 3): Any of (1) to (4) can be selected by setting the P1CR, P1FC, P2CR and P2FC registers.

(2) Address HOLD when an internal area is accessed

When an internal area is being accessed, the address bus maintains the address output of the previously accessed external area and doesn't change it. Also, the data bus is in a state of high impedance.

### 8.2 Data Format

Internal registers and external bus interfaces of the TMP19A63 are configured as described below.

- (1) Big-endian mode
  - ① Word access



8-bit bus width _____address







address D31 BΒ AA BΒ x0 х1 x1 D00 AA x0 Internal registers External buses Internal registers External buses address D31 CC DD DD x3 x2 хЗ D00 CC x2 3 Byte access 16-bit bus width Internal registers External buses address D31 AA LSB MSB D00 AA x0 address D31 BBX MSB LSB D00 BB x1 address D31

8-bit bus width

D31 D31 D31 D00 CC ×2 address D31 D00 CC ×2 D31 DDX LSB MSB DDX LSB MSB



## 8.3 External Bus Operations (Separate Bus Mode)

This section describes various bus timing values. The timing diagram shown below assumes that the address buses are A23 through A0 and that the data buses are D15 through D0.

(1) Basic bus operation

The external bus cycle of the TMP19A63 basically consists of three clock pulses and a wait can be inserted as mentioned later. The basic clock of an external bus cycle is the same as the internal system clock.

Fig. 8.3.1 shows read bus timing and Fig. 8.3.2 shows write bus timing. If internal areas are accessed, address buses remain unchanged as shown in these figures. Additionally, data buses are in a state of high impedance and control signals such as  $\overline{RD}$  and  $\overline{WR}$  do not become active.



(2) Wait timing

A wait cycle can be inserted for each block by using the chip selector (CS) and wait controller. The following three types of wait can be inserted:

 $\bigcirc$  A wait can be inserted via the WAIT pin

(2+2N, 3+2N, 4+2N, 5+2N, 6+2N and 7+2N

Note: 2N is the number of external waits that can be inserted.)

@A wait can be inserted via the  $\overline{RDY}$  pin

(2+2N, 3+2N, 4+2N, 5+2N, 6+2N and 7+2N Note: 2N is the number of external waits that can be inserted.)

The setting of the number of waits to be automatically inserted and the setting of the external wait input can be made using the chip selector and wait controller registers, BmnCS<BnW>.

Fig. 8.3.3 through Fig. 8.3.10 shows the timing diagrams in which waits have been inserted.











Fig. 8.3.5 shows the read operation timing when 0 wait, waits automatically inserted, and waits automatically inserted + external waits are inserted in the separate bus mode.

Fig. 8.3.5 Read Operation Timing Diagram



Fig. 8.3.6 shows the write operation timing when 0 wait, waits automatically inserted, and waits automatically inserted + external waits are inserted in the separate bus mode.

Fig. 8.3.6 Write Operation Timing Diagram

By setting the bit 3 < P33F > of port 3 function register P3FC to "1," the WAIT input pin (P33) can also serve as the RDY input pin.

The  $\overline{\text{RDY}}$  input is input to the external bus interface circuit as the logical reverse of the  $\overline{\text{WAIT}}$  input. The number of waits is specified by the chip selector and a wait controller register, BmnCS<BnW>.

Fig. 8.3.7 shows the  $\overline{RDY}$  inputs and the number of waits.



Fig. 8.3.7 RDY Input and Wait Operation Timing Diagram

## (3) Time that it takes before ALE is asserted

When the external bus of the TMP19A63 is used as a multiplexed bus, the ALE width (assert time) can be specified by using the system control register SYSCR3 <ALESEL> in the CG. In the case of a separate bus mode, ALE is not output, but the time from when an address is established to the assertion of the  $\overline{RD}$  or  $\overline{WR}$  signal is different depending on the SYSCR3<ALESEL>.

During a reset, <ALESEL> = "1" is set and the  $\overline{RD}$  or  $\overline{WR}$  signal is asserted at a point of two system (internal) clocks after an address is established. If <ALESEL> is cleared to "0," the  $\overline{RD}$  or  $\overline{WR}$  signal is asserted at a point of one system (internal) clock after an address is established. This assert setting cannot be established for each block in an external area and the same setting is commonly used in an external address space.



Fig. 8.3.8 SYSCR3 <ALESEL> Set Value and External Bus Operation

#### (4) Recovery time

If access to external areas occurs consecutively, a dummy cycle can be inserted for recovery time.

A dummy cycle can be inserted in both a read and a write cycle. The dummy cycle insertion setting can be made in the chip selector and wait controller registers, BmnCS<BnWCV> (write recovery cycle) and <BnRCV> (read recovery cycle). As for the number of dummy cycles, one or two system clocks (internal) can be specified for each block. Fig. 8.3.9 shows the timing of recovery time insertion.



(5) Chip selector recovery time

If access to external areas occurs consecutively, a dummy cycle can be inserted for recovery time. The dummy cycle insertion setting can be made in the chip selector and wait controller registers, BmnCS<BnCSCV>. As for the number of dummy cycles, one system clock (internal) can be specified for each block. Fig. 8.3.10 shows the timing of recovery time insertion.



Fig. 8.3.10 CS Timing of Recovery Time Insertion

## 8.4 External Bus Operations (Multiplexed Bus Mode)

This section describes various bus timing values. The timing diagram shown below assumes that the address buses are A23 through A16 and that the address/data buses are AD15 through AD0.

(1) Basic bus operation

The external bus cycle of the TMP19A63 basically consists of three clock pulses and a wait can be inserted as mentioned later. The basic clock of an external bus cycle is the same as the internal system clock.

Fig. 8.4.1 shows read bus timing and Fig. 8.4.2 shows write bus timing. If internal areas are accessed, address buses remain unchanged and the ALE does not output latch pulse as shown in these figures. Additionally, address/data buses are in a state of high impedance and control signals such as  $\overline{RD}$  and  $\overline{WR}$  do not become active.



Fig. 8.4.2 Write Operation Timing Diagram

### (2) Wait Timing

A wait cycle can be inserted for each block by using the chip selector (CS) and wait controller. The following three types of wait can be inserted:

- 0 A wait of up to 7 clocks can be automatically inserted.
- ② A wait can be inserted via the WAIT pin. (2+2N, 3+2N, 4+2N, 5+2N, 6+2N and 7+2N

Note: 2N is the number of external waits that can be inserted.)

③ A wait can be inserted via the RDY pin.

(2+2N, 3+2N, 4+2N, 5+2N, 6+2N and 7+2N Note: 2N is the number of external waits that can be inserted.)

The setting of the number of waits to be automatically inserted and the setting of the external wait input can be made using the chip selector and wait controller registers, BmnCS<BnW>.



Fig. 8.4.3 shows the read operation timing when 0 wait, waits automatically inserted, and waits automatically inserted + external waits are inserted in the multiplexed bus mode.

Fig. 8.4.3 Read Operation Timing Diagram



Fig. 8.4.4 shows the write operation timing when 0 wait, waits automatically inserted, and waits automatically inserted + external waits are inserted in the multiplexed bus mode.

Fig. 8.4.4 Write Operation Timing Diagram

## (3) Time for ALE to be asserted

As an ALE assertion time, either 1 clock or 2 clocks can be selected. The setting bit is located in the system clock control register. The default is 2 clocks. This assert setting cannot be established for each block in an external area and the same setting is commonly used in an external address space.



(4) Read and Write Recovery Time

If access to external areas occurs consecutively, a dummy cycle can be inserted for recovery time.

A dummy cycle can be inserted in both a read and a write cycle. The dummy cycle insertion setting can be made in the chip selector and wait controller registers, BmnCS<BnWCV> (write recovery cycle) and <BnRCV> (read recovery cycle). As for the number of dummy cycles, one or two system clocks (internal) can be specified for each block. Fig. 8.4.7 shows the timing of recovery time insertion.



Fig. 8.4.7 Timing of Recovery Time Insertion

(5) Chip selector recovery time

If access to external areas occurs consecutively, a dummy cycle can be inserted for recovery time.

The dummy cycle insertion setting can be made in the chip selector and wait controller registers, BmnCS<BnCSCV>. The number of dummy cycles can be specified by one internal system clock for each block. Fig. 8.4.8 shows the timing of recovery time insertion.



Fig. 8.4.8 Timing of Recovery Time Insertion

## 8.5 Bus Arbitration

The TMP19A63 can be connected to an external bus master. The arbitration of bus control authority with the external bus master is executed by using the two signals,  $\overline{\text{BUSRQ}}$  and  $\overline{\text{BUSAK}}$ . The external bus master can acquire control authority for TMP19A63 external buses only, and cannot acquire control authority for internal buses.

(1) Accessible range of external bus master

The external bus master can acquire control authority only for TMP19A63 external buses, and cannot acquire control authority for internal buses (G-BUS). Therefore, the external bus master cannot access the internal memories or the internal I/O. The arbitration of bus control authority for external buses is executed by the external bus interface circuit (EBIF), and this is independent of the CPU and the internal DMAC. Even when the external bus master holds the external bus control authority, the CPU and the internal DMAC can access the internal ROM, RAM and registers. On the other hand, if the CPU or the internal DMAC tries to access an external memory when the external bus master holds the external bus control authority, the CPU or the internal DMAC bus cycle has to wait until the external bus master releases the bus. For this reason, if the BUSRQ remains active, the TMP19A63 may lock.

(2) Acquisition of bus control authority

The external bus master requests the TMP19A63 for bus control authority by asserting the  $\overline{\text{BUSRQ}}$  signal. The TMP19A63 samples the  $\overline{\text{BUSRQ}}$  signal at the break of external bus cycles on the internal buses (G-BUS) and determines whether or not to give the bus control authority to the external bus master. When it gives the bus control authority to the external bus master. When it gives the bus control authority to the external bus master. When it gives the bus control authority to the external bus master, it asserts the  $\overline{\text{BUSRQ}}$  signal. At the same time, it makes address buses, data buses and bus control signals ( $\overline{\text{RD}}$  and  $\overline{\text{WR}}$ ) in a state of high impedance. (The internal pull-up is enabled for the  $R/\overline{W}$ ,  $\overline{\text{HWR}}$  and  $\overline{\text{CSx}}$ .)

Depending on the relationship between the size of data to be loaded or stored and the external memory bus width, two or more bus cycles can occur in response to a single data transfer (bus sizing). In this case, the end of the last bus cycle is the break of external bus cycles.

If access to external areas occurs consecutively on the TMP19A63, a dummy cycle can be inserted. Again, requests for buses are accepted at the break of external bus cycles on the internal buses (G-BUS). During a dummy cycle, the next external bus cycle is already started on the internal buses. Therefore, even if the BUSRQ signal is asserted during a dummy cycle, the bus is not released until the next external bus cycle is completed.

Keep asserting the  $\overline{\text{BUSRQ}}$  signal until the bus control authority is released.

Fig. 8.5.1 shows the timing of acquiring bus control authority by the external bus master.



① BUSRQ is at the "H" level.

⁽²⁾ The TMP19A63 recognizes that the BUSRQ is at the "L" level, and releases the bus at the end of the bus cycle.

 $\ensuremath{{}^{3}}$  When the bus is completed, the TMP19A63 asserts  $\overline{\text{BUSAK}}$ . The external bus master recognizes that the  $\overline{\text{BUSAK}}$  is at the "L" level, and acquires the bus control authority to start bus operations.

## Fig. 8.5.1 Bus Control Authority Acquisition Timing

(3) Release of bus control authority

The external bus master releases the bus control authority when it becomes unnecessary. If the external bus master no longer needs the bus control authority having been obtained already, it negates the BUSRQ signal and returns the bus control authority to the TMP19A63.

Fig. 8.5.2 shows the timing of releasing unnecessary bus control authority.



① The external bus master has the bus control authority.

- ② The external bus master negates the BUSRQ, as it no longer requires the bus control authority.
- ③ The TMP19A63 recognizes that the BUSRQ is at the "H" level, and negates the BUSAK .

## Fig. 8.5.2 Timing of Releasing Bus Control Authority

#### 9. The Chip Selector and Wait Controller

The TMP19A63 can be connected to external devices (I/O devices, ROM and SRAM).

6-block address spaces (CS0 through CS5) can be established in the TMP19A63 and three parameters can be specified for each address and other address spaces: data bus width, the number of waits and the number of dummy cycles.

 $\overline{\text{CS0}}$  through  $\overline{\text{CS5}}$  (also used as P40 through P45) are the output pins corresponding to spaces CS0 through CS5. These pins generate chip selector signals (for ROM and SRAM) to each space when the CPU designates an address in which spaces CS0 through CS5 are selected. For chip selector signals to be generated, however, the port 4 controller register (P4CR) and the port 4 function register (P4FC) must be set appropriately.

The specification of the spaces CS0 through CS5 is to be performed with a combination of base addresses (BAn, n=0 to 5) and mask addresses (MAn, n=0 to 5) using the base and mask address setting registers (BMA0 through BMA3).

Meanwhile, master enable, data bus width, the number of waits and the number of dummy cycles for each address space are specified in the chip selector and wait controller registers (B01CS, B23CS and B45CS).

A bus wait request pin (WAIT) is provided as an input pin to control the status of these settings.

#### 9.1 Specifying Address Spaces

Spaces CS0 through CS5 are specified using the base and mask address setting registers (BMA0 through BMA5).

In each bus cycle, a comparison is made to see if each address on the bus is located in the space CS0 through CS5. If the result of a comparison is a match, it is considered that the designated CS space has been accessed. Then chip selector signals are output from pins  $\overline{CS0}$  through  $\overline{CS5}$ . The operations specified by the chip selector and wait controller registers (B01CS, B23CS and B45CS) are executed (refer to "9.2 The Chip Selector and Wait Controller Register").

#### 9.1.1 Base and Mask Address Setting Registers

Fig. 9.1.1 through Fig. 9.1.3 show base and mask address setting registers. For base addresses (BA0 through BA5), a start address in the space CS0 through CS5 is specified. In each bus cycle, the chip selector and wait controller compare values in their registers with addresses though those addresses with address bits masked by the mask address (MA0 through MA5) are not compared. The size of an address space is determined by the mask address setting.

#### (1) Base addresses

Base address BAn specifies the higher-order 16 bits (A31 through A16) of the start address. The lower-order 16 bits (A15 to A0) of the start address are always set to "0." Therefore, the start address begins with 0x0000_0000H and increases in 64 k byte units.

Fig. 9.1.4 shows the relationship between the start address and the BAn value.

#### (2) Mask addresses

Mask address (MAn) specifies which address bit value is to be compared. The address on the bus that corresponds to the bit for which "0" is written on the address mask MAn is to be included in address comparison to determine if the address is in the area of the CS0 to CS5 spaces. The bit in which "1" is written is not included in address comparison.

CS0 to CS5 spaces have different address bits that can be masked by MA0 to MA5. CS0 space and CS1 space: A29 through A14 CS2 space through CS5 space: A30 through A15

(Note 1)	Address settings must be made using physical addresses.
(Note 2)	Make sure to write "0" for all the bits to be specified for BMAn when CS is not used. There are cases that decoding is executed internally when CS is not used.
(Note 3)	Mapping I/O, ROM and RAM to CS space is prohibited. Otherwise, access to externalspace and internal space occurs simultaneously.



## Base and mask address setting registers BMA0 (0xFFFF_E400H)~BMA5 (0xFFFF_E41CH)

		7	6	5	4	3	2	1	0		
3MA0	Symbol	1	0	5		A0	2	1	0		
(0xFFFF_E400H)			R/W								
	After reset	1	1	1	1	1	~ 1	1	1		
	Function			CS0 space s			or compariso				
		15	14	13	12	11	10	9	8		
	Symbol					AO		) Y	-		
	Read/Write					/W		9			
	After reset	0	0	0	0		0/0	1	1		
	Function				to write "0."			CS0 space			
						$( \cap$	$\sim$	0: Addı			
							)7	compa	arison		
		23	22	21	20	19	18	17	16		
	Symbol				<b.< td=""><td>A0</td><td></td><td>( )</td><td></td></b.<>	A0		( )			
	Read/Write				R	/w	(	>//	/		
	After reset	0	0	0	(07/	0	0 (	0	0		
	Function		A23 to	A16 to be se	et as a start a	address	$\Diamond$	20			
		31	30	29	28	27	26	25	24		
	Symbol		BAO								
	Read/Write			2(	R	/W	$(\bigcirc)$				
	After reset	1	1		1	1		1	1		
	Function A31 to A24 to be set as a start address										
				$\langle \rangle$		$\sim$	$\mathcal{I}$				
		7	6	5	4	3	2	1	0		
BMA1	Symbol		$\square$	$\langle \rangle$	M	A1					
0xFFFF_E404H	Read/Write				R	AV					
	After reset	1	$\rightarrow$	1	1	$\sim$	1	1	1		
	Function		$\Box \land 0$	CS1 space s	ize setting	0: Address f	or comparise	on			
		15	14	13	12	11	10	9	8		
	Symbol	$\square$		5	M	A1					
	Read/Write		))			/W	- <del>1</del>	-1	<del>.</del>		
	After reset	0	0	0	0	0	0	1	1		
	Function		$\leq$	Make sure	to write "0."			CS1 space	size setting		
		$\leq$							0: Address for		
					1	1	1	compa	arison		
		23	22	21	20	19	18	17	16		
	Symbol		~	$\searrow$		A1					
	Read/Write		(7		1	/W			1		
						0	0	0	0		
	After reset	0	0	0	0	0	0	-			
	After reset Function	6	A23 to	A16 to be se	et as a start a	address	• 1		1		
	Function	0				-	26	25	24		
	Function Symbol	6	A23 to	A16 to be se	et as a start a 28	address	• 1		24		
	Function	6	A23 to	A16 to be se	et as a start a 28 B	address 27	• 1		24		
	Function Symbol	6	A23 to	A16 to be se	et as a start a 28 B	address 27 A1	• 1		24		

(Note) Make sure to write "0" for bits 10 through 15 for BMA0 and BMA1. The size of both the CS0 and CS1 spaces can be a minimum of 16 KB to a maximum of 1 GB. The external address space of the TMP19A63 is 16 MB and so bits 10 through 15 must be set to "0" as addresses A24 through A29 are not masked.

Fig. 9.1.1 Base and Mask Address Setting Registers (BMA0, BMA1)

BMA2 (0xFFFF_E408H)     7     6     5     4     3     2     1       BMA2 (0xFFFF_E408H)     Symbol     MA2     MA2	0									
Read/Write R/W   After reset 1 1 1 1 1   Function CS2 space size setting 0: Address for comparison	1									
After reset111111FunctionCS2 space size setting0: Address for comparison	1									
	·									
	8									
Symbol MA2										
Read/Write R/W										
After reset 0 0 0 0 0 0 0	1									
Function Make sure to write "0."	CS2 space size setting 0: Address for comparison									
23 22 21 20 19 18 17	16									
Symbol BA2	$\searrow$									
Read/Write R/W	>									
After reset 0 0 0 0 0 0 0 0	0									
Function A23 to A16 to be set as a start address										
31 30 29 28 27 26 25	24									
Symbol BA2										
Read/Write     R/W       After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0										
	0 0 0 0 0 0 0 0 0 0 A31 to A24 to be set as a start address									
A31 to A24 to be set as a start address	Function A31 to A24 to be set as a start address									
7 6 5 4 3 2 1	0									
BMA3 Symbol MA3										
(0xFFFF_E40CH) Read/Write R/W										
After reset 1 1 1 1 1 1 1	1									
Function CS3 space size setting 0: Address for comparison										
15 14 13 12 11 10 9	8									
Symbol MA3										
Read/Write R/W										
After reset 0 0 0 0 0 0 0	1 CS3 space									
Function Make sure to write "0."	size setting 0: Address for comparison									
23 22 21 20 19 18 17	16									
Symbol BA3										
Read/Write R/W										
After reset 0 0 0 0 0 0 0 0	0									
Function A23 to A16 to be set as a start address										
31 30 29 28 27 26 25	24									
Symbol BA3										
Read/Write R/W										
After reset     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th< td=""><td>0</td></th<>	0									
Function A31 to A24 to be set as a start address										

## (Note) The size of both the CS2 and CS3 spaces can be a minimum of 32 KB to a maximum of 2 GB. The external address space of the TMP19A63 is 16 MB and so bits 9 through 15 must be set to "0" as addresses A24 through A30 are not masked.

Fig. 9.1.2 Base and Mask Address Setting Registers (BMA2, BMA3)

	$\sim$									
		7	6	5	4	3	2	1	0	
3MA4 0xFFFF_E410H)	Symbol	MA4								
					R/					
	After reset	1	1			1	1	1	1	
	Function	15	14	CS4 space s	2e setting t	11	10	9	8	
	Symbol	15	14	15	M/			3	0	
	Read/Write					A4 W	-((-)	17		
	After reset	0	0	0	0	0		0	1	
	Function	0	0		e sure to write	1	7/	0	CS4 space	
	1 diletion			Mark			$(\bigcirc)$		size setting	
									0: Address	
							)7		for	
			1	1	(		/		compariso	
		23	22	21	20	19	18	17	16	
	Symbol				$\frown$	A4	(		$\checkmark$	
	Read/Write		i	1	$-(\mathcal{R})$			$\sum$	-i	
	After reset	0	0	0	0/	)) 0	000	$) \circ$	0	
	Function			A23 to A16 to		start addres				
		31	30	29	28	27	26	25	24	
	Bit symbol	ļ			B/	44	$(\Box )$	*		
	Read/Write	ļ	T		R/	W		T		
	After reset	0	0	0	<u> </u>	0 7	0	0	0	
	Function			A31 to	A24 to be se	et as a start	address			
		7	6	5	4	3)	2	1	0	
5	Symbol				M			4		
FF_E41CH)			00	9	∧ R/					
/	After reset	1 (	$\left( \uparrow \right)$	1		1	1	1	1	
	Function		$\bigcirc$	CS5 space s	ze setting (	0: Address f	or compariso	'n		
		157	△ 14	13 <	12	11	10	9	8	
	Symbol	< V/	))		> M			4		
	Read/Write	$\rightarrow \langle \langle \rangle$		(7/	R/					
	After reset	107	0		70	0	0	0	1	
	Function	Make sure to write "0."							CS5 space	
		size setting								
	$ \land \land$								0: Address for	
	$\sum$			$\searrow$					compariso	
		23	22	21	20	19	18	17	16	
. (	Symbol		99			44 				
$\langle \rangle$	Read/Write	6				W				
	After reset	<pre> 0 ((</pre>	0	0	0	0	0	0	0	
	Function			A23 to A16 to	-	-		ů		
		31	30	29	28	27	26	25	24	
		51	50	25			20	20	27	
	Symbol		/	BA4						
	Symbol Read/Write		/							
	Read/Write	0	0	0	R/	W	0	0	0	
		0	0	0 A31 to		W 0	0 address	0	0	

Fig. 9.1.3 Base and Mask Address Setting Registers (BMA4, BMA5)



## 9.1.2 How to Define Start Addresses and Address Spaces

• To specify a space of 64 KB starting at 0xC000_0000 in the CS0 space, the base and mask address registers must be programmed as shown below.



Values to be set in the base and mask address registers (BMA0)

In the base address (BA0), specify "0xC000" that corresponds to higher 16 bits of a start address, while in the mask address (MA0), specify whether a comparison of addresses in the space A29 through A14 is to be made or not. Set bits 15 to 2 of the mask address (MA0) to "0" in order for a comparison of A31 and A30 to be made definitely and to ensure a comparison of A29 through A16. A comparison of A31 and A30 is always executed.

This setting allows A31 through A16 to be compared with the value specified as a start address and A15 through A0 are masked. Therefore, a space of 64 KB from  $0xC000_{000}$  to  $0xC000_{FFFF}$  is designated as a CS0 space and the  $\overline{CS0}$  signal is asserted if there is a match with an address on the bus. To specify a space of 1 MB starting at 0x1FD0_0000 in the CS2 space, the base and mask address registers must be programmed as shown below.



Values to be set in the base and mask address registers (BMA2)

In the base address (BA2), specify "0x1FD0" that corresponds to higher 16 bits of a start address, while in the mask address (MA2), specify whether a comparison of addresses in the space A30 through A15 is to be made or not. Set bits 15 to 5 of the mask address (MA2) to "0." in order for comparison of A31 to be made definitely and to ensure a comparison of A30 through A20. A comparison of A31 is always executed.

This setting allows A31 through A20 to be compared with the value specified as a start address. As A19 through A0 are masked, a space of 1 MB from 0x1FD0_0000~0x1FDF_FFFF is designated as a CS2 space.

After a reset, the CS0, CS1, and CS2 through CS5 spaces are disabled.
Table 9.1.1 shows the relationship between CS space and space sizes. If two or more address spaces are specified simultaneously, a space or spaces with a smaller space number will be selected by priority.

## Example: 0xC000_0000 as a start address of the CS0 space with a space size of 16 KB 0xC000_0000 as a start address of the CS1 space with a space size of 64 KB



## Table 9.1.1 CS Space and Space Sizes

Size (Byte) CS space	16 K	32 K	64 K	128 K	256 K	512 K	1M	2 M	4 M	8 M	16 M
CS0	0	0	0	0	0	0	$\langle \circ \rangle$	0	0	0	0
CS1	0	0	0	0	0	0	0	0	0	0	0
CS2		0	(°	0	0	_0	0	0	0	0	0
CS3		o (	$\left( \circ \right)$	0	0	0	0	0	0	0	0
CS4		0	$\mathbf{)}$	0	0	10	0	0	0	0	0
CS5		(0)	$\land \circ$	0	0	0	0	0	0	0	0

## 9.2 The Chip Selector and Wait Controller

Fig. 9.2.1 through Fig. 9.2.4 show the chip selector and wait controller registers. For each address space (spaces CS0 through CS5 and other address spaces), each chip selector and wait controller register (B01CS through B45CS) can be programmed to set master enable or disable, to select data bus width, to specify the number of waits and to insert dummy cycles.

If two or more address spaces are specified simultaneously, a space or spaces with a smaller space number will be selected by priority (priority order: CS0>CS1>CS2>CS3>CS4>CS5).

	/	7	6	5	4	3	2	1	0	
B01CS	Bit symbol	B0	ОМ	/	BOBUS		B	W		
(FFFFE480H)	Read/Write	R	/W	R	R/W		R	Ŵ		
	After reset	0	0	0	0	0	1	0	1	
	Function	Select the o	chip selector		Select data	Specify the	number of v	vaits.		
		output wave	eform.		bus width.	(Automatic	wait insertio	n)		
		00: ROM/R			0: 16bit	0000: 0W/	AIT 0001: 1	WAIT 001	0: 2WAIT	
			ke any other		1: 8bit	0011: 3W/	AIT 0100: 4	4WAIT 010	1: 5WAIT	
		settings.				0110: 6W	AIT 0111:7	7WAIT		
						(External w	ait input)			
							$\sim$ $\sim$	1011: (3+2N)		
								1101: (5+2N)	WAIT	
						1110: (6+2		1111: (7+2N)	WAIT	
					(	1000,1001	reserved			
		15	14	13	12	11	10	9	8	
	Bit symbol	B0C	SCV		VCV	B0E			ίCV	
	Read/Write	R	/W	R	W ( )	R/W	R	R/	W	
	After reset	0	0	0	0	)) 0 (	000	))_0	0	
	Function		number of						number of	
			cles to be		cles to be		$\square$	7	cles to be	
		inserted.		inserted.		1: Enable	$(\Delta)$	inserted.		
			overy time)	(write, reco			$\sim$	(read, reco		
		11: Disable		00: 2 cycle	~	$(\alpha)$	$\gamma_{\Lambda}$	00: 2 cycle	S	
		10: Disable	/	01: 1 cycle	> _	$\sim \vee$	))	01: 1 cycle		
		01: 1 cycle	4	10: None		$\sim$	$\sum$	10: None		
		00: None		11: Disable 21		10	40	11: Disable		
	Bit symbol	23	22		20	19	18	17 IW	16	
	Read/Write		OM W	R	B1BUS R/W			/W		
	After reset	0	0	0 R	0	0	1	0	1	
	Function		hip selector	0	Select data	-	number of v		1	
	Function	output wave	· · · · · ·	-	bus width.					
		00: ROM/R		~	0: 16bit	`	(Automatic wait insertion) 0000: 0WAIT 0001: 1WAIT 0010: 2WAIT			
			ke any other	$\overline{\Omega}$	1: 8bit		AIT 0100:4		1: 5WAIT	
		settings.	$\sim$				AIT 0111:7			
		$\langle - \rangle$		$\mathcal{A}$		(External w				
						1010: (2+2		1011: (3+2N)	WAIT	
		$\searrow$				1100: (4+2		, 1101: (5+2N)		
	$\sim / \gamma$					1110: (6+2	2N) WAIT	1111: (7+2N)	WAIT	
	Z/ V		~	$\sim$		1000,1001	: reserved			
		31	(30	29	28	27	26	25	24	
$\sim$ (	Bit symbol	B1C	SCV	B1V	VCV	B1E		B1F	RCV	
	Read/Write	R	AN V	R	W	R/W	R	R	W	
	After reset	Q	) 0	0	0	0	0	0	0	
	Function		number of					Specify the	number of	
		dummy cy	cles to be	dummy cy	cles to be	0: Disable		dummy cy	cles to be	
$\sim$		inserted.	/	inserted.		1: Enable		inserted.		
		·	overy time)	(write, reco				(read, reco		
		11: Disable		00: 2 cycle				00: 2 cycle	S	
		10: Disable		01: 1 cycle				01: 1 cycle		
		01: 1 cycle 00: None		10: None 11: Disable				10: None 11: Disable		

Fig. 9.2.1 Chip Selector and Wait Controller Registers

		7	6	5	4	3	2	1	0
B23CS	Bit symbol	B20			B2BUS		B2	2W	
(0xFFFF_E484H)	Read/Write	R/	W	R	R/W		R	/W	
	After reset	0	0	0	0	0	1	0	1
	Function	Select the c	hip selector		Select data		number of v		
		output wave			bus width.		wait insertio		
		00: ROM/RA	AM te any other		0: 16bit	0000: 0WAIT 0001: 1WAIT 0010: 2WAIT 0011: 3WAIT 0100: 4WAIT 0101: 5WAIT			
		settings.			1: 8bit			/ /	1: 5WAIT
						(External w	AIT 0111:	WVAII	
						1010: (2+2		1011: (3+2N)	WAIT
								1101: (5+2N)	
						1110: (6+2	2N) WAIT	1111: (7+2N)	WAIT
						1000,1001	: reserved		
		15	14	13	12		10	9	8
	Bit symbol	B2C	SCV	B2V	vcv	B2E		B2F	RCV
	Read/Write	R/	W	R/	W O	R/W	R	R/	W
	After reset	0	0	0	0	S) 0	○ ((	)) 0	0
	Function				number of		$\sim$	Specify the	
			cles to be		cles to be		$\square$	dummy cyc	cles to be
		inserted.	<i></i> 、	inserted.		1: Enable	$(\bigcirc$	inserted.	<i></i> 、
		(CS2 reco 11: Disable	,	(write, reco				(read, recov	
		10: Disable		00: 2 cycle 01: 1 cycle		$(\mathcal{O})$	7	00: 2 cycles 01: 1 cycle	>
		01: 1 cycle		10: None	> _	$\sim$ $\lor$	$\mathcal{D}$	10: None	
		00: None	<	11: Disable		$\sim$		11: Disable	
		23	22	21	20	19	18	17	16
	Bit symbol	B30	ом ((		B3BUS	$\backslash / /$	B	3W	
	Read/Write	R/	W	R	R/W		R	/W	
	After reset	0	0	0	0	0	1	0	1
	Function	Salaat the	A		Select data	Specify the	number of v	vaite	
	1 unction	Select the c	hip selector		Delect uala	opcony inc		vans.	
		output wave	form.	5	bus width.	(Automatic	wait insertio	n)	
		output wave 00: ROM/RA	form. AM		bus width. 0: 16bit	(Automatic 0000: 0W/	wait insertio AIT 0001: 1	n) 1WAIT 0010	0: 2WAIT
		output wave 00: ROM/RA	form.	$(\overline{0})$	bus width.	(Automatic 0000: 0W/ 0011: 3W/	wait insertio AIT 0001: * AIT 0100: 4	n) 1WAIT 0010 4WAIT 010	0: 2WAIT 1: 5WAIT
		output wave 00: ROM/RA Do not mak	form. AM		bus width. 0: 16bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/	wait insertio AIT 0001: AIT 0100: 4 AIT 0111: 5	n) 1WAIT 0010 4WAIT 010	
		output wave 00: ROM/RA Do not mak	form. AM		bus width. 0: 16bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w	wait insertio AIT 0001: 4 AIT 0100: 4 AIT 0111: 5 ait input)	n) 1WAIT 0010 4WAIT 010 ⁻ 7WAIT	1: 5WAIT
		output wave 00: ROM/RA Do not mak	form. AM		bus width. 0: 16bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N)	1: 5WAIT WAIT
		output wave 00: ROM/RA Do not mak	form. AM		bus width. 0: 16bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT	n) 1WAIT 0010 4WAIT 010 ⁻ 7WAIT	1: 5WAIT WAIT WAIT
		output wave 00: ROM/RA Do not mak	form. AM		bus width. 0: 16bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N)	1: 5WAIT WAIT WAIT
		output wave 00: ROM/RA Do not mak	form. AM	29	bus width. 0: 16bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 2N) WAIT	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N)	1: 5WAIT WAIT WAIT
	Bit symbol	output wave 00: ROM/R/ Do not mak settings.	form. AM se any other	29	bus width. 0: 16bit 1: 8bit	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N)	1: 5WAIT WAIT WAIT WAIT 24
		output wave 00: ROM/RA Do not mak settings.	form. AM se any other 30 SCV	29 B3V	bus width. 0: 16bit 1: 8bit 28	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25	1: 5WAIT WAIT WAIT WAIT 24 RCV
	Bit symbol Read/Write After reset	output wave 00: ROM/R/ Do not mak settings. 31 B3C: R/ 0	form. AM se any other 30 SCV W 0	29 B3V R/ 0	28 VCV 0	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 2N) WAIT 1: reserved 26	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 83F 83F 0	1: 5WAIT WAIT WAIT WAIT 24 RCV W 0
	Bit symbol Read/Write	output wave 00: ROM/R/ Do not mak settings. 31 B3C R/ 0 Specify the	form. AM se any other 30 SCV W 0 number of	29 B3V R/ 0 Specify the	bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0 CS3Enable	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved 26 R	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 11111: (7+2N) 25 83F R/ 0 Specify the	1: 5WAIT WAIT WAIT WAIT 24 CV W 0 number of
	Bit symbol Read/Write After reset	output wave 00: ROM/RA Do not mak settings. 31 B3C R/ 0 Specify the dummy cyc	form. AM se any other 30 SCV W 0 number of	29 B3V R/ 0 Specify the dummy cy	28 VCV 0	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0 CS3Enable 0: Disable	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved 26 R	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 83F 87 0 Specify the dummy cyc	1: 5WAIT WAIT WAIT WAIT 24 CV W 0 number of
	Bit symbol Read/Write After reset	output wave 00: ROM/RA Do not mak settings. 31 B3C R/ 0 Specify the dummy cyc inserted.	form. AM se any other 30 SCV W 0 number of cles to be	29 B3V R/ O Specify the dummy cy inserted.	bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of cles to be	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0 CS3Enable	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved 26 R	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 83F 83F 87 0 Specify the dummy cyc inserted.	1: 5WAIT WAIT WAIT WAIT 24 CV W 0 number of cles to be
	Bit symbol Read/Write After reset	output wave 00: ROM/RA Do not mak settings. 31 B3C R/ 0 Specify the dummy cyc inserted. (CS3 reco	form. AM se any other 30 SCV W 0 number of cles to be very time)	29 B3V R/ 0 Specify the dummy cy inserted. (write, reco	bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of cles to be very time)	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0 CS3Enable 0: Disable	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved 26 R	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 83R 83R 0 Specify the dummy cyc inserted. (read, recov	1: 5WAIT WAIT WAIT WAIT 24 CV W 0 number of cles to be very time)
	Bit symbol Read/Write After reset	output wave 00: ROM/RA Do not mak settings. 31 B3C R/ 0 Specify the dummy cyc inserted. (CS3 reco 11: Disable	form. AM se any other 30 SCV W 0 number of cles to be very time)	29 B3V R/ 0 Specify the dummy cy inserted. (write, reco 00: 2 cycles	bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of cles to be very time) s	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0 CS3Enable 0: Disable	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved 26 R	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 B3R R/ 0 Specify the dummy cyc inserted. (read, recov 00: 2 cycles	1: 5WAIT WAIT WAIT WAIT 24 CV W 0 number of cles to be very time)
	Bit symbol Read/Write After reset	output wave 00: ROM/RA Do not mak settings. 31 B3C R/ 0 Specify the dummy cyc inserted. (CS3 reco	form. AM se any other 30 SCV W 0 number of cles to be very time)	29 B3V R/ 0 Specify the dummy cy inserted. (write, reco	bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of cles to be very time) s	(Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B3E R/W 0 CS3Enable 0: Disable	wait insertio AIT 0001: AIT 0100: AIT 0111: ait input) 2N) WAIT 2N) WAIT 1: reserved 26 R	n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 83R 83R 0 Specify the dummy cyc inserted. (read, recov	1: 5WAIT WAIT WAIT WAIT 24 CV W 0 number of cles to be very time)

Fig. 9.2.2 Chip Selector and Wait Controller Registers

		7	6	5	4	3	2	1	0
B45CS	Bit symbol	B40	OM		B4BUS		B4	1W	
(0xFFFF_E488H)	Read/Write	R/	W	R	R/W		R/	/W	
	After reset	0	0	0	0	0	1	0	1
	Function	Select the c	hip selector		Select data	Specify the	number of v	vaits.	
		output wave			bus width.		wait insertio		
		00: ROM/R/			0: 16bit	0000: 0WAIT 0001: 1WAIT 0010: 2WAIT			
		Do not mak settings.	te any other		1: 8bit	0011: 3W/		//	1: 5WAIT
							AIT 0111.7	<i>W</i> AIT	
						(External w			
						1010: (2+2	/	1011: (3+2N) 1101: (5+2N)	
								1101. (5+2N) 1111: (7+2N)	
							: reserved	IIII. ( <i>I</i> + <b>∠</b> IN)	
	/	15	14	13	12		10	9	8
	Bit symbol	B4C			vcv	B4E		B4R	
	Read/Write		W		W	R/W	R	R/M	
	After reset	0	0	0	0//	S) 0	~ 0((	) 0	0
	Function	Specify the	number of	Specify the	number of	CS4Enable		Specify the	number of
		dummy cyc	cles to be	dummy cy	cles to be	0: Disable		dummy cyc	cles to be
		inserted.		inserted.	$\sim$	1: Enable	(	inserted.	
		(CS4 reco	•	(write, reco				(read, recov	
		11: Disable		00: 2 cycle		$\overline{\Box}$	7,00	00: 2 cycles	6
		10: Disable	•	01: 1 cycle			()	01: 1 cycle	
		01: 1 cycle	~	10: None			-)	10: None	
				11. Diaphla	. //			11. Dischlo	
		00: None	22	11: Disable		10	10	11: Disable	
	Ditoumhol	23	22	11: Disable	20	19	18	17	16
	Bit symbol	23 B50	ом	21	20 B5BUS	19	B5	17 5W	
	Read/Write	23 B50 R/	OM (	21 R	20 B5BUS R/W		B5 R/	17 5W W	16
	Read/Write After reset	23 B50 R/ 0	OM W 0	21 R 0	20 B5BUS R/W 0	0	B5 R/ 1	17 5W W 0	
	Read/Write	23 B50 R/ 0 Select the c	OM W O chip selector	21 R 0	20 B5BUS R/W 0 Select data	0 Specify the	B5 R/ 1 number of v	17 5W /W 0 vaits.	16
	Read/Write After reset	23 B50 R/ 0	OM W 0 thip selector form.	21 R 0	20 B5BUS R/W 0	0 Specify the (Automatic	B5 R/ 1	17 5W W 0 vaits. n)	16
	Read/Write After reset	23 B50 R/ 0 Select the c output wave 00: ROM/RA Do not mak	OM W 0 thip selector form.	21 R 0	20 B5BUS R/W 0 Select data bus width.	0 Specify the (Automatic 0000: 0W/	B5 R/ 1 number of v wait insertio	17 5W W 0 vaits. n) 1WAIT 0010	16
	Read/Write After reset	23 B50 R/ 0 Select the c output wave 00: ROM/RA	OM W o chip selector form.	21 R 0	20 B5BUS R/W 0 Select data bus width. 0; 16bit	0 Specify the (Automatic 0000: 0W/ 0011: 3W/	B5 R/ 1 number of v wait insertio AIT 0001: 1	17 5W W vaits. n) IWAIT 0010 4WAIT 010	16 1 D: 2WAIT
	Read/Write After reset	23 B50 R/ 0 Select the c output wave 00: ROM/RA Do not mak	OM W o chip selector form.	21 R 0	20 B5BUS R/W 0 Select data bus width. 0; 16bit	0 Specify the (Automatic 0000: 0W/ 0011: 3W/	85 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7	17 5W W vaits. n) IWAIT 0010 4WAIT 010	16 1 D: 2WAIT
	Read/Write After reset	23 B50 R/ 0 Select the c output wave 00: ROM/RA Do not mak	OM W o chip selector form.	21 R 0	20 B5BUS R/W 0 Select data bus width. 0; 16bit	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2	B5 R/ number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 ait input) 2N) WAIT 1	17 5W W vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N)	16 1 D: 2WAIT 1: 5WAIT WAIT
	Read/Write After reset	23 B50 R/ 0 Select the c output wave 00: ROM/RA Do not mak	OM W o chip selector form.	21 R 0	20 B5BUS R/W 0 Select data bus width. 0; 16bit	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2	B5 R/ number of v wait insertio AIT 0001: 4 AIT 0100: 4 AIT 0111: 7 ait input) 2N) WAIT 1 2N) WAIT 1	17 5W W vaits. n) 1WAIT 0010 7WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N)	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT
	Read/Write After reset	23 B50 R/ 0 Select the c output wave 00: ROM/RA Do not mak	OM W o chip selector form.	21 R 0	20 B5BUS R/W 0 Select data bus width. 0; 16bit	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2	B5 R/ 1 number of v wait insertio AIT 0001: 7 AIT 0100: 4 AIT 0111: 7 ait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1	17 5W W vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N)	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT
	Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings.	OM W O thip selector form. AM se any other	21 R 0	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001	B5           R/           1           number of v           wait insertio           AIT         0001: 1           AIT         0100: 4           AIT         0111: 7           ait input)         2N) WAIT           2N) WAIT         1           1: reserved         1	17 5W W vaits. n) IWAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N)	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT WAIT
	Read/Write After reset Function	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings.	OM W O thip selector form. AM se any other	21 R 0	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27	B5 R/ 1 number of v wait insertio AIT 0001: 7 AIT 0100: 4 AIT 0111: 7 ait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1	17 5W W vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1101: (5+2N) 1111: (7+2N)	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24
	Read/Write After reset Function Bit symbol	23 B50 R/ 0 Select the o output wave 00: ROM/RA Do not mak settings. 31 B5C	OM W othip selector form. AM se any other 30 SCV	21 R 0	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28 VCV	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E	B5           R/           1           number of v           wait insertio           AIT           0001: 1           AIT           0100: 4           AIT           0111: 7           ait input)           2N) WAIT           2N) WAIT           2N) WAIT           2N) WAIT           2N) WAIT           1: reserved           26	17 5W W o vaits. n) 1WAIT 0010 7WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 B5R	16 1 D: 2WAIT 1: 5WAIT 1: 5WAIT WAIT WAIT WAIT 24 RCV
	Read/Write After reset Function Bit symbol Read/Write	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/	OM W 0 thip selector form. AM se any other 30 SCV W	21 R 0	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28 VCV W	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27	B5 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 rait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1 1: reserved 26 R	17 5W W 0 vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 B5R R/	16 1 2: 2WAIT 1: 5WAIT 1: 5WAIT WAIT WAIT WAIT 24 2CV W
	Read/Write After reset Function Bit symbol Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0	OM W o thip selector form. AM see any other 30 SCV W 0	21 R 0 29 B5V R/ 0	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28 VCV W 0	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1100,1001 27 B5E R/W 0	B5           R/           1           number of v           wait insertio           AIT           0001: 1           AIT           0100: 4           AIT           0111: 7           ait input)           2N) WAIT           2N) WAIT           2N) WAIT           2N) WAIT           2N) WAIT           1: reserved           26	17 5W W o vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 85R R/ 0	16 1 0: 2WAIT 1: 5WAIT 1: 5WAIT WAIT WAIT WAIT 24 8CV W 0
	Read/Write After reset Function Bit symbol Read/Write	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0 Specify the J	OM W O thip selector form. AM se any other 30 SCV W 0 number of	21 R 0 29 B5V R/ 0 Specify the	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E R/W	B5 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 rait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1 1: reserved 26 R	17 5W W o vaits. n) IWAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1101: (5+2N) 11111: (7+2N) 25 85R R/ 0 Specify the r	16 1 D: 2WAIT 1: 5WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24 RCV W 0 number of
	Read/Write After reset Function Bit symbol Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0	OM W O thip selector form. AM se any other 30 SCV W 0 number of	21 R 0 29 B5V R/ 0	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E R/W 0 CS5Enable	B5 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 rait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1 1: reserved 26 R	17 5W W o vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 85R R/ 0	16 1 D: 2WAIT 1: 5WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24 RCV W 0 number of
	Read/Write After reset Function Bit symbol Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0 Specify the J dummy cycl	OM W O thip selector form. AM se any other 30 SCV W 0 number of es to be	21 R 0 29 B5V R/ 0 Specify the dummy cycl	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 28 VCV W 0 number of les to be	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E R/W 0 CS5Enable Disable	B5 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 rait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1 1: reserved 26 R	17 5W W 0 vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1101: (5+2N) 1111: (7+2N) 25 B5R R/ 0 Specify the r dummy cycle	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24 CV W 0 number of es to be
	Read/Write After reset Function Bit symbol Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0 Specify the i dummy cycl inserted.	OM W O thip selector form. AM se any other 30 SCV W 0 number of es to be	21 R 0 29 B5V R/ 0 Specify the dummy cycl inserted.	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 1: 8bit 28 VCV W 0 number of es to be very time)	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E R/W 0 CS5Enable Disable	B5 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 rait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1 1: reserved 26 R	17 5W W 0 vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 B5R R/ 0 Specify the r dummy cycle inserted.	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24 CV W 0 number of es to be ery time)
	Read/Write After reset Function Bit symbol Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0 Specify the dummy cycli inserted. (CS5 recove 11: Disable 10: Disable	OM W O thip selector form. AM se any other 30 SCV W 0 number of es to be	21 R 0 29 B5V R/ 0 Specify the dummy cycl inserted. (write, recov 00: 2 cycles 01: 1 cycle	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 1: 8bit 28 VCV W 0 number of es to be very time)	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E R/W 0 CS5Enable Disable	B5 R/ 1 number of v wait insertio AIT 0001: 1 AIT 0100: 4 AIT 0111: 7 rait input) 2N) WAIT 1 2N) WAIT 1 2N) WAIT 1 1: reserved 26 R	17 5W W 0 vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 B5R R/ 0 Specify the r dummy cycle inserted. (read recove 00: 2 cycles 01: 1 cycle	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24 CV W 0 number of es to be ery time)
	Read/Write After reset Function Bit symbol Read/Write After reset	23 B50 R/ 0 Select the o output wave 00: ROM/R/ Do not mak settings. 31 B5C R/ 0 Specify the I dummy cycli inserted. (CS5 recove 11: Disable	OM W O thip selector form. AM se any other 30 SCV W 0 number of es to be	21 R 0 29 B5V R/ 0 Specify the dummy cycl inserted. (write, recov 00: 2 cycles	20 B5BUS R/W 0 Select data bus width. 0: 16bit 1: 8bit 1: 8bit 28 VCV W 0 number of es to be very time)	0 Specify the (Automatic 0000: 0W/ 0011: 3W/ 0110: 6W/ (External w 1010: (2+2 1100: (4+2 1110: (6+2 1000,1001 27 B5E R/W 0 CS5Enable Disable	B5           R/           1           number of v           wait insertio           AIT 0001: 1           AIT 0100: 4           AIT 0111: 7           ait input)           2N) WAIT 1           2N) WAIT 1           1: reserved           26           R           0	17 5W W 0 vaits. n) 1WAIT 0010 4WAIT 010 7WAIT 1011: (3+2N) 1101: (5+2N) 1111: (7+2N) 25 85R R/ 0 Specify the r dummy cycle inserted. (read recove 00: 2 cycles	16 1 D: 2WAIT 1: 5WAIT WAIT WAIT WAIT WAIT 24 CV W 0 number of es to be ery time)

Fig. 9.2.3 Chip Selector and Wait Controller Registers

A reset of the TMP19A63 allows the port 4 controller register (P4CR) and the port 4 function register (P4FC) to be cleared to "0," and the CS signal output is disabled. To output the CS signals, set the corresponding bits to "1" at the P4FC and the P4CR in that order.

The CS recovery time can be configured in any other areas than the CS setting areas, but CS signals will not be output.

# 10. DMA Controller (DMAC)

The TMP19A63 has a built-in 8-channel DMA Controller (DMAC).

### 10.1 Features

The DMAC of the TMP19A63 has the following features:

(1) DMA with 8 independent channels

(eight interrupt factors, 0: INTDMA0 through INTDMA7)

- (2) Two types of requests for bus control authority: With and without snoop requests Transfer requests: Internal requests (software initiated)/external requests (external interrupts, interrupt requests given by internal peripheral I/Os, and requests given by the DREQ pin) Requests given by the DREQ pin: Level mode
- (3) Transfer mode: Dual address mode
- (4) Transfer devices: Memory space transfer
- (5) Device size: 32-bit memory (8 or 16 bits can be specified using the CS/WAIT controller); I/O of 8, 16 or 32 bits
- (6) Address changes: Increase, decrease, fixed, irregular increase, irregular decrease
- (7) Channel priority: Fixed (in ascending order of channel numbers)
- (8) Endian switchover function

## 10.2 Configuration

### 10.2.1 Internal Connections of the TMP19A63

Fig. 10.1 shows the internal connections with the DMAC in the TMP19A63.



The DMAC has eight DMA channels. Each of these channels handles the data transfer request signal (INTDREQn) from the interrupt controller and the acknowledgment signal (DACKn) generated in response to INTDREQn ("n" is a channel number from 0 to 7). External pins (DREQ3 and DREQ2) are internally wired to allow them to function as pin of the port Q. To use them as a pin of the port Q, they must be selected by setting the function control register PQFC to an appropriate setting.

Pins handle the data transfer request from external pins DREQ3 and DREQ2 and acknowledge signal output supplied through external pins, DACK3 and DACK2. Channel 0 is given higher priority than channel 1. Channel 1 is given higher priority than channel 2. Channel 2 is given higher priority than channel 3. Subsequent channels are given priority in the same manner.

The TX19A processor core has a snoop function. Using the snoop function, the TX19A processor core opens the core's data bus to the DMAC, thus allowing the DMAC to access the internal ROM and RAM linked to the core. The DMAC is capable of determining whether or not to use this snoop function. For further information on the snoop function, refer to 10.2.3 "Snoop Function".

In the DMAC, bus control authority can be select from SREQ and GREQ depend on the use or nonuse of the snoop function. GREQ is a request for bus control authority if the DMAC does not use the snoop function, while SREQ is a request for bus control authority if the DMAC uses the snoop function. SREQ is given higher priority than GREQ.

### 10.2.2 DMAC Internal Blocks

Fig. 10.2 shows the internal blocks of the DMAC.



## Fig.10.2 DMAC Internal Blocks

### 10.2.3 Snoop Function

The TX19A processor core has a snoop function. If the snoop function is activated, the TX19A processor core opens the core's data bus to the DMAC and suspends its own operation until the DMAC withdraws a request for bus control authority. If the snoop function is enabled, the DMAC can access the internal RAM and ROM and therefore designate the RAM or ROM as a source or destination.

If the snoop function is not used, the DMAC cannot access the internal RAM or ROM. However, the G-Bus is opened to the DMAC. If the TX19A processor core attempts to access memory by way of the G-Bus, bus operations cannot be executed and, as a result, the pipeline stalls unless the DMAC accept a bus control release request.

(Note) If the snoop function is not used, the TX19A processor core does not open the data bus to the DMAC. If the data bus is closed and the internal RAM or ROM is designated as a DMAC source or destination, an acknowledgment signal will not be returned in response to a DMAC transfer bus cycle and, as a result, the bus will lock.

## 10.3 Registers

The DMAC has fifty-one 32-bit registers. Table 10.1 shows the register map of the DMAC.

Address	Register symbol	Register name
0xFFFF_E200	CCR0	Channel control register (ch. 0)
0xFFFF_E204	CSR0	Channel status register (ch. 0)
0xFFFF_E208	SAR0	Source address register (ch. 0)
0xFFFF_E20C	DAR0	Destination address register (ch. 0)
0xFFFF_E210	BCR0	Byte count register (ch. 0)
0xFFFF_E218	DTCR0	DMA transfer control register (ch. 0)
0xFFFF_E220	CCR1	Channel control register (ch. 1)
0xFFFF_E224	CSR1	Channel status register (ch. 1)
0xFFFF_E228	SAR1	Source address register (ch. 1)
0xFFFF_E22C	DAR1	Destination address register (ch. 1)
0xFFFF_E230	BCR1	Byte count register (ch. 1)
0xFFFF_E238	DTCR1	DMA transfer control register (ch. 1)
0xFFFF_E240	CCR2	Channel control register (ch. 2)
0xFFFF_E244	CSR2	Channel status register (ch. 2)
0xFFFF_E248	SAR2	Source address register (ch. 2)
0xFFFF_E24C	DAR2	Destination address register (ch. 2)
0xFFFF_E250	BCR2	Byte count register (ch. 2)
0xFFFF_E258	DTCR2	DMA transfer control register (ch. 2)
0xFFFF_E260	CCR3	Channel control register (ch. 3)
0xFFFF_E264	CSR3	Channel status register (ch. 3)
0xFFFF_E268	SAR3	Source address register (ch. 3)
0xFFFF_E26C	DAR3	Destination address register (ch. 3)
0xFFFF_E270	BCR3	Byte count register (ch. 3)
0xFFFF_E278	DTCR3	DMA transfer control register (ch. 3)
0xFFFF_E280	CCR4	Channel control register (ch. 4)
0xFFFF_E284	CSR4	Channel status register (ch. 4)
0xFFFF_E288	SAR4	Source address register (ch. 4)
0xFFFF_E28C	DAR4	Destination address register (ch. 4)
0xFFFF_E290	BCR4	Byte count register (ch. 4)
0xFFFF_E298	DTCR4	DMA transfer control register (ch. 4)
0xFFFF_E2A0	CCR5	Channel control register (ch. 5)
0xFFFF_E2A4	CSR5	Channel status register (ch. 5)
0xFFFF_E2A8	SAR5	Source address register (ch. 5)
0xFFFF_E2AC	DAR5	Destination address register (ch. 5)
0xFFFF_E2B0	BCR5	Byte count register (ch. 5)
0xFFFF_E2B8	DTCR5	DMA transfer control register (ch. 5)

## Table 10.1 DMAC Registers 1

Address	Register symbol	Register name
0xFFFF_E2C0	CCR6	Channel control register (ch. 6)
0xFFFF_E2C4	CSR6	Channel status register (ch. 6)
0xFFFF_E2C8	SAR6	Source address register (ch. 6)
0xFFFF_E2CC	DAR6	Destination address register (ch. 6)
0xFFFF_E2D0	BCR6	Byte count register (ch. 6)
0xFFFF_E2D8	DTCR6	DMA transfer control register (ch. 6)
0xFFFF_E2E0	CCR7	Channel control register (ch. 7)
0xFFFF_E2E4	CSR7	Channel status register (ch. 7)
0xFFFF_E2E8	SAR7	Source address register (ch. 7)
0xFFFF_E2EC	DAR7	Destination address register (ch. 7)
0xFFFF_E2F0	BCR7	Byte count register (ch. 7)
0xFFFF_E2F8	DTCR7	DMA transfer control register (ch. 7)
0xFFFF_E300	DCR	DMA control register (DMAC)
0xFFFF_E304	RSR	Request select register(DMAC)
0xFFFF_E30C	DHR	Data holding register (DMAC)

## Table 10.2 DMAC Registers 2

## 10.3.1 DMA control register (DCR)

10.3.1 D		register									
		7	6	5	4	3	2	1	0		
DCR	Bit symbol					Rst3	Rst2	Rst1	Rst0		
(0xFFFF_E300H)						N					
	After reset					0	$\land$				
	Function				See detaile	d descriptio	n				
		15	14	13	12	11	10	9	8		
	Bit symbol						Ł				
	Read/Write				١	N					
	After reset					0 (	$\underline{(/)}$				
	Function										
		23	22	21	20	19	18	17	16		
	Bit symbol						$\int$				
	Read/Write					N					
	After reset				2	$\delta$		$\overline{\mathcal{A}}$	>		
	Function				$\square$						
		31	30	29	28	27	26	25	24		
	Bit symbol	Rstall									
	Read/Write					N					
	After reset				$\sim$	0	(Ga)	$\sim$			
	Function	See									
		detailed description			$\searrow$	(O	7				
			~			У/_	$\supset$				
			<	$\langle \ \rangle$							
						>//					
				<u>ک</u>		$\sim$					
		(	$C \land$		$\frown$						
		(	$\bigcirc$		$\langle \rangle$						
		$\overline{\Omega}$		5	$\mathbb{N}$						
		$\langle \langle \rangle \rangle$	()								
		$)) \lor$	ノ	(7)	$\sim$						
			$\leq$	$\searrow$ //<	))						
	$\sim$	<u> </u>									
		$\searrow$	$\langle \langle \rangle$								
	$\sim / \gamma$										
	Z/	7	$\sim$	$\searrow$							
		/	$\sim$								
$\sim$ (			$\langle \langle \rangle$								
		$\sim C$	$\sim$								
		$( \land ( \land$	))								
		$\sim$									
$\sim$	7		7								

Bit	Mnemonic	Field name	Description
31	Rstall	Reset all	Performs a software reset of the DMAC. If the Rstall bit is set to 1, the values of all the internal registers of the DMAC are reset to their initial values. All transfer requests are canceled and all four channels go into an idle state. 0: Don't care 1: Initializes the DMAC
7	Rst7	Reset 7	Performs a software reset of the DMAC channel 7. If the Rst7 bit is set to 1, internal registers of the DMAC channel 7 and a corresponding bit of the channel 7 of the RSR register are reset to their initial values. The transfer request of the channel 7 is canceled and the channel 7 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 7
6	Rst6	Reset 6	Performs a software reset of the DMAC channel 6. If the Rst6 bit is set to 1, internal registers of the DMAC channel 6 and a corresponding bit of the channel 6 of the RSR register are reset to their initial values. The transfer request of the channel 6 is canceled and the channel 6 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 6
5	Rst5	Reset 5	Performs a software reset of the DMAC channel 5. If the Rst2 bit is set to 1, internal registers of the DMAC channel 5 and a corresponding bit of the channel 5 of the RSR register are reset to their initial values. The transfer request of the channel 5 is canceled and the channel 5 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 5
4	Rst4	Reset 4	Performs a software reset of the DMAC channel 4. If the Rst2 bit is set to 1, internal registers of the DMAC channel 4 and a corresponding bit of the channel 4 of the RSR register are reset to their initial values. The transfer request of the channel 4 is canceled and the channel 4 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 4
3	Rst3	Reset 3	Performs a software reset of the DMAC channel 3. If the Rst2 bit is set to 1, internal registers of the DMAC channel 3 and a corresponding bit of the channel 3 of the RSR register are reset to their initial values. The transfer request of the channel 3 is canceled and the channel 3 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 3
2	Rst2	Reset/2	Performs a software reset of the DMAC channel 2. If the Rst2 bit is set to 1, internal registers of the DMAC channel 2 and a corresponding bit of the channel 2 of the RSR register are reset to their initial values. The transfer request of the channel 2 is canceled and the channel 2 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 2
1	Rst	Reset 1	Performs a software reset of the DMAC channel 1. If the Rst2 bit is set to 1, internal registers of the DMAC channel 1 and a corresponding bit of the channel 1 of the RSR register are reset to their initial values. The transfer request of the channel 1 is canceled and the channel 1 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 1
0	Rst0	Reset 0	Performs a software reset of the DMAC channel 0. If the Rst2 bit is set to 1, internal registers of the DMAC channel 0 and a corresponding bit of the channel 0 of the RSR register are reset to their initial values. The transfer request of the channel 0 is canceled and the channel 0 goes into an idle state. 0: Don't care 1: Initializes the DMAC channel 2

Fig. 10.3 DMA Control Register (DCR)

- (Note 1) If a write to the DCR register occurs during software reset right after the last round of DMA transfer is completed, the interrupt to stop DMA transfer is not canceled although the channel register is initialized.
- (Note 2) An attempt to execute a write (software reset) to the DCR register by DMA transfer is strictly prohibited.



# 10.3.2 Channel Control Registers (CCRn)

		7	6	5	4	3	2	1	0	
CCRn	Bit symbol	SAC	DIO	DA	(C	TrS	Siz	DI	PS	
(0xFFFF_E200H)	Read/Writ e	R/W	R/W	R/	W	R/	W	R/	W	
(0xFFFF_E220H)	After reset				(	)				
(0xFFFF_E240H)	Function				See detailed	description		Y		
(0xFFFF_E260H)		15	14	13	12	11	10	9	8	
(0xFFFF_E280H)	Bit symbol		ExR	PosE	Lev	SReq	RelEn	SIO	SAC	
(0xFFFF_E2A0H)	Read/Writ e	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
(0xFFFF_E2C0H)	After reset			0						
(0xFFFF_E2E0H)	Function	Always set this bit to		See detailed description						
		"0".					^		7	
	/	23	22	21	2077	19	18	17	16	
	Bit symbol	NIEn	AblEn				2-6	Big		
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	After reset		1		$\left( \right)$	0	$\overline{\mathcal{A}}$		0	
	Function		etailed ription	()	Always set th	nis bit to "0".	$\langle \rangle$	See	Always	
		00301	iption		$\mathbf{r}$	$\overline{\alpha}$		detailed description	set this bit to "0".	
	/	31	30	29	28	27	))26	25	24	
	Bit symbol	Str	2	$\frown$	$ \land  $	$\mathcal{N}$	$\sim$			
	Read/Write	W	(		$\langle \langle \rangle$				W	
	After reset					$\sim //$				
	Function	See		))					Always	
		detailed	7~		$\land$	Ŧ			set this bit	
		description	())		_//				to "0".	

# Fig. 10.4 Channel Control Register (CCRn) (1/2)

	Bit	Mnemonic	Field name	Description
	31	Str	Channel start	Start (initial value:-)
				Starts channel operation. If this bit is set to 1, the channel goes into
				a standby mode and starts to transfer data in response to a transfer
				request.
				Only a write of 1 is valid to the Str bit and a write of 0 is ignored. A
				read always returns 0.
				1: Starts channel operation
	24	_	(Reserved)	This is a reserved bit. Always set this bit to "0."
	23	NIEn	Normal completion	Normal Completion Interrupt Enable (initial value: 1)
			interrupt enable	1: Normal completion interrupt enable
				0: Normal completion interrupt disable
	22	AblEn	Abnormal completion	Abnormal Completion Interrupt Enable (initial value:1)
			interrupt enable	1: Abnormal completion interrupt enable
				0: Abnormal completion interrupt disable
	21		(Reserved)	This is a reserved bit. Although it's initial value is "1," always set this
				bit to "0".
	20		(Reserved)	This is a reserved bit. Always set this bit to "0."
	19		(Reserved)	This is a reserved bit. Always set this bit to "0."
	18	_	(Reserved)	This is a reserved bit. Always set this bit to "0."
	17	Big	Big-endian	Big Endian (initial value: 1)
				1: A channel operates by big-endian
				0: A channel operates by little-endian
	16	_	(Reserved)	This is a reserved bit. Always set this bit to "0."
	15	_	(Reserved)	This is a reserved bit. Always set this bit to "0."
	14	ExR	External request mode	External Request Mode (initial value: 0)
				Selects a transfer request mode. (only for 2ch and 3ch)
				1: External transfer request (interrupt request or external DREQn
			$\overline{C}$	request)
				0: Internal transfer request (software initiated)
	13	PosE	Positive edge	Positive Edge (initial value: 0)
			$(\overline{\Omega})$	The effective level of the transfer request signal INTDREQn or DREQn is specified. This function is valid only if the transfer request
			$\sim (\vee \langle \rangle)$	is an external transfer request (if the ExR bit is 1). If it is an internal
				transfer request (if the ExR bit is 0), the PosE value is ignored.
				Because the INTDREQn and DREQn signals are active at "L" level, make sure that this PosE bit is set to "0."
				1: Setting prohibited
			$\rightarrow$	0: The falling edge of the INTDREQn or DREQn signal or the "L"
		~ ^ ^	~	level is effective. The DACKn is active at "L" level.
	12	Lev	Level mode	Level Mode (initial value: 0) Specifies signal level or signal change for recognizing the external
				transfer request. This setting is valid only if a transfer request is the
		$\bigcirc$	$\langle \langle \langle \rangle \rangle$	external transfer request (if the ExR bit is 1). If the internal transfer
	$\sim$	(())		request is specified as a transfer request (if the ExR bit is 0), the
			$\land$	value of the Lev bit is ignored. Because the INTDREQn signal is active at "L" level, make sure that you set the Lev bit to "1." The state
[			( ( ) )	of active DREQn is determined by the Lev bit setting.
				1: Level mode
				The level of the DREQn signal is recognized as a data transfer request. (The "L" level is recognized if the PosE bit is 0.)
		7	$\sim$	0: Edge mode
				A change in the DREQn signal is recognized as a data transfer
			•	request. (A falling edge is recognized if the PosE bit is 0.)
	11	SReq	Snoop request	Snoop Request (initial value: 0) The use of the snoop function is specified by asserting the bus
				control request mode. If the snoop function is used, the snoop
				function of the TX19A processor core is enabled and the DMAC can
				use the data bus of the TX19A processor core. If the snoop function is not used, the snoop function of the TX19A processor core does
				not work.
				1: Use snoop function (SREQ)
				0: Do not use snoop function (GREQ)

Bit	Mnemonic	Field name	Description
10	RelEn	Bus control release request enable	<ul> <li>Release Request Enable (initial value: 0)</li> <li>Acknowledgment of the bus control release request made by the TX19A processor core is specified. This function is valid only if GREQ is generated. This function cannot be used if SREQ is generated since the TX19A processor core cannot make a bus control release request.</li> <li>1: The bus control release request is acknowledged if the DMAC has control of the bus. If the TX19A processor core issues a bus control release request, the DMAC relinquishes control of the bus to the TX19A processor core at the break of bus operation.</li> <li>0: The bus control release request is not acknowledged.</li> </ul>
9	SIO	Transfer type selection	Source Type: continuous (initial value: 0) Specifies the transfer type. 1: Single transfer 0: Continuous transfer
8:7	SAC	Source Address Count	Source Address Count (initial value: 00) Specifies the manner of change in a source address. 1x: Address fixed 01: Address decrease 00: Address increase
6	Reserved	(Reserved)	Always set this bit to "0".
5:4	DAC	Destination address count	Destination Address Count (initial value: 00) Specifies the manner of change in a destination address. 1x: Address fixed 01: Address decrease 00: Address increase
3:2	TrSiz	Transfer unit	Transfer Size (initial value: 00) Specifies the amount of data to be transferred in response to one transfer request. 11: 8 bits (1 byte) 10: 16 bits (2 bytes) 0x: 32 bits (4bytes)
1:0	DPS	Device port/size	Device Port Size (initial value: 00) Specifies the bus width of an I/O device designated as a source or destination device. 11: 8 bits (1 byte) 10: 16 bits (2bytes) 0x: 32 bits (4 bytes)

Fig. 10.4 Channel Control Register (CCRn) (2/2)

(Note 1) The CCRn register setting must be completed before the DMAC is put into a standby mode.

(Note 2) When accessing the internal I/O or transferring data by DMA in response to the DREQ pin request, make sure that you set the transfer unit <TrSiz> size to be the same as the device port size <DPS>.

(Note 3) In executing memory-to-memory data transfer, a value set in DPS becomes invalid.

	-			-					
		7	6	5	4	3	2	1	0
RSR	Bit symbol					ReqS3	ReqS2		
(0xFFFF_E304H)	Read/Write					R/W	R/₩		
	After reset					0			
	Function		Always set t	his bit to "0".		See	See	Always set	t this bit to
						detailed	detailed	"0".	
						description	description	/	
		15	14	13	12	<u>11 (</u> )	10	9	8
	Bit symbol					Ń	$\mathcal{F}$		
	Read/Write					(			
	After reset					0	)7		
	Function							$\frown$	
		23	22	21	20 🗸	19	18	17	16
	Bit symbol				$\backslash$	$\searrow$	7	$\mathcal{N}$	
	Read/Write				$(\Omega)$	$\wedge$	6	$\sim$	
	After reset					ø)		20	
	Function			(	$\sim$		$\sim$	401	
		31	30	29	28	27	26	25	24
	Bit symbol			A	$\searrow$		(Xa)		
	Read/Write								
	After reset				$\checkmark$	0 (7)			
	Function					$\sim \langle \langle \langle \langle$	$\mathcal{I}$		

## 10.3.3 Request Select Register (RSR)

Bit	Mnemonic	Field name	Description
3	ReqS3	Request select (ch.3)	Request Select (initial value: 0)
			Selects a source of the external transfer request for the DMA
		$(( \leq))$	channel 3.
			1: Request made by DREQ3
			0: Request made by the interrupt controller (INTC)
2	ReqS2	Request select (ch.2)	Request Select (initial value: 0)
			Selects a source of the external transfer request for the DMA
			channel 2.
			1: Request made by DREQ2
			0: Request made by the interrupt controller (INTC)

//

(Note) Make sure to write "0" to bits 0, 1 and 4 through 7 of the RSR register.

Fig. 10.5 DMA Control Register (RSR)

# 10.3.4 Channel Status Registers (CSRn)

		7	6	5	4	3	2	1	0		
CSRn	Bit symbol										
(0xFFFF_E204H)	Read/Write						$\land$	R/W	R/W		
(0xFFFF_E224H)	After reset				0	)					
(0xFFFF_E244H)	Function		Always set this bit to "0".								
(0xFFFF_E264H)		15	14	13	12	11	(10)	9	8		
(0xFFFF_E284H)	Bit symbol					$\sim$	$\sim$				
(0xFFFF_E2A4H)	Read/Write					$\langle ()$	()				
(0xFFFF_E2C4H)					0		$\subseteq$				
(0xFFFF_E2E4H)	Function										
		23	22	21	20	19	18	17	16		
	Bit symbol	NC	AbC		BES	BED	Conf				
	Read/Write	R/W	R/W	R/W	R	R	R	$\langle \rangle   \rangle$			
	After reset						1				
	Function	See detailed		Always set	See de	etailed descri	ption				
				this bit to	$\sim$			$\mathcal{V}\mathcal{N}$			
				"0".		07			0.1		
	Dit oversk ol	31	30	29	28	27	26	25	24		
	Bit symbol	Act		- H			$\rightarrow \rightarrow$				
	Read/Write	R			$\rightarrow$	$\overline{\Omega}$					
	After reset	0			0		))				
	Function	See detailed	2			$\sim$					
		description									
		accomption	- (		<u> </u>						

# Fig. 10.6 Channel Status Register (CSRn) (1/2)

Bit	Mnemonic	Field name	Description
31	Act	Channel active	Channel Active (initial value: 0)
			Indicates whether the channel is in a standby mode:
			1: In a standby mode
			0: Not in a standby mode
23	NC	Normal completion	Normal Completion (initial value: 0) Indicates normal completion of channel operation. If an interrupt at normal completion is permitted by the CCR register, the DMAC requests an interrupt when the NC bit becomes 1. This setting can be cleared by writing 0 to the NC bit. If a request for an interrupt at normal completion was previously issued, the request is canceled when the NC bit becomes 0. If an attempt is made to set the Str bit to 1 when the NC bit is 1, an error occurs. To start the next transfer, the NC bit must be cleared to 0. A write of 1 will be ignored. 1: Channel operation has been completed normally.
22	AbC	Abnormal completion	Abnormal Completion (initial value: 0) Indicates abnormal completion of channel operation. If an interrupt at abnormal completion is permitted by the CCR register, the DMAC requests an interrupt when the AbC bit becomes 1. This setting can be cleared by writing 0 to the AbC bit. If a request for an interrupt at abnormal completion was previously issued, the request is canceled when the AbC bit becomes 0. Additionally, if the AbC bit is cleared to 0, each of the BES, BED and Conf bits are cleared to 0. If an attempt is made to set the Str bit to 1 when the AbC bit is 1, an error occurs. To start the next transfer, the AbC bit must be cleared to 0. A write of 1 will be ignored. 1: Channel operation has been completed abnormally. 0: Channel operation has not been completed abnormally.
21		(Reserved)	This is a reserved bit. Always set this bit to "0".
20	BES	Source bus error	Source Bus Error (initial value: 0)
20			1: A bus error has occurred when the source was accessed. 0: A bus error has not occurred when the source was accessed.
19	BED	Destination bus error	Destination Bus Error (initial value: 0)
			1: A bus error has occurred when the destination was accessed.
			0: A bus error has not occurred when the destination was accessed.
18	Conf	Configuration error	Configuration Error (initial value: 0)
			1: A configuration error has occurred.
		/	0: A configuration error has not occurred.
2:0	$(\frown)$	(Reserved)	These three bits are reserved bits. Always set them to "0."
$\sim$			al Status Register (CSRn) (2/2)

# Fig. 10.6 Channel Status Register (CSRn) (2/2)

# 10.3.5 Source Address Registers (SARn)

		7	6	5	4	3	2	1	0		
SARn	Bit symbol	SAddr7	SAddr6	SAddr5	SAddr4	SAddr3	SAddr2	SAddr1	SAddr0		
(0xFFFF_E208H)	Read/Write				R/	W	$\geq$	1 1			
(0xFFFF_E228H)	After reset				Indeter	minate		$\geq$			
(0xFFFF_E248H)	Function				See detailed	description		)			
(0xFFFF_E268H)		15	14	13	12	11 ((	7//10	9	8		
(0xFFFF_E288H)	Bit symbol	SAddr15	SAddr14	SAddr13	SAddr12	SAddr11	SAddr10	SAddr9	SAddr8		
(0xFFFF_E2A8H)	Read/Write				R/	W					
(0xFFFF_E2C8H)	After reset		Indeterminate								
(0xFFFF_E2E8H)	Function		See detailed description								
		23	22	21	20	19	18	(17)	16		
	Bit symbol	SAddr23	SAddr22	SAddr21	SAddr20	SAddr19	SAddr18	SAddr17	SAddr16		
	Read/Write				R	Ŵ					
	After reset				Indeter	minate 🔇	$> (\bigcirc$				
	Function			(	See detailed	description		2/)]			
		31	30	29	28	27	26	25	24		
	Bit symbol	SAddr31	SAddr30	SAddr29	SAddr28	SAddr27	SAddr26	SAddr25	SAddr24		
	Read/Write		R/W								
	After reset			$( \land )$	Indeter	minate //					
	Function		(		See detailed	description	<u>))</u>				

Bit	Mnemonic	Field name	Description
31:0	SAddr	Source address	Source Address (initial value: -)
		$\mathcal{C}$	Specifies the address of the source from which data is transferred
		(( ))	using a physical address. This address changes according to the
			SAC and TrSiz settings of CCRn and the SACM setting of DTCRn.

# Fig. 10.7 Source Address Register (SARn)

# 10.3.6 Destination Address Register (DARn)

	$\sim$	_									
		7	6	5	4	3	2	1	0		
DARn	Bit symbol	DAddr7	DAddr6	DAddr5	DAddr4	DAddr3	DAddr2	DAddr1	DAddr0		
(0xFFFF_E20CH)	Read/Write				R/	W	$\geq$				
(0xFFFF_E22CH)	After reset				Indeter	minate	()	>			
(0xFFFF_E24CH)	Function				See detailed	description		)*			
(0xFFFF_E26CH)		15	14	13	12	11 ((	7710	9	8		
(0xFFFF_E28CH)	Bit symbol	DAddr15	DAddr14	DAddr13	DAddr12	DAddr11	DAddr10	DAddr9	DAddr8		
(0xFFFF_E2ACH)	Read/Write				R/	W	$\Box$				
(0xFFFF_E2CCH)	After reset	Indeterminate									
(0xFFFF_E2ECH)	Function		See detailed description								
		23	22	21	20	19	18	17	16		
	Bit symbol	DAddr23	DAddr22	DAddr21	DAddr20	DAddr19	DAddr18	DAddr17	DAddr16		
	Read/Write				R/	$\sim$	24				
	After reset				Indeter	minate 🔿	(O)				
	Function				See detailed	description	$\sim$	//))			
		31	30	29	28	27	26	25	24		
	Bit symbol	DAddr31	DAddr30	DAddr29	DAddr28	DAddr27	DAddr26	DAddr25	DAddr24		
	Read/Write					W	2))				
	After reset				Indeter	minate					
	Function		(	400	See detailed	I description	))				
			2								

Bit	Mnemonic	Field name	Description
31:0	DAddr	Destination address	Destination Address (initial value: -)
		(C)	Specifies the address of the destination to which data is transferred
		$(( \leq))$	using a physical address. This address changes according to the
			DAC and TrSiz settings of CCRn and the DACM setting of DTCRn.

Fig. 10.8 Destination Address Register (DARn)

# 10.3.7 Byte Count Registers (BCRn)

		7	6	5	4	3	2	1	0		
BCRn	Bit symbol	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0		
(0xFFFF_E210H)	Read/Write				R/	W	$\land$				
(0xFFFF_E230H)	After reset				C	)					
(0xFFFF_E250H)	Function				See detailed	description	( )				
(0xFFFF_E270H)		15	14	13	12	11	(10)	9	8		
(0xFFFF_E290H)	Bit symbol	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8		
(0xFFFF_E2B0H )	Read/Write		R/W								
(0xFFFF_E2D0H )	After reset	0									
(0xFFFF_E2F0H)	Function				See detailed	description		$\frown$			
		23	22	21	20	19	18	17	16		
	Bit symbol	BC23	BC22	BC21	BC20	BC19	BC18	BC17	BC16		
	Read/Write				( ( R/	w	6	$\gamma > \gamma$			
	After reset					$\langle \rangle$		20			
	Function			(	See detailed	description	$ \sqrt{1} $	<i>401</i>			
		31	30	29	28	27	26	25	24		
	Bit symbol			Å	$\checkmark$	7	54				
	Read/Write						$\overline{\boldsymbol{\mathcal{S}}}$				
	After reset			$\square$	<u> </u>	) ((//	$\langle \uparrow \rangle$				
Function											

Bit	Mnemonic	Field name	Description
23:0	BC	Byte count	Byte Count (initial value: 0)
		$(C \land$	Specifies the number of bytes of data to be transferred. The address
			decreases by the number of pieces of data transferred
			(a value specified by TrSiz of CCRn).

# Fig. 10.9 Byte Count Register (BCRn)

# 10.3.8 DMA Transfer Control Register (DTCRn)

		7	6	5	4	3	2	1	0
DTCRn	Bit symbol				DACM		$\langle$	SACM	
(0xFFFF_E218H)	Read/Write				R/W		$\geq$	R/W	
(0xFFFF_E238H)	After reset				(	)		$\geq$	
(0xFFFF_E258H)	Function			See o	detailed desc	ription	See d	letailed desc	ription
(0xFFFF_E278H)		15	14	13	12	11 ((	7/10	9	8
(0xFFFF_E298H)	Bit symbol					$\swarrow$	$\mathcal{T}$		
(0xFFFF_E2B8H)	Read/Write						$\bigcirc$		
(0xFFFF_E2D8H)	After reset				(		$\geq$		
(0xFFFF_E2F8H) Function									
		23	22	21	20	19	18	17	16
	Bit symbol							$\frac{1}{2}$	
	Read/Write				$\overline{\Omega}$	$\sim$	24		
	After reset					$) \qquad \langle$	$ ( \bigcirc $		
	Function				$\sim$		N A Y	$\mathcal{I}(\mathcal{A})$	
		31	30	29	28	27	26	25	24
	Bit symbol			Å		$\int$			
	Read/Write						$\sum$		
	After reset				$\rightarrow$ $\alpha$	) $(a)$			
	Function			$\leq \langle \rangle$	>		))		
			4	$\bigcirc$	1	$\sim$			

Bit	Mnemonic	Field name	Description
5:3	DACM	Destination address	Destination Address Count Mode
		count mode	Specifies the count mode of the destination address.
		(( ))	000: Counting begins from bit 0
			001: Counting begins from bit 4
		(0)	010: Counting begins from bit 8
		$ ( \vee / ) )$	011: Counting begins from bit 12
		$)) \smile $	100: Counting begins from bit 16
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
2:0	SACM	Source address count	Source Address Count Mode
		mode	Specifies the count mode of the source address.
			000: Counting begins from bit 0
	$\square$	A	001: Counting begins from bit 4
$\sim$	(( ))		010: Counting begins from bit 8
			011: Counting begins from bit 12
		$( \land ( \land ) )$	100: Counting begins from bit 16
			101: Setting prohibited
			110: Setting prohibited
	$\rightarrow$	$\searrow$	111: Setting prohibited



# 10.3.9 Data Holding Register (DHR)

	/	7	6	5	4	3	2	1	0
DHR	Bit symbol	DOT7	DOT6	DOT5	DOT4	DOT3	DQT2	DOT1	DOT0
(0xFFFF_E30CH)	Read/Write				R/	W	$\geq$		
	After reset				C	)		$\geq$	
	Function				See detailed	description	$\sim$	)	
		15	14	13	12	11 ((	7/10	9	8
	Bit symbol	DOT15	DOT14	DOT13	DOT12	DOT11	DØ710	DOT9	DOT8
	Read/Write				R/	W			
	After reset				C		$\overline{\langle}$		
	Function	n See detailed description							
		23	22	21	20	19	18	17	16
	Bit symbol	DOT23	DOT22	DOT21	DOT20	DOT19	DOT18	DOT17	DOT16
	Read/Write				R/	Ŵ	6		
	After reset					) <	> (O)		
	Function				See detailed	description	$\sum D$	2/))	
		31	30	29	28	27	26	25	24
	Bit symbol	DOT31	DOT30	DOT29	DOT28	DOT27 (	DOT26	DOT25	DOT24
	Read/Write				R/	w			
	After reset				> c	$\left( \overline{q} \right)$			
	Function		(	21	See detailed	description	)		

Bit	Mnemonic	Field name	Description
31 : 0	DOT	Data on transfer Data on Transfe	r (initial value: 0)
		Data that is rea	d from the source in a dual-address data transfer
		mode.	

# Fig. 10.11 Data Holding Register (DHR)

## **10.4 Functions**

The DMAC is a 32-bit DMA controller capable of transferring data in a system using the TX19A processor core at high speeds without routing data via the core.

### 10.4.1 Overview

(1) Source and destination

*S* 

The DMAC handles data transferred within memory space. A device where the data is output is called a source device and a device where the data is input is called a destination device. The memory device can be designated as a source or destination device.

An interrupt factor can be attached to a transfer request to be sent to the DMAC. If an interrupt factor is generated, the interrupt controller (INTC) issues a request to the DMAC (the TX19A processor core is not notified of the interrupt request. For details, see description on Interrupts.). The request issued by the INTC is cleared by the DACKn signal. Therefore, a request made to the DMAC is cleared after completion of each data transfer (transfer of the amount of data specified by TrSiz) if a single transfer is designated to select a transfer type (SIO BIT). On the other hand, the DACKn signal is asserted only when the number of bytes transferred (value set in the BCRn register) becomes "0" at a continuous transfer. Therefore, one transfer request allows data to be transferred successively without a pause.

For example, if data is transferred between an internal I/O and the internal (external) memory of the TMP19A63, a request made by the internal I/O to the DMAC is cleared after completion of each data transfer. The transfer operation is always put in a standby mode for the next transfer request unless the number of bytes transferred (value set in the BCRn register) becomes "0." Therefore, the DMA transfer operation continues until the value of the BCRn register becomes "0."

(2) Bus control arbitration (bus arbitration)

In response to a transfer request made inside the DMAC, the DMAC requests the TX19A processor core to arbitrate bus control authority. When a response signal is returned from the core, the DMAC acquires bus control authority and executes a data transfer bus cycle.

In acquiring bus control for the DMAC, use or nonuse of the data bus of the TX19A processor core can be specified; specifically either snoop mode or non-snoop mode can be specified for each channel by using bit 11 (SReq) of the CCRn register.

There are cases in which the TX19A processor core requests the release of bus control authority. Whether or not to respond to this request can be specified for each channel by using the bit 10 (ReIEn) of the CCRn register. However, this function can only be used in non-snoop mode (GREQ). In snoop mode (SREQ), the TX19A processor core cannot request the release of bus control; therefore this function cannot be used.

When there are no more transfer requests, the DMAC releases the bus control.

### (Note 1) Do not bring the TX19A to a halt when the DMAC is in operation.

(Note 2) Stop the DMAC before putting the TX19A into IDLE (doze) mode while snoop function is active.

### (3) Transfer request modes

Two transfer request modes are used for the DMAC: an internal transfer request mode and an external transfer request mode.

In the internal transfer request mode, a transfer request is generated inside the DMAC. Setting a start bit (Str bit of the channel control register CCRn) in the internal register of the DMAC to "1" generates a transfer request, and the DMAC starts to transfer data.

In the external transfer request mode, after a start bit is set to "1," a transfer request is generated when a transfer request signal INTDREQn output by the INTC is input, or when a transfer request signal DREQn output by an external device is input. For the DMAC, two modes are provided: the level mode in which a transfer request is generated when the "L" level of the INTDREQn signal is detected and a mode in which a transfer request is generated when the falling edge or "L" level of the DREQn signal is detected.

(4) Address mode

The DMAC of the TMP19A63 provides only one address mode, a dual address mode. A single address mode is not available. In the dual address mode, data can be transferred within memory space. Source and destination device addresses are output by the DMAC. To access an I/O device, the DMAC asserts the DACKn signal. In the dual address mode, two bus operations, a read and a write, are executed. Data that is read from a source device for transfer is first put into the data holding register (DHR) inside the DMAC and then written to a destination device.

### (5) Channel operation

The DMAC has eight channels (channels 0 through 7). A channel is activated and put into a standby mode by setting a start (Str) bit in the channel control register (CCRn) to "1."

If a transfer request is generated when a channel is in a standby mode, the DMAC acquires bus control authority and transfers data. If there is no transfer request, the DMAC releases bus control authority and goes into a standby mode. If data transfer has been completed, a channel is put in an idle state. Data transfer is completed either normally or abnormally (e.g. error occurrence). An interrupt signal can be generated upon completion of data transfer.



Fig. 10.12 shows the state transitions of channel operation.

Fig. 10.12 Channel Operation State Transition

### (6) Combinations of transfer modes

The DMAC can transfer data by combining each transfer mode as follows:

Transfer request	Edge/level	Address mode	Transfer type	
Internal	_		Continuous	
External	"L" level (INTDREQn)	Dual	Single Continuous	
Future	"L" level (DREQn)	Dual		
External	Falling edge (DREQn)		Single	
	· · · · ·			

#### (7) Address changes

Address changes are broadly classified into three types: increases, decreases and fixed. The type of address change can be specified for each source and destination address by using SAC and DAC in the CCRn register. If a single transfer is selected as a source or destination device, SAC or DAC in the CCRn register must be set to "fixed".

If address increase or decrease is selected, the bit position for counting can be specified using SACM for the source address or DACM for the destination address in the DTCRn register. To specify the bit position for counting a source address, any of the bits 0, 4, 8, 12 and 16 can be specified as the bit position for address counting. If 0 is selected, an address increases or decreases as per normal. By selecting bits 4, 8, 12 or 16, it is possible to increase or decrease an address irregularly.

Examples of address changes are shown below.

Example 1. Monotonic increase for a source device and irregular increase for a destination device

SAC: Address increase DAC: Address increase TrSiz: Transfer unit 32 bits Source address: 0xA000_1000 Destination address: 0xB000_0000 SACM: 000 → counting to begin from bit 0 of the address counter DACM: 001 → counting to begin from bit 4 of the address counter

 Source
 Destination

 1st
 0xA000_1000
 0xB000_0000

 2nd
 0xA000_1004
 0xB000_0010

3rd 0xA000_1008 0xB000_0020

4th 0xA000_100C 0xB000_0030

Example 2: Irregular decrease for a source device and monotonic decrease for a destination device

SAC: Address decrease DAC: Address decrease TrSiz: Transfer unit 16 bits Source address: initial value 0xA000_1000 Destination address: 0xB000_0000 SACM: 010 → counting to begin from bit 8 of the address counter DACM: 000 → counting to begin from bit 0 of the address counter Source Destination 1st 0xA000_1000 0xB000_0000 2nd 0x9FFF_FF00 0xAFFF_FFFE 3rd 0x9FFF_FE00 0xAFFF_FFFE

## 10.4.2 Transfer Request

For the DMAC to transfer data, a transfer request must be issued to the DMAC. There are two types of transfer request: an internal transfer request and an external transfer request. Either of these transfer requests can be selected and specified for each channel.

Whichever is selected, the DMAC acquires the bus control authority and starts to transfer data if the transfer request is generated after the start of channel operation.

Internal transfer request

A transfer request is generated immediately if the Str bit of CCR is set to "1" when the ExR bit of CCRn is "0". This transfer request is called an internal transfer request.

The internal transfer request is valid until the channel operation is completed. Therefore, data can be transferred continuously unless transition to a channel with higher priority or transition of the bus control authority to a bus master with higher priority occurs.

Continuous transfer is only available with internal transfer request.

External transfer request

Setting the Str bit of CCR to "1" allows a channel to go into a standby mode if the ExR bit of CCRn is "1". The INTC or an external device generates the INTDREQn or DREQn signal for this channel to notify the DMAC of a transfer request, and then a transfer request is generated. This transfer request is called an external transfer request and is used for the continuous or single transfers.

The TMP19A63 recognizes the transfer request signal by detecting the "L" level of the INTDREQN signal or by detecting the falling edge or "L" level of the DREQN signal.

The unit of data to be transferred in response to one transfer request is specified in the TrSiz field of CCRn. 32, 16 or 8 bits can be selected.

See the next page for the detailed descriptions on transfer requests using INTDREQn and DREQn.

① A transfer request made by the interrupt controller (INTC)

The DACKn signal can clear a transfer request made by the interrupt controller. This DACKn signal is asserted only if a bus cycle for a single transfer or the number of bytes (value set in the BCRn register) transferred at continuous transfer becomes "0." Therefore, at the single transfer, the amount of data specified by TrSiz is transferred only once because INTDREQn is cleared upon completion of one data transfer from one transfer request. On the other hand, at the continuous transfer, it can be transferred successively in response to a transfer request because INTDREQn is not cleared until the number of bytes transferred (value set in the BCRn register) becomes "0."

Note that there is a possibility that the DMA transfer might be executed once after the interrupt is cleared depending on the timing if the DMAC acknowledges an interrupt set in INTDREQn and this interrupt is cleared by the INTC before the DMA transfer begins.

### ② A transfer request made by an external device

External pins (DREQ3 and DREQ2) are internally wired to allow them to function as pin of the port Q. These pins can be selected by setting the function control register PFFC to an appropriate setting.

In the edge mode, the DREQn signal must be negated and then asserted for each transfer request to create an effective edge. In the level mode, however, successive transfer requests can be recognized by maintaining an effective level. At continuous transfer, only the "L" level mode can be used. At single transfer, only the falling edge mode can be used.

### - Level mode

In the level mode, the DMAC detects the "L" level of the DREQn signal upon the rising of the internal system clock. If it detects the "L" level of the DREQn signal when a channel is in a standby mode, it goes into transfer mode and starts to transfer data. To use the DREQn signal at an active level, the PosE bit (bit 13) of the CCRn register must be set to "0." The DACKn signal is active at the "L" level, as in the case of the DREQn signal.

If an external circuit asserts the DREQn signal, the DREQn signal must be maintained at the "L" level until the DACKn signal is asserted. If the DREQn signal is negated before the DACKn signal is asserted, a transfer request may not be recognized.

If the DREQn signal is not at the "L" level, the DMAC judges that there is no transfer request, and starts a transfer operation for other channels or releases bus the control authority and goes into a standby mode.

The unit of a transfer request is specified in the TrSiz field (<bit3:2>) of the CCRn register.

DREQn		/	
A[31:1]	X	Data transfer	
DACKn			



### - Edge mode

In the edge mode, the DMAC detects the falling edge of the DREQn signal. If it detects the falling edge of the DREQn signal upon the rising of the internal system clock (the case in which the "L" level is detected upon the rising of the system clock although it was not detected upon the rising of the previous system clock) when a channel is in a standby mode, it judges that there is a transfer request, goes into transfer mode, and starts a transfer operation. To detect the falling edge of the DREQn signal, the PosE bit (bit 13) of the CCRn register must be set to "0," and the Lev bit (bit 12) must also be set to "0." The DACKn signal is active at the "L" level.

If the falling edge of the DREQn signal is detected after the DACKn signal is asserted, the next data is transferred without a pause.

If there is no falling edge of the DREQn signal after the DACKn signal is asserted, the DMAC judges that there is no transfer request, and starts a transfer operation for other channels or goes into a standby mode after releasing bus control authority.

The unit of a transfer request is specified in the TrSiz field (<bit3:2>) of the CCRn register.



### 10.4.3 Address Mode

In the address mode, you can specify whether the DMAC executes data transfers by outputting addresses to both source and destination devices or it does by outputting addresses to either a source device or a destination device. The former is called as the dual address mode, and the latter is called as the single address mode. For TMP19A63, only the dual address mode is available.

In the dual address mode, the DMAC first performs a read of the source device by storing the data output by the source device in one of its registers (DHR). It then executes a write on the destination device by writing the stored data to the device, thereby completing the data transfer.



Fig. 10.15 Basic Concept of Data Transfer in the Dual Address Mode

The unit of data to be transferred by the DMAC is the amount of data (32, 16 or 8 bits) specified in the TrSiz field of the CCRn. One unit of data is transferred each time a transfer request is acknowledged. In the dual address mode, the unit of data is read from the source device, put into the DHR and written

In the dual address mode, the unit of data is read from the source device, put into the DHR and written to the destination device.

Access to memory takes place when the specified unit of data is transferred. If access to external memory takes place, 16-bit access takes place twice if the unit of data is set to 32 bits and the bus width set in the CS wait controller is 16 bits. Likewise, if the unit of data is set to 32 bits and the bus width set in the CS wait controller is 8 bits, 8-bit access takes place four times.

### **10.4.4 Channel Operation**

A channel is activated if the Str bit of the CCRn in each channel is set to "1." If a channel is activated, an activation check is conducted and the channel is put into a standby mode if no error is detected.

The DMAC acquires bus control authority and starts to transfer data if a transfer request is generated when a channel is in a standby mode.

Channel operation is completed either normally or abnormally (e.g. occurrence of an error). One of the conditions is indicated to the CSRn.

#### Start of channel operation

A channel is activated if the Str bit of the CCRn is set to "1".

When a channel is activated, a configuration error check is conducted and the channel is put into a standby mode if no error is detected. If an error is detected, the channel is gone into the abnormal completion. When a channel goes into a standby mode, the Act bit of the CSRn of that channel becomes "1".

A transfer request is generated immediately if a channel is programmed to start operation in response to an internal transfer request. Then the DMAC acquires bus control authority and starts to transfer data. The DMAC acquires bus control authority after INTDREQn or DREQn is asserted and starts to transfer data if a channel is programmed to start operation in response to an external transfer request.

#### Completion of channel operation

A channel completes operation either normally or abnormally and one of these states is indicated to the CSRn.

Channel operation does not start and the completion of operation is considered to be abnormal completion if "1" is set to the Str bit of the CCRn register when the NC or AbC bit of the CSRn register is "1,"

Normal completion

Channel operation is considered to have been completed normally in the case shown below. For the normally completed channel operation, it needs to be completed after the transfer of a unit of data (value specified in the TrSiz field of CCRn) is completed successfully.

When the contents of BCRn become 0 and data transfer is completed.

Abnormal completion

Cases of abnormal completion of DMAC operation are as follows:

Completion due to a configuration error

A configuration error occurs if there is a mistake in the DMA transfer setting. Because a configuration error occurs before data transfer begins, values specified in SARn, DARn and BCRn remain the same as when they were initially specified. If channel operation is completed abnormally due to a configuration error, the AbC bit of the CSRn is set to "1" along with the Conf bit. Causes of a configuration error are as follows:

- Both SIO and DIO were set to "1."

- The Str bit of CCRn was set to "1" when the NC bit or AbC bit of CSRn was "1."
- A value that is not an integer multiple of the unit of data was set for BCRn.
- A value that is not an integer multiple of the unit of data was set for SARn or DARn.
- -A prohibited combination of a device port size and a unit of data to be transferred were set.

- The Str bit of CCRn was set to "1" when the BCRn value was "0."

Completion due to a bus error

If the DMAC operation has been completed abnormally due to a bus error, the AbC bit of CSRn is set to "1" and the BES or BED bit of CSRn is set to "1."

A bus error was detected during data transfer.

(Note) If the DMAC operation has been completed abnormally due to a bus error, BCR, SAR and DAR values cannot be guaranteed. If a bus error persists, refer to 21. "List of Functional Registers" appears later in this document.

### **10.4.5 Order of Priority of Channels**

Concerning the eight channels of the DMAC, the smaller the channel number assigned to each channel, the higher the priority. If a transfer request is generated to channels 0 and 1 simultaneously, a transfer request for channel 0 is processed with higher priority and the transfer operation is performed accordingly. When the transfer request for channel 0 is cleared, the transfer operation for channel 1 is performed if the transfer request still exists (an internal transfer request is retained if it is not cleared. The interrupt controller retains an external transfer request if the active state for an interrupt request assigned to DMA requests in the interrupt controller is set to edge mode. However, the interrupt controller does not retain an external transfer request if the active state is set to level mode. If the active state for an interrupt request assigned to DMA requests assigned to DMA requests in the interrupt request signal).

If a transfer request is generated when data is being transferred through channel 1, a channel transition occurs at channel 0, that is, data transfer through channel 1 is temporarily suspended and data transfer through channel 0 is started. When the transfer request for channel 0 is cleared, data transfer through channel 1 resumes.

Channel transitions occur upon the completion of data transfers (when the writing of all data in the DHR has been completed).

### **Interrupts**

Upon completion of a channel operation, the DMAC can generate interrupt requests (INTDMAn: DMA transfer completion interrupt) to the TX19A processor core with two types of interrupts available: a normal completion interrupt and an abnormal completion interrupt.

INTDMA0: 0ch, INTDMA1: 1ch, INTDMA1: 2ch, INTDMA1: 3ch

### Normal completion interrupt

If a channel operation is completed normally, the NC bit of CSRn is set to "1." If a normal completion interrupt is authorized for the NIEn bit of the CCRn, the DMAC requests the TX19A processor core to authorize an interrupt.

### Abnormal completion interrupt

If a channel operation is completed abnormally, the AbC bit of CSRn is set to "1." If an abnormal completion interrupt is authorized for the AbIEn bit of the CCRn, the DMAC requests the TX19A processor core to authorize an interrupt.

## 10.5 Timing Diagrams

DMAC operations are synchronous to the rising edges of the internal system clock.

### 10.5.1 Dual Address Mode

Continuous transfer •

Fig. 10.16 shows an example of the timing with which 16-bit data is transferred from one external memory (16-bit width) to another (16-bit width). Data is actually transferred successively until BCRn becomes "0."



Fig. 10.16 Dual address mode (continuous transfer)

Single transfer (1)

Fig. 10.17 shows an example of the timing if the unit of data to be transferred is set to 16 bits and the device port size is set to 16 bits.



Fig. 10.17 Dual address mode (single transfer)

### • Single transfer (2)

Fig. 10.18 shows an example of the single transfer timing if the unit of data to be transferred is set to 16 bits and the device port size is set to 16 bits.


### 10.5.2 DREQn-Initiated Transfer Mode

• Data transfer from internal RAM to external memory (multiplexed bus, 5-wait insertion, level mode)

Fig. 10.19 shows two timing cycles in which 16-bit data is transferred twice from internal RAM to external memory (16-bit width).

<mark>&lt; (7+α) α</mark>		75	
Internal system clock			
DACKn			
ALE	∏_∔		
A [23:16]	Add		_
AD [15:0]	Add Data	Data	
WR			
HWR			
CSn			
R/W			

### Fig. 10.19 Level Mode (from Internal RAM to External Memory)

Data transfer from external memory to internal RAM (multiplexed bus, 5-wait insertion, level mode)

Fig. 10.20 shows two timing cycles in which 16-bit data is transferred twice from external memory (16-bit width) to internal RAM.

	4
DACKn	
	ļr
A [23:16] Add Data	
AD [15:0] Add Data	
HWR	
CSn	
R/W	

### Fig. 10-20 Level Mode (from External Memory to Internal RAM)

• Data transfer from internal RAM to external memory (separate bus, 5-wait insertion, level mode)

Fig. 10.21 shows two timing cycles in which 16-bit data is transferred twice from internal RAM to external memory (16-bit width).



Fig. 10.21 Level Mode (Internal RAM to External Memory)

 Data transfer from external memory to internal RAM (separate bus, 5-wait insertion, level mode)

Fig. 10.22 shows two timing cycles in which 16-bit data is transferred twice from external memory (16-bit width) to internal RAM.



Fig. 10.22 Level Mode (from External Memory to Internal RAM)

• Data transfer from internal RAM to external memory (multiplexed bus, 5-wait insertion, edge mode)

Fig. 10.23 shows one timing cycle in which 16-bit data is transferred once from internal RAM to external memory (16-bit width).

Internal clock	system		€ (7+α) clo			4 5 waits 5 waits		
DREQn		[				$\langle \mathcal{O} \rangle$	751	
DACKn				—į				
ALE				ſ			>	
A [23:16]						Add		
AD [15:0]					Add	Data		
RD							(	
WR								(1)
HWR					C		2	
CSn					4		$\langle \rangle \rangle$	
R∕W					$\overline{\langle}$			

### Fig. 10.23 Edge Mode (from Internal RAM to External Memory)

 $(\overline{\Omega})$ 

• Data transfer from external memory to internal RAM (multiplexed bus, 5-wait insertion, edge mode)

Fig. 10.24 shows one timing cycle in which 16-bit data is transferred once from external memory (16-bit width) to internal RAM.

Internal system _ clock	(7+α) clock		5 waits	
DREQn		5		
DACKn		Ĩ		
		ЪĻ		
A [23:16]		$\leftarrow$	Add	
AD [15:0] -		Add	Data	<u>}</u>
RD -	~~~	—Ľ		
WR				
HWR -				
- CSn		]		
R∕₩ -		1		

### Fig. 10.24 Edge Mode (from External Memory Internal RAM)

• Data transfer from internal RAM to external memory (separate bus, 5-wait insertion, edge mode)

Fig. 10.25 shows one timing cycle in which 16-bit data is transferred once from internal RAM to external memory (16-bit width).



Fig. 10.25 Edge Mode (from Internal RAM to External Memory)

Data transfer from external memory to internal RAM (separate bus, 5-wait insertion, edge mode)

Fig. 10.26 shows one timing cycle in which 16-bit data is transferred once from external memory (16-bit width) to internal RAM.

Internal system clock	(7+α) clock		5 waits	
DREQn		$\checkmark$		
DACKn		ļ		
A [23:0]			Add	
D [15:0]			Data	}
RD				
WR				
HWR				
CSn		<b> </b>		
R∕W		İ		

Fig. 10.26 Edge Mode (from External Memory Internal RAM)

### 10.6 Case of Data Transfer

The settings described below relate to a case in which serial data received (SCnBUF) is transferred to the internal RAM by DMA transfer. DMA (ch.0) is used to transfer data. The DMA0 is activated by a receive interrupt generated by SIO1.

< DMA setting >

- Channel used: 0
- Source address: SC1BUF
- Destination: (Physical address) 0xFFFF_9800
- Number of bytes transferred: 256 byte

< Serial channel setting >

- Data length 8 bits: UART
- Serial channel: ch1
- Transfer rate: 9600bps

### <SIO ch.1 setting >

IMC5LL	$\leftarrow$	x111, x100	/* assigned to DMC0 activation factor */
INTCLR	$\leftarrow$	0x050	/* IVR [8:0], INTRX1 interrupt factor * /
SC1MOD0	$\leftarrow$	0x29	/* UART mode, 8-bit length, baud rate generator * /
SC1CR	$\leftarrow$	0x00	
BR1CR	$\leftarrow$	0x1F	/* @fc = 40 MHz */
<dma0 sett<="" td=""><td>ing&gt;</td><td>$( \bigcirc \bigcirc \bigcirc$</td><td>$\langle \rangle$</td></dma0>	ing>	$( \bigcirc \bigcirc \bigcirc$	$\langle \rangle$
DCR	$\leftarrow$	0x8000_0000	/* DMA reset * /
IMCFHL	$\leftarrow$	x000, x000	/* disable interrupt * /
INTCLR	+	0x0F8	/* IVR [8:0] value * /
IMCFHL	(←)_	x000, x100	/* level = 4 (any given value) */
DTCR0	÷	0x0000_0000	/* DACM = 000 * / /* SACM = 000 * /
SAR0	←	0xFFFF_F208	/* physical address of SC1BUF */
DARO	⇇	0xFFFF_9800	/* physical address of destination to which data is transferred */
BCR0	Ļ	0x0000_00FF	/* 256 (number of bytes transferred) /
CCR0	$\leftarrow$	0x80C0_5B0F	/* DMA ch.0 setting */
(Conte	2	31     27     23       1     0     0     0     0     0       15     11     7       0     1     1     1     1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

## 11. 16-bit Timer/Event Counters (TMRBs)

Each of the thirty-six channels (TMRB00 through TMRB23) has a multi-functional 16-bit timer/event counter. TMRBs operate in the following four operation modes:

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable square-wave output (PPG) mode
- Two-phase pulse input counter mode (quad/normal-speed, TMRB0C and TMRB12 only ).

The use of the capture function allows TMRBs to operate in three other modes:

- Frequency measurement mode
- Pulse width measurement mode
- Time difference measurement mode

Each channel consists of a 16-bit up-counter, two 16-bit timer registers (one of which is double-buffered), two 16-bit capture registers, two comparators, a capture input control, a timer flip-flop and its associated control circuit. Timer operation modes and the timer flip-flop are controlled by a register.

Each channel (TMRB00~TMRB23) functions independently and the channels operate in the same way, except for the differences in their specifications as shown in Table 11.1 and the two-phase pulse count function. Therefore, the operational descriptions here are only for TMRB14 and for the two-phase pulse count function (TMRB0C, TMRB12).

Specificatio	Channel	TMRB00	TMRB01	TMRB02	TMRB03		
External pins	External clock/ capture trigger input pins	-	-	-	-		
	Timer flip-flop output pin	-	-	- ()	-		
Internal signals	Timer for capture triggers			$\sim (75)$	/		
	Timer RUN register	TB00RUN (0xFFFF_F200)	TB01RUN (0xFFFF_F210)	TB02RUN (0xFFFF_F220)	TB03RUN (0xFFFF_F230)		
	Timer control register	TB00CR (0xFFFF_F201)	TB01CR (0xFFFF_F211)	TB02CR (0xFFFF_F221)	TB03CR (0xFFFF_F231)		
	Timer mode register	TB00MOD (0xFFFF_F202)	TB01MOD (0xFFFF_F212)	TB02MOD (0xFFFF_F222)	TB03MOD (0xFFFF_F232)		
	Timer flip-flop control register	TB00FFCR (0xFFFF_F203)	TB01FFCR (0xFFFF_F213)	TB02FFCR(0xFFFF_F223)	TB03FFCR (0xFFFF_F233)		
	Timer status register	TB00ST (0xFFFF_F204)	TB01ST (0xFFFF_F214)	TB02ST (0xFFFF_F224)	TB03ST (0xFFFF_F234)		
Register	Timer up counter	TB00UCL	TB01UCL	TB02UCL	TB03UCL		
U	register	TB00UCH	ТВ01UCH	тво2ИСН 🔷 🕓	твозисн		
names (addresses)	Timer register	TB00RG0H(0xFFFF_F209) TB00RG1L (0xFFFF_F20A)	TB01RG0L (0xFFFF_F218) TB01RG0H 0xFFFF_F219) TB01RG1L (0xFFFF_F21A) TB01RG1H 0xFFFF_F21B)	TB02RG0H 0xFFFF_F229) TB02RG1L (0xFFFF_F22A)	TB03RG0H(0xFFFF_F239) TB03RG1L (0xFFFF_F23A)		
	Capture register	TB00CP0L (0xFFFF_F20C) TB00CP0H(0xFFFF_F20D) TB00CP1L (0xFFFF_F20E)	TB01CP0L (0xFFFF_F21C) TB01CP0H(0xFFFF_F21D) TB01CP1L (0xFFFF_F21E)	TB02CP0L (0xFFFF_F22C) TB02CP0H 0xFFFF_F22D) TB02CP1L (0xFFFF_F22E)	TB03CP0L (0xFFFF_F23C) TB03CP0H(0xFFFF_F23D) TB03CP1L (0xFFFF_F23E)		
	TB00CP1H (0xFFFF_F20F)TB01CP1H (0xFFFF_F21F)TB02CP1H (0xFFFF_F22F)TB03CP1H (0xFFFF_F23F)						

Table 11.1 Differences in the Specifications of TMRB Modules	5
--------------------------------------------------------------	---

			//		
Specificatio	Channel	TMRB04	TMRB05	TMRB06	TMRB07
	External clock/ capture trigger input pins			-	-
	Timer flip-flop output pin			-	-
Internal signals	Timer for capture triggers				
	Timer RUN register	TB04RUN (0xFFFF_F240)	TB05RUN (0xFFFF_F250)	TB06RUN (0xFFFF_F260)	TB07RUN (0xFFFF_F270)
	Timer control register	TB04CR (0xFFFF_F241)	TB05CR (0xFFFF_F251)	TB06CR (0xFFFF_F261)	TB07CR (0xFFFF_F271)
	Timer mode register	TB04MOD (0xFFFF_F242)	TB05MOD (0xFFFF_F252)	TB06MOD (0xFFFF_F262)	TB07MOD (0xFFFF_F272)
$\langle$	Timer flip-flop control register	TB04FFCR (0xFFFF_F243)	TB05FFCR (0xFFFF_F253)	TB06FFCR(0xFFFF_F263)	TB07FFCR(0xFFFF_F273)
	Timer status register	TB04ST (0xFFFF_F244)	TB05ST (0xFFFF_F254)	TB06ST (0xFFFF_F264)	TB07ST (0xFFFF_F274)
Register	Timer up counter	TB04UCL	TB05UCL	TB06UCL	TB07UCL
	register	TB04UCH	TB05UCH	TB06UCH	TB07UCH
(addresses)	$\searrow$	TB04RG0L (0xFFFF_F248)	TB05RG0L (0xFFFF_F258)	TB06RG0L (0xFFFF_F268)	TB07RG0L (0xFFFF_F278)
(444100000)	Timer register	TB04RG0H(0xFFFF_F249)	TB05RG0H(0xFFFF_F259)	TB06RG0H(0xFFFF_F269)	TB07RG0H(0xFFFF_F279)
		TB04RG1L (0xFFFF_F24A)	TB05RG1L (0xFFFF_F25A)	TB06RG1L(0xFFFF_F26A)	TB70RG1L(0xFFFF_F27A)
		TB04RG1H(0xFFFF_F24B)	TB05RG1H(0xFFFF_F25B)	TB06RG1H(0xFFFF_F26B	TB70RG1H(0xFFFF_F27A)
		TB04CP0L (0xFFFF_F24C)	TB05CP0L (0xFFFF_F25C)	TB06CP0L(0xFFFF_F26C)	TB07CP0L(0xFFFF_F27C)
	Capture register	TB04CP0H(0xFFFF_F24D)	TB05CP0H(0xFFFF_F25D)	TB06CP0H(0xFFFF_F26D)	TB07CP0H(0xFFFF_F27D)
		TB40CP1L (0xFFFF_F24E)	TB05CP1L (0xFFFF_F25E)	TB06CP1L (0xFFFF_F26E)	TB07CP1L (0xFFFF_F27E)
		TB40CP1H (0xFFFF_F24F)	TB05CP1H (0xFFFF_F25F)	TB06CP1H(0xFFFF_F26F)	TB07CP1H(0xFFFF_F27F)

Specificatio	Channel	TMRB08	TMRB09	TMRB0A	TMRB0B
	External clock/ capture trigger input pins	TB08IN0 (shared with PB0) TB08IN1 (shared with PB1)	TB09IN0 ( <b>shared with</b> PB2) TB09IN1 ( <b>shared with</b> PB3)	,	TBBIN0 (shared with PB6) TBBIN1 (shared with PB7)
	Timer flip-flop output pin	-	-	-	-
Internal signals	Timer for capture triggers	TB1OUT	TB10UT	твіоит	твіоит
	Timer RUN register	TB08RUN (0xFFFF_F280)	TB09RUN (0xFFFF_F290)	TBOARUN (0xFFFF_F2A0)	TB0BRUN (0xFFFF_F2B0)
	Timer control register	TB08CR (0xFFFF_F281)	TB09CR (0xFFFF_F291)	TB0ACR (0xFFFF_F2A1)	TB0BCR (0xFFFF_F2B1)
	Timer mode register	TB08MOD (0xFFFF_F282)	TB09MOD (0xFFFF_F292)	TB0AMOD (0xFFFF_F2A2)	TB0BMOD (0xFFFF_F2B2)
	Timer flip-flop control register	TB08FFCR 0xFFFF_F283)	TB09FFCR(0xFFFF_F293)	TB0AFFCR(0xFFFF_F2A3)	TB0BFFCR (0xFFFF_F2B3)
	Timer status register	TB08ST (0xFFFF_F284)	TB09ST (0xFFFF_F294)	TB0AST (0xFFFF_F2A4)	TB0BST (0xFFFF_F2B4)
Register	Timer up counter	TB08UCL	TB09UCL	TBOAUCL	TBOBUCL
	register	TB08UCH	твоэисн	ТВОАИСН	TBOBUCH
(addresses)	Timer register	TB08RG0L(0xFFFF_F288) TB08RG0H(0xFFFF_F289) TB08RG1L(0xFFFF_F28A) TB08RG1H(0xFFFF_F28B)	TB09RG0L(0xFFFF_F298) TB09RG0H(0xFFFF_F299) TB09RG1L(0xFFFF_F29A) TB09RG1H(0xFFFF_F29B)	TBOARGOL (0xFFFF_F2A8) TBOARGOH (0xFFFF_F2A9) TBOARG1L (0xFFFE_F2AA) TBOARG1H (0xFFFF_F2AB)	TB0BRG0L (0xFFFF_F2B8) TB0BRG0H (0xFFFF_F2B9) TB0BRG1L (0xFFFF_F2BA) TB0BRG1H (0xFFFF_F2BB)
	Capture register	TB08CP0L 0xFFFF_F28C) TB08CP0H(0xFFFF_F28D) TB08CP1L(0xFFFF_F28E) TB08CP1H(0xFFFF_F28E)	TB09CP0L(0xFFFF_F29C) TB09CP0H(0xFFFF_F29D) TB09CP1L(0xFFFF_F29E) TB09CP1H(0xFFFF_F29F)	TB0ACP0L (0xFFFF_F2AC) TB0ACP0H (0xFFFF_F2AD) TB0ACP1L (0xFFFFFF2AE) TB0ACP1H (0xFFFF_F2AF)	TBBCP0L (0xFFFF_F2BC) TBBCP0H (0xFFFF_F2BD) TBBCP1L (0xFFFF_F2BE) TBBCP1H (0xFFFF_F2BF)

		TB08CP1H(0xFFFF_F28F)	IB09CP1H(0xFFFF_F29F)	TB0ACP1H (0xFFFF_F2AF)	TBBCP1H (0xFFFF_F2BF)		
Specificatio	Channel	TMRB0C	TMRB0D	TMRB0E	TMRB0F		
External pins	External clock/ capture trigger input pins	TBCINO (shared with PCO) TBCIN1 (shared with PC1)	TBDINO (shared with PC2) TBDIN1 (shared with PC3)	TBEIN0 (shared with PC4) TBEIN1 (shared with PC5)	TBFIN0 (shared with PC6) TBFIN1 (shared with PC7)		
	Timer flip-flop output			-	-		
Internal signals	Timer for capture triggers	тв1оит	TB10UT	TB1OUT	TB10UT		
	Timer RUN register	TB0CRUN (0xFFFF_F2C0)	TB0DRUN (0xFFFF_F2D0)	TB0ERUN (0xFFFF_F2E0)	TB0FRUN (0xFFFF_F2F0)		
	Timer control register	TB0CCR (0xFFFF_F2C1)	TB0DCR (0xFFFF_F2D1)	TB0ECR (0xFFFF_F2E1)	TB0FCR (0xFFFF_F2F1)		
$\sim$	Timer mode register	TB0CMOD (0xFFFF_F2C2)	TB0DMOD (0xFFFF_F2D2)	TB0EMOD (0xFFFF_F2E2)	TB0FMOD (0xFFFF_F2F2)		
	Timer flip-flop control register	TB0CFFCR (0xFFFF_F2C3)	TB0DFFCR (0xFFFF_F2D3)	TB0EFFCR(0xFFFF_F2E3)	TB0FFFCR (0xFFFF_F2F3)		
	Timer status register	TB0CST (0xFFFF_F2C4)	TB0DST (0xFFFF_F2D4)	TB0EST (0xFFFF_F2E4)	TB0FST (0xFFFF_F2F4)		
Register	Timer up counter	TBOCUCL	TBODUCL	TB0EUCL	TB0FUCL		
names	register	твосисн	TBODUCH	TB0EUCH	TB0FUCH		
(addresses)		TB0CRG0L (0xFFFF_F2C8)	TB0DRG0L (0xFFFF_F2D8)	TB0ERG0L (0xFFFF_F2E8)	TB0FRG0L (0xFFFF_F2F8)		
(	Timer register	TB0CRG0H (0xFFFF_F2C9)	TB0DRG0H (0xFFFF_F2D9)	TB0ERG0H (0xFFFF_F2E9)	TB0FRG0H (0xFFFF_F2F9)		
		TB0CRG1L (0xFFFF_F2CA)	TB0D0RG1L (0xFFFF_F2DA)	TB0ERG1L (0xFFFF_F2EA)	TB0FRG1L (0xFFFF_F2FA)		
		TB0CRG1H (0xFFFF_F2CB)	TB0DRG1H (0xFFFF_F2DB)	TB0ERG1H (0xFFFF_F2EB)	TB0FRG1H (0xFFFF_F2FB)		
		TB0CCP0L (0xFFFF_F2CC)	TB0DCP0L (0xFFFF_F2DC)	TB0ECP0L (0xFFFF_F2EC)	TB0FCP0L (0xFFFF_F2FC)		
	Capture register	TB0CCP0H (0xFFFF_F2CD)	TB0DCP0H (0xFFFF_F2DD)	TB0ECP0H (0xFFFF_F2ED)	TB0FCP0H (0xFFFF_F2FD)		
	espisio regiotor	TB0CCP1L (0xFFFF_F2CE)	TB0DCP1L (0xFFFF_F2DE)	TB0ECP1L (0xFFFF_F2EE)	TB0FCP1L (0xFFFF_F2FE)		
		TB0CCP1H (0xFFFF_F2CF)	TB0DCP1H (0xFFFF_F2DF)	TB0ECP1H (0xFFFF_F2EF)	TB0FCP1H (0xFFFF_F2FF)		

Specificatio	Channel	TMRB10	TMRB11	TMRB12	TMRB13
	External clock/ capture trigger input pins	TB10IN0 (shared with PD0) TB10IN1 (shared with PD1)	TB11IN0 ( <b>shared with</b> PD2) TB11IN1 ( <b>shared with</b> PD3)	,	-
	Timer flip-flop output pin	-	-	-	-
Internal signals	Timer for capture triggers	TB2OUT	TB2OUT	TB2OUT	TB2OUT
	Timer RUN register	TB10RUN (0xFFFF_F300)	TB11RUN (0xFFFF_F310)	TB12RUN (0xFFFF_F320)	TB13RUN (0xFFFF_F330)
	Timer control register	TB10CR (0xFFFF_F301)	TB11CR (0xFFFF_F311)	TB12CR (0xFFFF_F321)	TB13CR (0xFFFF_F331)
	Timer mode register	TB10MOD (0xFFFF_F302)	TB11MOD (0xFFFF_F312)	TB12MOD (0xFFFF_F322)	TB13MOD (0xFFFF_F332)
	Timer flip-flop control register	TB10FFCR (0xFFFF_F303)	TB11FFCR (0xFFFF_F313)	TB12FFCR(0xFFFF_F323)	TB13FFCR (0xFFFF_F333)
	Timer status register	TB10ST (0xFFFF_F304)	TB11ST (0xFFFF_F314)	TB12ST (0xFFFF_F324)	TB13ST (0xFFFF_F334)
Register	Timer up counter	TB10UCL	TB11UCL	TB12UCL	TB13UCL
	register	TB10UCH	тв11UCH	TB12UCH	TB13UCH
(addresses)	Timer register	TB10RG0L (0xFFF_F308) TB10RG0H (0xFFF_F309) TB10RG1L (0xFFF_F30A) TB10RG1H (0xFFF_F30B)	TB11RG0L (0xFFFF_F318) TB11RG0H (0xFFFF_F319) TB11RG1L (0xFFFF_F31A) TB11RG1H (0xFFFE_F31B)	TB12RG0H (0xFFFF_F329)	TB13RG0L (0xFFFF_F338) TB13RG0H (0xFFFF_F339) TB13RG1L (0xFFFF_F33A) TB13RG1H (0xFFFF_F33B)
	Capture register	TB10CP0L (0xFFFF_F30C) TB10CP0H (0xFFFF_F30D) TB10CP1L (0xFFFF_F30E) TB10CP1H (0xFFFF_F30F)	TB11CPOL (0xFFFF_F31C) TB11CPOH (0xFFFF_F31D) TB11CP1L (0xFFFF_F31E)	TB12CP0L (0xFFFF_F32C) TB12CP0H (0xFFFF_F32D) TB12CP1L (0xFFFF_F32E)	TB13CP0L (0xFFFF_F33C) TB13CP0H (0xFFFF_F33D) TB13CP1L (0xFFFF_F33E) TB13CP1H (0xFFFF_F33F)

		TB10CP1H (0xFFFF_F30F)	IB11CP1H (0xFFFF_F37F)	TB12CR1H (0xFFFF_F32F)	TB13CP1H (0xFFFF_F33F)
Specificatio	Channel	TMRB14	TMRB15	TMRB16	TMRB17
External pins	External clock/ capture trigger input pins			-	-
	Timer flip-flop output	TB14OUT (shared with PD6)	TB15OUT (shared with PD7)	TB16OUT(shared with PE0)	TB17OUT (shared with PE1)
Internal signals	Timer for capture triggers				
	Timer RUN register Timer control register	TB14RUN (0xFFFF_F340) TB14CR (0xFFFF_F341)	TB15RUN (0xFFFF_F350) TB15CR (0xFFFF_F351)	TB16RUN (0xFFFF_F360) TB16CR (0xFFFF_F361)	TB17RUN (0xFFFF_F370) TB17CR (0xFFFF_F371)
	Timer mode register Timer flip-flop control register	TB14MOD (0xFFFF_F342) TB14FFCR (0xFFFF_F343)	TB15MOD (0xFFFF_F352) TB15FFCR (0xFFFF_F353)	TB16MOD (0xFFFF_F362) TB16FFCR(0xFFFF_F363)	TB17MOD (0xFFFF_F372) TB17FFCR (0xFFFF_F373)
$\sim$	Timer status register	TB14ST (0xFFFF_F344)	TB15ST (0xFFFF_F354)	TB16ST (0xFFFF_F364)	TB17ST (0xFFFF_F374)
Register names	Timer up counter register	TB14UCL TB14UCH	TB15UCL TB15UCH	TB16UCL TB16UCH	TB17UCL TB17UCH
(addresses)	Timer register	TB14RG0L (0xFFF_F348) TB14RG0H (0xFFF_F349) TB14RG1L (0xFFF_F34A) TB14RG1H (0xFFF_F34B)	TB15RG0H (0xFFFF_F359)	TB16RG0L (0xFFF_F368) TB16RG0H (0xFFF_F369) TB16RG1L (0xFFF_F36A) TB16RG1H (0xFFF_F36B)	TB17RG0L (0xFFF_F378) TB17RG0H (0xFFF_F379) TB17RG1L (0xFFF_F37A) TB17RG1H (0xFFFF_F37B)
	Capture register	TB14CP0L (0xFFFF_F34C) TB14CP0H (0xFFFF_F34D) TB14CP1L (0xFFFF_F34E) TB14CP1H (0xFFFF_F34F)	TB15CP0L (0xFFFF_F35C) TB15CP0H (0xFFFF_F35D) TB15CP1L (0xFFFF_F35E)	TB16CP0L (0xFFFF_F36C) TB16CP0H (0xFFFF_F36D) TB16CP1L (0xFFFF_F36E) TB16CP1H (0xFFFF_F36F)	TB17CP0L (0xFFFF_F37C) TB17CP0H (0xFFFF_F37D) TB17CP1L (0xFFFF_F37E) TB17CP1L (0xFFFF_F37F)

	Channel	TMRB18	TMRB19	TMRB1A	TMRB1B
Specificatio	on				
	External clock/ capture trigger input pins	-	-		-
	Timer flip-flop output pin	TB18OUT (shared with PE2)	TB19OUT (shared with PE3)	TB1AOUT (shared with PE4)	<u> </u>
Internal signals	Timer for capture triggers				)~
	Timer RUN register	TB18RUN (0xFFFF_F380)	TB19RUN (0xFFFF_F390)	TB1ARUN (0xFFFF_F3A0)	TB1BRUN (0xFFFF_F3B0)
	Timer control register	TB18CR (0xFFFF_F381)	TB19CR (0xFFFF_F391)	TB1ACR (0xFFFF_F3A1)	TB1BCR (0xFFFF_F3B1)
	Timer mode register	TB18MOD (0xFFFF_F382)	TB19MOD (0xFFFF_F392)	TB1AMOD (0xFFFF_F3A2)	TB1BMOD (0xFFFF_F3B2)
	Timer flip-flop control register	TB18FFCR (0xFFFF_F383)	TB19FFCR (0xFFFF_F393)	TB1AFFCR(0xFFFF_F3A3)	TB1BFFCR (0xFFFF_F3B3)
	Timer status register	TB18ST (0xFFFF_F384)	TB19ST (0xFFFF_F394)	TB1AST (0xFFFF_F3A4)	TB1BST (0xFFFF_F3B4)
Register	Timer up counter	TB18UCL	TB19UCL	TB1AUCL	TB1BUCL
	register	TB18UCH	тв19UCH	TB1AUCH	TB1BUCH
(addresses)	Timer register	TB18RG0L (0xFFFF_F388) TB18RG0H (0xFFFF_F389) TB18RG1L (0xFFFF_F38A) TB18RG1H (0xFFFF_F38B)	TB19RG0L (0xFFFF_F398) TB19RG0H (0xFFFF_F399) TB19RG1L (0xFFFF_F39A) TB19RG1H (0xFFFE_F39B)	TB1ARGOL (0XFFFF_F3A8) TB1ARGOH (0XFFFF_F3A9) TB1ARG1L (0XFFFE_F3AA) TB1ARG1H (0XFFFF_F3AB)	TB1BRG0L (0xFFFF_F3B8) TB1BRG0H (0xFFFF_F3B9) TB1BRG1L (0xFFFF_F3BA) TB1BRG1H (0xFFFF_F3BB)
	Capture register		TB19CPOL (0xFFFF_F39C) TB19CPOH (0xFFFF_F39D) TB19CP1L (0xFFFF_F39E) TB19CP1H (0xFFFF_F39F)	TB1ACP0L (0xFFFF_F3AC) TB1ACP0H (0xFFFF_F3AD) TB1ACP1L (0xFFFF_F3AE) TB1ACP1H (0xFFFF_F3AF)	TB1BCP0L (0xFFFF_F3BC) TB1BCP0H (0xFFFF_F3BD) TB1BCP1L (0xFFFF_F3BE) TB1BCP1H (0xFFFF_F3BF)

		IBIOCPIN (UXFFFF_F30F)	IBI9CPUR (0XFFFF_F39F)	TBIACKIH (UXFFFF_F3AF)	IBIBCPIH (UXFFFF_F3BF)
Specificatio	Channel	TMRB1C	TMRB1D	TMRB1E	TMRB1F
	External clock/ capture trigger input pins			-	-
	Timer flip-flop output			-	-
Internal signals	Timer for capture triggers				
	Timer RUN register	TB1CRUN (0xFFFF_F3C0)	TB1DRUN (0xFFFF_F3D0)	TB1ERUN (0xFFFF_F3E0)	TB1FRUN (0xFFFF_F3F0)
	Timer control register	TB1CCR (0xFFFF_F3C1)	TB1DCR (0xFFFF_F3D1)	TB1ECR (0xFFFF_F3E1)	TB1FCR (0xFFFF_F3F1)
$\sim$	Timer mode register	TB1CMOD (0xFFFF_F3C2)	TB1DMOD (0xFFFF_F3D2)	TB1EMOD (0xFFFF_F3E2)	TB1FMOD (0xFFFF_F3F2)
	Timer flip-flop control register	TB1CFFCR (0xFFFF_F3C3)	TB1DFFCR (0xFFFF_F3D3)	TB1EFFCR(0xFFFF_F3E3)	TB1FFFCR (0xFFFF_F3F3)
	Timer status register	TB1CST (0xFFFF_F3C4)	TB1DST (0xFFFF_F3D4)	TB1EST (0xFFFF_F3E4)	TB1FST (0xFFFF_F3F4)
Register	Timer up counter	TB1CUCL	TB1DUCL	TB1EUCL	TB1FUCL
	register	ТВ1СИСН	TB1DUCH	TB1EUCH	TB1FUCH
(addresses)		TB1CRG0L (0xFFFF_F3C8)	TB1DRG0L (0xFFFF_F3D8)	TB1ERG0L (0xFFFF_F3E8)	TB1FRG0L (0xFFFF_F3F8)
(	Timer register	TB1CRG0H (0xFFFF_F3C9)	TB1DRG0H (0xFFFF_F3D9)	TB1ERG0H (0xFFFF_F3E9)	TB1FRG0H (0xFFFF_F3F9)
	Timer register	TB1CRG1L (0xFFFF_F3CA)	TB1DRG1L (0xFFFF_F3DA)	TB1ERG1L (0xFFFF_F3EA)	TB1FRG1L (0xFFFF_F3FA)
		TB1CRG1H (0xFFFF_F3CB)	TB1DRG1H (0xFFFF_F3DB)	TB1ERG1H (0xFFFF_F3EB)	TB1FRG1H (0xFFFF_F3FB)
		TB1CCP0L (0xFFFF_F3CC)	TB1DCP0L (0xFFFF_F3DC)	TB1ECP0L (0xFFFF_F3EC)	TB1FCP0L (0xFFFF_F3FC)
	Capture register	TB1CCP0H (0xFFFF_F3CD)	TB1DCP0H (0xFFFF_F3DD)	TB1ECP0H (0xFFFF_F3ED)	TB1FCP0H (0xFFFF_F3FD)
		TB1CCP1L (0xFFFF_F3CE)	TB1DCP1L (0xFFFF_F3DE)	TB1ECP1L (0xFFFF_F3EE)	TB1FCP1L (0xFFFF_F3FE)
		TB1CCP1H (0xFFFF_F3CF)	TB1DCP1H (0xFFFF_F3DF)	TB1ECP1H (0xFFFF_F3EF)	TB1FCP1H (0xFFFF_F3FF)

Specificati	Channel	TMRB20	TMRB21	TMRB22	TMRB23
External	External clock/ capture trigger input pins	-	-	-	-
pins	Timer flip-flop output pin	-	-	-	-
Internal signals	Timer for capture triggers				
	Timer RUN register	TB20RUN (0xFFFF_F400)	TB21RUN (0xFFFF_F410)	TB22RUN (0xFFFF_F420)	TB23RUN (0xFFFF_F430)
	Timer control register	TB20CR (0xFFFF_F401)	TB21CR (0xFFFF_F411)	TB22R (0xFFFF_F421)	TB23CR (0xFFFF_F431)
	Timer mode register	TB20MOD (0xFFFF_F402)	TB21MOD (0xFFFF_F412)	TB22MOD (0xFFFF_F422)	TB23MOD (0xFFFF_F432)
	Timer flip-flop control register	TB20FFCR (0xFFFF_F403)	TB21FFCR (0xFFFF_F413)	TB22FFCR(0xFFFF_F423)	TB23FFCR (0xFFFF_F433)
	Timer status register	TB20ST (0xFFFF_F404)	TB21ST (0xFFFF_F414)	TB22ST (0xFFFF_F424)	TB23ST (0xFFFF_F434)
Register	Timer up counter	TB20UCL	TB21UCL	TB22UCL	TB23UCL
	register	TB20UCH	ТВ21UCH	ТВ22UCH	ТВ23UCH
(addresses)	Timer register	TB20RG0L (0xFFF_F408) TB20RG0H (0xFFF_F409) TB20RG1L (0xFFF_F40A) TB20RG1H (0xFFFF40B)	TB21RG0L (0xFFFF_F418) TB21RG0H (0xFFFF_F419) TB21RG1L (0xFFFF_F41A) TB21RG1H (0xFFFF_F41B)	TB22RG0L (0xFFFF_F428) TB22RG0H (0xFFFF_F429) TB22RG1L (0xFFFF_F42A) TB22RG1H (0xFFFF_F42B)	TB23RG0L (0xFFF_F438) TB23RG0H (0xFFFF_F439) TB23RG1L (0xFFFF_F43A) TB23RG1H (0xFFFF_F43B)
	Capture register	TB20CP0L (0xFFFF_F40C) TB20CP0H (0xFFFF_F40D) TB20CP1L (0xFFFF_F40E) TB20CP1H (0xFFFF_F40F)	TB21CP0L (0XFFFF_F41C) TB21CP0H (0XFFFF_F41D) TB21CP1L (0XFFFF_F41E) TB21CP1H (0XFFFF_F41E)	TB22CP0L (0xFFFF_F42C) TB22CP0H (0xFFFF_F42D) TB22CP1L (0xFFFF_F42E) TB22CP1H (0xFFFF_F42F)	TB23CP0L (0xFFFF_F43C) TB23CP0H (0xFFFF_F43D) TB23CP1L (0xFFFF_F43E) TB23CP1H (0xFFFF_F43F)







Fig. 11.1.1 TMRB14 Block Diagram (Same for Channels 15 through 1A)



Fig. 11.1.2 TMRB00 (same for channels 01 through 13 and 1B through 23) Block Diagram

### **11.2 Description of Operations for Each Circuit**

### 11.2.1 Prescaler

There is a 5-bit prescaler for acquiring the TMRB14 clock source. The prescaler input clock  $\phi$ T0 is fperiph/2, fperiph/4, fperiph/8 or fperiph/16 selected by SYSCR0<PRCK1:0> in the CG. The peripheral clock, fperiph, is either fgear, a clock selected by SYSCR1<FPSEL> in the CG, or fc, which is a clock before it is divided by the clock gear.

The operation or the stoppage of a prescaler is set with TB14RUN<TB14PRUN> where writing "1" starts counting and writing "0" clears and stops counting. Table 11.2.1 shows prescaler output clock resolutions.

Release	Clock gear	Select	Prescale	r output clock res	olutions
peripheral clock <fpsel></fpsel>	value <gear2:0></gear2:0>	prescaler clock <prck1 0="" :=""></prck1>	φΤ1	φT4	φT16
		00(fperiph/16)	fc/2 ⁵ (0.59μs)	fc/2 ⁷ (2.37 µs)	fc/2 ⁹ (9.48μs)
		01(fperiph/8)	fc/2 ⁴ (0.30 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁸ (4.74 μs)
	000 (fc)	10(fperiph/4)	fc/2 ³ (0.15 μs)	fc/2 ⁵ (0.59μs)	fc/2 ⁷ (2.37 μs)
		11(fperiph/2)	fc/2²(0.07 μs)	fc/2⁴(0.30µs)	fc/2 ⁶ (1.19 µs)
		00(fperiph/16)	fc/2 ⁶ (1.19 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ¹⁰ (18.96μs)
		01(fperiph/8)	fc/2⁵(0.59µs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48μs)
	100 (fc/2)	10(fperiph/4)	fc/2 ⁴ (0.30 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁸ (4.74 μs)
o (( _ )		11(fperiph/2)	fc/2³(0.15 μs)	fc/2⁵(0.59μs)	fc/2 ⁷ (2.37 μs)
0 (fgear)		00(fperiph/16)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48 µs)	fc/2 ¹¹ (37.93 μs)
		01(fperiph/8)	fc/2 ⁶ (1.19μs)	fc/2 ⁸ (4.74 µs)	fc/2 ¹⁰ (18.96 μs)
	110 (fc/4)	10(fperiph/4)	fc/2⁵(0.59 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48 μs)
		11(fperiph/2)	fc/2⁴(0.30 μs)	fc/2 ⁶ (1.19μs)	fc/2 ⁸ (4.74 μs)
		00(fperiph/16)	fc/2 ⁸ (4.74 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹² (75.85μs)
		01(fperiph/8) <	fc/2 ⁷ (2,37 μs)	fc/2 ⁹ (9.48μs)	fc/2 ¹¹ (37.93 μs)
	111 (fc/8)	10(fperiph/4)	fc/2 ⁶ (1.19 μs)	fc/2 ⁸ (4.74 µs)	fc/2 ¹⁰ (18.96μs)
		11(fperiph/2)	fc/2⁵(0.59 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48μs)
		00(fperiph/16)	fc/2⁵(0.59µs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48μs)
		01(fperiph/8)	fc/2 ⁴ (0.30 μs)	fc/2 ⁶ (1.19μs)	fc/2 ⁸ (4.74 μs)
	000 (fc)	10(fperiph/4)	fc/2 ³ (0.15 μs)	/fc/2⁵(0.59 μs)	fc/2 ⁷ (2.37 μs)
		11(fperiph/2)	fc/2²(0.07 μs)	fc/2⁴(0.30µs)	fc/2 ⁶ (1.19μs)
		00(fperiph/16)	fc/2⁵(0.59µs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48 μs)
		01(fperiph/8)	fc/2⁴(0.30 µs)	fc/2 ⁶ (1.19μs)	fc/2 ⁸ (4.74 μs)
	100 (fc/2)	10(fperiph/4)	fc/2 ³ (0.15 μs)	fc/2 ⁵ (0.59μs)	fc/2 ⁷ (2.37 μs)
		11(fperiph/2)		fc/2 ⁴ (0.30μs)	fc/2 ⁶ (1.19μs)
1 (fc)		00(fperiph/16)	fc/2⁵(0.59 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48μs)
		01(fperiph/8)	fc/2 ⁴ (0.30 μs)	fc/2 ⁶ (1.19μs)	fc/2 ⁸ (4.74 μs)
	110 (fc/4)	10(fperiph/4)		fc/2 ⁵ (0.59μs)	fc/2 ⁷ (2.37 μs)
4		11(fperiph/2)	-	fc/24(0.30μs)	fc/2 ⁶ (1.19 µs)
	ZA N	00(fperiph/16)	fc/2⁵(0.59µs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁹ (9.48μs)
		01(fperiph/8)	-	fc/2 ⁶ (1.19μs)	fc/2 ⁸ (4.74 μs)
$\sim$ ((	111 (fc/8)	10(fperiph/4)	-	fc/2 ⁵ (0.59 µs)	fc/2 ⁷ (2.37 µs)
		11(fperiph/2)	-	-	fc/2 ⁶ (1.19μs)

Table 11.2.1 Prescaler Output Clock Resolutions @fc = 54MHz

(Note 1) The prescaler output clock  $\phi$ Tn must be selected so that  $\phi$ Tn<fsys/2 is satisfied (so that  $\phi$ Tn is slower than fsys/2).

- (Note 2) Do not change the clock gear while the timer is operating.
- (Note 3) "-" denotes a setting prohibited.

### 11.2.2 Up-counter (UC0) and Up-counter Capture Registers (TBxxUCL,TBxxUCH)

This is the 16-bit binary counter that counts up in response to the input clock specified by TBxxMOD<TB0CLK1:0>.

UC0 input clock can be selected from either three types -  $\phi$ T1,  $\phi$ T4 and  $\phi$ T16 - of prescaler output clock or the external clock of the TBxxIN0 pin. For UC0, start, stop and clear are specified by TB0RUN<TB0RUN> and if UC0 matches the TBxxRG1H / L timer register, it is cleared to "0" provided the setting is "clear enable." Clear enable/disable is specified by TBxxMOD<TB0CLE>.

If the setting is "clear disable," the counter operates as a free-running counter.

The current count value of the UC0 can be captured by reading the TBxxUCL and TBxxUCH registers.

(Note) Make sure that reading is performed in the order of low-order bits followed by high-order bits.

If UC0 overflow occurs, the INTTBxx overflow interrupt is generated.

TMRB0C has the two-phase pulse input count function. The two-phase pulse count mode is activated by TB0CRUN<TB0CUDCE>. This counter serves as the up-down counter, and is initialized to 0x7FFF. If a counter overflow occurs, the initial value 0x0000 is reloaded. If a counter underflow occurs, the initial value 0xFFFF count is reloaded. When the two-phase pulse count mode is not active, the counter counts up only.

 $\bigcirc$ 

### 11.2.3 Timer Registers (TBxxRG0H/L, TBxxRG1H/L)

These are 16-bit registers for specifying counter values and two registers are built into each channel. If a value set on this timer register matches that on a UC0 up-counter, the match detection signal of the comparator becomes active.

To write data to the TBxxRG0H/L and TBxxRG1H/L timer registers, either a 2-byte data transfer instruction or a 1-byte data transfer instruction written twice in the order of low-order 8 bits followed by high-order 8 bits can be used.

TBxxRG0 of this timer register is paired with register buffer 0 - a double-buffered configuration. TBxxRG0 uses TBxxRUN<TB0RDE> to control the enabling/disabling of double buffering. If <TB0RDE> = "0," double buffering is disabled and if <TB0RDE> = "1," it is enabled. If double buffering is enabled, data is transferred from register buffer 0 to the TBxxRG0 timer register when there is a match between UC0 and TBxxRG1.

The values of TBxxRG0 and TBxxRG1 become undefined after a reset; therefore it is necessary to write data to them beforehand in case of using a 16-bit timer. A reset initializes TB0RUN <TB0RDE> to "0" and sets double buffering to "disable." To use double buffering, write data to the timer register, set <TB0RDE> to "1" and then write the following data to the register buffers.

TBxxRG0 and the register buffers are assigned to the same address:  $0xFFFF_FxxA/0xFFFF_FxxB$ . If <TB0RDE> = "0," the same value is written to TBxxRG0 and each register buffer; if <TB0RDE> = "1," the value is only written to each register buffer. To write an initial value to the timer register, therefore, the register buffers must be set to "disable."

### 11.2.4 Capture Registers (TBxxCP0H/L, TBxxCP1H/L)

These are 16-bit registers for latching values from the UC0 up-counter. The data in the capture register must be read out in the order of low-order bits followed by high-order bits by using the 1 byte data transfer instruction twice.

(Do not read out the data while executing 2 bytes transfer instruction.)

### 11.2.5 Capture

This is a circuit that controls the timing of latching values from the UC0 up-counter into the TBxxCP0 and TBxxCP1 capture registers. The timing with which to latch data is specified by TBxxMOD<TB0CPM1:0>.

Software can also be used to import values from the UC0 up-counter into the capture register; specifically, UC0 values are taken into the TBxxCP0 capture register each time "0" is written to TBxxMOD<TB0CP0>. To use this capability, the prescaler must be running (TBxxRUN<TB0PRUN> ="1").

In the two-phase pulse count mode (for the TMRB0C), the counter value is captured by using software.

- (Note 1) Although a read of low-order 8 bits in the capture register suspends the capture operation, it is resumed by successively reading high-order 8 bits.
- (Note 2) If the timer stops after a read of low-order 8 bits, the capture operation remains suspended even after the timer restarts. Please do not stop the timer after a read of low-order 8 bits.

### 11.2.6 Comparators (CP0, CP1)

These are 16-bit comparators for detecting a match by comparing set values of the UC0 up-counter with set values of the TBxxRG0 and TBxxRG1 timer registers. If a match is detected, INTTB0 is generated.

### 11.2.7 Timer Flip-flop (TBxxFF0)

The timer flip-flop (TBxxFF0) is reversed by a match signal from the comparator and a latch signal to the capture registers. It can be enabled or disabled to reverse by setting the TBxxFFCR<TB0C1T1, TB0C0T1, TB0E1T1, TB0E0T1>.

The value of TBxxFF0 becomes undefined after a reset. The flip-flop can be reversed by writing "00" to TB0FFCR<TB0FF0C1:0>. It can be set to "1" by writing "01," and can be cleared to "0" by writing "10."

The value of TBxxFF0 can be output to the timer output pin, TBxxOUT (shared with a port). To enable timer output, the port related registers PxCR and PxFC1 must be programmed beforehand.

### **11.3 Register Description**

		1 1011		egister (II	$-00 \sim 20,$	ехсертии		-)	
		7	6	5	4	3	2	1	0
TBnRUN	Bit symbol	TBnWBUF				l2TBn	TBnPRUN		TBnRUN
(0xFFFF_F2x0)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
	After reset	0	0	0	0	0	0	$\left( 0\right) \right\}$	0
		Double	Write "0".	Write "0".	Write "0".	IDLE	Timer Run/S	Stop Control	
	Function	Buffer				0: Stop	0: Stop & cl	ear	
	Function	0: Disable				1: Operation	1: Count	))	
		1: Enable					* The first b	it can be read	d as "0."

TMRBn RUN register (n=00 ~ 23, except for 0C and 12)

<TBnRUN>: Controls the TMRBn count operation.

<TBnPRUN>:Controls the TMRBn prescaler operation.

<I2TBn>:Controls the operation in the IDLE mode.

<TBnWBUF>:Controls enabling/disabling of double buffering.

-						9.010.			
	/	7	6	5	4	3	2	1	0
TB0CRUN	Bit symbol	TB0CRDE		UDACK	TBOCUDC	I2TBA	TB0CPRU		TB0CRUN
(0xFFFF_F2C0)					E	$\langle \langle \rangle$	N		
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
	After reset	0	0		0	0	0	0	0
		Double	Write "0".	Sampling	Enable/	IQLE	Timer Run/S	Stop Control	
		Buffer		clock	disable 🖯	0: Stop	0: Stop & cl	ear	
	Function	0: Disable		0:	two-phase	1: Operation	1: Count		
	1 difetion	1: Enable	(7/	1: ΦT0/4	counter	1/2	* The first b	it can be rea	d as "0."
			(VO)		0: Disable	$\sim$			
					1: Enable				
		15 1-							

### TMRB0C RUN register

<TB0CRUN>:Controls the TMRB0C count operation.

<TB0CPRUN>:Controls the TMRB0C prescaler operation.

<I2TBA>:Controls the operation in the IDLE mode.

<TB0CUDCE>:Controls enabling/disabling of the two-phase pulse input count operation.

Enable: The counter counts up and counts down.

Disable: This is the normal timer mode and the counter counts up only.

<UD0CCK>:Selects the two-phase pulse input sampling clock.

<TB0CRDE>:Controls enabling/disabling of double buffering.

TBı (0x

-					-				
	/	7	6	5	4	3	2	1	0
TBnCR	Bit symbol	TBnEN							
(0xFFFF_Fxx1)	Read/Write	R/W	R/W	R	R	R	R	R	R
	After reset	0	0	0	0	0	0 🔿	0	0
		TMRBn	Write "0".	This can	This can	This can be	This can	This can	This can
	Function	operation		be read as	be read as	read as "0".	be read as	be read as	be read as
	Function	0: Disable		"0".	"0".		"0".	"O".	"0".
		1: Enable					6		

TMRBn control register ( n=00 ~ 23 )

< TBnEN > : Specifies the TMRB operation. When the operation is disabled, no clock is supplied to the other registers in the TMRB module. This can reduce power consumption. (This disables reading from and writing to the other registers.) To use the TMRB, enable the TMRB operation (set to "1") before programming each register in the TMRB module. If the TMRB operation is executed and then disabled, the settings will be maintained in each register.

-								: \//	
	/	7	6	5	4	3	2	$\nabla$	// 0
BnMOD xFFFF_Fxx2)	Bit symbol		TB n RSWR	TBnCP0	TBnCPM1	TBnCPM0	TBnCLE	TBnCLK1	TBnCLK0
	Read/Write	R	R/W	W		4	R/W	J	
	After reset	0	0	1	$\bigcirc$	0		0	0
	Function	This can be read as "0".	Writing to timer registers 0,1 0 : Always enabled 1:Enabled simultaneou sly	0: Capture by software	Capture timing 00: Disable 01: TBnIN0 ↑ 10: TBnIN0 ↑ 11: CAPTRG ∕	TBnIN1 ↑ TBnIN0 ↓	Up-counter control 0: Clear/ disable 1: Clear/ enable	Selects sou 00: TBnIN0 01: φT1 10: φT4 11: φT16	

TMRBn mode register (n=00 ~ 23, except for 0C and 12)

< TBnCLK1:0 > : Selects the TMRBn timer count clock.

< TBnCLE > : Clears and controls the TMRBn up-counter.

"0" : Disables clearing of the up-counter.

"1": Clears up-counter if there is a match with timer register 1 (TBnRG1).

< TBnCPM1:0 > : Specifies TMRBn capture timing.

"00" : Capture disable

- "01" :Takes count values into capture register 0 (TBnCP0) upon rising of TBnIN0 pin input. Takes count values into capture register 1 (TBnCP1) upon rising of TBnIN1 pin input.
- "10" Takes count values into capture register 0 (TBnCP0) upon rising of TBnIN0 pin input. Takes count values into capture register 1 (TBnCP1) upon falling of TBnIN0 pin input.
- "11" Takes count values into capture register 0 (TBnCP0) upon rising of timer output for capture trigger (CAPTRG) and into capture register 1 (TBnCP1) upon falling of CAPTRG (CAPTRG for TMRB08 ~ 0F: TB10UT, for TMRB10 ~ 13: TB20UT).

<TBnCP0>:Captures count values by software and takes them into capture register 0 (TBnCP0).

<TBnRSWR>: Controls writing timing to timer registers 0 and 1 when using double buffer.

"0":Writing to the timer registers 0 and 1 is enabled individually if either of them is ready to be written.

"1":Writing to the timer registers 0 and 1 is enabled only when both are ready to be written.

(Note) The value read from bit 5 of TBnMOD is "1".

TMP19A63 (rev 1.1)11-270

					5	,			
		7	6	5	4	3	2	1	0
TBnMOD	Bit symbol		/	TBnCP0	TBnCPM1	TBnCPM0	TBnCLE	TBnCLK1	TBnCLK0
(0xFFFF_Fxx2)	Read/Write	F	2	W			R/W		
	After reset	C	)	1	0	0	0	0	0
	Function	This can be	control by 0 software 0 0: Capture 1		Capture timin 00: Disable 01: TBnIN0 ↑ 10: TBnIN0 ↑ 11: CAPTRG	TBnIN1 ↑ TBnIN0 ↓	Up-counter control 0: Clear/ disable 1:Clear/ enable	Selects sou 00: TBnIN0 01: \pt1 10: \pt4 11: \pt16	

### TMRBn mode register

<TBnCLK1:0>: Selects the TMRBn timer count clock.

<TBnCLE>: Clears and controls the TMRBn up-counter.

"0" : Disables clearing of the up-counter.

"1": Clears up-counter if there is a match with timer register 1 (TBnRG1).

<TBnCPM1:0>: Specifies TMRBn capture timing.

"00" : Capture disable

"01": Takes count values into capture register 0 (TBnCP0) upon the rising of TBnIN0 pin input. Takes count values into capture register 1 (TBnCP1) upon the rising of TBnIN1 pin input.

"10": Takes count values into capture register 0 (TBnCP0) upon the rising of TBnIN0 pin input. Takes count values into capture register 1 (TBnCP1) upon the falling of TBnIN0 pin input.

"11": Takes count values into capture register 0 (TBnCP0) upon the rising of timer output for capture trigger (CAPTRG) and into capture register 1 (TBnCP1) upon the falling of CAPTRG (CAPTRG for TMRB08 ~ 0F: TB1OUT, for TMRB10 ~ 13: TB2OUT).

<TBnCP0>: Captures count values by software and takes them into capture register 0 (TBnCP0).

				1 1	eeg.e.	•	,		
	/	7	6	5	4	3	2	1	0
TBnFFCR	Bit symbol			TBnC1T1	TBnC0T1	TBnE1T1	TBnE0T1	TBnFF0C1	TBnFF0C0
(0xFFFF_Fxx3)	Read/Write	F	2		R/	W		V	V
	After reset	1	1	0	0	0	0	1	1
	This is always read as "11."				erse trigger rigger igger	TBnFF0 control 00: Invert 01: Set			
	Function			When the up-counter value is taken into TBnCP1.	When the up-counter value is taken into TBnCP0.	When the up-counter matches TBnRG1.	When the up-counter matches TBnRG0.	10: Clear 11: Don't ca * This is a as "11."	always read

TMRBn flip-flop control register (  $n=14 \sim 1A$  )

<TBnFF0C1:0>: Controls the timer flip-flop.

"00" : Reverses the value of TBnFF0 (reverse by using software).

"01" : Sets TBnFF0 to "1."

"10" : Clears TBnFF0 to "0."

"11":Don't care

(Note) This is always read as "11."

<TBnE1:0>: Reverses the timer flip-flop when the up-counter matches the timer register 0,1 (TBnRG0,1).

<TBnC1:0>: Reverses the timer flip-flop when the up-counter value is taken into the capture register 0,1 (TBnCP0,1).

(Note) Do not change the setting of TBnMOD and TB n FFCR registers while timer is in operation (TB0RUN = "H").

TMRBn status registers (1)

			IMR	Bn status	registers	(n=00 ~ 23	3)		
	/	7	6	5	4	3	2	1	0
TBnST	Bit symbol						INTTBOFn	INTTBn1	INTTBn0
(0xFFFF_Fxx4)	Read/Write			R			<	R	
	After reset			0			0	0	0
	Function		This c	an be read a	as "O".		not generated	not generated 1: Interrupt	1: Interrupt

<INTTBn0>:Interrupt generated if there is a match with timer register 0 (TBnRG0) <INTTBn1>:Interrupt generated if there is a match with timer register 1 (TBnRG1) <INTTBOFn>:Interrupt generated if an up-counter overflow occurs

(Note) If any interrupt is generated, the flag that corresponds to the interrupt is set to TBnST and the generation of interrupt is notified to INTC. The flag is cleared by reading the TBnST register.

TMRB0C status registers (2) ① When TB0CRUN < TBAUDCE > = 0: Normal timer mode 7 6 5 4 3 2 0 TB0CST INTTROF INTTBC1 **INTTBC0** Bit symbol (0xFFFF_F2C4) ¢. Read/Write R R After reset 0 0 0 0 0: Interrupt 0: Interrupt 0: Interrupt This can be read as "0". not not not generated generated generated Function 1: Interrupt 1: Interrupt 1: Interrupt generated generated generated

< INTTBC0>: Interrupt generated if there is a match with timer register 0 (TB0CRG0) </ i>
 <INTTBC1>: Interrupt generated if there is a match with timer register 1 (TB0CRG1) <INTTBOFC>:Interrupt generated if an up-counter overflow occurs

### ② When TB0CRUN < TBAUDCE > = 1: Two-phase pulse input count mode

		7	> 6	5	4	3	2	1	0
	Bit symbol	/		/ /	INTTBUD	INTTBUD	INTTBOU		
(0xFFFF_F2C4)				$\sim$	~ с	FC	FC		
R	Read/Write		R	(		R		F	λ
A	After reset	)	0		0	0	0	(	)
		This c	an be read a	is "0".	Up-and-do	Underflow	Overflow	This can be	read as "0".
	$// \sim$		· (( `		wn count	0: Not	0: Not		
	Function			))	0: Not	generated	generated		
		$\sim$			generated	1: Generated	1: Generated		
			$\land$		1: Generated				

<INTTBOVFC>:Interrupt generated if an up-and-down counter overflow occurs <INTTBUDFC>:Interrupt generated if an up-and-down counter underflow occurs <INTTBUDC>:Interrupt generated if an up- or down-count occurs

#### (Note) If any interrupt is generated, the flag that corresponds to the interrupt is set to TB0CST and the generation of interrupt is notified to INTC. The flag is cleared by reading the TB0CST register.

TBnIM mask registers

	/	7	6	5	4	3	2	1	0	
TBnIM	Bit symbol						TBIMOFn	TBIMn1	TBIMn0	
(0xFFFF_Fxx5)	Read/Write			R		W/R 🔿	W/R	W/R		
	After reset			0	0	0	0			
	Function		This c	an be read a	1 : Mask	1:Mask	1:Mask			
	FUNCTION						INTTBOFn	INTTBn1	INTTBn0	
							$\bigcirc$			

TBnIM mask registers (  $n=00 \sim 23$ , except for 0C and 12 )

<TBIMOFn>:Masks an over-flow interrupt.

TBnRG0H/L, TBnRG1H/L timer registers

<TBIMn1>:Masks an interrupt if there is a match between timer register 1 and counter value.

<TBIMn0>:Masks an interrupt if there is a match between timer register 0 and counter value.

TBnRG0H/L timer registers (n=00 ~ 23) 7 6 5 4 3 0 2 TBnRG0L Bit symbol TBnRG0L TBnRG0L TBnRG0L TBnRG0L TBnRGOL TBnRG0L **TBnRG0L TBnRG0L** (0xFFFF_Fxx8) 7 6 5 4 2 0 1 Read/Write R/W Undefined After reset Function Timer capture value, Data of low-order 8 bits 7 6 5 4 3 2 1 0 TBnRG0H TBnRG0H TBnRG0H TBnRG0H TBnRG0H TBnRG0H TBnRG0H TBnRG0H TBnRG0H Bit symbol (0xFFFF_Fxx9) 7 6 4 3 2 0 5 1 Read/Write R/W After reset Undefined Function Timer capture value, Data of high-order 8 bits (Note) To write data to the timer registers, use either a 2-byte data transfer instruction or a 1-byte data transfer instruction written twice in the order of low-order 8 bits followed by high-order 8 bits. TBnRG1H/L timer registers (n=00 ~ 23) 7 4 0 6 5 3 2 1 TBnRG1L TBnRG1L TBnRG1L TBnRG1L TBnRG1L TBnRG1L TBnRG1L TBnRG1L TBnRG1L Bit symbol (0xFFFF_F1xA) 6 5 4 3 2 1 0 Read/Write R/W After reset Undefined Function Timer capture value, Data of low-order 8 bits 4 7 6 5 3 2 1 0 TBnRG1H Bit symbol TBnRG1H TBnRG1H TBnRG1H TBnRG1H TBnRG1H TBnRG1H TBnRG1H TBnRG1H (0xFFFF_F1xB) 7 6 5 4 3 2 1 0 Read/Write R/W After reset Undefined Function Timer capture value, Data of high-order 8 bits (Note) To write data to the timer registers, use either a 2-byte data transfer instruction or a 1-byte data transfer instruction written twice in the order of

# TBnCP0H/L, TBnCP1H/L capture registers

			TBnCP0	H/L captu	re register	s ( n=00 ~	23)							
		7	6	5	4	3	2	1	0					
TBnCP0L	Bit symbol	TBnCP0L	TBnCP0L	TBnCP0L	TBnCP0L	TBnCP0L	TBnCP0L	TBnCP0L	TBnCP0L					
(0xFFFF_F1xC)		7	6	5	4	3	2	1	0					
	Read/Write		R											
	After reset				Unde	efined		$\bigcirc$						
	Function			Timer cap	oture value, D	Data of low-o	rder 8 bits	4( )/						
		7	6	5	4	3 🖉	2 🦯	(	0					
TBnCP0H	Bit symbol	TBnCP0H	TBnCP0H	TBnCP0H	TBnCP0H	TBnCP0H	TBnCP0H	TBnCP0H	TBnCP0H					
(0xFFFF_F1xD)		7	6	5	4	3	2	1	0					
	Read/Write	R												
	After reset	Undefined												
	Function			Timer cap	ture value, D	ata of high-c	order 8 bits	4						
							<u> </u>	$\Delta$						
			data from											
	i	nstruction	n written	twice in	the orde	er of low	-order 8	bits follo	wed by					
	l ł	nigh-ordei	8 bits. De	on't use a	2-byte da	ata transfe	er instruct	tion.	$\int$					
					6	$\sim$	6	7_\						
			TBnCP1	H/L captu	re register	s ( n=00 ~	23)	$\mathcal{O}$						
		7	6	5	4	3	27	$\sim_1$	0					
TBnCP1L	Bit symbol	TBnCP1L	TBnCP1L	TBnCP1L	TBnCR1L	TBnCP1L	TBnCP1L	TBnCP1L	TBnCP1L					
(0xFFFF_F1xE)		7	6	5	4	3	2	1	0					
	Read/Write		R											
	After reset	After reset Undefined												
	Function	Function Timer capture value, Data of low-order 8 bits												
	<	-	6	7		$\wedge$	~	ī						
		7	6 ( (	5	4	3	2	1	0					
TBnCP1H	Bit symbol	TBnCP1H	TBnCP1H	TBnCP1H	TBnCP1H	TBnCP1H	TBnCP1H	TBnCP1H	TBnCP1H					
(0xFFFF_F1xF)		7	6	5	4	3	2	1	0					
	Read/Write		$\langle V \rangle$		- A	र								
	After reset			$\frown$	Unde	efined								
	Function			Timer cap	ture value, D	ata of high-c	order 8 bits							
			data from n written											
			r 8 bits. De						weu by					
			J DILJ. D											
	$\square$	$\sim$	~	.(										
4	(	))												
		ク _へ		$\gamma$										
	$ \longrightarrow $	((	$\mathcal{I}_{\mathcal{A}}$	))										
			$\sim$ $>$	/										

### **11.4 Description of Operations for Each Mode**

### 11.4.1 16-bit Interval Timer Mode

```
<< Generating interrupts at periodic cycles >>
```

To generate the INTTB0 interrupt, specify a time interval in the TB00RG1 timer register.

Г		7	6	5	4	3	2	1	0	
TB00CR		1	0	Х	Х	Х	Х	Х	Х	Starts the TMRB0 module.
<b>TB00RUN</b>	$\leftarrow$	0	0	0	0	_	0	Х	0	Stops the TMRB0.
IMC5	$\leftarrow$	Х	1	1	0	Х	1	0	0	Enables INTTB0, and sets it to level 4.
		Х	-	_	0	Х	-	-	-	(Setting of INTTB0 only is shown here. This is a 32-bit
		Х	-	_	0	Х	-	-	-	register and requires settings of other interrupts as
		Х	_	_	0	Х	_	_	_	well. )
TB00FFCR	$\leftarrow$	Х	Х	0	0	0	0	-	-	Disables the trigger.
TB00MOD	$\leftarrow$	Х	Х	1	0	0	1	*	*	Designates the prescaler output clock as the input clock,
TB00RG1L	$\leftarrow$	*	*	*	*	*	*	*	*	and specifies the time interval.
TB00RG1		*	*	*	*	*	*	*	*	(16-bit)
н										
TBOORUN	$\leftarrow$	0	0	0	0	-	1	Х	1	Starts the TMRB0.
X: Don't care –: no change							and	ae		

### 11.4.2 16-bit Event Counter Mode

<< By using an input clock as an external clock (TBxIN0 pin input), it is possible to make it the event counter.>>

The up-counter counts up on the rising edge of TBxIN0 pin input. By capturing a value using software and reading the captured value, it is possible to read the count value.

			7	6	5	4	3	2	1	0	1	
	TBxxCR	$\leftarrow$	1	0	X	X	Х	Х	Х	Х	$\langle \rangle$	Starts the TMRBxx module.
	TBxxRUN	F	0	0	ø	0)	_	0	Х	0		Stops the TMRBxx.
	PxCR	$/ \neq$	7	)-`	$\sim$	2	-	~	_	6(	7X (~	Cata Dv0 to the input mode
	PxFC1 🗸	$\leftarrow$	Fr	_	3	_	-	5	F	1	(D)	Sets Px0 to the input mode.
	IMC5	$\leftarrow$	×	1	1	0	Х	1	0	0	$\sim$	Enables INTTBxx, and sets it to level 4.
			X	5	-	0	X	$\leq$	-	2	$\geq$	(Setting of INTTB0 only is shown here. This is a 32-bit
	~ ~		Х	~	_	0	X	Z	-	-		register and requires settings of other interrupts as well.)
			Х	-	-	0	Х	-		$\sum$		
	TBxxFFCR	$\checkmark$	) X (	Х	0	0	0	0	-	_		Disables the trigger.
	TBxxMOD		Х	Х	1	0	0	1	0	0		Designates the TBxxIN0 pin input as the input clock.
$\sim$	TBxxRUN	$\leftarrow$	0	0	0	0	7	1	Х	1		Starts the TMRBxx.
					(			$\overline{}$				
			((		(							
1	TBxxMOD	$\leftarrow$	X	X	0	0	0	1	0	0		Captures a value using software.
	TBxxCP0L	$\leftarrow$	* <	1	*	*	*	*	*	*		Reads the lower 8-bit count value
	TBxxCP0H	$\leftarrow$	*	*	*	>*	*	*	*	*		Reads the higher 8-bit count value.
	Х;	Dor	n't c	care	<b>;</b> –;	no	ch	ang	ge			

To be used as the event counter, put the prescaler in a "RUN" state (TBxxRUN<TBxxPRUN> = "1").

### 11.4.3 16-bit PPG (Programmable Square Wave) Output Mode

Square waves with any frequency and any duty (programmable square waves) can be output. The output pulse can be either low-active or high-active.

Programmable square waves can be output from the TBxxOUT pin by triggering the timer flip-flop (TBxxFF) to reverse when the set value of the up-counter (UCO) matches the set values of the timer registers (TBxxRG0H/L, TBxxRG1H/L). Note that the set values of TBxxRG0H/L and TBxxRG1H/L must satisfy the following requirement:



Fig. 11.4.3.1 Example of Output of Programmable Square Wave (PPG)

In this mode, by enabling the double buffering of TBxxRG0H/L, the value of register buffer 0 is shifted into TBxxRG0H/L when the set value of the up-counter matches the set value of TBxxRG1H/L. This facilitates handling of small duties.

			7
Match with TBxxRG0	$\sim$	$\sim$	
	unter=Q1	Up counter=C	$\mathbf{Q}_2$
Match with TBxxRG1			
		Trigger to shift to TE	BxxRG1
TBxxRG0	Q1	- TK	Q ₂
(compare value)	f = 6		
Register buffer	Q2	))''	Q ₃
		TBxxl	RG0 write
Fig.	11.4.3.2 Register E	Buffer Operation	
	$\wedge$		
	21		
$\wedge$ (( )) $-$			
	$\sim$		
	$\bigcirc$		

The block diagram of this mode is shown below.



### 11.4.4 Applications using the Capture Function

The capture function can be used to develop many applications, including those described below:

- ① One-shot pulse output triggered by an external pulse
- ② Frequency measurement
- ③ Pulse width measurement
- ④ Time difference measurement
- ① One-shot pulse output triggered by an external pulse

One-shot pulse output triggered by an external pulse is carried out as follows:

The 16-bit up-counter UC0 is made to count up by putting it in a free-running state using the prescaler output clock. An external pulse is input through the TBxxIN0 pin. A trigger is generated at the rising of the external pulse by using the capture function and the value of the up-counter is taken into the capture registers (TBxxCP0H/L).

The INTC must be programmed so that an interrupt INTx is generated at the rising of an external trigger pulse. This interrupt is used to set the timer registers (TBxxRG0H/L) to the sum of the TBxxCP0H/L value (c) and the delay time (d), (c + d), and set the timer registers (TBxxRG1H/L) to the sum of the TBxxRG0H/L values and the pulse width (p) of one-shot pulse, (c + d + p).

In addition, the timer flip-flop control registers (TBxxFFCR<TBxxE1T1, TBxxE0T1>) must be set to "11." This enables triggering the timer flip-flop (TB5FF0) to reverse when UC5 matches TBxxRG0H/L and TB0RG1H/L. This trigger is disabled by the INTTBxx interrupt after a one-shot pulse is output.

Symbols (c), (d) and (p) used in the text correspond to symbols c, d and p in Fig. 11.4.4.1.





Programming example: Output a 2-ms one-shot pulse triggered by an external pulse from the TBxxIN0 pin with a 3-ms delay * Clock conditions System clock : High speed (fc) High-speed clock gear : 1X (fc) Prescaler clock fperiph/4 (fperiph fsys) Main programming 7 6 5 43 2 1 0 TBxxCR Start the TMRBxx module. Х Х 0 Х Х Х Х TBxxMOD Х 1 0 0 0 1 Puts to a free-running state. Uses oT1 for counting. Takes data into TBxxCP0 at the rising of TBxxIN0 input TBxxFFCR 0 0 0 0 Х 0 Clears TBxxFF0 to zero. Disables TBxxFF0 to reverse. **PxCR** 1 Assigns Px2 pin to TBxxOUT PxFC1 1 IMC1 0 Х 1 1 0 Х 1 0 0 Enables INT5. Х These are 32-bit registers and must be all processed. Х 0 Х Х Х 0 IMC5 Х 1 1 0 Х 0 0 0 Х 0 Х Disables INTTBxx/ These are 32-bit registers and must be all processed. Х 0 Х 0 Х Х TBxxRUN Starts TMRBxx. 0 0 0 Х 1 INT0 での設定 TBxxRG0L TBxxCP0 + 3ms/\otherapT1 TBxxRG0H TBxxRG1L TBxxRG0 + 2ms/oT1 TBxxRG1H TBxxFFCR Enables TBxxFF0 to reverse when there is a match with TBxxRG0, 1. IMC5 0 0 X 0 1 Х 0 Х Enables INTTBxx. Х 0 Х 0 х INTTBxx での設定 TBxxFFCR 0 Disables TBxxFF0 to reverse when there is a match with TBxxRG0, 1 IMC5 Х 1 λ 0 Х 0 0 0 Х 0 Х Disables INTTBxx. Х 0 Х Х 0 Х

### X; Don't care —;no change

If a delay is not required, TBxxFF0 is reversed when data is taken into TBxxCP0H/L, and TBxxRG1L/H is set to the sum of the TBxxCP0H/L value (c) and the one-shot pulse width (p), (c + p), by generating the INT5 interrupt. TB5FF0 is enabled to reverse when UC0 matches with TBxxRG1L/H, and is disabled by generating the INTTBxx interrupt.



### Fig. 11.4.4.2 One-shot Pulse Output Triggered by an External Pulse (Without Delay)

② Frequency measurement

The frequency of an external clock can be measured by using the capture function.

To measure frequency, another 16-bit timer (TMRB01) is used in combination with the 16-bit event counter mode (TMRB01 reverses TB01FFCR to specify the measurement time).

The TBxxIN0 pin input is selected as the TMRBxx count clock to perform the count operation using an external input clock. TBxxMOD<TBxxCPM1 : 0> is set to "11." This setting allows a count value of the 16-bit up-counter UC0 to be taken into the capture register (TBxxCP0) upon rising of a timer flip-flop (TB1FFCR) of the 16-bit timer (TMRB1), and an UC0 counter value to be taken into the capture register (TBxxCP1H/L) upon falling of TB1FF of the 16-bit timer (TMRB01).

A frequency is then obtained from the difference between TBxxCP0H/L and TBxxCP1H/L based on the measurement, by generating the INTTB1 16-bit timer interrupt.

Count clock		
(TBxxIN0 pin input)	C2	
TBxxOUT Taking data into		
TBxxCP0H/L Taking data into	C2	C2
TBxxCP1H/L INTTB1		

### Fig. 11.4.4.3 Frequency Measurement

For example, if the set width of TB1FF level "1" of the 16-bit timer is 0.5 s and if the difference between TBxxCP0H/L and TBxxCP1H/L is 100, the frequency is 100 / 0.5 s = 200 Hz.

③ Pulse width measurement

By using the capture function, the "H" level width of an external pulse can be measured. Specifically, by putting it in a free-running state using the prescaler output clock, an external pulse is input through the TBxxIN1 pin and the up-counter (UC5) is made to count up. A trigger is generated at each rising and falling edge of the external pulse by using the capture function and the value of the up-counter is taken into the capture registers (TBxxCP0H/L, TBxxCP1H/L). The INTC must be programmed so that INTCPTxx is generated at the falling edge of the TBxxIN1 pin.

The "H" level pulse width can be calculated by multiplying the difference between TBxxCP0H/L and TBxxCP1H/L by the clock cycle of an internal clock.

For example, if the difference between TBxxCP0H/L and TBxxCP1H/L is 100 and the cycle of the prescaler output clock is 0.5 us, the pulse width is 100 × 0.5 us = 50 us.

Caution must be exercised when measuring pulse widths exceeding the UC0 maximum count time which is dependent upon the source clock used. The measurement of such pulse widths must be made using software.



Fig. 11.4.4.4 Pulse Width Measurement

The "L" level width of an external pulse can also be measured. In such cases, the difference between C2 generated the first time and C1 generated the second time is initially obtained by performing the second stage of INTCPT interrupt processing as shown in "Fig. 11.4.4.5 Time Difference Measurement" and this difference is multiplied by the cycle of the prescaler output clock.

(Note) INTCPTxx interruption is generated when the value of the up-counter is taken into the capture register TBxxCP1H/L.

④ Time Difference Measurement

The up-counter (UC0) is made to count up by putting it in a free-running state using the prescaler output clock. The value of UC0 is taken into the capture register (TBxxCP0H/L) at the rising edge of the TBxxIN0 pin input pulse.

The value of UC0 is taken into the capture register TBxxCP1H/L at the rising edge of the TBxxIN1 pin input pulse. The INTC must be programmed to generate INTCPTxx interrupt at this time.

The time difference can be calculated by multiplying the difference between TBxxCP1H/L and TBxxCP0H/L by the clock cycle of an internal clock.



capture register TBxxCP1H/L.

### 11.4.5 Two-phase Pulse Input Count Mode (TMRB0C)

In this mode, the counter is incremented or decremented by one depending on the state transition of the two-phase clock that is input through TB0CIN0 and TB0CIN1 and has phase difference. Interrupt is output in the ups and downs counter mode by the count operation.

This is a quadruple mode that performs count-up/ down in every modes.

TMRB0C has the same two phase pulse mode as TMRB12. Here we give a detailed description of TMRB0C.



TRACRUM		7	6	5	4	3	2	1	0
TB0CRUN (0xFFFF_F2C0)	Bit symbol	TB0CRD		UD0CCK	TB0CUDC	I2TB0C	TB0CPRU		TB0CRU
		E			E		N		N
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W 🗸	R	R/W
	After reset	0	0	0	0	0	0	0	0
	Function	Double	Write "0".	Sampling	Enable/	IDLE	Timer Run/S	Stop Control	
		Buffer		clock	disable	0: Stop	0: Stop & Cl	ear	
		0: Disable		selection	two-phase	1:	1: Run (Cou	nt Up)	
		1: Enable		1:φT0/4	counter	Operation 🗸		(5)	
					0: Disable		$\mathbb{Z}/\mathbb{Z}$	$\mathcal{I}$	
					1: Enable		$\langle \rangle$		

### TMR0C RUN register (TB0CRUN)

### Fig. 11.4.6.1 Two-phase Pulse Input Count Mode Setting Register

Set the 5th bit of TB0CRUN register <UDCCK> to "1" as a sampling clock.

#### 2 Interrupt

In the NORMAL mode •

The INTTBOC interrupt is enabled using the interrupt controller (INTC). The INTTBOC interrupt is generated by counting up or down. Reading the status register TB0CST during interrupt handling allows simultaneous check for occurrences of an overflow and an underflow. If TB0CST<INTTBOUFC> is "1," it indicates that an overflow has occurred. If <INTTBUDF0C> is "1," it indicates that an underflow has occurred. This register is cleared after it is read. The counter becomes 0x0000 when an overflow occurs, and it becomes 0xFFFF when an underflow occurs. After that, the counter continues the counting operation.

-						$\langle \rangle \rangle$			
	/	7	(6/	5	4	3	2	1	0
TB0CST	Bit symbol	$\searrow$	X V		INTTBUD0	INTTBUDF0	INTTBOUF0		
(0xFFFF_F1E4)		$// \rightarrow$			$\left( \left( \left( \circ \right) \right) \right)$	С	С		$\sim$
	Read/Write	$\langle \rangle /$	R			R		F	2
	After reset		0		0	0	0	(	)
		This can be	read as "0".	1	Up-and-dow	Underflow	Overflow	This can be	read as "0"
			100000.		n count	0: Not	0: Not		
	Function	7			0: Not	occurred	occurred		
					Occurred	1: Occurred	1: Occurred		
	$\langle \rangle$	$\sim$	/		1: Occurred				
-	$\bigcirc$								

Fig. 11.4.6.2 TMRB0C status register

(Note) The status is cleared after the register is read.

### ③ Up-and-down counter

When the two-phase input count mode is selected (TB0CRUN<TB0CUDCE> = "1"), the up-counter becomes the up-and-down counter and it is initialized to 0x7FFF. If a counter overflow occurs, the counter returns to 0x0000. If a counter underflow occurs, the counter returns to 0xFFFF. After that, the counter continues the counting operation. Therefore, the state can be checked by reading the counter value and the status flag TB0CST after an interrupt is generated.

Sampling clock	unningtuin
Up-count input	
Up-and-down counter value	0x3FFF 0x4000 0x4001
Up-and-down interrupt	

# (Note 1) The up (down) count input must be set to the "H" level for the states before and after an input.

(Note 2) Reading of counter value must be executed during INTTB0C interrupt handling.

# 12. 32-bit Input Capture (TMRC)

TMRC consists of two channels (TBTA and TBTB) with a 32-bit time base timer (TBT), two channels (CAPx0~1) each with a 32-bit input capture register, and two channels (CMPx0~1) each with a 32-bit compare register.

TBTA and TBTB operate individually and have the same operational structure. Here we are going to explain the case of TBTA.

Fig. 12.1 shows the TMRC block diagram.






#### 12.2 Description for Operations of Each Circuit

#### 12.2.1 Prescaler

The prescaler is provided to acquire the TMRC source clock. The prescaler input clock  $\phi$ T0 is fperiph/2, fperiph/4, fperiph/8 or fperiph/16 selected by SYSCR0<PRCK1: 0> in the CG.  $\phi$ T2 through  $\phi$ T256 generated by dividing  $\phi$ T0 are available as TMRC prescaler input clocks and can be selected with TBTACR<TBTCLK3:0>.

Fperiph is either "fgear" which is a clock selected by SYSCR1<FPSEL> in the CG, or "fc" which is a clock before it is divided by the clock gear.

The operation or stoppage of the prescaler is set with TBTARUN<TBTPRUN> where writing "1" starts counting and writing "0" clears and stops counting. Table 12.1 shows the prescaler output clock resolutions.

## Table 12.1 Prescaler Output Clock Resolutions

(when high speed clock gear is selected from 1/1, 1/2, 1/4 and 1/8)

						c = 54MHz
Select peripheral clock <fpsel></fpsel>	Clock gear value <gear2:0></gear2:0>	Select prescaler clock <prck1:0></prck1:0>	Prescaler outpu	t clock resolutio	on	
			ΦΤ2	ΦΤ4	ФТ8	ФТ16
		00(fperiph/16)		fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 µs)
	000(fc)	01(fperiph/8)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)
	000(10)	10(fperiph/4)	fc/24(0.30 µs)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 µs)
		11(fperiph/2)	fc/2³(0.15 μs)	fc/2 ⁴ (0.30 μs)	fc/2⁵(0.59 μs)	fc/2 ⁶ (1.19 μs)
		00(fperiph/16)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 µs)	fc/2 ⁹ (9.48 µs)	fc/2 ¹⁰ (18.96 μs)
	100(fc/2)	01(fperiph/8)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 µs)	fc/2 ⁹ (9.48 μs)
	100(10/2)	10(fperiph/4)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)
O(fgear)		11(fperiph/2)	fc/24(0.30 µs)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 µs)	fc/2 ⁷ (2.37 μs)
U(Igeal)		00(fperiph/16)	fc/2 ⁸ (4.74 µs)	fc/2º(9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 μs)
	$110(f_{0}/4)$	01(fperiph/8)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)
	110(fc/4)	10(fperiph/4)	fc/2 ⁶ (1.19 µs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 µs)
		11(fperiph/2)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ^z (2.37 µs)	fc/2 ⁸ (4.74 μs)
		00(fperiph/16)	fc/2 ⁹ (9.48 µs)	fc/2 ¹⁰ (18.96 μs)	fc/2 ¹¹ (37.93 μs)	fc/2 ¹² (75.85 μs)
	$111(f_{0}/0)$	01(fperiph/8)	fc/2 ⁸ (4.74 µs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 μs)	fc/2 ¹¹ (37.93 µs)
	111(fc/8)	10(fperiph/4)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)
		11(fperiph/2)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)
		00(fperiph/16)	fc/2 ⁶ (1.19 μs)	fc/27(2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 µs)
	000(fc)	01(fperiph/8)	fc/2⁵(0.59 µs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)
	000(10)	10(fperiph/4)	fc/2⁴(0.30 µs)	fc/2⁵(0.59 µs)	fc/2 ⁶ (1.19 μs)	fc/27(2.37 µs)
		11(fperiph/2)	fc/2³(0.15 μs)	fc/2⁴(0.30 μs)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)
		00(fperiph/16)	fc/2 ⁶ (1.19 μ <b>s</b> )	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)
	100(fc/2)	01(fperiph/8)	fc/2 ⁵ (0.59 µs)	fc/2 [®] (1.19 μs)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 µs)
	100(10/2)	10(fperiph/4)	fc/24(0.30 µs)	fc/2⁵(0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/27(2.37 µs)
$1(f_0)$		11(fperiph/2)	fc/2³(0.15 μs)	fc/2⁴(0.30 µs)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)
1(fc)		00(fperiph/16)	fc/2 ⁶ (1.19 µs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)
	110(fc/4)	01(fperiph/8)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 µs)
	110(10/4)	10(fperiph/4)	fc/2⁴(0.30 µs)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/27(2.37 µs)
		11(fperiph/2)	<u>_</u>	fc/2 ⁴ (0.30 μs)	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)
		00(fperiph/16)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)
$\sim$	111/50/00	01(fperiph/8)	fc/2⁵(0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)
	1111V tc/8V	10(fperiph/4)	<ul> <li>✓ -</li> </ul>	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)	fc/2 ⁷ (2.37 µs)
	$\geq$	11(fperiph/2)	-	-	fc/2 ⁵ (0.59 μs)	fc/2 ⁶ (1.19 μs)
1					-	-

				@IC	c = 54MHz				
Clock gear value <gear2:0></gear2:0>	Select prescaler clock <prck1:0></prck1:0>								
		T32	T64	T128	T256				
	00(fperiph/16)		fc/2 ¹¹ (37.93 µs)		fc/2 ¹³ (151.7 μs)				
$000(f_{\tau})$	01(fperiph/8)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 μs)	fc/211(37.93 µs)	fc/2 ¹² (75.85 μs)				
000(TC)	10(fperiph/4)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)				
	11(fperiph/2)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 µs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 μs)				
	00(fperiph/16)	fc/2 ¹¹ (37.93 μs)	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)	fc/2 ¹⁴ (303.4 µs)				
$400(f_{0}(2))$	01(fperiph/8)	fc/2 ¹⁰ (18.96 µs)	fc/211(37.93 µs)	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)				
100(1C/2)	10(fperiph/4)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 μs)	fc/2 ¹² (75.85 μs)				
	11(fperiph/2)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 µs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 μs)				
	00(fperiph/16)	fc/2 ¹² (75.85 μs)	fc/2 ¹³ (151.7 μs)	fc/2 ¹⁴ (303.4 µs)	fc/2 ¹⁵ (606.8 μs)				
110/6-11)	01(fperiph/8)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)	fc/2 ¹⁴ (303.4 µs)				
110(10/4)	10(fperiph/4)	fc/2 ¹⁰ (18.96 μs)	fc/211 (37.93 µs)	fc/212(75.85 µs)	fc/2 ¹³ (151.7 μs)				
	11(fperiph/2)	fc/2 ⁹ (9.48 µs)	fc/2 ¹⁰ (18.96 μs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 μs)				
	00(fperiph/16)	fc/2 ¹³ (151.7 µs)	fc/2 ¹⁴ (303.4 µs)	fc/2 ¹⁵ (606.8 µs)	fc/2 ¹⁶ (1213.6 μs)				
$111(f_{0}/0)$	01(fperiph/8)	fc/2 ¹² (75.85 μs)	fc/2 ¹³ (151.7 μs)	fc/214(303.4 µs)	fc/2 ¹⁵ (606.8 µs)				
111(10/0)	10(fperiph/4)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 μs)	fc/2 ¹³ (151.7 μs)	fc/2 ¹⁴ (303.4 µs)				
	11(fperiph/2)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)				
	00(fperiph/16)	fc/2 ¹⁰ (18.96 μs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 μs)	fc/2 ¹³ (151.7 μs)				
$000(f_{0})$	01(fperiph/8)	fc/2º(9.48 µs)	fc/2 ¹⁰ (18.96 μs)	fc/2 ¹¹ (37.93 μs)	fc/2 ¹² (75.85 μs)				
000(10)	10(fperiph/4)	fc/2 ⁸ (4.74 μs)	fc/2º(9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)				
	11(fperiph/2)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)				
	00(fperiph/16)	fc/2 ¹⁰ (18.96 μs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)				
$100(f_{C}/2)$	01(fperiph/8)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 µs)				
100(10/2)	10(fperiph/4)	fc/2 ⁸ (4.74 μs) 🤇	fc/2º(9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)				
	11(fperiph/2)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)				
	00(fperiph/16)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)				
110(fc/4)	01(fperiph/8)	fc/2 ⁹ (9.48 µs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)	fc/2 ¹² (75.85 μs)				
110(10/4)	10(fperiph/4)			fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)				
	11(fperiph/2)	fc/2 ⁷ (2.37 µs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)				
	00(fperiph/16)	fc/2 ¹⁰ (18.96 μs)	$fc/2^{11}(37.93 \ \mu s)$	fc/2 ¹² (75.85 µs)	fc/2 ¹³ (151.7 μs)				
111(10/8)	01(fperiph/8)	fc/2º(9.48 μs)	$fc/2^{10}(18.96 \ \mu s)$	$fc/2^{11}(37.93 \ \mu s)$	fc/2 ¹² (75.85 μs)				
	10(fperiph/4)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 µs)	fc/2 ¹¹ (37.93 µs)				
	11(fperiph/2)	fc/2 ⁷ (2.37 μs)	fc/2 ⁸ (4.74 μs)	fc/2 ⁹ (9.48 μs)	fc/2 ¹⁰ (18.96 μs)				
	value	value <gear2:0>clock <prck1:0><gear2:0>00(fper iph/16)000(fc)01(fper iph/8)000(fc)01(fper iph/4)10(fper iph/2)00(fper iph/16)100(fc/2)00(fper iph/16)10(fper iph/8)10(fper iph/8)10(fper iph/8)10(fper iph/8)110(fc/4)00(fper iph/16)111(fc/8)00(fper iph/16)000(fper iph/16)01(fper iph/8)111(fc/8)00(fper iph/16)000(fc)01(fper iph/8)100(fc/2)00(fper iph/16)000(fper iph/16)01(fper iph/8)100(fc/2)00(fper iph/16)100(fc/2)00(fper iph/16)110(fc/4)01(fper iph/8)10(fper iph/8)10(fper iph/8)10(fper iph/8)10(fper iph/8)110(fc/4)01(fper iph/8)111(fc/8)00(fper iph/16)111(fc/8)00(fper iph/8)111(fc/8)00(fper iph/8)111(fc/8)00(fper iph/8)111(fc/8)00(fper iph/8)</gear2:0></prck1:0></gear2:0>	value GEAR2:0>         clock <prck1:0>           GEAR2:0&gt;         T32           00(fperiph/16)         fc/2¹⁰(18.96 µs)           00(fperiph/2)         fc/2⁹(9.48 µs)           00(fperiph/4)         fc/2⁹(2.37 µs)           10(fperiph/2)         fc/2¹¹(37.93 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           10(fperiph/2)         fc/2¹⁰(18.96 µs)           10(fperiph/16)         fc/2¹⁰(18.96 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           10(fperiph/4)         fc/2¹⁰(18.96 µs)           10(fperiph/16)         fc/2¹¹(37.93 µs)           10(fperiph/8)         fc/2¹¹(37.93 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           10(fperiph/16)         fc/2¹⁰(18.96 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           00(fperiph/16)         fc/2¹⁰(18.96 µs)           00(fperiph/16)         fc/2¹⁰(18.96 µs)           00(fperiph/8)         fc/2¹⁰(18.96 µs)           10(fperiph/8)         fc/2¹⁰(18.96 µs)           00(fperiph/16)         fc/2¹⁰(18.96 µs)           00(fperiph/8)         fc/2¹⁰(18.96 µs)</prck1:0>	value <gear2:0>         clock <prck1:0>           000(fpciph/16)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)           000(fpciph/8)         fc/2⁹(9.48 µs)         fc/2¹⁰(18.96 µs)           100(fpciph/8)         fc/2⁹(9.48 µs)         fc/2⁹(9.48 µs)           10(fpciph/4)         fc/2⁸(4.74 µs)         fc/2⁹(9.48 µs)           11(fpciph/2)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           00(fpciph/16)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         00(fpciph/8)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         00(fpciph/4)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         00(fpciph/4)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)           110(fc/4)         00(fpciph/16)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           111(fc/8)         01(fpciph/8)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           111(fpciph/2)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)           111(fpciph/8)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           111(fpcriph/8)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           111(fpcriph/8)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)      <tr< td=""><td>value <gear2:b< th="">         clock <prck1:b< th="">         T32         T64         T128           000(fc)         00(fperiph/16)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           000(fc)         01(fperiph/8)         fc/2⁸(9.48 µs)         fc/2¹⁰(18.96 µs)         fc/2¹⁰(18.96 µs)           10(fperiph/16)         fc/2⁸(9.47 µs)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)           10(fperiph/16)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         00(fperiph/16)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         01(fperiph/8)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           110(fc/4)         00(fperiph/16)         fc/2¹¹(37.93 µs)         fc/2¹²(75.85 µs)         fc/2¹¹(</prck1:b<></gear2:b<></td></tr<></prck1:0></gear2:0>	value <gear2:b< th="">         clock <prck1:b< th="">         T32         T64         T128           000(fc)         00(fperiph/16)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           000(fc)         01(fperiph/8)         fc/2⁸(9.48 µs)         fc/2¹⁰(18.96 µs)         fc/2¹⁰(18.96 µs)           10(fperiph/16)         fc/2⁸(9.47 µs)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)           10(fperiph/16)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         00(fperiph/16)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           100(fc/2)         01(fperiph/8)         fc/2¹⁰(18.96 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)         fc/2¹¹(37.93 µs)           110(fc/4)         00(fperiph/16)         fc/2¹¹(37.93 µs)         fc/2¹²(75.85 µs)         fc/2¹¹(</prck1:b<></gear2:b<>				

(Note 1	The prescaler output clock $\phi$ Tn must be selected so that $\phi$ Tn <fsys (so<="" 2="" is="" satisfied="" th=""></fsys>
	that φTn is slower than fsys/2).
(Note 2	Do not change the clock gear while the timer is operating.
(Note 3)	) "-" denotes "setting prohibited."

#### 12.2.2 Noise Removal Circuit

The noise removal circuit removes noises from an external clock source input (TBTIN) and a capture trigger input (TCnIN) of the time base timer (TBTA). It can also output input signals without removing noises from them.

#### 12.2.3 32-bit Time Base Timer (TBT)

This is a 32-bit binary counter that counts up upon the rising of an input clock specified by the TBTA control register TBTACR.

Based on the TBTCR<TBTCLK3 : 0> setting, an input clock is selected from external clocks supplied through the TBTIN1 pin and eight prescaler output clocks  $\phi$ T2,  $\phi$ T4,  $\phi$ T8,  $\phi$ T16,  $\phi$ T32,  $\phi$ T64,  $\phi$ T128, and  $\phi$ T256.

"Count," "stop" or "clear" of the up-counter can be selected with TBTARUN<TBTRUN>. When a reset is performed, the up-counter is in a cleared state and the timer is in an idle state. As counting starts, the up-counter operates in a free-running condition. As it reaches an overflow state, the overflow interrupt INTTBT is generated; subsequently, the count value is cleared to 0 and the up-counter restarts a count-up operation. INTTBTA is controlled by CAPINT and CMPINT that categorized in the same group as INTCAPn described in the part of 32-bit capture register.

This counter can perform a read capture operation. When it is performing a read capture operation, it is possible to read a counter value by accessing the TBTA read capture register (TBTARDCAP) in units of 32 bits.

However, a counter value cannot be read (captured) if the register is accessed in units of 8 or 16 bits.

#### 12.2.4 Edge Detection Circuit

By performing sampling, this circuit detects the input edge of an external capture input (TCnIN). It can be set to "rising edge," "falling edge," "both edges" or "not captured" by provisioning the capture control register CAPAnCR<CPnEG1:0>. Fig. 12.2.4.1 shows capture inputs, outputs (capture factor outputs) produced by the edge detection circuit.





## 12.2.5 32-bit Capture Register

This is a 32-bit register for capturing count values of TBTA by using capture factors as triggers. If a capture operation is performed, the capture interrupt INTCAPn is generated. Two interrupt requests INTCAP0 through INTCAP1 are grouped into one set of interrupt requests which are then notified to the interrupt controller. Which one of interrupt requests must be processed can be identified by reading the status register TCGST during interrupt processing. Additionally, it is possible to mask unnecessary interrupts by setting the interrupt mask register TCGIM to an appropriate bit setting. While a read of the capture register is ongoing, count values cannot be captured even if there are triggers.



#### 12.2.6 32-bit Compare Register

This is a 32-bit register for specifying a compare value. TMRC has two built-in compare registers, CMPA0 and CMPA1. If values set in these compare registers match the value of TBTA, the match detection signal of a comparator becomes active. "Compare enable" or "compare disable" can be specified with the compare control register CMPCTL<CMPEN1:0>.

To set TCCMPn to a specific value, data must be transferred to TCCMPn in the order of lower to higher bits by using a byte data transfer instruction four times.

CMPAn forms a pair with a register buffer "n." "Enable" or "disable" of the double buffers is controlled by the compare control register CMPCTL <CMPRDEn>. If <CMPRDEn> is set to "0," the double buffers are disabled. If <CMPRDEn> is set to "1," they are enabled.

If the double buffers are enabled, data transfer from the register buffer "n" to the compare register CMPAn takes place when the value of TBTA matches that of CMPAn.

Because CMPAn is indeterminate when a reset is performed, it is necessary to prepare and write data in advance. A reset initializes CMPACTL <CMPRDEn> to "0" and disables the double buffers. To use the double buffers, data must be written to the compare register, < CMPRDEn > must be set to "1," and then the following data must be written to the register buffer.

CMPAn and the register buffer are assigned to the same address. If < CMPRDEn > is "0," the same value is written to CMPAn and each register buffer. If <CMPRDEn> is "1," data is written to each register buffer only. Therefore, to write an initial value to the compare register, it is necessary to set the double buffers to "disable."

## 12.3 Register Description

			11		U legister							
		7	6	5	4	3	2	1	0			
TCACR	bit Symbol	TCEN	I2TBT				V,	/				
(FFFFF500H)	Read/Write	R/	W		R							
	After reset	0	0	0	0	0		) 🖓 0	0			
		TMRC	IDLE					2				
	Function	operation	0: Stop			(	$(// \uparrow)$					
	1 unction	0: Disable	1:									
		1: Enable	Operation			$\square$						
						1 1	1.7					

TMRC control register

<I2TBT>: Controls the operation in idle mode.

<TCEN>: Specifies enabling/disabling of the TMRC operation. If set to "disable," a clock is not supplied to other registers of the TMRC module and, therefore, a reduction in power consumption is possible (a read of or a write to other registers cannot be executed). To use TMRC, the TMRC operation must be set to "enable" ("1") before making individual register settings of TMRC modules. If TMRC is operated and then set to "disable," individual register settings are retained.



<TBTRUN>:Controls the TBT count operation.

<TBTPRUN>:Controls the TBT prescaler operation.

<TBTCAP>: If this is set to "1," the count value of the time base timer (TBT) is taken into the capture register TBTCAPn.

(Note) TBTRUN bits 4~7 are read as "0".



_					TE	BT co	ntro	l regis	ster	•			
	/	7	6	5		5		4		3	2	1	0
TBTACR	bit Symbol	TBTNF		/	Ĺ.,	/	$\langle - \rangle$	/	/	TBTCLK3	TBTCLK2	TBTCLK1	TBTCLK0
(FFFFF502H)	Read/Write		R/W										
	After reset	0	(	)		0		0		0	0	0	0
	Function	TBTIN0 Input noise removal 0:disable 1:enable	Make	sure	to w	vrite "O'	-			TBT source α 0000: φT2 0011: φT16 0110: φT12 1111: TBTI	0001: ቀT 0100: ቀT 8 0111: ቀ ^T	<b>F32</b> 0101:	'

This is an input clock for TBT. Clocks from "0000" to "0111" are available as prescaler output <TA0CLK3:0>: clocks. A clock "1111" is input through the TBTIN pin. <TBTNF>:

Controls the noise removal for the TBTIN pin input, If this is set to "0" (removal disabled), any input of more than 2/fsys (37ns@fperiph = fc = 54MHz) is accepted as a source clock for TBT, at whichever level the TBTIN pin is, "H" or "L."

If this is set to "1" (removal enabled), any input of less than 6/fsys (111ns@fperiph = fc = 54MHz) is regarded as noise and removed, at whichever level the TBTIN pin is, "H" or "L." The range of removal changes depending on the selected clock gear and a system clock used.

TBTA capture register (TBTACAP)										
		7	6	5	4 🔨	3	2	1	0	
TBATCAPLL	bit Symbol	CAP07	CAP06	CAP05	CAP04	CAP03	CAP02	CAP01	CAP00	
(FFFFF504H)	Read/Write					r)				
	After reset	0	( 0 1	0	0	0	0	0	0	
	Function	$\langle \rangle$		(	Capture da	ta (bit 7~0)				
		7	6	5	4	3	2	1	0	
TBTACAPLH	bit Symbol	CAP15	CAP14	CAP13	CAP12	CAP11	CAP10	CAP09	CAP08	
(FFFFF505H)	Read/Write	~			F	R				
	After reset	0	0	0	0	0	0	0	0	
	Function	$\sum$			Capture dat	a (bit 15~8)				
<b>A</b>			<u> </u>							
	T T	7	6	5	4	3	2	1	0	
TBTACAPHL	bit Symbol	CAP23	CAP22	CAP21	CAP20	CAP19	CAP18	CAP17	CAP16	
(FFFFF506H)	Read/Write				F	2				
	After reset	0	0	0	0	0	0	0	0	
	Function		$\searrow$		Capture dat	a (bit 23~16)				
	<	·								
		7	6	5	4	3	2	1	0	
TBTACAPHH	bit Symbol	CAP31	CAP30	CAP29	CAP28	CAP27	CAP26	CAP25	CAP24	
(FFFFF507H)	Read/Write				F	R				
	After reset	0	0	0	0	0	0	0	0	
	Function				Capture dat	a (bit 31~24)				

Fig. 12.3.2TMRC-related registers

## TBT read capture register (TBTARDCAP)

TBTARDCAPLL(0xFFFF_F508)

TETRICEORI		500)						
	7	6	5	4	3	2	1	0
bit Symbol	RDCAP07	RDCAP06	RDCAP05	RDCAP04	RDCAP03	RDCAP02	RDCAP01	RDCAP00
Read/W rite			-		R		_	_
After reset	0	0	0	0	0	0	0	0
Function				Capture of	lata (bit 7~0)		))`	
TBTARDCAP	LH(0xFFFF_F	509)			~	(77)		
	7	6	5	4	3	2	1	0
bit Symbol	RDCAP17	RDCAP16	RDCAP15	RDCAP14	RDCAP13	RDCAP12	RDCAP11	RDCAP10
Read/W rite			-	-	R	)7	-	
After reset	0	0	0	0	0	0	0	0
Function				Capture d	ata (bit 15~8)	>		
TBTARDCAP	HL(0xFFFF_F	50A)				(	>//	
	7	6	5	4 (	7/3	2 6		0
bit Symbol	RDCAP27	RDCAP26	RDCAP25	RDCAP24	RDCAP23	RDCAP22	RDCAP21	RDCAP20
Read/W rite		•		$ ( \bigcirc ) $	R		90/	
After reset	0	0	0	0	0	0	0	0
Function				Capture da	ta (bit 23~16)			
TBTARDCAP	HH(0xFFFF_	F50B)	(					
	7	6	5 _(	4,	3 ((	/ 2	1	0
bit Symbol	RDCAP37	RDCAP36	RDCAP35	RDCAP34	RDCAP33	RDCAP32	RDCAP31	RDCAP30
Read/W rite				$\sim$	R			-
After reset	0	0	0	0	0	0	0	0
Function			(( ))	Capture da	ta (bit 31~24)			



TMRC capture 0 control register										
7 6 5 4 3 2 1										
CAPA0CR	bit Symbol	TC0NF						CP0EG1	CP0EG0	
(FFFFF520H)	Read/Write	R/W				R/	W			
	After reset	0	0	0	0	0	0	0	0	
	Function	TC0IN Input noise removal 0:disable 1:enable					$\overline{0}$	Select effectiv TCOIN input 00 : Not capt 01 : Rising er 10 : Falling e 11 : Both edg	ured dge dge	

<CP0EG1:0>:Selects the effective edge of an input to the trigger input pin TC0IN of the capture 0 register (CAAP0). If this is set to "00," the capture operation is disabled.

<TC0NF>: Controls the noise removal for the TC0IN pin input.

If this is set to "0" (removal disabled), any input of more than 2/fsys (37ns@fperiph=fc=54MHz) is accepted as a trigger input for TCCAP0, at whichever level the TC0IN pin is, "H" or "L." If this is set to "1" (removal enabled), any input of less than 6/fsys (111ns@fperiph=fc=54MHz) is regarded as noise and removed, at whichever level the TCOIN pin is, "H" or "L." The range of removal changes depending on the selected clock gear and a system clock used.

(Note) CAPA0CR bits 2~6 are read as "0".

TMRC capture 0 register ( CAPA0 )											
		7	6	5	4	3	2	1	0		
CAPA0LL	bit Symbol	CAP007	CAP006	CAP005	CAP004	CAP003	CAP002	CAP001	CAP000		
(FFFFF524H)	Read/Write			$\bigcirc$	F	2					
	After reset	0	0	0	0 🔨	0	0	0	0		
	Function				Capture 0 da	ata (bit 7~0)					
			$\sim$	)	11						
		7 (	(//6)	5	4	3	2	1	0		
CAPA0LH	bit Symbol	CAP017	CAP016	CAP015	CAP014	CAP013	CAP012	CAP011	CAP010		
(FFFFF525H)	Read/Write	$\langle \rangle \perp$	<u> </u>		// )) F	R					
F	After reset	0	0	0	0	0	0	0	0		
	Function				Capture 0 da	ata (bit 15~8)					
		$\sim$									
	A	7	6	5	4	3	2	1	0		
CAPA0HL	bit Symbol	CAP027	CAP026	CAP025	CAP024	CAP023	CAP022	CAP021	CAP020		
(FFFFF5216H	Read/Write	)	4		F	2					
$\sim$	After reset	0	0	0	0	0	0	0	0		
	Function	$\frown$	$(\bigcirc)$	~	Capture 0 dat	ta (bit 23~16)					
	$\rightarrow$		$> \bigcirc /$								
		72	6	5	4	3	2	1	0		
(FFFFF527H)	bit Symbol	CAP037	CAP036	CAP035	CAP034	CAP033	CAP032	CAP031	CAP030		
	Read/Write				F	λ					
	After reset	0	0	0	0	0	0	0	0		
	Function				Capture 0 dat	ta (bit 31~24)					

(Note)Data is not captured during a read of the capture register.

Fig. 12.3.4 TMRC-related register

	TMRC capture 1 control reigster										
	/	7	6	5	4	3	2	1	0		
CAPA1CR	bit Symbol	TC1NF						CP1EG1	CP1EG0		
(FFFFF528H)	Read/Write	R/W			R/	W					
	After reset	0	0	0	0	0	0	0	0		
	Function	TC1IN Input noise removal 0:disable 1:enable				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\langle$	Select effectin TC1IN input 00 : Not capt 01 : Rising er 10 : Falling e 11 : Both edg	ured dge dge		

<CP1EG1:0>: Selects the effective edge of an input to the trigger input pin TC1IN of the capture 1 register (TCCAP1). If this is set to "00," the capture operation is disabled.

<TC1NF>: Controls the noise removal for the TC1IN pin input.

If this is set to "0" (removal disabled), any input of more than 2/fsys (37ns@fperiph = fc = 54MHz) is accepted as a trigger input for TCCAP1, at whichever level TC1IN pin is, "H" or "L."

If this is set to "1" (removal enabled), any input of less than 6/fsys (111ns@fperiph = fc = 54MHz) is regarded as noise and removed, at whichever level the TC1IN pin is, "H" or "L." The range of removal changes depending on the selected clock gear and a system clock used.

(Note) CAPA1CR bits 2~6 area read as "0".

TMRC capture 1 register (CAPA1)										
		7	6	5	4	3	2	1	0	
CAPA1LL	bit Symbol	CAP107	CAP106	CAP105	CAP104	CAP103	CAP102	CAP101	CAP100	
(FFFFF52CH)	Read/Write			$\bigcirc$	F					
	After reset	0	0	0	0 🔨	0	0	0	0	
	Function				Capture 1 da	ata (bit 7~0)				
				)		$\geq$				
		7 (	(//6)	5	4	3	2	1	0	
CAPA1LH	bit Symbol	CAP117	CAP116	CAP115	CAP114	CAP113	CAP112	CAP111	CAP110	
(FFFFF52DH)	Read/Write	$() \perp$			// )) f	2				
F	After reset	0	0	0	0	0	0	0	0	
	Function		5		Capture 1 da	ta (bit 15~8)				
		$\sim$								
	The second secon	7	6	5	4	3	2	1	0	
CAPA1HL	bit Symbol	CAP127	CAP126	CAP125	CAP124	CAP123	CAP122	CAP121	CAP120	
(FFFFF52EH)	Read/Write	)	91		F	2			-	
$\sim$	After reset									
	Function	$\frown$	( )	~	Capture 1 dat	a (bit 23~16)		-		
	$\rightarrow$									
		72	6	5	4	3	2	1	0	
(FFFFF52FH)	bit Symbol	CAP137	CAP136	CAP135	CAP134	CAP133	CAP132	CAP131	CAP130	
	Read/Write				F	{				
	After reset	0	0	0	0	0	0	0	0	
	Function				Capture 1 dat	a (bit 31~24)				

(Note) Data is not captured during a read of the capture register.

Fig. 12.3.5 TMRC-related register

				-		_		-	
		7	6	5	4	3	2	1	0
	bit Symbol			INTCAP B1	INTCAP B0			INTCAP A1	INTCAP A0
CAPINT	Read/Write				F	R			
(0xFFFF_E718)	After reset			0	0			0	0
/				Interrupt	Interrupt		~	Interrupt	Interrupt
	Function			0:disable	0:disable		$\sim$	0:disable	0:disable
				1:enable	1:enable			1:enable	1:enable
								$ \langle \rangle \rangle$	
		15	14	13	12	11	10	9)7	8
	bit Symbol			IMINTCA PB1	IMINTCA PB0		$(\overline{a})$		IMINTCA PA0
	Read/Write				R	w $\land$		$\left( \right)$	
	After reset			0	0		//<	//0	0
				Mask	Mask		$\langle \rangle$	Mask	Mask
	Function			0:disable	0:disable	(	() >	0:disable	0:disable
				1:enable	1:enable			1:enable	1:enable

#### TMRC capture interrupt determination, interrupt mask register

TMRC capture interrupt determination, interrupt mask register

	1 101	ito oupid		apt doton	initiation,	inten ap		giçiçi	*
	/	7	6	5	4	× 3))	2 🔷	$(\mathcal{V})$	0
bi	t Symbol	INTCMP B1	INTCMP B0			INTCMP A1	INTCMP A0	N Y	$\bigcup$
	ead/Write	R	R		20	R	R	$7 \rightarrow $	
A	fter reset	0	0		$\langle \rangle$	0	0((	<u> </u>	
		Interrupt	Interrupt		$\langle \rangle$	Interrupt	Interrupt	$\mathcal{A}$	
	Function	0:disable	0:disable	6		0:disable	0:disable	$\bigcirc$	
		1:enable	1:enable	1	$\sim$	1:enable	1:enable		
				( )		$\frown$	$\langle \cup \rangle$	/	
		15	14	<u>্</u> শই	12	/ 11	10	9	8
bi	t Symbol	IMINTCM PB1	IMINTCM PB0		>	IMINTCM PA1	IMINTCM PA0		
R	ead/Write	R/W	R/W		7	R/W	R/W	-	
At	fter reset	0	0			0	0		
		Mask	Mask		~	Mask	Mask		
	Function	0:disable	0:disable	$ \land $	$\leq$	0:disable	0:disable		
		1:enable	1:enable	))	$\sim$	1:enable	1:enable		

CMPINT (0xFFFF_E71C )

Fig. 12.3.6 TMRC-related register

	/	7	G	E	4	2	2	4	0
		7	6	5	4	3	2	1	0
CMPA0CTL	bit Symbol		TCFFEN0	TCFFC01	TCFFC00			CMPRDE0	CMPEN0
(FFFFF510H)	Read/Write	R		R/W		F	2	R/	W
	After reset	0	0	1	1	0	0	0	0
	Function		TCFF0 reverse 0:disable 1:enable	TCFF0 contro 00:reverse 01:set 10:clear 11:Don't care			()	Double buffer 0 0:disable 1:enable	Compare 0 enable 0:disable 1:enable
		7	6	5	4	3 ( (	2	1	0
CMPA1CTL	bit Symbol		TCFFEN1	TCFFC11	TCFFC10	$\backslash$	) L	CMPRDE1	CMPEN1
(FFFFF518H)	Read/Write	R		R/W			8	R	W
	After reset	0	0	1	1	0	0	Q	$\searrow_0$
	Function		TCFF0 reverse 0:disable 1:enable	TCFF0 contro 00:reverse 01:set 10:clear 11:Don't care		Z >		Double buffer 1 0:disable 1:enable	Compare 1 enable 0:disable 1:enable

TMRC compare control register ( CMPACTLn )

<CMPENn>: Controls enabling/disabling of the compare match detection.

<CMPRDEn>:Controls enabling/disabling of double buffers of the compare register.

<TCFFCn1:0>:Controls F/F of the compare match output.

<TCFFENn>:Controls enabling/disabling of F/F reversal of the compare match output.

(Note) CMPACTLn bits 7 and 3~2 are read as "0". Fig. 12.3.7 TMRC-related register

			TMRC c	ompare re	gister 0 (	CMPA0)			
	/	7	6	5	4	3	2	1	0
CMPA0LL	bit Symbol	CMP007	CMP006	CMP005	CMP004	CMP003	CMP002	CMP001	CMP000
(FFFFF514H)	Read/Write		-	•	. R	W			-
	After reset	0	0	0	0	0	0	0	0
	Function			Con	npare registe	er 0 data (bit 7	7~0)		
	_								
		7	6	5	4	3	2 ((		0
CMPA0LH	bit Symbol	CMP017	CMP016	CMP015	CMP014	CMP013	CMP012	CMP011	CMP010
(FFFFF515H)	Read/Write			:		W			:
	After reset	0	0	0	0	0	0	0	0
	Function			Com	pare registe	r 0 data (bit 1	5~8)		
1		-			-				
		7	6	5	4	3	_2		0
CMPA0HL (FFFFF516H)	bit Symbol	CMP027	CMP026	CMP025	CMP024	CMP023	CMP022	CMP021	CMP020
	Read/Write					W			
	After reset	0	0	0	0		0		0
	Function			Com	pare register	0 data (bit 23	3~16)		
		7	6	5	4	3	22		0
CMPA0HH	hit Symbol	, CMP037	CMP036	CMP035 <			CMP032	CMP031	CMP030
(FFFFF517H)	bit Symbol Read/Write	CIVIP 037	CIVIPUSO			<u> </u>			
	After reset	0	0	0	0	0	70	0	0
	Function	Ŭ	. 0		<u> </u>	0 data (bit 31	<del>\/ ·//</del>	. 0	- 0
•									
			(			$\langle \rangle$	)		
_			TMRC c	ompare re	gister 1 (	CMPA1)	/		
		7	6	5	4	3 ~	2	1	0
CMPA1LL	bit Symbol	CMP107	CMP106	CMP105	CMP104	CMP103	CMP102	CMP101	CMP100
(FFFFF51CH)	Read/Write			)	R	Ŵ			
	After reset	0	7/0	0	0	0	0	0	0
	Function	$\square$	()	Con	npare registe	er 1 data (bit 7	7~0)		
			$\sim$	$ \land ($	(// 5)			-	
			6	5	4	3	2	1	0
CMPA1LH	bit Symbol	CMP117	CMP116	CMP115	CMP114	CMP113	CMP112	CMP111	CMP110
(FFFFF51DH)	Read/Write	$\sim$			-	W .		:	:
	After reset	0	0	0	0	0	0	0	0
	Function	$\square$		Com	pare registe	r 1 data (bit 1	5~8)		
		_							
	$\square$	7	6	5	4	3	2	<u> </u>	0
CMPA1HL (FFFFF51EH)	bit Symbol	CMP127	CMP126	CMP125	CMP124		CMP122	CMP121	CMP120
(FFFFF51ED)	Read/Write	0	$\sim$			W			
	After reset	0		0	0	0	0	0	0
	Function	ļ	$\rightarrow$	Com	pare register	1 data (bit 23	3~16)		
1		7	6	5	4	3	2	1	0
CMPA1HH	hit Cymrei al			:					
(FFFFF51FH)	bit Symbol	CMP137	CMP136	CMP135	CMP134	CMP133	CMP132	CMP131	CMP130
· · · · · · · · · · · · · · · · · · ·	Read/Write	0	0	0	0 R	W 0	0	0	0
	After reset	0	. U					. 0	. U
	Function			Com	Jare register	1 data (bit 31	ı~∠4)		

Fig. 12.3.8 TMRC-related register

## 13 Serial Channel (SIO)

## 13.1 Features

This device has eleven serial I/O channels: SIO0 to SIOA. Each channel operates in either the UART mode (asynchronous communication) or the I/O interface mode (synchronous communication) which is selected by the user.

I/O interface mode — Mode 0: This is the mode to transmit and receive I/O and associated synchronization signals (SCLK) to extend I/O.

	_ Mode 1:	TX/RX Data Length: 7 bits
Asynchronous (UART) mode:	— Mode 2:	TX/RX Data Length: 7 bits TX/RX Data Length: 8 bits
	L Mode 3:	TX/RX Data Length: 9 bits

In the above modes 1 and 2, parity bits can be added. The mode 3 has a wakeup function in which the master controller can start up slave controllers via the serial link (multi-controller system). Fig. 13.2.1 shows the block diagram of SIO0.

Each channel consists of a prescaler, a serial clock generation circuit, a receive buffer, its control circuit, a transmit buffer and its control circuit. Each channel functions independently.

As the SIOs 0 to SIOA operate in the same way, only SIO0 is described here.



Fig. 13.1 Data format

## 13.2 Block Diagram (Channel 0)



## 13.3 Operation of Each Circuit (Channel 0)

#### 13.3.1 Prescaler

The device includes a 7-bit prescaler to generate necessary clocks to drive SIO0. The input clock  $\phi$ T0 to the prescaler is selected by SYSCR of CG <PRCK1:0> to provide the frequency of fperiph/2, fperiph/8, or fperiph/16.

The clock frequency fperiph is either the clock "fgear," to be selected by SYSCR1<FPSEL> of CG, or the clock "fc" before it is divided by the clock gear.

The prescaler becomes active only when the baud rate generator is selected for generating the serial transfer clock. Table 13.3.1 lists the prescaler output clock resolution.

Clear Clock gear		Prescaler clock	F	Prescaler outpu	t clock resolutio	n
peripheral clock <fpsel></fpsel>	value <gear2:0></gear2:0>	selection <prck1 0="" :=""></prck1>	φΤ1	¢T4	φT16	фТ64
		00(fperiph/16)	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
	000(fc)	01(fperiph/8)	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2μs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0μs)
	000(10)	10(fperiph/4)	fc/2 ³ (0.15µs)	fc/2 ⁵ (0.6μs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)
		11(fperiph/2)	fc/2 ² (0.07µs)	fc/2 ⁴ (0.3μs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)
		00(fperiph/16)	fc/2 ⁶ (1.2µs)	Fc/2 ⁸ (4.7μs)	fc/2 ¹⁰ (19.0µs)	fc/2 ¹² (75.9µs)
	100(fc/2)	01(fperiph/8)	fc/2 ⁵ (0.6µs)	Fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5μs)	fc/2 ¹¹ (37.9µs)
	100(10/2)	10(fperiph/4)	fc/2 ⁴ (0.3µs)	Fc/2 ⁶ (1.2μs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)
0 (fgear)		11(fperiph/2)	fc/2 ³ (0.15µs)	fc/2 ⁵ (0.6μs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)
0 (igeal)		00(fperiph/16)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)	fc/2 ¹³ (152µs)
	110(fc/4)	01(fperiph/8)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)	fc/2 ¹² (75.9µs)
	110(10/4)	10(fperiph/4)	fc/2 ⁵ (0.6μs)	fc/27(2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
		11(fperiph/2)	fc/2 ⁴ (0.3μs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7 μs)	fc/2 ¹⁰ (19.0µs)
	111(fc/8)	00(fperiph/16)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0μs)	fc/2 ¹² (75.9µs)	fc/2 ¹⁴ (303µs)
		01(fperiph/8)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)	fc/2 ¹³ (152µs)
		10(fperiph/4)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)	fc/2 ¹² (75.9µs)
		11(fperiph/2)	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
	000(fc)	00(fperiph/16)	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
		01(fperiph/8)	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)
	000(10)	10(fperiph/4)	fc/2 ³ (0.15µs)	fc/2 ⁵ (0.6μs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)
		11(fperiph/2)	fc/2 ² (0.07µs)	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)
	$\sim$	00(fperiph/16)	fc/2⁵(0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
	100(fc/2)	01(fperiph/8)	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)
	100(10/2)	10(fperiph/4)	fc/2 ³ (0.15µs)	fc/2 ⁵ (0.6μs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)
4 ((-)	$(\bigcirc)$	11(fperiph/2)	-	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)
1 (fc)		00(fperiph/16)	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
	110(fc/4)	01(fperiph/8)	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)
$\langle -$		10(fperiph/4)	-	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)
		11(fperiph/2)	-	fc/2 ⁴ (0.3µs)	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)
	$\langle \rangle$	00(fperiph/16)	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)	fc/2 ¹¹ (37.9µs)
	$111(f_{0}/0)$	01(fperiph/8)	-	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)	fc/2 ¹⁰ (19.0µs)
	111(fc/8)	10(fperiph/4)	-	fc/2 ⁵ (0.6µs)	fc/2 ⁷ (2.4µs)	fc/2 ⁹ (9.5µs)
		11(fperiph/2)	-	-	fc/2 ⁶ (1.2µs)	fc/2 ⁸ (4.7µs)

Table 13.3.1 Input Clock Resolution to the Baud Rate Generator @fc = 54MHz

(Note 1) The prescaler output clock  $\phi$ Tn must be selected so that the relationship " $\phi$ Tn < fsys/2" is satisfied (so that  $\phi$ Tn is slower than fsys/2).

(Note 2) Do not change the clock gear while SIO is operating.

(Note 3) The horizontal lines in the above table indicate that the setting is prohibited.

The serial interface baud rate generator uses four different clocks, i.e.,  $\phi$ T1,  $\phi$ T4,  $\phi$ T16 and  $\phi$ T64, supplied from the prescaler output clock.

#### 13.3.2 Baud Rate Generator

The baud rate generator generates transmit and receive clocks to determine the serial channel transfer rate.

The baud rate generator uses either the  $\phi$ T1,  $\phi$ T4,  $\phi$ T16 or  $\phi$ T64 clock supplied from the 7-bit prescaler. This input clock selection is made by setting the baud rate generator control register, BR0CR <BR0CK1:0>.

The baud rate generator contains built-in dividers for divide by 1, N + m/16 (N=2~15, m=0~15), and 16. The division is performed according to the settings of the baud rate generator control registers BR0CR<BR0ADDE><BR0S3:0> and BR0ADD<BR0K3:0> to determine the resulting transfer rate.

- UART mode
- 1) If BR0CR<BR0ADDE>=0

The setting of BR0ADD < BR0K3:0> is ignored and the counter is divided by N where N is the value set to BR0CR<BR0S3:0>. (N = 1 to 16).

2) If BR0CR<BR0ADDE>=1

(K=1, 2, 3 ... 15) The N + (16 - K)/16 division function is enabled and the division is made by using the values N (set in BR0CR<BR0S3:0>) and K (set in BR0ADD<BR0K3:0>). (N = 2 to 15, K = 1 to 15)

(Note) For the N values of 1 and 16, the above N+(16-K)/16 division function is inhibited. So, be sure to set BR0CR<BR0ADDE> to "0."

I/O interface mode

The N + (16 - K)/16 division function cannot be used in the I/O interface mode. Be sure to divide by N, by setting BR0CR<BR0ADDE> to "0".

<u>Baud rate calculation to use the baud rate generator:</u>

1) UART mode

Baud rate = Baud rated generator input clock ÷ 16

Frequency divided by the divide ratio

The highest baud rate out of the baud rate generator is 843.75 kbps when  $\phi$ T1 is 13.5 MHz

The fsys/2 frequency, which is independent of the baud rate generator, can be used as the serial clock. In this case, the highest baud rate will be 1.68 Mbps when fsys is 54 MHz.

2) I/O interface mode Baud rate =  $\frac{\text{Baud rated generator input clock}}{\text{Frequency divided by the divide ratio}} \div 2$ The highest baud rate will be generated when  $\phi$ T1 is 13.5 MHz. The divide ratio can be set to 1 if double buffer is used and the resulting output baud rate will be 6.75 Mbps. (If double buffering is not used, the highest baud rate will be 3.375 Mbps applying the divide ratio of "2"). Example baud rate setting 1) Division by an integer (divide by N): Selecting fc = 54MHz for fperiph, setting  $\phi$ T0 to fperiph/16, using the baud rate generator input clock  $\phi$ T1, setting the divide ratio N (BR0CR<BR0S3:0>) = 4, and setting BR0CR<BR0ADDE> = "0," the resulting baud rate in the UART mode is calculated as follows: **Clock condition** :High-speed (fc) System clock High-speed clock gear:1x (fc) Prescaler clock :fperiph/16 (fperiph = fsys) Baud rate =  $\frac{\text{fc}/32}{4}$  = 16  $= 54 \times 10^6 \div 32 \div 4 \div 16 = 26367$  (bps) (Note) The divide by (N + (16-K)/16) function is inhibited and thus BR0ADD <BR0K3:0> is ignored. 2) For divide by N + (16-K)/16 (only for UART mode): Selecting fc = 54MHz for fperiph, setting  $\phi$ T0 to fperiph/16, using the baud rate generator input clock oT1, setting the divide ratio N (BR0CR<BR0S3:0>)=4, setting K (BR0ADD<BR0K3:0>)=14, and selecting BR0CR<BR0ADDE>=1, the resulting baud rate is calculated as follows: Clock condition System clock :High-speed (fc) High-speed clock gear:1x (fc) Prescaler clock :fperiph/16 (fperiph = fsys) Baud rate =  $\frac{\text{fc}/32}{4+ (16 \cdot 14)} \div 16$ =  $54 \times 10^6 \div 32 \div (4 + ) \div 16\frac{2}{16}$  25568 (bps)

Also, an external clock input may be used as the serial clock. The resulting baud rate calculation is shown below:

- Baud rate calculation for an external clock input:
  - 1) UART mode

Baud rate = external clock input ÷ 16

In this, the period of the external clock input must be equal to or greater than 4/fsys. If fsys = 54 MHz, the highest baud rate will be  $54 \div 4 \div 16 = 844$  (kbps).

2) I/O interface mode

Baud rate = external clock input

When double buffering is used, it is necessary to satisfy the following relationship: (External clock input period) > 12/fsys

Therefore, when fsys = 54 MHz, the highest baud rate must be set to a rate lower than

54÷12 = 4.5 (Mbps)

When double buffering is not used, it is necessary to satisfy the following relationship:

(External clock input period) > 16/fsys

Therefore, when fsys = 54 MHz, the highest baud rate must be set to a rate lower than  $54\div16 = 3.375$  (Mbps).

The baud rate examples for the UART mode are shown in Table 13.3.2.1 and Table 13.3.2.2.

	(Using the baud rate generator with BR0CR $\langle BR0ADDE \rangle = 0$ ) Unit: (kbps)							
fc [MHz]	Input clock Divide ratio N (Set to BR0CR <br0s3:0>)</br0s3:0>	φT1 (fc/4)	φT4 (fc/16)	φT16 (fc/64)	φT64 (fc/256)			
19.6608	1	307.200	76.800	19.200	4.800			
$\uparrow$	2	153.600	38.400	9.600	2.400			
$\uparrow$	4	76.800	19.200	4,800	1.200			
$\uparrow$	8	38.400	9.600	2.400	0.600			
$\uparrow$	0	19.200	4.800	1.200	0.300			
24.576	5	76.800	19.200	) 4.800	1.200			
$\uparrow$	А	38.400	9.600	2.400	0.600			
29.4912	1	460.800	115.200	28.800	7.200			
$\uparrow$	2	230.400	57.600	14.400	3.600			
$\uparrow$	3	153.600	38.400	9.600	2.400			
$\uparrow$	4	115.200	28.800	7.200	1.800			
$\uparrow$	6	76.800	19.200	4.800	1.200			
$\uparrow$	C	38.400	9.600	2.400	0.600			

## Table 13.3.2.1 Selection of UART Baud Rate

(Note) This table shows the case where the system clock is set to fc, the clock gear is set to fc/1, and the prescaler clock is set to f_{periph}/2.

## Table 13.3.2.2 Selection of UART Baud Rate

(The TMRB7 timer output (internal TB7OUT) is used with the timer input clock set to  $\phi$ T0.)

			~ //			Unit: (kbps)
fc	29.4912	24.576	24	19.6608	16	12.288
TB7RG0H/L	MHz	(MH之)	MHz	MHz	MHz	MHz
0001H	230.4	192	187.5	153.6	125	96
0002H	115.2	96	93.75	76.8	62.5	48
0003H	76.8	64	62.5	51.2	41.67	32
0004H	57.6	48	46.88	38.4	31.25	24
0005H	46.08	38.4	37.5	30.72	25	19.2
0006H	38.4	32	31.25	25.6	20.83	16
0008H	28.8	24	23.44	19.2	15.63	12
000AH	23.04	19.2	18.75	15.36	12.5	9.6
0010H	14.4	12	11.72	9.6	7.81	6
0014H	11.52	9.6	9.38	7.68	6.25	4.8

Baud rate calculation to use the TMRB7 timer:

Transfer rate = <u>Clock frequency selected by SYSCR0<PRCK1:0></u>

TB7REG×<u>2</u>×16

(When input clock to the timer TMRB7 is  $\phi$ T0)

(Note 1) In the I/O interface mode, the TMRB7 timer output signal cannot be used internally as the transfer clock.

(Note 2) This table shows the case where the system clock is set to fc, the clock gear is set to fc/1, and the prescaler clock is set to  $f_{periph}/4$ .

#### 13.3.3 Serial Clock Generation Circuit

This circuit generates basic transmit and receive clocks.

<u>I/O interface mode</u>

In the SCLK output mode with the SC0CR <IOC> serial control register set to "0," the output of the previously mentioned baud rate generator is divided by 2 to generate the basic clock.

In the SCLK input mode with SC0CR <IOC> set to "1," rising and falling edges are detected according to the SC0CR <SCLKS> setting to generate the basic clock.

Asynchronous (UART) mode

According to the settings of the serial control mode register SC0MOD0<SC1:0>, either the clock from the baud rate register, the system clock ( $f_{SYS}/2$ ), the internal output signal of the TMRB4 timer, or the external clock (SCLKO pin) is selected to generate the basic clock, SIOCLK.

#### 13.3.4 Receive Counter

The receive counter is a 4-bit binary counter used in the asynchronous (UART) mode and is up-counted by SIOCLK. Sixteen SIOCLK clock pulses are used in receiving a single data bit while the data symbol is sampled at the seventh, eighth, and ninth pulses. From these three samples, majority logic is applied to decide the received data.

#### 13.3.5 Receive Control Unit

I/O interface mode

In the SCLK output mode with SC0CR <IOC> set to "0," the RXD0 pin is sampled on the rising edge of the shift clock output to the SCLK0 pin.

In the SCLK input mode with SCOCR <IOC> set to "1," the serial receive data RXD0 pin is sampled on the rising or falling edge of SCLK input depending on the SCOCR <SCLKS> setting.

<u>Asynchronous (UART) mode</u>

The receive control unit has a start bit detection circuit, which is used to initiate receive operation when a normal start bit is detected.

#### 13.3.6 Receive Buffer

The receive buffer is of a dual structure to prevent overrun errors. The first receive buffer (a shift register) stores the received data bit-by-bit. When a complete set of bits have been stored, they are moved to the second receive buffer (SC0BUF). At the same time, the receive buffer full flag (SC0MOD2<RBFLL>) is set to "1" to indicate that valid data is stored in the second receive buffer. However, if the receive FIFO is set enabled, the receive data is moved to the receive FIFO and this flag is immediately cleared.

If the receive FIFO has been disabled (SCOFCNF <CNFG> = 0 and SC0MOD1<FDPX1:0>=01), the INTRX0 interrupt is generated at the same time. If the receive FIFO has been enabled (SCNFCNF<CNFG>=1 and SC0MOD1<FDPX1:0>=01/11), an interrupt will be generated according to the SCORFC < RIL2:0 > setting.

The CPU will read the data from either the second receive buffer (SC0BUF) or from the

receive FIFO (the address is the same as that of the receive buffer). If the receive FIFO has not been enabled, the receive buffer full flag SC0MOD2<RBFLL> is cleared to "0" by the read operation. The next data received can be stored in the first receive buffer even if the CPU has not read the previous data from the second receive buffer (SC0BUF) or the receive FIFO.

If SCLK is set to generate clock output in the I/O interface mode, the double buffer control bit SC0MOD2 <WBUF> can be programmed to enable or disable the operation of the second receive buffer (SCOBUF).

By disabling the second receive buffer (i.e., the double buffer function) and also disabling the receive FIFO (SCOFCNF < CNFG > =0 and <FDPX1:0>=01), handshaking with the other side of communication can be enabled and the SCLK output stops each time one frame of data is transferred. In this setting, the CPU reads data from the first receive buffer. By the read operation of CPU, the SCLK output resumes.

If the second receive buffer (i.e., double buffering) is enabled but the receive FIFO is not enabled, the SCLK output is stopped when the first receive data is moved from the first receive buffer to the second receive buffer and the next data is stored in the first buffer filling both buffers with valid data. When the second receive buffer is read, the data of the first receive buffer is moved to the second receive buffer and the SCLK output is resumed upon generation of the received interrupt INTRX. Therefore, no buffer overrun error will be caused in the I/O interface SCLK output mode regardless of the setting of the double buffer control bit SC0MOD2 <WBUF>.

If the second receive buffer (double buffering) is enabled and the receive FIFO is also enabled (SCNFCNF<CNFG>=1 and <FDPX1:0>=01/11), the SCLK output will be stopped when the receive FIFO is full (according to the setting of SCOFNCF<RFST>) and both the first and second receive buffers contain valid data. Also in this case, if SCOFCNF<RXTXCNT> has been set to "1," the receive control bit RXE will be automatically cleared upon suspension of the SCLK output. If it is set to "0," automatic clearing will not be performed.

(Note) In this mode, the SC0CR <OEER> flag is insignificant and the operation is undefined. Therefore, before switching from the SCLK output mode to another mode, the SC0CR register must be read to initialize this flag.

In other operating modes, the operation of the second receive buffer is always valid, thus improving the performance of continuous data transfer. If the receive FIFO is not enabled, an overrun error occurs when the data in the second receive buffer (SC0BUF) has not been read before the first receive buffer is full with the next receive data. If an overrun error occurs, data in the first receive buffer will be lost while data in the second receive buffer and the contents of SC0CR <RB8> remain intact. If the receive FIFO is enabled, the FIFO must be read before the FIFO is full and the second receive buffer is written by the next data through the first buffer. Otherwise, an overrun error will be generated and the receive FIFO overrun error flag will be set. Even in this case, the data already in the receive FIFO remains intact.

The parity bit to be added in the 8-bit UART mode as well as the most significant bit in the 9-bit UART mode will be stored in SC0CR <RB8>.

In the 9-bit UART mode, the slave controller can be operated in the wake-up mode by setting the wake-up function SC0MOD0 <WU> to "1." In this case, the interrupt INTRX0 will be generated only when SC0CR <RB8> is set to "1."

#### 13.3.7 Receive FIFO Buffer

In addition to the double buffer function already described, data may be stored using the receive FIFO buffer. By setting <CNFG> of the SC0FCNF register and <FDPX1:0> of the SC0MOD1 register, the 4-byte receive buffer can be enabled. Also, in the UART mode or I/O interface mode, data may be stored up to a predefined fill level. When the receive FIFO buffer is to be used, be sure to enable the double buffer function,

If data with parity bit is to be received in the UART mode, parity check must be performed each time a data frame is received.

#### 13.3.8 Receive FIFO Operation

① I/O interface mode with SCLK output:

The following example describes the case a 4-byte data stream is received in the half duplex mode:

SCORFC<7:6>=01: Clears receive FIFO and sets the condition of interrupt generation.

SC0RFC<1:0>=00: Sets the interrupt to be generated at fill level 4.

SC0FCNF<1:0>=10111: Automatically inhibits continued reception after reaching the fill level.

The number of bytes to be used in the receive FIFO is the same as the interrupt generation fill level.

In this condition, 4-byte data reception may be initiated by setting the half duplex transmission mode and writing "1" to the RXE bit. After receiving 4 bytes, the RXE bit is automatically cleared and the receive operation is stopped (SCLK is stopped).

Receive buffer 1		$\langle \rangle$		
1 byte	2 byte	💙 3 byte	4 byte	
Receive buffer 2	$\sim$ $(\checkmark)$		,	,
	1 byte	2 byte	3 byte	4 byte
Receive FIFO		↓	↓ I	•
	1 byte	2 byte	3 byte	4 byte
	$\searrow$	1 byte	2 byte	3 byte
			1 byte	2 byte
				1 byte
RBFLL				_
Receive interrupt				_
RXE				_



② I/O interface mode with SCLK input:

The following example describes the case a 10-byte data stream is received:

SC0RFC <7:6> = 10: Clears receive FIFO and sets the condition of interrupt generation

SCORFC <1:0> = 00: Sets the interrupt to be generated at fill level 4.

SC0FCNF <1:0> = 10101: Automatically allows continued reception after reaching the fill level.

The number of bytes to be used in the receive FIFO is the maximum allowable number.

In this condition, 4-byte data reception may be initiated by setting the half duplex transmission mode and writing "1" to the RXE bit. After receiving 4 bytes, receive FIFO interrupt is generated. This setting enables the next data reception as well. The next 4 bytes can be received before all the data is read from FIFO.

			(F	
Receive buffer 1 1 byte	2 byte	3 byte	4 byte	
		7/		$\rightarrow$
Receive buffer 2	1 byte	2 byte	3 byte	4 byte
				X
Receive FIFO	1 byte	2 byte	3 byte	4 byte
		1 byte	2 byte	3 byte
		(7)	1 byte	2 byte
~(			$\mathcal{I}$	1 byte
	$\sim$ (			
				-
RBFLL	)			
(	$\langle$			
Receive interrupt				
RXE		>		
Fig. 13.3.8.2 R	eceive FIFO	Operation		
	$\rightarrow$	<b>-</b> portation		

#### 13.3.9 Transmit Counter

The transmit counter is a 4-bit binary counter used in the asynchronous communication (UART) mode. It is counted by SIOCLK as in the case of the received counter and generates a transmit clock (TXDCLK) on every 16th clock pulse.





#### 13.3.10 Transmit Control Unit

I/O interface mode

In the SCLK output mode with SCOCR <IOC> set to "0," each bit of data in the transmit buffer is output to the TXD0 pin on the rising edge of the shift clock output from the SCLK0 pin.

In the SCLK input mode with SCOCR <IOC> set to "1," each bit of data in the transmit buffer is output to the TXD0 pin on the rising or falling edge of the input SCLK signal according to the SCOCR <SCLKS> setting.

<u>Asynchronous (UART) mode:</u>

When the CPU writes data to the transmit buffer, data transmission is initiated on the rising edge of the next TXDCLK and the transmit shift clock (TXDSFT) is also generated.

#### Handshake function

The  $\overline{\text{CTS}}$  pin enables frame by frame data transmission so that overrun errors can be prevented. This function can be enabled or disabled by SC0MOD0 <CTSE>.

When the  $\overline{\text{CTS}}$  pin is set to the "H" level, the current data transmission can be completed but the next data transmission is suspended until the  $\overline{\text{CTS}}$  pin returns to the "L" level. However in this case, the INTTX0 interrupt is generated, the next transmit data is requested to the CPU, data is written to the transmit buffer, and it waits until it is ready to transmit data.

Although no  $\overline{\text{RTS}}$  pin is provided, a handshake control function can be easily implemented by assigning a port for the  $\overline{\text{RTS}}$  function. By setting the port to "H" level upon completion of data reception (in the receive interrupt routine), the transmit side can be requested to suspend data transmission.



Fig. 13.3.10.2 CTS (Clear to Transmit) Signal Timing

#### 13.3.11 Transmit Buffer

The transmit buffer (SC0BUF) is in a dual structure. The double buffering function may be enabled or disabled by setting the double buffer control bit <WBUF> in serial mode control register 2 (SC0MOD2). If double buffering is enabled, data written to Transmit Buffer 2 (SC0BUF) is moved to Transmit Buffer 1 (shift register).

If the transmit FIFO has been disabled (SCOFCNF <CNFG> = 0 or 1 and <FDPX1:0> = 01), the INTTX interrupt is generated at the same time and the transmit buffer empty flag <TBEMP> of SC0MOD2 is set to "1." This flag indicates that transmit buffer 2 is now empty and that the next transmit data can be written. When the next data is written to transmit buffer 2, the <TBEMP> flag is cleared to "0."

If the transmit FIFO has been enabled (SCNFCNF <CNFG> = 1 and <FDPX1:0> = 10/11), any data in the transmit FIFO is moved to the transmit buffer 2 and <TBEMP> flag is immediately cleared to "0." The CPU writes data to transmit buffer 2 or to the transmit FIFO.

If the transmit FIFO is disabled in the I/O interface SCLK input mode and if no data is set in transmit buffer 2 before the next frame clock input, which occurs upon completion of data transmission from transmit buffer 1, an under-run error occurs and a serial control register (SCOCR) <PERR> parity/under-run flag is set.

If the transmit FIFO is enabled in the I/O interface SCLK input mode, when data transmission from transmit buffer 1 is completed, the transmit buffer 2 data is moved to transmit buffer 1 and any data in transmit FIFO is moved to transmit buffer 2 at the same time.

If the transmit FIFO is disabled in the I/O interface SCLK output mode, when data in transmit buffer 2 is moved to transmit buffer 1 and the data transmission is completed, the SCLK output stops. So, no under-run errors can be generated.

If the transmit FIFO is enabled in the I/O interface SCLK output mode, the SCLK output stops upon completion of data transmission from transmit buffer 1 if there is no valid data in the transmit FIFO.

Note) In the I/O interface SCLK output mode, the SC0CR <PEER> flag is insignificant. In this case, the operation is undefined. Therefore, to switch from the SCLK output mode to another mode, SC0CR must be read in advance to initialize the flag.

If double buffering is disabled, the CPU writes data only to transmit buffer 1 and the transmit interrupt INTTX is generated upon completion of data transmission.

If handshaking with the other side is necessary, set the double buffer control bit <WBUF> to "0" (disable) to disable transmit buffer 2; any setting for the transmit FIFO should not be performed.

#### 13.3.12 Transmit FIFO Buffer

In addition to the double buffer function already described, data may be stored using the transmit FIFO buffer. By setting <CNFG> of the SC0FCNF register and <FDPX1:0> of the SC0MOD1 register, the 4-byte transmit buffer can be enabled. In the UART mode or I/O interface mode, up to 4 bytes of data may be stored.

If data is to be transmitted with a parity bit in the UART mode, parity check must be performed on the receive side each time a data frame is received.

#### 13.3.13 Transmit FIFO Operation

① I/O interface mode with SCLK output (normal mode):

The following example describes the case a 4-byte data stream is transmitted:

SC0TFC <7:6> = 01: Clears transmit FIFO and sets the condition of interrupt generation

SC0TFC <1:0> = 00: Sets the interrupt to be generated at fill level 0,

SC0FCNF <1:0> = 01011: Inhibits continued transmission after reaching the fill level.

In this condition, data transmission can be initiated by setting the transfer mode to half duplex, writing 4 bytes of data to the transmit FIFO, and setting the <TXE> bit to "1." When the last transmit data is moved to the transmit buffer, the transmit FIFO interrupt is generated. When transmission of the last data is completed, the clock is stopped and the transmission sequence is terminated.



② I/O interface mode with SCLK input (normal mode):

The following example describes the case a 4-byte data stream is transmitted:

SC0TFC <1:0> = 01: Clears the transmit FIFO and sets the condition of interrupt generation.

SC0TFC <7:2> = 000000: Sets the interrupt to be generated at fill level 0.

SC0FCNF <4:0> = 01001: Allows continued transmission after reaching the fill level.

In this condition, data transmission can be initiated along with the input clock by setting the transfer mode to half duplex, writing 4 bytes of data to the transmit FIFO, and setting the <TXE> bit to "1." When the last transmit data is moved to the transmit buffer, the transmit FIFO interrupt is generated.



Fig. 13.3.13.2 Transmit FIFO Operation

## 13.3.14 Parity Control Circuit

If the parity addition bit <PE> of the serial control register SC0CR is set to "1," data is sent with the parity bit. Note that the parity bit may be used only in the 7- or 8-bit UART mode. The <EVEN> bit of SC0CR selects either even or odd parity.

Upon data transmission, the parity control circuit automatically generates the parity with the data written to the transmit buffer (SC0BUF). After data transmission is complete, the parity bit will be stored in SC0BUF bit 7 <TB7> in the 7-bit UART mode and in bit 7 <TB8> in the serial mode control register SC0MOD in the 8-bit UART mode. The <PE> and <EVEN> settings must be completed before data is written to the transmit buffer.

Upon data reception, the parity bit for the received data is automatically generated while the data is shifted to receive buffer 1 and moved to receive buffer 2 (SC0BUF). In the 7-bit UART mode, the parity generated is compared with the parity stored in SC0BUF <RB7>, while in the 8-bit UART mode, it is compared with the bit 7 <RB8> of the SC0CR register. If there is any difference, a parity error occurs and the <PERR> flag of the SC0CR register is set.

In the I/O interface mode, the SC0CR <PERR> flag functions as an under-run error flag, not as a parity flag.

#### 13.3.15 Error Flag

Three error flags are provided to increase the reliability of received data.

1. Overrun error <OERR>: Bit 4 of the serial control register SC0CR

In both UART and I/O interface modes, this bit is set to "1" when an error is generated by completing the reception of the next frame receive data before the receive buffer has been read. If the receive FIFO is enabled, the received data is automatically moved to the receive FIFO and no overrun error will be generated until the receive FIFO is full (or until the usable bytes are fully occupied). This flag is set to "0" when it is read. In the I/O interface SCLK output mode, no overrun error is generated and therefore, this flag is inoperative and the operation is undefined.

Parity error/under-run error <PERR>: Bit 3 of the SC0CR register

In the UART mode, this bit is set to "1" when a parity error is generated. A parity error is generated when the parity generated from the received data is different from the parity received. This flag is cleared to "0" when it is read.

In the I/O interface mode, this bit indicates an under-run error. When the double buffer control bit <WBUF> of the serial mode control register SC0MOD2 is set to "1" in the SCLK input mode, if no data is set to the transmit double buffer before the next data transfer clock after completing the transmission from the transmit shift register, this error flag is set to "1" indicating an under-run error. If the transmit FIFO is enabled, any data content in the transmit FIFO will be moved to the buffer. When the transmit FIFO and the double buffer are both empty, an under-run error will be generated. Because no under-run errors can be generated in the SCLK output mode, this flag is inoperative and the operation is undefined. If transmit buffer 2 is disabled, the under-run flag <PERR> will not be set. This flag is cleared to "0" when it is read.

3. Framing error <FERR>: Bit 2 of the SC0CR register

In the UART mode, this bit is set to "1" when a framing error is generated. This flag is set to "0" when it is read. A framing error is generated if the corresponding stop bit is determined to be "0" by sampling the bit at around the center. Regardless of the <SBLEN> (stop bit length) setting of the serial mode control register 2, SC0MOD2, the stop bit status is determined by only 1 bit on the receive side.

Operation mode	Error flag	Function
UART	OERR	Overrun error flag
	PERR	Parity error flag
	FERR	Framing error flag
I/O interface	OERR	Overrun error flag
(SCLK input)	PERR	Underrun error flag (WBUF = 1)
		Fixed to 0 ( WBUF = 0 )
	FERR	Fixed to 0
I/O interface	OERR	Operation undefined
(SCLK output)	PERR	Operation undefined
	FERR	Fixed to 0
l		

#### 13.3.16 Direction of Data Transfer

In the I/O interface mode, the direction of data transfer can be switched between "MSB first" and "LSB first" by the data transfer direction setting bit <DRCHG> of the SC0MOD2 serial mode control register 2. Don't switch the direction when data is being transferred.

#### 13.3.17 Stop Bit Length

In the UART mode transmission, the stop bit length can be set to either 1 or 2 bits by bit 4 <SBLEN> of the SC0MOD2 register.

#### 13.3.18 Status Flag

If the double buffer function is enabled (SC0MOD2 <WBUF> = "1"), the bit 6 flag <RBFLL> of the SC0MOD2 register indicates the condition of receive buffer full. When one frame of data has been received and transferred from buffer 1 to buffer 2, this bit is set to "1" to show that buffer 2 is full (data is stored in buffer 2). When the receive buffer is read by CPU/DMAC, it is cleared to "0." If <WBUF> is set to "0," this bit is insignificant and must not be used as a status flag.

When double buffering is enabled (SC0MOD2 <WBUF> = "1"), the bit 7 flag <TBEMP> of the SC0MOD2 register indicates that transmit buffer 2 is empty. When data is moved from transmit buffer 2 to transmit buffer 1 (shift register), this bit is set to "1" indicating that transmit buffer 2 is now empty. When data is set to the transmit buffer by CPU/DMAC, the bit is cleared to "0." If <WBUF> is set to "0," this bit is insignificant and must not be used as a status flag.

#### 13.3.19 Configurations of Transmit/Receive Buffers

	4		
		<wbuf> = 0</wbuf>	<wbuf> = 1</wbuf>
UART	Transmit buffer	Single	Double
UAIX	Receive buffer	Double	Double
I/O interface	Transmit buffer	Single	Double
(SCLK input)	Receive buffer	Double	Double
I/O interface	Transmit buffer	Single	Double
(SCLK output)	Receive buffer	Single	Double

## 13.3.20 Signal Generation Timing

#### ① UART mode

#### **Receive Side**

Mode	9-bit	8-bit + parity	8-bit, 7-bit + parity, 7-bit
Interrupt generation timing	Around the center of the 1st stop bit	Around the center of the 1st stop bit	Around the center of the 1st stop bit
Framing error timing	Around the center of the stop bit	Around the center of the stop bit	Around the center of the stop bit
Parity error generation timing	-	Around the center of the last (parity) bit	Around the center of the last (parity) bit
Overrun error generation timing	Around the center of the stop bit	Around the center of the stop bit	Around the center of the stop bit
Transmit Side			

#### **Transmit Side**

Mode	9-bit	8-bit + parity	8-bit, 7-bit + parity, 7-bit
Interrupt generation	Just before the stop	Just before the stop bit is	Just before the stop bit is sent
timing	bit is sent	sent	90
$(\langle WBUF \rangle = 0)$			
Interrupt generation	Immediately after	Immediately after data is	Immediately after data is moved to
timing	data is moved to	moved to transmit buffer 1	transmit buffer 1 (just before start bit
( <wbuf> = 1)</wbuf>	transmit buffer 1	(just before start bit	transmission)
	(just before start bit	transmission)	
	transmission)	$ \sim \sim $	/

# ② I/O interface mode:

#### **Receive Side**

Interrupt generation timing	SCLK output mode	Immediately after the rising edge of the last SCLK
( <wbuf> = 0)</wbuf>	SCLK input mode	Immediately after the rising or falling edge of the last SCLK (for rising or falling edge mode, respectively)
Interrupt generation	SCLK output	Immediately after the rising edge of the last SCLK (just after data
timing ( <wbuf> = 1)</wbuf>	mode	transfer to receive buffer 2) or just after receive buffer 2 is read
	SCLK input mode	Immediately after the rising edge or falling edge of the last SCLK depending on the rising or falling edge triggering mode, respectively
		(right after data is moved to receive buffer 2)
Overrun error generation timing	SCLKinput mode	Immediately after the rising or falling edge of the last SCLK (for rising or falling edge mode, respectively)

#### Transmit Side

ATALISTIN OIGE	$\land$	
Interrupt generation timing	SCLK output mode	Immediately after the rising edge of the last SCLK
( <wbuf> = 0)</wbuf>	SCLK input mode	Immediately after the rising or falling edge of the last SCLK (for rising or falling edge mode, respectively)
Interrupt generation timing	SCLK output mode	Immediately after the rising edge of the last SCLK or just after data is moved to transmit buffer 1
( <wbuf> = 1)</wbuf>	> .	Immediately after the rising or falling edge of the last SCLK (for the rising or falling edge mode, respectively) or just after data is moved to transmit buffer 1
Underrun error generation timing	•	Immediately after the falling or rising edge of the next SCLK (for the rising or falling edge triggering mode, respectively)

Note 1)	Do not make any change in control register when data is being sent or received (in a state ready to transmit or receive).
Note 2)	Do not stop the receive operation (by setting SC0MOD0 <rxe> = "0") when data is being received.</rxe>
Note 3)	Do not stop the transmit operation (by setting SC0MOD1 <txe> = "0")</txe>

when data is being transmitted.

## **13.4** Register Description (Only for Channel 0)



SC0MOD1 (0xFFFF_F705

		7	6	5	4	3	2	1	0
1	bit Symbol	12S0	FDPX1	FDPX0	TXE	SINT2	SINT1	SINT0	
05)	) Read/Write R/W				Ŵ	~			
	After reset	0	0	0	0	0	6	0	0
	Function	IDLE 0: Stop 1: Operation	Transfer mode setting 00: Transfer prohibited 01: Half duplex (RX) 10: Half duplex (TX) 11: Full duplex		Transmit control 0: Disable 1: Enable	Interval time of continuous transmission 000: None 100: 8SCLK 001: 1SCLK 101:16SCLK 010: 2SCLK 110: 32SCLK 011: 4SCLK 111: 64SCLK			Write "0."

Fig. 13.4.2 Serial Mode Control Register 1 (for SIO0, SC0MOD1)

< SINT2:0 > : Specifies the interval time of continuous transmission when double buffering or FIFO is enabled in the I/O interface mode. This parameter is invalid for the UART mode or when an external clock is used.

< TXE >: This bit enables transmission and is valid for all the transfer modes. If disabled while transmission is in progress, transmission is inhibited only after the current frame of data is completed for transmission.

< FDPX1:0>: Configures the transfer mode in the I/O interface mode. Also configures the FIFO if it is enabled. In the UART mode, it is used only to specify the FIFO configuration.

< I2S0 > : Specifies the Idle mode operation.
SC0MOD2 (0xFFFF_F706)

	7	6	5	4	3	2	1	0
bit Symbol	TBEMP	RBFLL	TXRUN	SBLEN	DRCHG	WBUF	SWRST1	SWRST0
Read/Write		W	W					
After reset	1	0	0	0	0	0	0	0
Function	Transmit buffer empty flag 0: full 1: Empty	Receive buffer full flag 0: Empty 1: full	In transmissi on flag 0: Stop 1: Start	STOP bit 0: 1 bit 1: 2 bits	Setting transfer direction 0: LSB first 1: MSB first	W-buffer 0: Disable 1: Enable	Soft reset Overwrite " to reset	01" on "10"

<SWRST1:0>: Overwriting "01" in place of "10" generates a software reset. When this software reset is executed, the mode register parameters SC0MOD0 <RXE>, SC0MOD1<TXE>, SC0MOD2 <TBEMP>, <RBFLL>, and <TXRUN>, control register parameters SC0CR <OERR>, <PERR>, and <FERR>, and their internal circuits are initialized.

- <WBUF>: This parameter enables or disables the transmit/receive buffers to transmit (in both SCLK output/input modes) and receive (in SCLK output mode) data in the I/O interface mode and to transmit data in the UART. In all other modes, double buffering is enabled regardless of the <WBUF> setting.
- <DRCHG>: Specifies the direction of data transfer in the I/O interface mode. In the UART mode, it is fixed to LSB first.
- <TXRUN>: This is a status flag to show that data transmission is in progress.

When this bit is set to "1," it indicates that data transmission operation is in progress. If it is "0," the bit 7 <TBEMP> is set to "1" to indicate that the transmission has been fully completed and the same <TBEMP> is set to "0" to indicate that the transmit buffer contains some data waiting for the next transmission.

- <RBFLL>: This is a flag to show whether the received double buffers are full or not. When a receive operation is completed and received data is moved from the receive shift register to the receive double buffers, this bit changes to "1" while reading this bit changes it to "0." If double buffering is disabled, this flag is insignificant.
- <TBEMP>: This flag shows that the transmit double buffers are empty. When data in the transmit double buffers is moved to the transmit shift register and the double buffers are empty, this bit is set to "1." Writing data again to the double buffers sets this bit to "0." If double buffering is disabled, this flag is insignificant.
- <SBLEN>: This specifies the length of stop bit transmission in the UART mode. On the receive side, the decision is made using only a single bit regardless of the <SBLEN> setting.



While data transmission is in progress, any software reset operation must be executed twice in succession.

Fig. 13.4.3 Serial Mode Control Register





Fig. 13.4.5 Baud Rate Generator Control (for SIO0, BR0CR, BR0ADD)





# Fig. 13.4.9 Transmit FIFO Configuration Register



supplied to the SIO module except for the register part and thus power consumption can be reduced (other registers cannot be accessed for read/write operation). When SIO is to be used, be sure to enable SIO by setting "1" to this register before setting any other registers of the SIO module. If SIO is enabled once and then disabled, any register setting is maintained.

Fig. 13.4.12 SIO Enable Register

# 13.5 Operation in Each Mode

### 13.5.1 Mode 0 (I/O interface mode)

Mode 0 consists of two modes, i.e., the "SCLK output" mode to output synchronous clock and the "SCLK input" mode to accept synchronous clock from an external source. The following operational descriptions are for the case use of FIFO is disabled. For details of FIFO operation, refer to the previous sections describing receive/transmit FIFO functions.

① Sending data

### SCLK output mode

In the SCLK output mode, if SC0MOD2<WBUF> is set to "0" and the transmit double buffers are disabled, 8 bits of data are output from the TXD0 pin and the synchronous clock is output from the SCLK0 pin each time the CPU writes data to the transmit buffer. When all data is output, the INTTX0 interrupt is generated.

If SCOMOD2 <WBUF> is set to "1" and the transmit double buffers are enabled, data is moved from transmit buffer 2 to transmit buffer 1 when the CPU writes data to transmit buffer 2 while data transmission is halted or when data transmission from transmit buffer 1 (shift register) is completed. When data is moved from transmit buffer 2 to transmit buffer 1, the transmit buffer empty flag SCOMOD2 <TBEMP> is set to "1," and the INTTX0 interrupt is generated. If transmit buffer 2 has no data to be moved to transmit buffer 1, the INTTX0 interrupt is not generated and the SCLK0 output stops.



<WBUF> = "1" (if double buffering is enabled) (if there is data in buffer 2)



<WBUF> = "1" (if double buffering is enabled) (if there is no data in buffer 2)

### Fig. 13.5.1.1 Send Operation in the I/O Interface Mode (SCLK0 Output Mode)

#### SCLK input mode

In the SCLK input mode, if SC0MOD2 <WBUF> is set to "0" and the transmit double buffers are disabled, 8-bit data that has been written in the transmit buffer is output from the TXD0 pin when the SCLK0 input becomes active. When all 8 bits are transmitted, the INTTX0 interrupt is generated. The next data to be transmitted must be written before the timing point "A" as shown in Fig. 13.5.1.2.

If SCOMOD2 <WBUF> is set to "1" and the transmit double buffers are enabled, data is moved from transmit buffer 2 to transmit buffer 1 when the CPU writes data to transmit buffer 2 before the SCLK0 becomes active or when data transmission from transmit buffer 1 (shift register) is completed. As data is moved from transmit buffer 2 to transmit buffer 1, the transmit buffer empty flag SCOMOD2 <TBEMP> is set to "1" and the INTTX0 interrupt is generated. If the SCLK0 input becomes active while no data is in transmit buffer 2, although the internal bit counter is started, an under-run error occurs and 8-bit dummy data (FFh) is transmitted.



<WBUF> = "0" (if double buffering is disabled)



② Receiving data

### SCLK output mode

In the SCLK output mode, if SC0MOD2 <WBUF> = "0" and receive double buffering is disabled, a synchronous clock pulse is output from the SCLK0 pin and the next data is shifted into receive buffer 1 each time the CPU reads received data. When all the 8 bits are received, the INTRX0 interrupt is generated.

The first SCLK output can be started by setting the receive enable bit SC0MOD0 <RXE> to "1." If the receive double buffering is enabled with SC0MOD2 <WBUF> set to "1," the first frame received is moved to receive buffer 2 and receive buffer 1 can receive the next frame successively. As data is moved from receive buffer 1 to receive buffer 2, the receive buffer full flag SC0MOD2 <RBFULL> is set to "1" and the INTRX0 interrupt is generated.

While data is in receive buffer 2, if CPU/DMAC cannot read data from receive buffer 2 in time before completing reception of the next 8 bits, the INTRX0 interrupt is not generated and the SCLK0 clock stops. In this state, reading data from receive buffer 2 allows data in receive buffer 1 to move to receive buffer 2 and thus the INTRX0 interrupt is generated and data reception resumes.



<WBUF> = "1" (if double buffering is enabled) (if data is read from buffer 2)



<WBUF> = "1" (if double buffering is enabled) (if data cannot be read from buffer 2)



### SCLK input mode

In the SCLK input mode, since receive double buffering is always enabled, the received frame can be moved to receive buffer 2 and receive buffer 1 can receive the next frame successively.

The INTRX receive interrupt is generated each time received data is moved to receive buffer 2.



If data cannot be read from buffer 2

Fig. 13.5.1.4 Receive Operation in the I/O Interface Mode (SCLK0 Input Mode)

(Note) To receive data, SC0MOD <RXE> must always be set to "1" (receive enable) regardless of the SCLK input or output mode.

#### ③ Send and receive (full-duplex)

The full-duplex mode is enabled by setting bit 6 <FDPX0> of the serial mode control register 1 (SC0MOD1) to "1."

#### SCLK output mode

In the SCLK output mode, if SCOMOD2 <WBUF> is set to "0" and both the send and receive double buffers are disabled, SCLK is output when the CPU writes data to the transmit buffer. Subsequently, 8 bits of data are shifted into receive buffer 1 and the INTRX0 receive interrupt is generated. Concurrently, 8 bits of data written to the transmit buffer are output from the TXD0 pin, the INTTX0 send interrupt is generated when transmission of all data bits has been completed. Then, the SCLK output stops. In this, the next round of data transmission and reception starts when the data is read from the receive buffer and the next send data is written to the transmit buffer by the CPU. The order of reading the receive buffer and writing to the transmit buffer can be freely determined. Data transmission is resumed only when both conditions are satisfied.

If SC0MOD2 <WBUF> = "1" and double buffering is enabled for both transmission and reception, SCLK is output when the CPU writes data to the transmit buffer. Subsequently, 8 bits of data are shifted into receive buffer 1, moved to receive buffer 2, and the INTRX0 interrupt is generated. While 8 bits of data is received, 8 bits of transmit data is output from the TXD0 pin. When all data bits are sent out, the INTTX0 interrupt is generated and the next data is moved from the transmit buffer 2 to transmit buffer 1. If transmit buffer 2 has no data to be moved to transmit buffer 1 (SC0MOD2 <TBEMP> = 1) or when receive buffer 2 is full (SC0MOD2 <RBFULL> = 1), the SCLK output is stopped. When both conditions are satisfied, i.e., receive data is read and send data is written, the SCLK output is resumed and the next round of data transmission is started.



<WBUF> = "0" (if double buffering is disabled)

### TOSHIBA



### SCLK input mode

In the SCLK input mode with SCOMOD2 <WBUF> set to "0" and the send double buffers are disabled (double buffering is always enabled for the receive side), 8-bit data written in the transmit buffer is output from the TXD0 pin and 8 bits of data is shifted into the receive buffer when the SCLK input becomes active. The INTTX0 interrupt is generated upon completion of data transmission and the INTRX0 interrupt is generated at the instant the received data is moved from receive buffer 1 to receive buffer 2. Note that transmit data must be written into the transmit buffer before the SCLK input for the next frame (data must be written before the point A in Fig. 13.5.1.6). As double buffering is enabled for data reception, data must be read before completing reception of the next frame data.

If SCOMOD2 <WBUF> = "1" and double buffering is enabled for both transmission and reception, the interrupt INTRX0 is generated at the timing transmit buffer 2 data is moved to transmit buffer 1 after completing data transmission from transmit buffer 1. At the same time, the 8 bits of data received is shifted to buffer 1, moved to receive buffer 2, and the INTRX0 interrupt is generated. Upon the SCLK input for the next frame, transmission from transmit buffer 1 (in which data has been moved from transmit buffer 2) is started while receive data is shifted into receive buffer 1 simultaneously. If data in receive buffer 2 has not been read when the last bit of the frame is received, an overrun error occurs. Similarly, if there is no data written in transmit buffer 2 when SCLK for the next frame is input, an under-run error occurs.



<WBUF> = "0" (if double buffering is disabled)

### TOSHIBA



Fig. 13.5.1.6 Send/Receive Operation in the I/O Interface Mode (SCLK0 Input Mode)

13.5.3

### 13.5.2 Mode 1 (7-bit UART Mode)

The 7-bit UART mode can be selected by setting the serial mode control register (SC0MOD <SM1, 0>) to "01."

In this mode, parity bits can be added to the transmit data stream; the serial mode control register (SCOCR <PE>) controls the parity enable/disable setting. When <PE> is set to "1" (enable), either even or odd parity may be selected using the SCOCR <EVEN> bit. The length of the stop bit can be specified using SC0MOD2<SBLEN>.



Example: The control register settings for receiving data in the following format are as follows:



Main routine settings

7 6 5 4 3 2 1 0 PCCR _ _ _ 0 — Designates PC1 as the RXD0 pin. PCFC SC0MOD 0 0 X 1 0 0 1 Selects the 8-bit UART mode. SC0CR  $\leftarrow X 0 1 X X X 0 0$ Sets odd parity. 0 0 0 1 0 1 0 1 Sets the data rate to 9600 bps. BR0CR IMC3 Enables the INTRX0 interrupt and sets to level 4 by the - 1 1 - 0 1 0 0 <23:16> bits of the 32 bit register. SCOMOD  $\leftarrow$  - - 1 X - - - -Enables reception of data. An example of interrupt routine process INTCLR 0 0 0 1 1 1 0 0 0 Clears the interrupt request. (0x0000_0038) Reg.  $\leftarrow$  SC0CR AND 0x1C Performs error check. if Reg. ≠ 0 then ERROR processing Reg. ← SC0BUF Reads received data. Interrupt processing is completed. (Note) X: don't care -: no change Interrupt process start INTGLR=0x Error No SC0CR=0x1C? processing Yes SC0BUF data read Interrupt process complete

### 13.5.4 Mode 3 (9-bit UART)

The 9-bit UART mode can be selected by setting SC0MOD0 <SM1:0> to "11." In this mode, parity bits must be disabled (SC0CR <PE> = "0").

The most significant bit (9th bit) is written to bit 7 <TB8> of the serial mode control register 0 (SC0MOD0) for transmit data and it is stored in bit 7 <RB8> of the serial control register SC0CR upon receiving data. When writing or reading data to/from the buffers, the most significant bit must be written or read first before writing or reading to/from SC0BUF. The stop bit length can be specified using SC0MOD2 <SBLEN>.

Wakeup function

In the 9-bit UART mode, slave controllers can be operated in the wake-up mode by setting the wake-up function control bit SC0MOD0 <WU> to "1." In this case, the interrupt INTRX0 will be generated only when SC0CR <RB8> is set to "1."



(Note) The TXD pin of the slave controller must be set to the open drain output mode using the ODE register.

# Fig. 13.5.4.1 Serial Links to Use Wake-up Function

#### Protocol

- ① Select the 9-bit UART mode for the master and slave controllers.
- ② Set SC0MOD <WU> to "1" for the slave controllers to make them ready to receive data.
- ③ The master controller is to send a single frame of data that includes the slave controller select code (8 bits). In this, the most significant bit (bit 8) <TB8> must be set to "1."



- ④ Every slave controller receives the above data frame; if the code received matches with the controller's own select code, it clears the WU bit to "0."
- S The master controller transmits data to the designated slave controller (the controller of which SCOMOD <WU> bit is cleared to "0"). In this, the most significant bit (bit 8) <TB8> must be set to "0."



6 The slave controllers with the <WU> bit set to "1" ignore the receive data because the most significant bit (bit 8) <RB8> is cleared to "0" and thus no interrupt (INTRX0) is generated. Also, the slave controller with the <WU> bit cleared to "0" can transmit data to the master controller to inform that the data has been successfully received.

Example setting: Using the internal clock  $f_{SYS}/2$  as the transfer clock, two slave controllers are serially linked as follows:



③ Master controller setting

Main routine

```
PCCR
                                   0
                                              Designates PC0/PC1 as the TXD0/RXD0 pins, respectively.
    PCFC
                                 - 1
                                              Enables the INTRX0 interrupt and sets to level 5 by the
                    - 1 1 - 0 1 0 1
                                              <23:16> bits of the 32 bit register.
    IMC3
                                              Enables the INTTX0 interrupt and sets to level 4 by the
                    - 1 1 - 0 1 0 0
                                              <31:24> bits of the 32 bit register.
    SCOMOD0 \leftarrow 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0
                                              Sets the 9-bit UART mode and f<sub>SYS</sub>/2 transfer clock.
                \leftarrow \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1
    SC0BUF
                                              Sets the select code of Slave 1.
    Interrupt routine (INTTX0)
    INTCLR
                 0
                   0 0 1 1 1 1 0 0
                                              Clears the interrupt request. (0x0000_003C)
    SC0MOD0
                                              Sets TB8 to "0."
    SCOBUF
                                              Sets the data to be sent.
    interrupt
    processing is
    completed.
④ Slave controller setting
    Main routine
    PCCR
                                    0
                                       1
    PCFC
                                              Designates PC0 as TXD (open drain output) and P61 as RXD.
                                       1
    PCODE
                                              Enables INTTX0 and INTRX0...
                              0
                                 1
                                    1 0
    IMC3
                              b
                                   0 1
                         1
                                 1
    SC0MOD0
                    0 0 1
                              1
                                    1 0
                                              Sets the 9-bit UART mode and fsrs/2 transfer clock and sets
                            -1
                                              <WU> to "1."
    Interrupt routine (INTRX0)
    INTCLR
                000111000
                                              Clears the interrupt request.
    Reg.
                ← SC0BUF
    if Reg. = Select code
    Then
                                              Clears <WU> to "0."
    SC0MOD0
                            0
```

# 14. Serial Bus Interface (SBI)

The TMP19A63 contains two Serial Bus Interface (SBI) channels; CH0 and CH1 that operate identically (only CH0 is described here). The Serial Bus Interfaces have the following two operation modes.

- I²C bus mode (with multi-master capability)
- Clock-synchronous 8-bit SIO mode

In the I²C bus mode, the SBI is connected to external devices via PE5 (SDA) and PE6 (SCL). In the clock-synchronous 8-bit SIO mode, the SBI is connected to external devices via PE7 (SCK), PE5 (SO) and PE6 (SI).

The following table shows the programming required to put the SBL in each operating mode.

	PFODE <pfode1:0></pfode1:0>	$\langle \langle \rangle$	$\mathcal{A}(\mathbb{N})$
I ² C bus mode	11	X11	011
Clock-synchronous	XX	101 ( clock output )	$(\bigcirc)$
8- bit SIO mode	~~	001 ( clock input )	

X: Don't care

### 14.1 Configuration

The configuration is shown in Fig. 14.1.



Fig. 14.1 SBI Block Diagram

### 14.2 Control

The following registers control the serial bus interface and provide its status information for monitoring.

- Serial bus interface control register 0 (SBI0CR0)
- Serial bus interface control register 1 (SBI0CR1)
- Serial bus interface control register 2 (SBI0CR2)
- Serial bus interface buffer register (SBI0DBR)
- I²C bus address register (I2CAR)
- Serial bus interface status register (SBI0SR)
- Serial bus interface baud rate register 0 (SBI0BR0)/

The functions of these registers vary, depending on the mode in which the SBI is operating. For a detailed description of the registers, refer to "14.5 Control in the  $I^2C$  Bus Mode" and "14.7 Control in the Clock-synchronous 8-bit SIO Mode."

14.3 I²C Bus Mode Data Formats

Fig. 14.3 shows the data formats used in the I²C bus mode.





Note) S: Start condition

- $R/\overline{W}$ : Direction bit
  - ACK: Acknowledge bit P: Stop condition



# 14.4 Control Registers in the I²C Bus Mode

The following registers control the serial bus interface (SBI) in the I²C bus mode and provide its status information for monitoring.

			Senai bu	3 internace	control re	gister 0			
		7	6	5	4	3	2	M(	0
SBI0CR0 (0xFFFF_F607	bit Symbol	SBIEN		/			$\geq$	$\int$	
	Read/Write	R/W				R	$\left( \left( // \right) \right)$		
(0	After reset	0	0	0	0	0	0	0	0
	Function	SBI				6	$\overline{)}$		
		operation					$\mathcal{Y}$		
		0:disable							
		1:enable				$\langle \rangle$ ]	>		
									$\sim$

Serial bus interface control register 0

<SBIEN>: To use the SBI, enable the SBI operation ("1") before setting each register in the SBI module.

(Note) SBICR0 bits 0 to 6 are read as "0".

Fig. 14.4.1 J²C Bus Mode Register



Serial bus interface control register 1

(Note 1) Clear <BC2:0> to "000" before switching the operation mode to the clock-synchronous 8-bit SIO mode.
(Note 2) For details on the SCL line clock frequency, refer to "14.5.3 Serial Clock."
(Note 3) After a reset, the <SCK0/SWRMON> bit is read as "1." However, if the SIO mode is selected at the SBICR2 register, the initial value of the <SCK0> bit is "0."

Fig. 14.4.2 I²C Bus Mode Register

		7	6	5	4	3	2	1	0
	bit Symbol	MST	TRX	BB	PIN	SBIM1	SBIM0	SWRST1	SWRST0
BIOCR2 xFFFF_F603)	Read/Write		٧	N		W		W	
	After reset	0	0	0	1	0	Q	0	0
	Function	Select master/slave 0: Slave 1: Master	Select transmit/ receive 0: Receive 1: Transmit	Start/stop condition generation 0: Stop condition generated 1: Start condition generated	Clear INTSBI interrupt request 0: - 1: Clear interrupt request	Select serial b operating mod (Note 2) 00: Port mod 01: SIO mode 10: I ² C bus m 11: (Reserved	de e node	Software rese Write "10" fol to generate a	lowed by "01"
					Ó	00 Port mo	ode (Serial bu ynchronous mode		node (Note 2) output disabled de

(Note 1) Reading this register causes it to function as the SBISR register. Ensure that the bus is free before switching the operating mode to the port mode. (Note 2) Ensure that the port is at the "H" level before switching the operating mode from the port mode to the I²C bus or clock-synchronous 8-bit SIO mode.

Fig. 14.4.3 ¹²C Bus Mode Register Table 14.4.4 Base Clock Resolution @fsys = 54 MHz Clock gear value Base clock <GEAR2:0> resolution fsys/2² (0.07µs) 000 (fc) fsys/2³ (0.14µs) 100 (fc/2) 110 (fc/4) fsys/24 (0.28µs) fsys/2⁵ (0.58µs) 111 (fc/8)

			Serial b	us interfac	ce status re	egister			
	/	7	6	5	4	3	2	1	0
BIOSR	bit Symbol	MST	TRX	BB	PIN	AL	AAS	AD0	LRB
(0xFFFF_F603)	Read/Write		•	1		२		•	
	After reset	0	0	0	1	0	0	0	0
	Function	Master/ slave selection monitor 0: Slave 1: Master	Transmit/ receive selection monitor 0: Receive 1: Transmit	I ² C bus state monitor 0: Free 1: Busy	INTSBI interrupt request monitor 0: Interrupt request generated 1: Interrupt request cleared	Arbitration lost detection 0: - 1: Detected	Slave address match detection 0: - 1: Detected	General call detection 0:	Last received bit monitor 0: "0" 1: "1"
					cleared		9		
								$-\square$	
						$\square$	Last receive	d bit monito	r
					6		0 The las	st bit receive	d was "0."
							1 The las	t bit receive	d was "1."
						ΨL	Slave addre	ss match de	/ tection
					7( //	>	0/2		-
				2			Addres	sed as slave	e match or genera
					$\sim$		1 call det	/	
				$ \leq $	$\sim$		7/ 🛆		
							Arbitration Id	ost detection	1
					7 //		0		-
			G	$\sim$			1 Arbitrat	tion lost is de	etected.
				$\rightarrow$					
(Note) W	riting to thi	s register	$(\bigcirc)$	)	on as SBI				
					25				
		J (~	0	>					



# 14.5 Control in the I²C Bus Mode

### 14.5.1 Setting the Acknowledgement Mode

Setting SBI0CR1<ACK> to "1" selects the acknowledge mode. When operating as a master, the SBI adds one clock for acknowledgment signals. As a transmitter, the SBI releases the SDA pin during this clock cycle to receive acknowledgment signals from the receiver. As a receiver, the SBI pulls the SDA pin to the "L" level during this clock cycle and generates acknowledgment signals.

Setting <ACK> to "0" selects the non-acknowledgment mode. When operating as a master, the SBI does not generate clock for acknowledgement signals.

### 14.5.2 Setting the Number of Bits per Transfer

SBI0CR1 <BC2:0> specifies the number of bits of the next data to be transmitted or received.

Under the start condition, <BC2:0> is set to "000," causing a slave address and the direction bit to be transferred in a packet of eight bits. At other times, <BC2:0> keeps a previously programmed value.

### 14.5.3 Serial Clock

① Clock source

SBI0CR1 <SCK2:0> specifies the maximum frequency of the serial clock to be output from the SCL pin in the master mode.



Fig. 14.5.3.1 Clock Source

The highest speeds in the standard and high-speed modes are specified to 100KHz and 400KHz respectively in the communications standards. Note that the internal SCL clock frequency is determined by the fsys used and the calculation formula shown above.

#### ② Clock Synchronization

The I²C bus is driven by using the wired-AND connection due to its pin structure. The first master that pulls its clock line to the "L" level overrides other masters producing the "H" level on their clock lines. This must be detected and responded by the masters producing the "H" level.

Clock synchronization assures correct data transfer on a bus that has two or more masters.

For example, the clock synchronization procedure for a bus with two masters is shown below.



Fig. 14.5.3.2 Example of Clock Synchronization

At point a, Master A pulls its internal SCL output to the "L" level, bringing the SCL bus line to the "L" level. Master B detects this transition, resets its "H" level period counter, and pulls its internal SCL output level to the "L" level.

Master A completes counting of its "L" level period at point b, and brings its internal SCL output to the "H" level. However, Master B still keeps the SCL bus line at the "L" level, and Master A stops counting of its "H" level period counting. After Master A detects that Master B brings its internal SCL output to the "H" level and brings the SCL bus line to the "H" level at point c, it starts counting of its "H" level period.

This way, the clock on the bus is determined by the master with the shortest "H" level period and the master with the longest "L" level period among those connected to the bus.

# 14.5.4 Slave Addressing and Address Recognition Mode

When the SBI is configured to operate as a slave device, the slave address <SA6:0> and <ALS> must be set at I2CAR. Setting <ALS> to "0" selects the address recognition mode.

### 14.5.5 Configuring the SBI as a Master or a Slave

Setting SBI0CR2<MST> to "1" configures the SBI to operate as a master device.

Setting <MST> to "0" configures the SBI as a slave device. <MST> is cleared to "0" by the hardware when the stop condition has been detected on the bus or when arbitration has been lost.

### 14.5.6 Configuring the SBI as a Transmitter or a Receiver

Setting SBI0CR2 <TRX> to "1" configures the SBI as a transmitter. Setting <TRX> to "0" configures the SBI as a receiver.

In the slave mode, the SBI receives the direction bit (R/W) from the master device on the following occasions:

- when data is transmitted in the addressing format
- when the received slave address matches the value specified at I2CCR
- when a general-call address is received; i.e., the eight bits following the start condition are all zeros

If the value of the direction bit (R/W) is "1," <TRX> is set to "1" by the hardware. If the bit is "0," <TRX> is set to "0."

As a master device, the SBI receives acknowledgement from a slave device. If the direction bit of "1" is transmitted, <TRX> is set to "0" by the hardware. If the direction bit is "0," <TRX> changes to "1." If the SBI does not receive acknowledgement, <TRX> retains the previous value.

<TRX> is cleared to "0" by the hardware when the stop condition has been detected on the bus or when arbitration has been lost.

### 14.5.7 Generating Start and Stop Conditions

When SBI0SR<BB> is "0," writing "1" to SBI0CR2 <MST, TRX, BB, PIN> causes the SBI to generate the start condition on the bus and output 8-bit data. <ACK> must be set to "1" in advance.



Fig. 14.5.7.1 Generating the Start Condition and a Slave Address

When <BB> is "1," writing "1" to <MST, TRX, PIN> and "0" to <BB> causes the SBI to start a sequence for generating the stop condition on the bus. The contents of <MST, TRX, BB, PIN> should not be altered until the stop condition appears on the bus.



Fig. 14.5.7.2 Generating the Stop Condition

SBI0SR<BB> can be read to check the bus state. <BB> is set to "1" when the start condition is detected on the bus (the bus is busy), and set to "0" when the stop condition is detected (the bus is free).

### 14.5.8 Interrupt Service Request and Release

When a serial bus interface interrupt request (INTSBI) is generated, SBI0CR2 <PIN> is cleared to "0." While <PIN> is "0," the SBI pulls the SCL line to the "L" level.

After transmission or reception of one data word, <PIN> is cleared to "0." It is set to "1" when data is written to or read from SBI0DBR. It takes a period of  $t_{LOW}$  for the SCL line to be released after <PIN> is set to "1."

In the address recognition mode (<ALS> = "0"), <PIN> is cleared to "0" when the received slave address matches the value specified at I2CAR or when a general-call address is received; i.e., the eight bits following the start condition are all zeros. When the program writes "1" to SBI0CR2<PIN>, it is set to "1." However, writing "0" does clear this bit to "0."

#### 14.5.9 Serial Bus Interface Operating Modes

SBI0CR2 <SBIM1:0> selects an operating mode of the serial bus interface. <SBIM1:0> must be set to "10" to configure the SBI for the  $I^2C$  bus mode. Make sure that the bus is free before switching the operating mode to the port mode.

#### 14.5.10 Lost-arbitration Detection Monitor

The I²C bus has the multi-master capability (there are two or more masters on a bus), and requires the bus arbitration procedure to ensure correct data transfer.

A master that attempts to generate the start condition while the bus is busy loses bus arbitration, with no start condition occurring on the SDA and SCL lines. The I²C-bus arbitration takes place on the SDA line.

The arbitration procedure for two masters on a bus is shown below. Up until point a, Master A and Master B output the same data. At point a, Master A outputs the "L" level and Master B outputs the "H" level. Then Master A pulls the SDA bus line to the "L" level because the line has the wired-AND connection. When the SCL line goes high at point b, the slave device reads the SDA line data, i.e., data transmitted by Master A. At this time, data transmitted by Master B becomes invalid. In other words, Master B loses arbitration. Master B releases its SDA pin, so that it does not affect the data transfer initiated by another master. If two or more masters have transmitted exactly the same first data word, the arbitration procedure continues with the second data word.



Fig. 14.5.10.1 Lost Arbitration

A master compares the SDA bus line level and the internal SDA output level at the rising of the SCL line. If there is a difference between these two values, the master loses arbitration and sets SBI0SR <AL> to "1."

When <AL> is set to "1," SBI0SR <MST, TRX> are cleared to "0," causing the SBI to operate as a slave receiver. <AL> is cleared to "0" when data is written to or read from SBI0DBR or data is written to SBI0CR2.



Fig. 14.5.10.2 Example of Master B Losing Arbitration (D7A = D7B, D6A = D6B)

# 14.5.11 Slave Address Match Detection Monitor

When the SBI operates as a slave device in the address recognition mode (I2CCR <ALS> = "0"), SBI0SR <AAS> is set to "1" on receiving the general-call address or the slave address that matches the value specified at I2CCR. When <ALS> is "1," <AAS> is set to "1" when the first data word has been received. <AAS> is cleared to "0" when data is written to or read from SBI0DBR.

### 14.5.12 General-call Detection Monitor

When the SBI operates as a slave device, SBI0SR <AD0> is set to "1" when it receives the general-call address; i.e., the eight bits following the start condition are all zeros. <AD0> is cleared to "0" when the start or stop condition is detected on the bus.

### 14.5.13 Last Received Bit Monitor

SBI0SR <LRB> is set to the SDA line value that was read at the rising of the SCL line. In the acknowledgment mode, reading SBISR <LRB> immediately after generation of the INTSBI interrupt request causes ACK signal to be read.

### 14.5.14 Software Reset

If the serial bus interface circuit locks up due to external noise, it can be initialized by using a software reset.

Writing "10" followed by "01" to SBI0CR2 <SWRST1:0> generates a reset signal that initializes the serial bus interface circuit. After a reset, all control registers and status flags are initialized to their reset values. When the serial bus interface is initialized, <SWRST> is automatically cleared to "0."

(Note) A software reset causes the SBI operating mode to switch from the I²C mode to the synchronous communication mode.

### 14.5.15 Serial Bus Interface Data Buffer Register (SBI0DBR)

Reading or writing SBI0DBR initiates reading received data or writing transmitted data. When the SBI is acting as a master, setting a slave address and a direction bit to this register generates the start condition.

### 14.5.16 I²C Bus Address Register (I2CAR)

When the SBI is configured as a slave device, the I2CAR<SA6:0> bit is used to specify a slave address. If I2C0AR <ALS> is set to "0," the SBI recognizes a slave address transmitted by the master device and receives data in the addressing format. If <ALS> is set to "1," the SBI does not recognize a slave address and receives data in the free data format.

### 14.5.17 IDLE Setting Register (SBI0BR0)

The SBI0BR0<I2SBI> register determines if the SBI operates or not when it enters the IDLE mode. This register must be programmed before executing an instruction to switch to the standby mode.

## **14.6** Data Transfer Procedure in the I²C Bus Mode

#### 14.6.1 Device Initialization

First, program SBI0CR1<ACK, SCK2:0> by writing "0" to bits 7 to 5 and bit 3 in SBI0CR1.

Next, program I2CAR by specifying a slave address at <SA6:0> and an address recognition mode at <ALS>. (<ALS> must be set to"0" when using the addressing format.)

Next, program SBI0CR2 to initially configure the SBI in the slave receiver mode by writing "0" to <MST, TRX, BB> , "1" to <PIN> , "10" to <SBIM1:0> and "0" to bits 1 and 0.

Specifies ACK and SCL clock. Specifies a slave address and an address recognition mode. Configures the SBI as a slave receiver.

### 14.6.2 Generating the Start Condition and a Slave Address

① Master mode

In the master mode, the following steps are required to generate the start condition and a slave address.

First, ensure that the bus is free (<BB> = "0"). Then, write "1" to SBI0CR1 <ACK> to select the acknowledgment mode. Write to SBI0DBR a slave address and a direction bit to be transmitted.

When <BB> = "0," writing "1111" to SBI0CR2 <MST, TRX, BB, PIN> generates the start condition on the bus. Following the start condition, the SBI generates nine clocks from the SCL pin. The SBI outputs the slave address and the direction bit specified at SBI0DBR with the first eight clocks, and releases the SDA line in the ninth clock to receive an acknowledgment signal from the slave device.

The INTSBI interrupt request is generated on the falling of the ninth clock, and <PIN> is cleared to "0." In the master mode, the SBI holds the SCL line at the "L" level while <PIN> is "0." <TRX> changes its value according to the transmitted direction bit at generation of the INTSBI interrupt request, provided that an acknowledgment signal has been returned from the slave device.

#### Settings in main routine

```
7 6 5 4 3 2 1 0
Reg. \qquad SBISR
Reg. \qquad Reg. e 0x20
if Reg. \neq 0x00
- Then
SBI0CR1 \qquad X \qquad X \qquad 1 \qquad 0 \qquad X \qquad X
SBI0DR1 \qquad X \qquad X \qquad X \qquad X \qquad X \qquad X
SBI0DR1 \qquad C \qquad X \qquad X \qquad X \qquad X \qquad X \qquad X
SBI0CR2 \qquad C \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 0 \qquad 0
```

Ensures that the bus is free.

Selects the acknowledgement mode. Specifies the desired slave address and direction. Generates the start condition.

#### Example of INTSBI interrupt routine

$$\label{eq:interval} \begin{split} & \text{INTCLR} \leftarrow 0X50 \\ & \text{Processing} \\ & \text{End of interrupt} \end{split}$$

Clears the interrupt request.

### ② Slave mode

In the slave mode, the SBI receives the start condition and a slave address.

After receiving the start condition from the master device, the SBI receives a slave address and a direction bit from the master device during the first eight clocks on the SCL line. If the received address matches its slave address specified at I2CAR or is equal to the general-call address, the SBI pulls the SDA line to the "L" level during the ninth clock and outputs an acknowledgment signal.

The INTS0 interrupt request is generated on the falling of the ninth clock, and <PIN> is cleared to "0." In the slave mode, the SBI holds the SCL line at the "L" level while <PIN> is "0."



Fig. 14.6.2.1 Generation of the Start Condition and a Slave Address

### 14.6.3 Transferring a Data Word

At the end of a data word transfer, the INTSBI interrupt is generated to test <MST> to determine whether the SBI is in the master or slave mode.

① Master mode (<MST> = "1")

Test <TRX> to determine whether the SBI is configured as a transmitter or a receiver.



# Transmitter mode (<TRX> = "1")

Test <LRB>. If <LRB> is "1," that means the receiver requires no further data. The master then generates the stop condition as described later to stop transmission.

If <LRB> is "0," that means the receiver requires further data. If the next data to be transmitted has eight bits, the data is written into SBI0DBR. If the data has different length, <BC2:0> and <ACK> are programmed and the transmit data is written into SBI0DBR. Writing the data makes <PIN> to"1," causing the SCL pin to generate a serial clock for transfer of a next data word, and the SDA pin to transfer the data word. After the transfer is completed, the INTSBI interrupt request is generated, <PIN> is set to "0," and the SCL pin is pulled to the "L" level... To transmit more data words, test <LRB> again and repeat the above procedure.

**INTSBI** interrupt if MST = 0Then go to the slave-mode processing if TRX = 0Then go to the receiver-mode processing if LRB = 0Then go to processing for generating the stop condition  $\mathsf{SBI0CR1} \ \leftarrow \mathsf{X} \ \mathsf{X} \ \mathsf{X} \ \mathsf{0} \ \mathsf{X} \ \mathsf{X} \ \mathsf{X}$ Specifies the number of bits to be transmitted and specify whether ACK is required, SBIODBR  $\leftarrow$  X X X X X X X X X Writes the transmit data. End of interrupt processing (Note) X: Don't care SCL pin 6 3 8 2 Write to SBI0DBR SDA pin D6 D5 D4 D3 D2 D7 D1 D0 ACK Acknowledgment <PIN> signal from receiver **INTSBI** interrupt request Master to slave Slave to master

### Fig. 14.6.3.1 <BC2:0> = "000" and <ACK> = "1" (Transmitter Mode)

### Receiver mode (<TRX> = "0")

If the next data to be transmitted has eight bits, the transmit data is written into SBI0DBR. If the data has different length, <BC2:0> and <ACK> are programmed and the received data is read from SBIODBR to release the SCL line. (The data read immediately after transmission of a slave address is undefined.) On reading the data, <PIN> is set to "1 and the serial clock is output to the SCL pin to transfer the next data word. In the last bit, when the acknowledgment signal becomes the "L" level, "0" is output to the SDA pin.

After that, the INTSBI interrupt request is generated, and <PIN> is cleared to "0," pulling the SCL pin to the "L" level. Each time the received data is read from SBI0DBR, one-word transfer clock and an acknowledgement signal are output.



#### Fig. 14.6.3.2 <BC2:0> = "000" and <ACK> = "1" (Receiver Mode)
To terminate the data transmission from the transmitter, <ACK> must be set to "0" immediately before reading the second to last data word. This disables generation of an acknowledgment clock for the last data word. When the transfer is completed, an interrupt request is generated. After the interrupt processing, <BC2:0> must be set to "001" and the data must be read so that a clock is generated for 1-bit transfer. At this time, the master receiver holds the SDA bus line at the "H" level, which signals the end of transfer to the transmitter as an acknowledgment signal. In the interrupt processing for terminating the reception of 1-bit data, the stop condition is generated to terminate the data transfer. SCL 3 SDA D3 D0 Acknowledgment signal "H" to transmitter <PIN> **INTSBI** interrupt request Read out the Read out the received data after clearing <ACK> to "0." received data after setting <BC2:0> to "001. Master to slave Slave to master Fig. 14.6.3.3 Terminating Data Transmission in the Master Receiver Mode Example: When receiving N data words INTSBI interrupt (after data transmission) 7 6 5 4 3 2 1 0 Sets the number of bits of data to be received and SBI0CR1  $\leftarrow X X X X 0 X$ XX specify whether ACK is required. Reg. ← SBI0CBR Reads dummy data. End of interrupt INTSBI interrupt (first to (N-2)th data reception) 76543210 Reads the first to (N-2)th data words. Reg. End of interrupt INTSBI interrupt ((N-1)th data reception) 76543210 Disables generation of acknowledgement clock.  $\leftarrow$  X X X 0 0 X X X SBIOCR1 Reads the (N-1)th data word.  $\leftarrow$  SBIDBR Reg. End of interrupt INTSBI interrupt (Nth data reception) 7 6 5 4 3 2 1 0  $\mathsf{SBI0CR1} \ \leftarrow \ \mathsf{0} \ \ \mathsf{0} \ \ \mathsf{1} \ \ \mathsf{0} \ \ \mathsf{0} \ \ \mathsf{X} \ \ \mathsf{X}$ Generates a clock for 1-bit transfer.  $\leftarrow \mathsf{SBIDBR}$ Reads the Nth data word. Reg. End of interrupt INTSBI interrupt (after completing data reception) Terminates the data transmission. Processing to generate the stop condition End of interrupt (Note) X: Don't care

## ② Slave mode (<MST> = "0")

In the slave mode, the SBI generates the INTSBI interrupt request on four occasions: 1) when the SBI has received any slave address from the master, 2) when the SBI has received a general-call address, 3) when the received slave address matches its own address, and 4) when a data transfer has been completed in response to a general-call. Also, if the SBI loses arbitration in the master mode, it switches to the slave mode. Upon the completion of data word transfer in which arbitration is lost, the INTSBI interrupt request is generated, <PIN> is cleared to "0," and the SCL pin is pulled to the "L" level. When data is written to or read from SBI0DBR or when <PIN> is set to "1," the SCL pin is released after a period of  $t_{LOW}$ .

In the slave mode, the normal slave mode processing or the processing as a result of lost arbitration is carried out.

SBISR <AL>, <TRX>, <AAS> and <AD0> are tested to determine the processing required. Table 14.6.3.4 shows the slave mode states and required processing.

Example: When the received slave address matches the SBI's own address and the direction bit is "1" in the slave receiver mode

#### **INTSBI** interrupt

```
if TRX = 0

Then go to other processing

if AL = 1

Then go to other processing

SBIOCR1 \leftarrow X X X 1 \stackrel{\circ}{} 0 X X X

SBIODBR \leftarrow X X X 0 X X X

Sets the number of bits to be transmitted.

SBIODBR \leftarrow X X X 0 X X X

(Note)

X: Don't care
```

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	State	Processing
1	1	1	0	Arbitration was lost while the slave address was being transmitted, and the SBI received a slave address with the direction bit "1" transmitted by another master.	Set the number of bits in a data word to <bc2:0> and write the transmit data into SBI0DBR.</bc2:0>
	0	1	0	In the slave receiver mode, the SBI received a slave address with the direction bit "1" transmitted by the master.	
		0	0	In the slave transmitter mode, the SBI has completed a transmission of one data word.	Test LRB. If it has been set to "1," that means the receiver does not require further data. Set <pin> to 1 and reset <trx> to 0 to release the bus. If <lrb> has been reset to "0," that means the receiver requires further data. Set the number of bits in the data word to <bc2:0> and write the transmit data to the SBIDBR.</bc2:0></lrb></trx></pin>
0	1	0	1/0 0	Arbitration was lost while a slave address was being transmitted, and the SBI received either a slave address with the direction bit "0" or a general-call address transmitted by another master. Arbitration was lost while a slave address or a data word was being transmitted, and the transfer terminated.	Read the SBIDBR (a dummy read) to set <pin> to 1, or write "1" to <pin>.</pin></pin>
	0	1	1/0	In the slave receiver mode, the SBI received either a slave address with the direction bit "0" or a general-call address transmitted by the master. In the slave receiver mode, the SBI has completed a reception of a data word.	Set the number of bits in the data word to <bc2:0> and read the received data from SBIDBR.</bc2:0>



## 14.6.4 Generating the Stop Condition

When SBI0SR <BB> is "1," writing "1" to SBI0CR2 <MST, TRX, PIN> and "0" to <BB> causes the SBI to start a sequence for generating the stop condition on the bus. Do not alter the contents of <MST, TRX, BB, PIN> until the stop condition appears on the bus.

If another device is holding down the SCL bus line, the SBI waits until the SCL line is released. After that, the SDA pin goes high, causing the stop condition to be generated.



## 14.6.5 Repeated Start Procedure

Repeated start is used when a master device changes the data transfer direction without terminating the transfer to a slave device. The procedure of generating a repeated start in the master mode is described below.

First, set SBI0CR2 <MST, TRX, BB> to "0" and write "1" to <PIN> to release the bus. At this time, the SDA pin is held at the "H" level and the SCL pin is released. Because no stop condition is generated on the bus, other devices think that the bus is busy. Then, test SBI0SR <BB> and wait until it becomes "0" to ensure that the SCL pin is released. Next, test <LRB> and wait until it becomes "1" to ensure that no other device is pulling the SCL bus line to the "L" level. Once the bus is determined to be free this way, use the steps described above in (2) to generate the start condition.

To satisfy the setup time of repeated start, at least 4.7-µs wait period (in the standard mode) must be created by the software after the bus is determined to be free.



(Note) Do not write <MST> to "0" when it is "0." (Repeated start cannot be done.)



## 14.7 Control in the Clock-synchronous 8-bit SIO Mode

The following registers control the serial bus interface in the clock-synchronous 8-bit SIO mode and provide its status information for monitoring.



			Serial bus	interface of	data buffei	r register					
SBIODBR		7	6	5	4	3	2	1	0		
(0xFFFF_F601)	bit Symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
	Read/Write			F	R (Receive)/V	V (Transmit)	A				
	After reset				0						
				7.1.1 SIO s interface	_			)}			
		7	6	5	4	3	2	1	0		
	bit Symbol		$\sim$	$\sim$	-	SBIM1	SBIM0		$\sim$		
SBIOCR2	Read/Write			<u></u>			V	R			
(0xFFFF_F603)	After reset	1	1	1	1		0		$\sim$ 1		
	Function			2		Select serial b operating mod 00: Port mode 01: Clock-syn 8-bit SIO 10: I ² C bus m 11: (Reserve					
		7	Seria 6	al bus inter	face regis	ter		1	0		
	bit Symbol		/	$\sim$	$\sim$	SIOF	SEF				
SBI0SR (0xFFFF_F603)	Read/Write			2			२	F	२		
(001111_1000)	After reset	1	1	$\bigcirc$	1	0	0	1	1		
	Function			)		Serial transfer status monitor 0: Terminated 1: In progress	Shift operation status monitor 0: Terminated 1: In progress				
						a giotar O					
	<u> </u>			interface k			0	4			
			6	5	4	3	2	1	0		
SBI0BR0	bit Symbol		I2SBI	$\searrow$							
(0xFFFF_F604)	Read/Write After reset	R // 1	R/W	1	1	R	1	1	R/W 0		
	Function		IDLE 0: Stop 1: Operate	>		1	1		Be sure to write "0".		
	$\geq$	S.	$\bigcirc$	7.1.2 SIO	Mode Reg	gisters					

## Serial bus interface data buffer register

## 14.7.1 Serial Clock

① Clock source

Internal or external clocks can be selected by programming SBI0CR1 <SCK2:0>.

### Internal clock

In the internal clock mode, one of the seven frequencies can be selected as a serial clock, which is output to the outside through the SCK pin. At the beginning of a transfer, the SCK pin output becomes the "H" level.

If the program cannot keep up with this serial clock rate in writing the transmit data or reading the received data, the SBI automatically enters a wait period. During this period, the serial clock is stopped automatically and the next shift operation is suspended until the processing is completed.



#### ② Shift Edge

Leading-edge shift is used in transmission. Trailing-edge shift is used in reception.

### Leading-edge shift

Data is shifted at the leading edge of the serial clock (or the falling edge of the SCK pin input/output).

## Trailing-edge shift

Data is shifted at the trailing edge of the serial clock (or the rising edge of the SCK pin input/output).

SCK pin	
SO pin	bit 0 x bit 1 x bit 2 x bit 3 x bit 4 x bit 5 x bit 6 x bit 7
Shift register	
	(a) Leading-edge shift
SCK pin	- this is a second seco
SI pin	bit 0 X bit 1 X bit 2 X bit 3 X bit 4 X bit 5 X bit 6 X bit 7
Shift register	******** 0****** 10***** 210**** 3210**** 43210*** 543210** 6543210* 76543210
	(b) Trailing-edge shift (Note) *; Don't care
	Fig. 14.7.1.5 Shift Edge

## 14.7.2 Transfer Modes

The transmit mode, the receive mode or the transmit/receive mode can be selected by programming SBI0CR1 <SIOM1:0>.

① 8-bit transmit mode

Set the control register to the transmit mode and write the transmit data to SBI0DBR.

After writing the transmit data, writing "1" to SBI0CR1 <SIOS> starts the transmission. The transmit data is moved from SBI0DBR to a shift register and output to the SO pin, with the least-significant bit (LSB) first, in synchronization with the serial clock. Once the transmit data is transferred to the shift register, SBI0DBR becomes empty, and the INTSBI (buffer-empty) interrupt is generated, requesting the next transmit data.

In the internal clock mode, the serial clock will be stopped and automatically enter the wait state, if next data is not loaded after the 8-bit data has been fully transmitted. The wait state will be cleared when SBI0DBR is loaded with the next transmit data.

In the external clock mode, SBI0DBR must be loaded with data before the next data shift operation is started. Therefore, the data transfer rate varies depending on the maximum latency between when the interrupt request is generated and when SBI0DBR is loaded with data in the interrupt service program.

At the beginning of transmission, the same value as in the last bit of the previously transmitted data is output in a period from setting SBI0SR <SIOF> to "1" to the falling edge of SCK.

Transmission can be terminated by clearing <SIOS> to "0" or setting <SIOINH> to "1" in the INTSBI interrupt service program. If <SIOS> is cleared, remaining data is output before transmission ends. The program checks SBI0SR <SIOF> to determine whether transmission has come to an end. <SIOF> is cleared to "0" at the end of transmission. If <SIOINH> is set to "1," the transmission is aborted immediately and <SIOF> is cleared to "0."

In the external clock mode, <SIOS> must be set to "0" before the next transmit data shift operation is started. Otherwise, operation will stop after dummy data is transmitted.

 $7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$ SBI0CR1  $\leftarrow$  0 1 0 0 0 X X X SBI0DBR  $\leftarrow$  X X X X X X X X X X SBI0CR1  $\leftarrow$  1 0 0 0 0 X X X

Selects the transmit mode. Writes the transmit data.

Starts transmission.

**INTSBI** interrupt

 $\mathsf{SBI0DBR} \ \leftarrow \ \mathsf{X}  

Writes the transmit data.





Fig. 14.7.2.2 Transmit Data Retention Time at the End of Transmission

2 8-bit receive mode

Set the control register to the receive mode. Then writing "1" to SBI0CR1 <SIOS> enables reception. Data is taken into the shift register from the SI pin, with the least-significant bit (LSB) first, in synchronization with the serial clock. Once the shift register is loaded with the 8-bit data, it transfers the received data to SBI0DBR and the INTSBI (buffer-full) interrupt request is generated to request reading the received data. The interrupt service program then reads the received data from SBI0DBR.

In the internal clock mode, the serial clock will be stopped and automatically be in the wait state until the received data is read from SBIDBR.

In the external clock mode, shift operations are executed in synchronization with the external clock. The maximum data transfer rate varies, depending on the maximum latency between generating the interrupt request and reading the received data.

Reception can be terminated by clearing <SIOS> to "0" or setting <SIOINH> to "1" in the INTSBI interrupt service program. If <SIOS> is cleared, reception continues until all the bits of received data are written to SBI0DBR. The program checks SBI0SR <SIOF> to determine whether reception has come to an end. <SIOF> is cleared to "0" at the end of reception. After confirming the completion of the reception, last received data is read. If <SIOINH> is set to "1," the reception is aborted immediately and <SIOF> is cleared to "0." (The received data becomes invalid, and there is no need to read it out.)

(Note) The contents of SBI0DBR will not be retained after the transfer mode is changed. The ongoing reception must be completed by clearing <SIOS> to "0" and the last received data must be read before the transfer mode is changed.

Reg.  $\leftarrow$  SBI0DBR

Reads the received data.

	✓ SIOS> is cleared. →
<sios></sios>	
<siof></siof>	
<sef></sef>	
SCK pin (output)	
SI pin	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
INTSBI interrupt reque	
SBIODBR	X a X b
	Read the received data. Read the received data.
	Fig. 14.7.2.3 Receive Mode (Example: Internal Clock)

③ 8-bit transmit/receive mode

Set the control register to the transfer/receive mode. Then writing the transmit data to SBI0DBR and setting SBI0CR1 <SIOS> to "1" enables transmission and reception. The transmit data is output through the SO pin at the falling of the serial clock, and the received data is taken in through the SI pin at the rising of the serial clock, with the least-significant bit (LSB) first. Once the shift register is loaded with the 8-bit data, it transfers the received data to SBI0DBR and the INTSBI interrupt request is generated. The interrupt service program reads the received data from the data buffer register and writes the next transmit data. Because SBI0DBR is shared between transmit and receive operations, the received data must be read before the next transmit data is written.

In the internal clock operation, the serial clock will be automatically in the wait state until the received data is read and the next transmit data is written.

In the external clock mode, shift operations are executed in synchronization with the external serial clock. Therefore, the received data must be read and the next transmit data must be written before the next shift operation is started. The maximum data transfer rate for the external clock operation varies depending on the maximum latency between generating the interrupt request and reading the received data and writing the transmit data.

At the beginning of transmission, the same value as in the last bit of the previously transmitted data is output in a period from setting <SIOF> to "1" to the falling edge of SCK. Transmission and reception can be terminated by clearing <SIOS> to "0" or setting SBI0CR1 <SIOINH> to "1" in the INTSBI interrupt service program. If <SIOS> is cleared, transmission and reception continue until the received data is fully transferred to SBI0DBR. The program checks SBI0SR <SIOF> to determine whether transmission and reception have come to an end. <SIOF> is cleared to "0" at the end of transmission and reception. If <SIOINH> is set, the transmission and reception are aborted immediately and <SIOF> is cleared to "0."

(Note) The contents of SBI0DBR will not be retained after the transfer mode is changed. The ongoing transmission and reception must be completed by clearing <SIOS> to "0" and the last received data must be read before the transfer mode is changed.

TMP19A63



2)

# 15. Analog/Digital Converter

Two 10-bit, sequential-conversion analog/digital converters (A/D converter) are built into the TMP19A63. These A/D converters are equipped with 16 analog input channels. These units operate independently and offer identical performance, so only unit A is described here.

Fig. 15.1 shows the block diagram of this A/D converter.

These 16 analog input channels (pins ANA0 through AN15) are also used as input ports.

- (Note) If it is necessary to reduce a power current by operating the TMP19A63 in IDLE or STOP mode and if either case shown below is applicable, you must first stop the A/D converter and then execute the instruction to put the TMP19A63 into standby mode:
- 1) The TMP19A63 must be put into IDLE mode when ADMOD1<I2AD> is "0."
  - The TMP19A63 must be put into STOP mode.



Fig. 15.1 A/D Converter Block Diagram

## 15.1 Control Register

The A/D converter is controlled by A/D mode control registers (ADAMOD0, ADAMOD1, ADAMOD2, ADAMOD3 and ADAMOD4). Results of A/D conversion are stored in 16 upper and lower A/D conversion result registers ADAREG08H/L through ADAREG7FH/L. Results of top-priority conversion are stored in ADAREGSPH/L.

Fig. 15.2 shows the registers related to the A/D converter.



	0xFFFF_	_F819 = (	0x58								
~	( )	7	6	5	4	3	2	1		0	
ADACBAS	bit Symbol	~	$\langle \rangle$	$\geq$							
0xFFFF_F819)	Read/Write	RW	R/W	R/W	R/W	R/W	R	R/W	/	R/W	
	After reset	0	0	1	1	1	0	0		0	
	Function	Be sure t write "0".	to Be sure write "0".		Be sure write "0".	to					

			700										
		7	6	5	4	3	2	1	0				
ADAMOD1	bit Symbol	VREFON	I2AD	ADSCN	-	ADCH3	ADCH2	ADCH1	ADCH0				
(0xFFFF_ F815)	Read/Write		R/W										
	After reset	0	0	0	0	0	0	0	0				
	Function	VREF application control 0 : OFF 1 : ON	IDLE 0 : Stop 1 : Active	Specify operation mode for channel scanning 0: 4ch scan 1: 8ch scan	Write "0".		Select analog	input channel.					

A/D Mode Control Register 1

	Selection of analog input	channel	
<scan></scan>	0		<u> </u>
	Fixed channel	Channel scanning	Channel scanning
<adch3.2, 0="" 1,=""></adch3.2,>		(ADSCN=0)	(ADSCN=1)
0000	ANA0	ANAO	ANAO
0001	ANA1	ANA0~ANA1	ANA0~ANA1
0010	ANA2	ANA0~ANA2	ANAO-ANA2
0011	ANA3	ANAO~ANA3	ANA0~ANA3
0100	ANA4	ANA4	ANAO~ANA4
0101	ANA5	ANA4~ANA5	ANA0~ANA5
0110	ANA6	ANA4~ANA6	ANA0~ANA6
0111	ANAZ	ANA4~ANA7	ANA0~ANA7
1000	ANA8	ANA8	ANA8
1001	ANA9	ANA8~ANA9	ANA8~ANA9
1010	ANA10	ANA8~ANA10	ANA8~ANA10
1011	ANA11	ANA8~ANA11	ANA8~ANA11
1100	ANA12	ANA12	ANA8~ANA12
1101	ANA13	ANA12~ANA13	ANA8~ANA13
1110 (7/\$	ANA14	ANA12~ANA14	ANA8~ANA14
1111	ANA15	ANA12~ANA15	ANA8~ANA15

Selection of analog input channel

(Note 1)	Before starting A/D conversion, write "1" to the <vrefon> bit, wait for 3 $\mu$s during which time the internal reference voltage should stabilize, and then write "1" to the ADMAOD0<ads> bit.</ads></vrefon>
(Note 2)	To go into standby mode upon completion of A/D conversion, set <vrefon> to "0."</vrefon>

Fig.15.3 Registers related to the A/D Converter

			A/D	Mode Con	trol Regis	ter 2					
		7	6	5	4	3		2		1	0
ADAMOD2	bit Symbol	EOCFHP	ADBFHP	HPADCE	-	HPADC	H3 H	PADCH2	: HP/	ADCH1	HPADCH0
(0xFFFF_ F816)	Read/Write	R	R		-		R/W				
	After reset	0	0	0	0	0		0		0	0
	Function	AD     AD       conversion     conversion       completion     BUSY flag       flag     0: During       0: Before or     conversion       during     halts		Activate top-priority conversion 0: Don't care 1: Start conversion. "0" is always read.	Write "0".	Select	t analog i	input chann con	el when rersion.	activating	top-priority
							$\bigcirc$	7			
					og input	$\langle \langle \rangle$			(	$\frown$	
					nel when		$\checkmark$		21		$\geq$
	<hpa< td=""><td>DCH4,3.2,4</td><td>~<u>_</u></td><td></td><td>cuting</td><td>$\sim$</td><td></td><td>(</td><td>5</td><td>$\searrow$</td><td></td></hpa<>	DCH4,3.2,4	~ <u>_</u>		cuting	$\sim$		(	5	$\searrow$	
					priority version	))	<	> ((	$\bigcirc)$	$\bigcirc$	
		0000	<u>ີ</u>		NAO				3	$\bigcirc$	
		0000			NA1		(	22	>		
		001			NA2	†	(	( )	)		
		001			NA3			$\mathcal{S}$			
		0100			NA4	· (	$\langle / / \rangle$				
		010 [,]			NA5		$\leq$	)			
		0110			NA6 🔇						
		011 ⁻			NA7						
		1000			NA8						
		100 ⁻	1/2	A	NA9 🔨						
		1010	(())	A	VA10						
		101		Aţ	JA11	>					
		110		A	NA12	ļ					
		110		(Al	VA13	ļ					
		1110	€ ×	At	VA14	ļ					
		111	1	A	VA15	l					
		$\rightarrow$	$\langle \langle \rangle$		7						
	$\bigtriangledown$										
		h	$\land$	$\sim$							
			$\mathcal{A}($								
$\sim$	(( ))		$\sim$								
	$\mathbf{i}$	$\sim$	$\square$								
		$( \ ) \ )$	$\bigcirc$								



		Lo	wer A/D C	Conversio	n F	Result F	Reg	jister 0	8				
		7	6	5		4		3		2	1	0	
ADAREG08L	bit Symbol	ADR01	ADR00								OVR0	ADR0RF	
(0xFFFF_F800)	Read/Write	F	र				R				R	R	
	After reset	(	)				1				0	0	
	Function	Store lowe	er 2 bits of	"1" is read.							Over RUN flag	A/D conversion	
		A/D conver	sion result.								0: Not generated	result storage flag	
										$\sim$	1: Generated	1: Presence of	
								$\sim$		7/5		conversion result	
		Up	oper A/D C	Conversio	n F	Result F	Reg	jister 0	8	$\mathcal{O}$			
		7	6	5		4		_3	Ð	2	1	0	
ADAREG08H	bit Symbol	ADR09	ADR08	ADR07		ADR06	.((	ADR05	Ţ	ADR04	ADR03	ADR02	
(0xFFFF_F801)	Read/Write						R	$\sum_{i=1}^{n}$	7		$\langle \langle \rangle$		
	After reset					6	0	$\sim$		C	15 >>		
	Function			Store u	ppe	er 8 bits o	f A/	Dconve	rsior	result.			
					(				~		Y		
	<		wer A/D C	-	n r	<u> </u>	<ec< td=""><td></td><td>9</td><td></td><td></td><td></td></ec<>		9				
		7	6	5 <	Ų.	42		3		<u>_2))</u>	1	0	
ADAREG19L	bit Symbol	ADR11	ADR10			$\mathbf{\nabla}$		-6	77		OVR1	ADR1RF	
(0xFFFF_F802)	Read/Write	F				7	R	-(	1	))	R	R	
	After reset	(	-	"1" is read.	>		1	$\rightarrow$	_	/	0 Over RUNflag	0 A/D	
	Function	Store lowe		This read.					)		0: Not	conversion result storage	
		A/D conver	sion result.					$\bigtriangledown$	/		generated 1: Generated	flag 1: Presence	
			$\mathcal{C}$			$\wedge$		$\sim$				of	
			$\left( \left( \begin{array}{c} 5 \end{array} \right)$			$\sim$						conversion result	
			oper A/D C	Conversio	n F	Result F	) Sec	ister 1	9				
		$\overline{\gamma}$	6	5	77	<u>^4</u>		3		2	1	0	
	bit Symbol	ADR19	ADR18	ADR17	[	ADR16		ADR15		ADR14	ADR13	ADR12	
ADAREG19H (0xFFFF_F803)	Read/Write		ADICIO		Č	- DICIO	R	7 DIVIO			. //DI(10		
(0,4 1 1 _1 000)	After reset		$\overline{\langle}$		7		0						
	Function	~		Store u	ppe	er 8 bits o	-	D conve	rsior	n result.			
		Λ	$\wedge$										
			9 8 7	7 6 5	-	4 3	2	1	0				
Cc	onverted chann	el X value											
				i									
	$\geq$		ADREGXH	Ļ				↓			ADR	EGxL	
			7 6	5 4 3	2	1 0	٦	7	6	543 7	$\frac{3 2 1}{4}$	0	
	>		$\rightarrow$							$\langle X \rangle$			
•	Values read f	rom bits 5 thr	ough 2 of Al	DAREG08L	/AD	AREG19	La	e always	ر .s "1	"	~		

- Bit 0 of ADAREG08L/ADAREG19L is the A/D conversion result storage flag <ADRxRF>. This bit is set to "1" after an A/D converted value is stored. A read of a lower register (ADAREGxL) will set this bit to "0."
- Bit 1 of ADAREG08L/ADAREG19L is the over RUN flag <OVRx>. This bit is set to "1" if a conversion result is
  overwritten before both conversion result storage registers (ADAREGxH,ADAREGxL) are read. A read of a flag will
  clear this bit to "0."

Fig.15.4 Registers related to the A/D Converter

		,	wer A/D (		on F		Reg		2A		1		
		7	6	5		4		3		2	1	0	
ADAREG2AL	bit Symbol	ADR21	ADR20								OVR2	ADR2RF	
(0xFFFF_F804)	Read/Write	R	1				R				R	R	
	After reset	0					1				0	0	
	Function	Store lowe A/D conver		"1" is read.							Over RUN flag 0: Not generated.	A/D conversion result storage flag	
	Function										1: Generated.	1: Presence of	
										$\sim$	9	conversion result	
Upper A/D Conversion Result Register 2A													
		7	6	5		4		3		2	1	0	
ADAREG2AH	bit Symbol	ADR29	ADR28	ADR27		ADR26	Ē	ADR25		ADR24	ADR23	ADR22	
(0xFFFF_F805)	Read/Write			1			R					÷	
	After reset						Ô		$\geq$			$\geq$	
	Function		Store upper 8 bits of A/D conversion result										
						((	7/.	$\wedge$		. ((			
	-	Lo	wer A/D 0	Conversi	on F	lesult	Reg	ister 3	BB		<u>YM</u>		
		7	6	5	(	(4)		3		2		0	
ADAREG3BL	bit Symbol	ADR31	ADR30		(	$\overline{}$	$\sim$			$\langle c \rangle$	OVR3	ADR3RF	
(0xFFFF_F806)	Read/Write	R		<	$\sum_{i=1}^{n}$		R		(	$\leq 1$	R	R	
	After reset	0	1	6		$\geq$	1		$\overline{\bigcirc}$	$\sum$	0	0	
	Function	Store lowe A/D conver		"1" is read.		> <			$\langle \langle \rangle \rangle$	))	Over RUN flag 0: Not generated 1: Generated	A/D conversion result storage flag 1: Presence of conversion result	
		11.		$\bigcirc$	F	م م	<b>D</b>	$\sim$					
1		Up 7	oper A/D (		on F		Reg		B B	0		0	
			6	5		4		3		2	1	0	
ADAREG3BH	bit Symbol	ADR39	ADR38	ADR37	~	ADR36		ADR35		ADR34	ADR33	ADR32	
(0xFFFF_F807)	Read/Write		$\bigcirc)$			2	R						
	After reset					<u></u>	0						
	Function		7	Store	ŭppe	r 8 bits	of A/I	) conve	ersion	result			
Co	nverted channe		9 8 DREGxH		ō	4 3	2		0		ADR	EGxL	
		(~ (	B	5 4 3				7	6			0	
Bit 0 c     converte	read from bits of ADAREG2A ed value is stor	L/ADAREG3E ed. A read of	BL is the A a lower reg	/D convers	sion i	esult s	torag	e flag ·		xRF>. It	is set to "1'	' after an A/	

- Bit 1 of ADAREG2AL/ADAREG3BL is the over RUN flag <OVRx>. It is set to "1" if a conversion result is overwritten before both conversion result storage registers (ADAREGxH,ADAREGxL) are read. A read of a flag will clear this bit to "0."
- When reading conversion result storage registers, first read upper registers and then read lower registers.

Fig.15.5 Registers related to the A/D Converter

		Lo	wer A/D C	Conversio	on Resu	lt Reg	jister 4	С			
	/	7	6	5	4		3		2	1	0
ADAREG 4 CL	bit Symbol	ADR41	ADR40							OVR4	ADR4RF
(0xFFFF_F808)	Read/Write	F	र			R				R	R
	After reset	(	)			1				0	0
	Function	Store lowe A/D conver	er 2 bits of rsion result	"1" is read.						Over RUN flag 0: Not generated 1: Generated	A/D conversion result storage flag 1: Presence of conversion result
	Upper A/D Conversion Result Register 4C										
	$\sim$	7	6	5	4		3	-	2	1	0
ADAREG4CH	bit Symbol	ADR49	ADR48	ADR47	ADF		ADR45		ADR44	ADR43	ADR42
(0xFFFF_F809)	Read/Write	7.2110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			R/		$\mathbb{T}$	<u></u>		
· _ /	After reset										
	Function			Store	upper 8 b	ts of A	/D conve	rsion	result		$\checkmark$
			wer A/D C			(//	$\wedge$		> ((		
		7	6	5		Ť	3		2		0
				: 0		÷	3				
ADAREG5DL	bit Symbol	ADR51	ADR50	ζ	$\left\{ \bigcirc \right\}$			(	69	OVR5	ADR5RF
(0xFFFF_F80A)	Read/Write After reset	F (				<u> </u>			$\underline{-}$	R 0	R 0
	Function	Store lowe	-	"1" is read.				()	Ĵ	Over RUN flag 0: Not generated 1: Generated	A/D conversion result storage flag 1: Presence of conversion result
		Up	oper A/D C	Conversio	on Resu	lt Reg	jister 5	D			
	/	7	(6))	5	4		3		2	1	0
ADAREG5DH	bit Symbol	ADR59	ADR58	ADR57	ADF	56	ADR55		ADR54	ADR53	ADR52
(0xFFFF_F80B)	Read/Write	(/	75	*	$\sim$	R					
	After reset	$\sim$	$\mathcal{I}$	((	77	0					
	Function		7	Store	upper 8 b	ts of A	/D conve	rsion	result		
• Valu • Bit	iverted channe ues read from to o of ADAREG	bits 5 through	2 of ADARE 35DL is the	A/D conve	2 1 AREG5D	ult stor	vays "1. age flag	<ad< td=""><td></td><td></td><td>EGxL</td></ad<>			EGxL
conv	erted value is s 1 of ADAREG	stored. A read	of a lower r	egister (AD	DREGxL)	will set	this bit t	o "0."			

• Bit 1 of ADAREG4CL/ADAREG5DL is the over Run flag <OVRx>. It is set to "1" if a conversion result is overwritten before both conversion result storage registers (ADAREGxH,ADAREGxL) are read. A read of a flag will clear this bit to "0."

• When reading conversion result storage registers, first read upper registers and then read lower registers.

		Lo	wer A/D C	onversio	n Resu	ılt Reg	ister 6	E			
		7	6	5	4		3		2	1	0
ADAREG6EL	bit Symbol	ADR61	ADR60								ADR6RF
(0xFFFF_F80C)	Read/Write	F	2		R						R
	After reset	(	)			1				0	0
		Store lowe	er 2 bits of	"1" is reac	l.				$\langle$	Over RUN flag	A/D conversion
		A/D conve	rsion result						$\geq$	0: Not generate	result storage flag
	Function									1: Generate	1: Presence of
									$\sim$	<u>ل</u>	conversion
result											
	~	Up	per A/D C	onversio	n Resu	ılt Reg	ister 6	Ę	$\bigcirc$	-	
		7	6	5	4		3		2	1	0
ADAREG6EH	bit Symbol	ADR69	ADR68	ADR67	ADF	R66	ADR65		ADR64	ADR63	ADR62
(0xFFFF_F80D)	Read/Write					R		$\leq$			
	After reset					Q		$\supset$		11	$\geq$
	Function			Store u	ipper 8 b	its of A/I	D conve	ersion	result	(2)	
		Lo	wer A/D C	onversio	n Resi	ilt Reg	ister 7	F	> (	2)	
		7	6	5			3		2		0
ADAREG7FL	bit Symbol	ADR71	ADR70							OVR7	ADR7RF
(0xFFFF_F80E)	Read/Write	F	2	$\langle$		→  R			$\leq$	R	R
	After reset	(	)		$\overline{)}$	1		$\overline{\Omega}$	$, \sim$	0	0
		Store lowe	er 2 bits of	"1" is read			(	$\bigvee$	5)	Over RUN flag	A/D conversion
		A/D conve	rsion result	$\swarrow$		F	$\sim$	$\leq$	)	0: Not generate	result storage flag
	Function				~					1: Generate	1: Presence of
			6	$\sim$				)			conversion
I				$\rightarrow$			$\checkmark$			1	result
		Up	oper A/D C	conversio	n Rest	lt Reg	ister 7	F			
	//	7	(6))	5	- ~4		3		2	1	0
ADAREG7FH	bit Symbol	ADR79	ADR78	ADR77	ADF	276	ADR75		ADR74	ADR73	ADR72
(0xFFFF F80F)	Read/Write		75			R					
· _ /	After reset	$\gamma \sim$	$ \rightarrow $	((	77~	0					
	Function		7	Store u	pper 8 b	its of A/I	D conve	ersion	result		
					$\bigcirc$			_			
			9 8 7	6 5	4	3 2		0			
C	onverted chanr	nel x value									
		Ē									
		/) A	DAREGxH	Ļ			↓			ADAR	EGxL
			7 6 5	5 4 3	2 1		7	<u>65</u>	<u>4 3</u>		0
$\langle \rangle$	(())							$ \rangle$	$\langle   X   \rangle$		
		/									
		(	( )					Ċ		$\gamma$	
	s read from bit									Y	

- converted value is stored. A read of a lower register (ADAREGxL) will set this bit to "0."
- Bit 1 of ADAREG6EL/ADAREG7FL is the over Run flag <OVRx>. It is set to "1" if a conversion result is overwritten before both conversion result storage registers (ADAREGxH,ADAREGxL) are read. A read of a flag will clear this bit to "0."
- When reading conversion result storage registers, first read upper registers and then read lower registers.

		Lo	wer A/D C	onversio	n Re	esult F	Regis	ster SF	2		
	/	7	6	5		4		3	2	1	0
ADAREGSPL	bit Symbol	ADRSP1	ADRSP0							OVRSP	ADRSPRF
(0xFFFF_F810)	Read/Write	F	2				R			R	R
	After reset	(	)				1			0	0
	Function		er 2 bits of rsion result	"1" is read.						Over RUN flag 0: Not generate 1: Generate	A/D conversion result storage flag 1: Presence of conversion result
		Up	oper A/D C	onversio	on Re	esult F	Regi	ster SI			
		7	6	5		4		3	) 2	1	0
ADAREGSPH	bit Symbol	ADRSP9	ADRSP9 ADRSP8 ADRSP7 ADRSP6 ADRSP5 ADRSP4 ADRSP3 ADRSP2								
(0xFFFF_F811)	Read/Write										
	After reset						0		*		$\checkmark$
	Function			Store (	upper	8 bits c	of A/E	conver	sion result	5 >	
Function     Store upper 8 bits of A/D conversion result       9     8     7     6     5     4     3     2     1     0       Converted channel x value     9     8     7     6     5     4     3     2     1     0       ADREGxH     7     6     5     4     3     2     1     0     7     6     5     4     3     2     1     0											

Lower A/D Conversion Result Register SP

- Values read from bits 5 through 2 of ADAREGSPL are always "1." .
- Bit 0 of ADAREGSPL is the A/D conversion result storage flag <ADRxRF>. It is set to "1" after an A/D converted value is stored. A read of a lower register (ADAREGSPL) will set this bit to "0."
- Bit 1 of ADAREGSPL is the over RUN flag <OVRx>. It is set to "1" if a conversion result is overwritten before both conversion result storage registers (ADAREGxH,ADAREGxL) are read. A read of a flag will clear this bit to "0."
- When reading conversion result storage registers, first read upper registers and then read lower registers.

	/	7	6	5	5 4 3							1		0
ADACOMREG L	bit Symbol	ADR21	ADR20											
(0xFFFF_F812)	Read/Write	R/	R/W						R					
	After reset	(		0										
	Function		er 2 bits of rsion result arison	"0" is read.					6		$\sum$	$\geq$		
								$\overline{\langle}$		(/ ))				

Lower A/D Conversion Result Comparison Register

		Upper A	A/D Conve	ersion Res	ult Compa	rison Register		
	/	7	6	5	4	3 2	1	0
DACOMREGH	bit Symbol	ADR29	ADR28	ADR27	ADR26	ADR25 ADR24	ADR23	ADR22
0xFFFF_F813)	Read/Write				R	M V	7	$\geq$
	After reset					0	$\Delta$	
	Function		S	tore upper 8	bits of A/D co	onversion result compari	son	
	(Note)	To set o disable	or change d (ADAM	e a value in OD3 <adc< td=""><td>n this regi )BSV&gt; = "</td><td>ster, the AD monit 0").</td><td>or functior</td><td>ı must be</td></adc<>	n this regi )BSV> = "	ster, the AD monit 0").	or functior	ı must be

## Upper A/D Conversion Result Comparison Register

## 15.2 Conversion Clock

•The conversion time is calculated by the 46 conversion clock at the minimum (conversion clock  $\leq$  40MHz).



Example: If fsys = fc = 54 MHz (46 conversion clock at the minimum)

fc	prescaler	tconv.(Conversion time)				
54MHz	1	No setting available (Note)				
	1/2	1.7us				
	1/4	3.4us				

Note) The maximum conversion clock is 40MHz.

#### Variable S/H time

Conversion clock	S/H time	tconv.(conversion time)
27MHz	Conversion clk*8 (0.3us)	1.7us
(fc=54)	Conversion clk*16 (0.6us)	2.0us
	Conversion clk*24 (0.9us)	2.3us
	Conversion clk*32 (1.2us)	2.6us
	Conversion clk*64 (2.4us)	3.8us
	Conversion clk*128 (4.7us)	6.1us
	Conversion clk*512 (19.0us)	20.4us

## ADCLK & conversion time per typical oscillators

fosc (MHz)	fsys (MHz)	ADCLK (MHz)	tconv (conversion time) (46ADCLK)(uSec)	Note
13.5	54.0	xxxx	Хххх	No setting for ADC is available
10.0	40.0	40.0	1.15	Gear 1/1
8.0	32.0	32.0	1.44	Gear 1/1
13.5	27.0	27.0	1.70	Clock gear 1/2
10.0	20.0	20.0	2,30	Clock gear 1/2
8.0	16.0	16.0	( 2.88	Clock gear1/2
13.5	13.5	13.5	3.41	Clock gear 1/4
10.0	10.0	10.0	4.60	Clock gear 1/4
8.0	8.0	8.0	5.75	Clock gear 1/4

* We specify 8.0 MHz, 10.0 MHz and 13.5 MHz as the typical oscillators.

"Please do not change the analog to digital conversion clock setting in the analog to digital translation.

## **15.3 Description of Operations**

## 15.3.1 Analog Reference Voltage

The "H" level of the analog reference voltage shall be applied to the VREFH pin, and the "L" level shall be applied to the VREFL pin. By writing "0" to the ADAMOD1<VREFON> bit, a switched-on state of VREFH - VREFL can be turned into a switched-off state. To start A/D conversion, make sure that you first write "1" to the <VREFON> bit, wait for 3 µs during which time the internal reference voltage should stabilize, and then write "1" to the ADMOD0<ADS> bit.

## 15.3.2 Selecting the Analog Input Channel

How the analog input channel is selected is different depending on A/D converter operation mode used.

- (1) Normal A/D conversion mode
- If the analog input channel is used in a fixed state (ADAMOD0<SCAN>="0"):

One channel is selected from analog input pins AINA0 through AINA15 by setting

ADAMOD1<ADCH3 to 0> to an appropriate setting.

- If the analog input channel is used in a scan state (ADAMOD0<SCAN>="1"): One scan mode is selected from 16 scan modes by setting ADAMOD1 <ADCH3 to 0> and ADSCN to appropriate settings.
- (2) Top-priority A/D conversion mode

One channel is selected from analog input pins AINA0 through AINA15 by setting ADAMOD2 < HPADCH3 to 0> to an appropriate setting.

After a reset, ADMOD0<SCAN> is initialized to "0" and ADAMOD1<ADCH3:0> is initialized to "0000." This initialization works as a trigger to select a fixed channel input through the ANAO pin. The pins that are not used as analog input channels can be used as ordinary input ports.

If top-priority A/D conversion is activated during normal A/D conversion, normal A/D conversion is discontinued, top-priority A/D conversion is executed and completed, and then normal A/D conversion is resumed.

Example: A case in which repeat-scan conversion is ongoing at channels AINA0 through AINA3 with ADAMOD0<REPEAT : SCAN> set to "11" and ADAMOD1<ADCH3:0> set to 0011, and top-priority A/D conversion has been activated at AINA15 with ADAMOD2<HPADCH3:0>=1111:

Top-priority A/D conversion is activated.

_	/		-					
Conversion (	Ch0	Ch1	Ch2	Ch15	Ch2	Ch3	Ch0	$\Box$
		•	02	01110	0.112	0110	0.110	
Ch 🗸								

## 15.3.3 Starting A/D Conversion

Two types of A/D conversion are supported: normal A/D conversion and top-priority A/D conversion. Normal A/D conversion is software activated by setting ADAMOD0<ADS> to "1." Top-priority A/D conversion is software activated by setting ADAMOD2<HPADCE> to "1." 4 operation modes are made available to normal A/D conversion. In performing normal A/D conversion, one of these operation modes must be selected by setting ADAMOD0<2:1> to an appropriate setting. For top-priority A/D conversion, only one operation mode can be used: fixed channel single conversion mode. Normal A/D conversion can be activated using the HW activation source selected by ADAMOD4<ADHS>, and top-priority A/D conversion can be activated using the HW activation source selected by ADAMOD4<HADHS>. If this bit is "0," normal and top-priority A/D conversions are activated in response to the input of a falling edge through the ADTRG pin. If this bit is "1," normal A/D conversion is activated in response to TB9RG0 generated by the 16-bit timer 9. Software activation is still valid even after H/W activation has been authorized.

(Note) When an external trigger is used for the HW start source of a top priority A/D conversion, an external trigger cannot usually be set for HW activation of A/D conversion.

When normal A/D conversion starts, the A/D conversion Busy flag (ADAMOD0<ADBF>) showing that A/D conversion is under way is set to "1." When top-priority A/D conversion starts, the A/D conversion Busy flag (ADAMOD2<ADBFHP>) showing that A/D conversion is under way is set to "1." At that time, the Busy flag for normal A/D conversion retains the value that had been set before top-priority conversion started. The value of the conversion completion flag EOCFN for normal A/D conversion before the start of top-priority A/D conversion can also be retained.

(Note) Normal A/D conversion must not be reactivated when top-priority A/D conversion is under way. Otherwise, the top-priority A/D conversion completion flag cannot be set, and the flag for previous normal A/D conversion cannot be cleared.

To reactivate normal A/D conversion, a software reset (ADAMOD4 < ADRST1:0 > ) must be performed before starting A/D conversion. The HW activation method must not be used to reactivate normal A/D conversion.

If ADAMOD2<HPADCE is set to "1" during normal A/D conversion, ongoing A/D conversion is discontinued and top-priority A/D conversion starts; specifically, A/D conversion (fixed channel single conversion) is executed for a channel designated by ADMOD2<3:0>. After the result of this top-priority A/D conversion is stored in the storage register ADAREGSP, normal A/D conversion is resumed.

If HW activation of top-priority A/D conversion is authorized during normal A/D conversion, ongoing A/D conversion is discontinued when requirements for activation using a resource are met, and top-priority A/D conversion (fixed channel single conversion) starts for a channel designated by ADAMOD2<3:0>. After the result of this top-priority A/D conversion is stored in the storage register ADAREGSP, normal A/D conversion is resumed.

## 15.3.4 A/D Conversion Modes and A/D Conversion Completion Interrupts

For A/D conversion, the following four operation modes are supported. For normal A/D conversion, an operation mode can be selected by setting ADAMOD0<2 : 1> to an appropriate setting. For top-priority A/D conversion, the fixed channel single conversion mode is automatically selected, irrespective of the ADAMOD0<2. 1> setting.

- Fixed channel single conversion mode
- Channel scan single conversion mode
- Fixed channel repeat conversion mode
- Channel scan repeat conversion mode
- (1) Normal A/D conversion

An operation mode is selected with ADMOD0<REPEAT, SCAN>. As A/D conversion starts, ADAMOD0<ADBFN> is set to "1." When specified A/D conversion is completed, the A/D conversion completion interrupt (INTAD) is generated, and ADMOD0<EOCF> showing the completion of A/D conversion is set to "1." If <REPEAT>="0," <ADBFN> returns to "0" concurrently with the setting of EOCF. If <REPEAT> is set to "1," <ADBFN> remains at "1" and A/D conversion continues.

① Fixed channel single conversion mode

If ADAMOD0 <REPEAT, SCAN> is set to "00," A/D conversion is performed in the fixed channel single conversion mode.

In this mode, A/D conversion is performed once for one channel selected. After A/D conversion is completed, ADAMOD0<EOCF> is set to "1," ADAMOD0<ADBF> is cleared to "0," and the interrupt request INTAD is generated. <EOCF> is cleared to "0" upon read.

2 Channel scan single conversion mode

If ADAMOD0 < REPET, SCAN> is set to "01," A/D conversion is performed in the channel scan single conversion mode.

In this mode, A/D conversion is performed once for each scan channel selected. After A/D scan conversion is completed, ADAMOD0<EOCF> is set to "1," ADAMOD0<ADBF> is cleared to "0," and the interrupt request INTAD is generated. <EOCF> is cleared to "0" upon read.

③ Fixed channel repeat conversion mode

If ADAMOD0<REPEAT, SCAN> is set to "10," A/D conversion is performed in fixed channel repeat conversion mode.

In this mode, A/D conversion is performed repeatedly for one channel selected. After A/D conversion is completed, ADAMOD <EOCF> is set to "1." ADAMOD0 <ADBF> is not cleared to "0." It remains at "1." The timing with which the interrupt request INTAD is generated can be selected by setting ADAMOD0 <ITM1:0> to an appropriate setting. <EOCF> is set with the same timing as this interrupt INTAD is generated.

<EOCF> is cleared to "0" upon read.

With <ITM1:0> set to "00," an interrupt request is generated each time one A/D conversion is completed. In this case, the conversion results are always stored in the storage register ADAREG08. After the conversion result is stored, EOCF changes to "1."

With <ITM1:0> set to "01," an interrupt request is generated each time four A/D

conversion are completed. In this case, the conversion results are sequentially stored in storage registers ADAREG08 through ADAREG3B. After the conversion results are stored in ADAREG3B, <EOCF> is set to "1," and the storage of subsequent conversion results starts from ADAREG08. <EOCF> is cleared to "0" upon read.

With <ITM1:0> set to "10," an interrupt request is generated each time eight A/D conversions are completed. In this case, the conversion results are sequentially stored in storage registers ADAREG08 through ADAREG7F. After the conversion results are stored in ADAREG7F, <EOCF> is set to "1," and the storage of subsequent conversion results starts from ADAREG08.

④ Channel scan repeat conversion mode

If ADAMOD0 <REPEAT, SCAN> is set to "11," A/D conversion is performed in the channel scan repeat conversion mode.

In this mode, A/D conversion is performed repeatedly for a scan channel selected. Each time one A/D scan conversion is completed, ADAMOD0 <EOCF> is set to "1," and the interrupt request INTAD is generated. ADAMOD0 <ADBF> is not cleared to "0." It remains at "1." <EOCF> is cleared to "0" upon read.

To stop the A/D conversion operation in the repeat conversion mode (modes described in ③ and ④ above), write "0" to ADMODO <REPEAT>. When ongoing A/D conversion is completed, the repeat conversion mode terminates, and ADMODO <ADBF> is set to "0." Before switching from one mode to standby mode (such standby modes as IDLE, STOP, etc.), check that A/D conversion is not being executed. If A/D conversion is under way, you must stop it or wait until it is completed.

(2) Top-priority A/D conversion

Top-priority A/D conversion is performed only in fixed channel single conversion mode. The ADAMODO<REPEAT, SCAN> setting has no relevance to the top-priority A/D conversion operations or preparations. As activation requirements are met, A/D conversion is performed only once for a channel designated by ADAMOD2<HPADCH3:0>. After the A/D conversion is completed, the top-priority A/D conversion completion interrupt is generated, ADAMOD 2<EOCFHP> is set to "1," and <ADBFHP> returns to "0." The EOCFHP Flag is cleared upon read.

		Сŀ	perations			
Conversion mode	Interrupt	EOCF	ADBF		ADAMOD0	
	generation	setting timing	(after the	ITM1:0	REPEAT	SCAN
	timing	(see Note)	interrupt is	~		
			generated)			
Fixed channel	After	After	0	(C	0	0
single conversion	conversion is	conversion is		-(	)	
	completed	completed			$\mathcal{D}$	
Fixed channel	Each time one	After one	1	00	1	0
repeat conversion	conversion is	conversion is				
	completed	completed		$\frown$		
	Each time four	After four	1	01		
	conversions are completed	conversions are completed				
	•	•	- 4		$\mathcal{A}(\mathcal{N})$	>
	Each time eight	After eight conversions		10	$\mathcal{I}$	-
	conversions	are completed	(// s)	$\sim$ (	$\bigcirc$	
	are completed	are completed			$\langle \mathcal{I} \rangle$	
Channel scan	After scan	After scan	0		Q	1
single conversion	conversion is	conversion is		$\overline{(C_{\alpha})}$		
	completed	completed	$\sim$		/	
Channel scan	Each time one	Each time one	2 1	(7/4)	1	1
repeat conversion	scan	scan		$\nabla \overline{\mathcal{T}}$		
	conversion is	conversion is				
	completed	completed				

Relationships between A/D Conversion Modes, Interrupt Generation Timings and Flag Operations

(Note) EOCF is cleared upon read.

## 15.3.5 High-priority Conversion Mode

By interrupting ongoing normal A/D conversion, top-priority A/D conversion can be performed. Top-priority A/D conversion can be software activated by setting ADAMOD2<HPADCE> to "1" or it can be activated using the HW resource by setting ADAMOD4<7:6> to an appropriate setting. If top-priority A/D conversion has been activated during normal A/D conversion, ongoing normal A/D conversion is interrupted, and single conversion is performed for a channel designated by ADAMOD2<3:0>. The result of single conversion is stored in ADAREGSP, and the top-priority A/D conversion interrupt is generated. After top-priority A/D conversion is completed, normal A/D conversion is resumed; the status of normal A/D conversion immediately before being interrupted is maintained. Top-priority A/D conversion activated while top-priority A/D conversion is under way is ignored.

For example, if channel repeat conversion is activated for channels ANA0 through ANA8 and if <HPADCE> is set to "1" during ANA3 conversion, ANA3 conversion is suspended, and conversion is performed for a channel designated by <HPADC3:0>. After the result of conversion is stored in ADAREGSP, channel repeat conversion is resumed, starting from ANA3.

## 15.3.6 A/D Monitor Function

If ADAMOD3<ADOBSV> is set to "1," the A/D monitor function is enabled. If the value of the conversion result storage register specified by REGS<3:0> becomes larger or smaller ("larger" or "smaller" to be designated by ADOBIC) than the value of a comparison register, the A/D monitor function interrupt is generated. This comparison operation is performed each time a result is stored in a corresponding conversion result storage registers assigned to perform the A/D monitor function are usually not read by software, overrun flag <OVRn> is always set and the conversion result storage flag <ADRnRF> is also set. To use the A/D monitor function, therefore, a flag of a corresponding conversion result storage register must not be used.

## 15.3.7 Storing and Reading A/D Conversion Results

A/D conversion results are stored in upper and lower A/D conversion result registers for normal A/D conversion (ADAREG08H/L through ADARG7FH/L).

In fixed channel repeat conversion mode, A/D conversion results are sequentially stored in ADAREG08H/L through ADAREG7FH/L. If <ITM1:0> is so set as to generate the interrupt each time one A/D conversion is completed, conversion results are stored only in ADAREG08H/L. If <ITM1:0> is so set as to generate the interrupt each time four A/D conversions are completed, conversion results are sequentially stored in ADAREG08H/L through ADAREG3BH/L.

Table 15.1 shows analog input channels and related A/D conversion result registers.

		A/D conve	ersion result register	
Analog input channel (port A)	Conversion modes other than shown to the right	Fixed channel repeat conversion mode (every one conversion)	Fixed channel repeat conversion mode (every four conversions)	Fixed channel repeat conversion mode (every eight conversions)
ANA0	ADAREG08H/L	ADAREG08H/L fixed	ADAREG08H/←	
ANA1	ADAREG19H/L			$( \land )$
ANA2	ADAREG2AH/L			ADAREG08H/
ANA3	ADAREG3BH/L		ADAREG3BH/	
ANA4	ADAREG4CH/L		ADAREGODI/	
ANA5	ADAREG5DH/L			
ANA6	ADAREG6EH/L		$\langle \rangle$	
ANA7	ADAREG7FH/L			ADAREG7EH/
ANA8	ADAREG08H/L		$( \neg \land \land )$	ADAILEOTTI
ANA9	ADAREG19H/L		$(\vee / )) \land$	(O)
ANA10	ADAREG2AH/L	C		
ANA11	ADAREG3BH/L			
ANA12	ADAREG4CH/L		$\land$ (C	$\bigcirc$
ANA13	ADAREG5DH/L		$\vee$ $\mathbb{C}$	
ANA14	ADAREG6EH/L			$\sim$
ANA15	ADAREG7FH/L	$ \langle \rangle $		
		$\langle \langle \rangle \rangle$		

Table 15.1 Analog Input Channels and Related A/D Conversion Result Registers

## 15.3.8 Data Polling

To process A/D conversion results without using interrupts, ADAMOD0<EOCF> must be polled. If this flag is set, conversion results are stored in a specified A/D conversion result register. After confirming that this flag is set, read that conversion result storage register. In reading the register, make sure that you first read upper bits and then lower bits to detect an overrun. If OVRn is "0" and ADRnRF is "1" in lower bits, a correct conversion result has been obtained.

# 16. Watchdog Timer (Runaway Detection Timer)

The TMP19A63 has a built-in watchdog timer for detecting runaways.

The watchdog timer (WDT) is for detecting malfunctions (runaways) of the CPU caused by noises or other disturbances and remedying them to return the CPU to normal operation. If the timer detects a runaway, it generates a non-maskable interrupt to notify the CPU.

By connecting the output of the watchdog timer to a reset pin (inside the chip), it is possible to force the watchdog timer to reset itself.

## 16.1 Configuration

Fig. 16.1 shows the block diagram of the watchdog timer.



Fig. 16.1 Block Diagram of the Watchdog Timer

## 16.2 Watchdog Timer Interrupt

The watchdog timer consists of the binary counters that are arranged in 22 stages and work using the  $f_{SYS/2}$  system clock as an input clock. The outputs produced by these binary counters are  $2^{15}$ ,  $2^{17}$ ,  $2^{19}$  and  $2^{21}$ . By selecting one of these outputs with WDMOD <WDTP1:0>, a watchdog timer interrupt can be generated when an overflow occurs, as shown in Fig. 16.2.1. Because the watchdog timer interrupt is a non-maskable interrupt factor, NMIFLG <WDT> at the INTC performs a task of identifying it.


## 16.3 Control Registers

The watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

#### 16.3.1 Watchdog Timer Mode Register (WDMOD)

① Specifying the detection time of the watchdog timer <WDTP1; 0>

This is a 2-bit register for specifying the watchdog timer interrupt time for runaway detection. When a reset is effected, this register is initialized to WDMOD <WDTP1, 0 > = "00." 16.3.1.1 shows the detection time of the watchdog timer.

#### ② Enabling/disabling the watchdog timer <WDTE>

When reset, WDMOD <WDTE> is initialized to "1" and the watchdog timer is enabled.

To disable the watchdog timer, this bit must be set to "0" and, at the same time, the disable code (B1H) must be written to the WDCR register. This dual setting is intended to minimize the probability that the watchdog timer may inadvertently be disabled if a runaway occurs.

To change the status of the watchdog timer from "disable" to "enable," set the <WDTE> bit to "1."

③ Watchdog timer out reset connection <RESCR>

This is a register for specifying the connection of non-maskable interrupt (INTWDT) or an internal reset after a runaway is detected. As a reset initializes this setting to WDMOD <RESCR>="0" and non-maskable interrupt is specified. Refer to the part of NMIFLG register in Chapter 6 "Interrupt".



Fig. 16.3.1.1 Watchdog Timer Mode Register

0

1

Disable

Enable

## 16.3.2 Watchdog Timer Control Register (WDCR)

This is a register for disabling the watchdog timer function and controlling the clearing function of the binary counter.

• Disabling control

By writing the disable code (B1H) to this WDCR register after setting WDMOD <WDTE> to "0," the watchdog timer can be disabled.

WDN	10D ← 0			Clears WDTE to "0".	
WDC	R ← 1	0 1 1 0 0	0 1	Writes the disable code (B1H).	

Enable control

Set WDMOD <WDTE> to "1".

Watchdog timer clearing control

Writing the clear code (4EH) to the WDCR register clears the binary counter and allows it to resume counting.

WDCR  $\leftarrow$  0 1 0 0 1 1 1 0 Writes clear code (4EH).

(Note) Writing the disable code (BIH) clears the binary counter.

			$C \wedge$	$\land$	Υ.									
	/	7	6 5	4	3	2	1	0						
WDCR	bit Symbol	(												
DxFFFF_FA01)	Read/Write													
	After reset	$(\bigcirc)$												
	Function	B1H; WI	DT disable code	$\langle \mathcal{O} \rangle$										
		4EH : WE	DT clear code											
		Others: In	valid											
	$\sim 2$	This reais	ter is exclusively for wri	ting. Each bit is	read as "0".									
$\sim$		9				sable &	clear of WD	т						
		$\frown$	$( \bigcirc ) \checkmark$		B1H	Disab	le code							
	$\rightarrow$				4EH	Clear	code							
					Others	—								
	$\geq$													



## 16.4 Operation Description

The watchdog timer generates the INTWDT interrupt after a lapse of the detection time specified by the WDMOD <WDTP1, 0> register. Before generating the INTWD interrupt, the binary counter for the watchdog timer must be cleared to "0" using software (instruction). If the CPU malfunctions (runs away) due to noise or other disturbances and cannot execute the instruction to clear the binary counter, the binary counter overflows and the INTWD interrupt is generated. The CPU is able to recognize the occurrence of a malfunction (runaway) by identifying the INTWD interrupt and to restore the faulty condition to normal by using a malfunction (runaway) countermeasure program. Additionally, it is possible to resolve the problem of a malfunction (runaway) of the CPU by connecting the watchdog timer out pin to reset pins of peripheral devices.

The watchdog timer begins operation immediately after a reset is cleared.

In STOP mode, the watchdog timer is reset and in an idle state. When the bus is open  $(\overline{BUSAK} = "L")$ , it continues counting. In IDLE mode, its operation depends on the WDMOD <I2WDT> setting. Before putting it in IDLE mode, WDMOD <I2WDT> must be set to an appropriate setting, as required.

#### Examples:

① To clear the binary counter	))
7 6 5 4 3 2 1 0	
WDCR $\leftarrow 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0$ Writes the clear code (4	
② To set the detection time of the watchdog timer to 2	2 ¹⁸ /f _{SYS}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3 To disable the watchdog timer	
$7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$ WDMOD $\leftarrow 0 \ - \ - \ - \ - \ - \ Clears$ WDTE to "0".	
WDCR $\leftarrow$ 1 0 1 1 0 0 1 Writes the disable code	(B1H).

# **17. ROM correction function**

This chapter describes the ROM correction function built into the TMP19A63.

#### 17.1 Features

- Using this function, eight-word data per one register can be replaced for 12 registers.
- If an address (lower 5 bit is "don't care" bits) written to the address register matches an
  address generated by the PC or DMAC, ROM data is replaced by data generated by the
  ROM correction data register which is established in a RAM area assigned to the above
  address register.
- ROM correction is automatically authorized by writing an address to each address register.
- If ROM correction cannot be executed using eight-word data due to a program modification or for other reasons, it is possible to place a "jump-to-RAM" instruction in a data register in a RAM area and to correct ROM data in that RAM area.

#### **17.2** Description of Operations

By setting in the address register ADDREGn a physical address (including a projection area) of the ROM area to be corrected, ROM data can be replaced by data generated by a data register in a RAM area assigned to ADDREGn. The ROM correction function is automatically enabled when an address is set in ADDREGn, and it cannot be disabled. After a reset, the ROM correction function is disabled. Therefore, to execute ROM correction with the initialization after a reset is cleared, it is necessary to set an address in ADDREG. As an address is set in ADDREG, the ROM correction function is enabled for this register. If the CPU has the bus authority, ROM data is replaced when the value generated by the PC matches that of the address register. If the DMAC has the bus authority, ROM data is replaced when a source or destination address generated by the DMAC matches the value of the address register. For example, if an address is set in ADDREGO and ADDREG3, the ROM correction function is enabled for this area; match detection is performed on these registers, and data replacement is executed of there is a match. Data replacement is not executed for ADDREG1, ADDREG2, and ADDREG4 through ADDREG7. Although the bit <31:5> exists in address registers, match detection is performed on A<20:5>. Internally the data replacement is executed after the match detection of the ROMCS signal showing a ROM area and ROM correction circuitry.

If eight-word data is replaced, an address for ROM correction can be established only on an eight-word boundary, and data is replaced in units of 32 bytes. If only part of 32-byte data must be replaced with different data, the addresses that do not need to be replaced must be overwritten with the same data as the one existing prior to data replacement.

Register	ADDREGn and RAM area		Number of words
ADDREG0	0xFFFF_DE80 0xFFFF_DE9F	-	8
ADDREG1	0xFFFF_DEA0 0xFFFF_DEBF	-	8
ADDREG2	0xFFFF_DEC0 0xFFFF_DEDF	-	8
ADDREG3	0xFFFF_DEE0 0xFFFF_DEFF	-	8
ADDREG4	0xFFFF_DF00 0xFFFF_DF1F	-	8
ADDREG5	0xFFFF_DF20 0xFFFF_DF3F		8
ADDREG6	0xFFFF_DF40 0xFFFF_DF5F	2	) 8 <
ADDREG7	0xFFFF_DF60 0xFFFF_DF7F	$\leq$	8
ADDREG8	0xFFFF_DF80 0xFFFF_DF9F	-	8
ADDREG9	0xFFFF_DFA0 0xFFFF_DFBF	-	8
ADDREGA	0xFFFF_DFC0 0xFFFF_DFDF	1	8
ADDREGB	0xFFFF_DFE0 0xFFFF_DFFF	-	8

ADDREGn registers and RAM areas assigned to them are as follows:

(Note 1): The instruction affected by ROM correction under ROM protection is activated by RAM. Therefore, the instruction corrected by ROM can specify neither conditions of the ROM reading nor the DMAC. To enable all the instructions, the ROM must be unprotected.

(Note 2) ROM correction to ROM area ignores the upper address specified by an address register and decodes the address [19:5].



Fig. 17.1 ROM correction system diagram

## 17.3 Registers

	(1) Address	registers							
		7	6	5	4	3	2	1	0
ADDREG0	Symbol						$\langle$		
(0xFFFF_E540)	Read/Write		R/W				R		
	After reset	0	0	0	1	1	1	1	1
		15	14	13	12	11	10	) 🖓 9	8
	Symbol							)	
	Read/Write		-		R/	/W((			
	After reset	0	0	0	0	0	()	0	0
		23	22	21	20	19	18	17	16
	Symbol						Y		
	Read/Write			-	R/	W	/		
	After reset	0	0	0	0 🔨	0	0		0
		31	30	29	28	27	26	25	24
	Symbol				$\left( \right)$		6	5 >	
	Read/Write					w)	> ( (		
	After reset	0	0	0	$\langle \rangle$	0	~ _0	~~/0))	0
							$\sim$		
		7	6	5	4	3	2	1	0
ADDREG1	Symbol				$\sim$		SA		
(0xFFFF_E544)	Read/Write		R/W		$\overline{\mathbf{a}}$	6	R R		
,	After reset	0	0	0	> 1	1.	))1	1	1
		15	14	13	12		/10	9	8
	Symbol			$\langle \rangle$					
	Read/Write		6	$\overline{)}$	R/	w ))			
	After reset	0	0	)) 0	0	0	0	0	0
		23	22	21	20	19	18	17	16
	Symbol		$\left( \begin{array}{c} \\ \end{array} \right)$			11			
	Read/Write		$(\bigcirc)$		R/	W			
	After reset	0		0 /	0	0	0	0	0
		31	))30	29	28	27	26	25	24
	Symbol	$\gamma \gamma$	9	$(\Omega)$	$\sim$	11			
	Read/Write	1	, (	$\Sigma   X$	)) R/	W			
	After reset	0	0	0	0	0	0	0	0
			$\langle -$			1			
	$\wedge$ $\wedge$	7	6	5	4	3	2	1	0
ADDREG2	Symbol	-			<u> </u>				
(0xFFFF_E548)	Read/Write	1	R/W	~			R		
(0/11 1 1 20 10)	After reset	0	0	0	1	1	1	1	1
$\frown$		15	14	13	12	11	10	9	8
	Symbol	$\wedge$ ((			.=			ũ	Ū.
	Read/Write	(	) )		R/	W			
	After reset	0	0	0	0	0	0	0	0
		23	22	21	20	19	18	17	16
	Symbol		V		_•				
	Read/Write				R/	W			
	After reset	0	0	0	0	0	0	0	0
		31	30	29	28	27	26	25	24
	Symbol			_0	20		20	20	<u> </u>
	Read/Write				D/	W			
	After reset	0	0	0	0	0	0	0	0
		U	U	U	U	U	U	U	0

			r						1	
		7	6	5	4	3	2	1	0	
ADDREG3	Symbol									
(0xFFFF_E54C)	Read/Write	-	R/W	-			R			
	After reset	0	0	0	1	1	1	1	1	
		15	14	13	12	11	10	9	8	
	Symbol									
	Read/Write		-			/W	$-(\bigcirc$		-	
	After reset	0	0	0	0	0		0	0	
		23	22	21	20	19	18	17	16	
	Symbol					$ \land ($	(// ))			
	Read/Write					/W				
	After reset	0	0	0	0	0	0	0	0	
	- · · ·	31	30	29	28	27	26	25	24	
	Symbol									
	Read/Write	0	0	0	0	/w 0	0		0	
	After reset	0	0	0	0				0	
		7	0	F					0	
		7	6	5	4	)) 3	2		0	
ADDREG4	Symbol		<b>-</b> 44/	(				4 <i>0</i> /~		
(0xFFFF_E550)	Read/Write	0	R/W	0		4	R		4	
	After reset	0 15	0 14	0 13	1 12	1 11	10	1 9	1 8	
	<b>0</b>	10	14	13				9	0	
	Symbol					<u> (</u>				
	Read/Write	0	0					0	0	
	After reset	0 23	0 22	21	0 20	19	0 18	0 17	0 16	
	Quarter	23			20	19	10	17	10	
	Symbol Read/Write	RW								
	After reset	0	0	D o	R	0	0	0	0	
	Aller Tesel	31	30	29	28	27	26	25	24	
	Sumbol	51	$\left( \begin{array}{c} 30 \end{array} \right)$	29	20	21	20	25	24	
	Symbol Read/Write		$\sim$	~		/W				
	After reset		<u>)</u> 0	0		0	0	0	0	
	Allei lesel		<del></del>			0	0	0	0	
			6 <	5	) 4	3	2	1	0	
	Currents and		0	1 2 -	// 4	$\sim$	$\sim$		$\sim$	
ADDREG5	Symbol Read/Write		RAW							
(0xFFFF_E554)	After reset	0	0	0	1	1	R 1	1	1	
	Aller lesel	15	14	13	12	11	10	9	8	
	Currel	15	14	10	12		10	9	0	
	Symbol Read/Write					////				
$\sim$	After reset	0	0	0	0 0	/W0	0	0	0	
	Allel Tesel	23	22	21	20	19	18	17	16	
	Currada al			21	20	19	10	17	10	
	Symbol Read/Write	$\bigvee$	$\subseteq$		л -	/W				
		0	0	0	0 R	0	0	0	0	
	After reset	31	30	29	28	27	26	25	24	
	Symbol	JI	30	23	20	21	20	20	24	
	Symbol Road/Write				л	ΛΛ/				
	Read/Write After reset	0	0	0	0 0	/W0	0	0	0	
	Aller lesel	U	U	U	U	U	U	U	U	

		7	6	5	4	3	2	1	0
ADDREG6	Symbol								
(0xFFFF_E558)	Read/Write		R/W				R		
	After reset	0	0	0	1	1	1	1	1
		15	14	13	12	11	_ 10	9	8
	Symbol								
	Read/Write				R	/W			
	After reset	0	0	0	0	0	Q	0	0
		23	22	21	20	19		17	16
	Symbol					((	$7/\Delta$		
	Read/Write				R	<u>/W ()</u>	$\sim O)$		
	After reset	0	0	0	0	0	0	0	0
		31	30	29	28	27	26	25	24
	Symbol				,	$\sim$	)		
	Read/Write				R	Ŵ	1		
	After reset	0	0	0	0	0	0	$C \setminus 0 >$	0
					$\square$				
		7	6	5	4//	)) 3	2	$)) \land$	0
ADDREG7	Symbol				)] [(		X	A A	
(0xFFFF_E55C)	Read/Write		R/W		$\bigcirc$		R		
	After reset	0	0	0 (	1	1	$( \land )$	1	1
		15	14	13	12	11	(10))	9	8
	Symbol				$\searrow$	6	7.0		
	Read/Write			$\Delta($	R	<u>/w ((//</u>	()		
	After reset	0	0		0	0	0	0	0
		23	22	21	20	19	18	17	16
	Symbol		6	$\sum$					
	Read/Write				R	W	i		
	After reset	0		0	0	0	0	0	0
		31	30	29	28	27	26	25	24
	Symbol	\	$\bigcirc$		$\langle \rangle$				
	Read/Write			~		/W	1		
	After reset	0	))0	0	0	0	0	0	0
		$\sim 10$	<u> </u>	$(\alpha)$		•			
		17	6 <	5	)   4	3	2	1	0
ADDREG8	Symbol	2			/				
(0xFFFF_E560)	Read/Write		R/W			<del>.</del>	R	i	
	After reset	0	0	0	1	1	1	1	1
		15	14	13	12	11	10	9	8
	Symbol		$\bigcap$						
	Read/Write		AL	1	R	/W	I	T	
$\sim$	After reset	0	0	0	0	0	0	0	0
		_23((	22	21	20	19	18	17	16
	Symbol	$( \land ( \land ( \land ) )$							
	Read/Write	$\sum$	<u> </u>	1	R	/W			
	After reset	0	0	0	0	0	0	0	0
$\sim$		31	30	29	28	27	26	25	24
	Symbol								
	Read/Write	ļ		1		/W	t		
	After reset	0	0	0	0	0	0	0	0

-									
		7	6	5	4	3	2	1	0
ADDREG9	Symbol								
(0xFFFF_E564)	Read/Write		R/W	1		1	R		
	After reset	0	0	0	1	1	1	1	1
		15	14	13	12	11	10	9	8
	Symbol								
	Read/Write					/W			
	After reset	0	0	0	0	0		0	0
		23	22	21	20	19	18	17	16
	Symbol						(// ))		
	Read/Write	0	0	-		/W		0	0
	After reset	0 31	0 30	0 29	0	0	0	0	0
		31	30	29	28	27	26	25	24
	Symbol								
	Read/Write	0	0	0	0	/W 0	0		0
l	After reset	0	0	0	0		0		0
		7	C	F					0
		7	6	5	4	)) 3	2		0
ADDREGA	Symbol		<b>D</b> 444	(				401-	
(0xFFFF_E568)	Read/Write	0	R/W				R		4
	After reset	0 15	0	0 13	1	1		1 9	1
	Quarteral	ID	14	13	IZ.	11		9	8
	Symbol			$-(\bigcirc$		<u> (</u>	<u></u>		
	Read/Write After reset	0	0	0			20	0	0
	Aller Tesel	0 23	22	21	20	19	18	0 17	0 16
	Sumbol	23			- _Ž 0(	19	10	17	10
	Symbol Read/Write					w			
	After reset	0	0	V o	.0	0	0	0	0
	Aller Teset	31	30	29	28	27	26	25	24
,	Symbol	01	$\left( \begin{array}{c} 0 \\ 0 \end{array} \right)$	25	20	21	20	20	27
	Read/Write		$\sim$	~		/w			
	After reset		<u>)</u> 0	0		0	0	0	0
			<del>))</del>			Ū	Ū	Ū	Ū
			6 <	5	) 4	3	2	1	0
ADDREGB	Symbol		0	$\sim$	-	$\sim$	~	-	$\sim$
(0xFFFF_E56C)	Read/Write		R/W				R R		
(001111_E000)	After reset	0	0	0	1	1	1	1	1
		15	14	13	12	11	10	9	8
	Symbol		$\wedge$		12		10	Ū	Ŭ
	Read/Write				R	/W			
$\sim$	After reset	0	0	0	0	0	0	0	0
		23 (	22	21	20	19	18	17	16
	Symbol								
	Read/Write	$\sim$	$\subseteq$		R	/W			
	After reset	0	0	0	0	0	0	0	0
$\sim$		31	30	29	28	27	26	25	24
	Symbol					·			
	Read/Write				R	/W			
	After reset	0	0	0	0	0	0	0	0
			, v	, v	, v	, v	, v		

- (Note 1) Data cannot be transferred by DMA to the address register. However, data can be transferred by DMA to the RAM area where data for replacement is placed. The ROM correction function supports data replacement for both CPU and DMA access.
- (Note 2) Writing back the initial value "0x00" allows data at the reset address to be replaced.

# 18. Key-on Wake Up

## 18.1 Outline

- The TMP19A63 has 8 key inputs, KEY0 to KEY7, which can be used for releasing the STOP mode or for external interrupts. Note that interrupt processing is executed with one interrupt factor for the 8 inputs. Each key input can be configured to be used or not, by programming (KWUPSTn).
- The active state of each input can be configured to the rising edge, the falling edge, the high level or the low level, by programming (KWUPSTn).
- An interrupt request is cleared by programming the key interrupt status register KWUPST in the interrupt processing.
- The key input pins have pull-up functions, which can enable/disable the pull-up function by programming the key pull-up control register PKPUP. This programming is needed for each of 32 inputs.

## 18.2 Key-on Wakeup Operation

The TMP19A63 has 8 key input pins, KEY0 to KEY7. Program the IMCGD<KWUPEN>register in the CG to determine whether to use the key inputs for releasing the STOP mode or for normal interrupts. Setting <KWUPEN> to "1" causes all the key inputs, KEY0 to KEY7, to be used for interrupts for releasing the STOP mode. Program KWUPSTn<KEYnEN> to enable or disable interrupt inputs for each key input pin. Also, program KWUPSTn<KEYn1: KEYn0> to define the active state of each key input pin to be used. Detection of key inputs is carried out in the KWUP block, and the detection results are notified to the IMCGD register in the CG as the active high level. Therefore, program IMCGD<EMCGC1:C0> to "01" to determine the detection level to the high level. The results of detection in the CG are also notified to the interrupt controller INTC as the active high level. Setting IMCGD<KWUPEN> to 0 (default) configures all the input pins, KEY0 to KEY7 to the normal interrupts. In this case, you don't have to make settings at the CG, but just specify the INTC detection level to the high level. Program KWUPSTn in the same way to enable or disable each key input and define their active states. Reading KWUPST during interrupt processing clears all the key interrupt requests.

(Note)If two or more key inputs are generated, all the key input requests will be cleared by clearing the interrupt request that corresponds to the first key input. The interrupt request generated after the interrupt to be cleared produces another key interrupt.

# 18.3 Pull-up function

Each key input has the pull-up function. By setting PKPUP<KEYPUP0:7> to "1", each bit of key input KEY0 through KEY7 can be pulled up.

Cautions on Use of Key Inputs With Pull-up Enabled

A) When you make the first setting after turning the power ON

- 1) Make a setting of PKPUP (<PKnUP>="1")
- 2) Set KWUPSTn<KEYnEN> to "1" for the key input to be used.
- 3) Wait until the pull-up operation is completed.
- 4) Set KWUPSTn that corresponds to KEYn input to define the active state of the key input to be used.
- 5) Read KWUPST to clear interrupt requests.
- 6) Set CG and INTC (see chapter 6 for the procedure).

B) To change the active state of a key input during operation

- 1) Disable key interrupts by setting IMC3<ILD2:D0> to "000" at the INTC.
- 2) Change the active state by setting KWUPSTn that corresponds to KEYn input to be changed.
- 3) Clear interrupt requests by reading KWUPST.
- 4) Enable the key interrupt at the INTC. Set IMC3<ILD2:D0> to a desired level.

C) To enable a key input during operation

- 1) Disable key interrupts by setting IMC3<ILD2:D0> to "000" at the INTC.
- 2) Set KWUPSTn<KEYnEN> to "1" for the KEYn input to be used.
- 3) Wait until the pull-up operation is completed.
- 4) Set the active state by setting KWUPSTn that corresponds to KEYn input to be used.
- 5) Read KWUPST to clear interrupt requests.
- 6) Enable key interrupts at the INTC. (Set IMC3<ILD2:D0> to a desired level).

Cautions on Use of Key Inputs With Pull-up Disabled

- A) When you make the first setting after turning the power ON
- 1) Set PKPUP (<PKnUP>="1").
- 2) Set the active state by setting KWUPSTn that corresponds to KEYn input to be used.
- 3) Clear interrupt requests by reading KWUPST.
- 4) Set KWUPSTn<KEYnEN> to "1" for the KEYn input to be used.
- 5) Set CG and INTC (see chapter 6 for the procedure).

B) To change the active state of a key input during operation

- 1) Disable key interrupts at the INTC (IMC3<ILD2:D0>=000).
- 2) Change the active state by setting KWUPSTn that corresponds to KEYn input to be changed.
- 3) Read KWUPST to clear interrupt requests.
- 4) Enable key interrupts at the INTC. (Set IMC3<ILD2:D0> to a desired level).

C) To enable a key input during operation

- 1) Disable key interrupts at the INTC (IMC3<ILD2:D0>=000).
- 2) Set the active state by setting KWUPSTn that corresponds to KEYn input to be used.
- 3) Read KWUPST to clear interrupt requests.
- 4) Set KWUPSTn<KEYnEN> to "1" for the KEYn input to be used.
- 5) Enable key interrupts at the INTC (IMC3<ILD2:D0> to a desired level).

	7	6	5	4	3	2	1	0
Bit Symbol	PK7UP	PK6UP	PK5UP	PK4UP	PK3UP	PK2UP	PK1UP	PK0UP
Read/Write				R/	W	$\sim$		
After reset	0	0	0	0	0	0	0	0
Function	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	0: Off	0: Off	0: Off	0: Off	0: Off	0: Off	0: Off	0: Off
	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up	1:Pull-Up
	Read/Write After reset	Read/Write       After reset     0       Function     Pull-up       0: Off	Bit Symbol     PK7UP     PK6UP       Read/Write        After reset     0     0       Function     Pull-up     Pull-up       0: Off     0: Off	Bit Symbol     PK7UP     PK6UP     PK5UP       Read/Write	Bit Symbol         PK7UP         PK6UP         PK5UP         PK4UP           Read/Write	Bit Symbol         PK7UP         PK6UP         PK5UP         PK4UP         PK3UP           Read/Write	Bit Symbol         PK7UP         PK6UP         PK5UP         PK4UP         PK3UP         PK2UP           Read/Write           R/W          R/W <td>Bit Symbol         PK7UP         PK6UP         PK5UP         PK4UP         PK3UP         PK2UP         PK1UP           Read/Write        </td>	Bit Symbol         PK7UP         PK6UP         PK5UP         PK4UP         PK3UP         PK2UP         PK1UP           Read/Write

Port K Pull-up	Control	Register	PKPUP
----------------	---------	----------	-------

## 18.4 KEY input detection

 <KWUPSTn> Active State Definition You can choose one of the active state of each KEYn input from H/L level or rising/ falling edge with KWUPSTn<KEYn1:0>. KEYn input active state detection is always in operation.

		7	6	5	4	3	2	1	0
KWUPST0	bit Symbol			KEY01	KEY00				KEY0EN
(0xFFFF_F900)	Read/Write	F	2	R/	W		R		R/W
	After reset	0	0	1	0	0	0	0	0
	Function			Define the I	KEY0				KEY0
				active state	1				interrupt
				00: "L" leve	I			$\sum$	input
				01: "H" leve			$\sim$	2	
				10: Falling	-	~ ((	7/^_		0: Disable
				11: Rising e		$\mathcal{O}(\mathcal{O})$	$\langle _ \rangle$		1: Enable
		7	6	5	4	3	2	1	0
KWUPST1	bit Symbol			KEY11	KEY10	+	5		KEY1EN
(0xFFFF_F901)	Read/Write	F	२	R/	W		R		R/W
	After reset	0	0	1	0	0	0	0	0
	Function			Define the I	KEY1		~	$\mathcal{C} \subset \mathcal{D}$	KEY1
				active state	1777	$\sim$	54		interrupt
				00: "L" leve		) .	6 (C		input
				01: "H" leve					
				10: Falling			$\sim$		0: Disable
		_	-	11: Rising e			$\left( \begin{array}{c} \\ \end{array} \right)$		1: Enable
		7	6	5	4	3	2	1	0
KWUPST2	bit Symbol			KEY21	KEY20	$\rightarrow$			KEY2EN
(0xFFFF_F902)	Read/Write	F		R			)) R	1	R/W
	After reset	0	0		0	0	0	0	0
	Function			Define the I					KEY2
				active state		$\langle \rangle \rangle$			interrupt
				00: "L" leve 01: "H" leve					input
			$\mathcal{P}$	10: Falling		~			0: Disable
		(	())	10. Failing 6 11: Rising 6					1: Enable
		7	6	5 ~	4	3	2	1	
KWUPST3	bit Symbol			KEY31	KEY30	$\sim$		-	KEY3EN
(0xFFFF_F903)	Read/Write			(	W		R		R/W
(0,1111_1000)	After reset	10	0		)) o	0	0	0	0
	Function			Define the I				Ű	KEY3
				active state					interrupt
	~ ~	$\sim$		00: "L" leve					input
	$\langle \rangle \langle \rangle$			01: "H" leve					
		1	$\wedge$	10: Falling					0: Disable
(	$\bigcirc$		72	11: Rising e					1: Enable
$\langle \langle \rangle$	())								
		$\wedge$ ((	$\mathcal{A}$						
	· > · · · ·	$( \land ) \land )$	$\bigcirc$						
$\rightarrow$			>						

		7	6	5	4	3	2	1	0
KWUPST4	bit Symbol	/	/	KEY41	KEY40	/	/		KEY4EN
(0xFFFF_F904)	Read/Write	F	र	R/	W		R		R/W
. ,	After reset	0	0	1	0	0	0	0	0
	Function			Define the	KEY0		$\geq$		KEY4
				active state	1				interrupt
				00: "L" leve	I		$(\bigcirc$		input
				01: "H" leve	el			)~	
				10: Falling	-	(	$\overline{\gamma}$	~	0: Disable
				11: Rising e		(	// 5)		1: Enable
		7	6	5	4	3		1	0
KWUPST5	bit Symbol	/		KEY51	KEY50	YQ			KEY5EN
(0xFFFF_F905)	Read/Write	F	र	R/	W		) R		R/W
	After reset	0	0	1	0	0	0	0	0
	Function			Define the I	KEY5 📿	$\langle \rangle$		$\langle \rangle$	KEY5
				active state			52		interrupt
				00: "L" leve		$\wedge$ $$	$\sim$ (C	$\mathbb{O}$	input
				01: "H" leve	$\frown$	·) ·		$\mathcal{V}\mathcal{N}$	
				10: Falling				90/	0: Disable
	/			11: Rising e			$\mathbb{R}$		1: Enable
		7	6	5~(	4	3	2	1	0
KWUPST6	bit Symbol			KEY61	KEY60				KEY6EN
(0xFFFF_F906)	Read/Write	F	२	R/	W		R		R/W
	After reset	0	0		0	0	/ 0	0	0
	Function			Define the I	KEY6				KEY6
				active state					interrupt
				00: "L" leve		$\searrow$			input
				01: "H" leve		$\sim$			
		(	$C \land$	10: Falling					0: Disable
		7	6	11: Rising e		0	0	4	1: Enable
		7		5	4	3	2	1	0
KWUPST7	bit Symbol	$\sim \uparrow \forall \uparrow$	)) >	KEY71	KEY70				KEY7EN
(0xFFFF_F907)	Read/Write		<u>۲/</u>		W		R	i	R/W
	After reset	-0-	0		)) 0	0	0	0	0
	Function	$\leq$		Define the					KEY7
			$\langle \langle \rangle$	active state					interrupt
	$ \land \land$			00: "L" leve 01: "H" leve					input
	YX N		~	10: Falling					0: Disable
	$\sim$		.(7	11: Rising e	-				1: Enable
~ (	(		91	TT. Kising e	euge				
$\sim$	$\bigcirc$	. 6							
		$\bigcirc$ ((							
	$\rightarrow$	$\langle \bigtriangledown \rangle \rangle$	$\subseteq$						
		$\langle \rangle$							
$\sim$			>						

#### 18.5 Detection of Key Input Interrupts and Clearance of Requests

When KEYnEN is set to 1 and an active signal is input to KEYn, the KEYINTn channel that corresponds to KWUPST is set to "1," indicating that an interrupt is generated. The KWUPST is the read-only register. Reading this register clears the corresponding bit that has been set to "1".

If the active state is set to the high or low level, the corresponding bit of the KWUPINTn register remains "1" after it is read, unless the external input is withdrawn.

		KET IN	terrupt Star	ius Registe		<u> </u>		
	7	6	5	4	3	2	1	0
bit Symbol	KEYINT7	KEYINT6	KEYINT5	KEYINT4	KEYINT3	KEYINT2	KEYINT1	KEYINT0
Read/Write				F	2	٢ 		
After reset	0	0	0	0	0	0	$\langle \rangle$	0
Function	KEY7 Interrupt	KEY6 Interrupt	KEY5 Interrupt	KEY4 Interrupt	KEY3 Interrupt	KEY2 Interrupt	KEY1 Interrupt	KEY0 Interrupt
	0::Not generated							
	1:Generated							

# KEY Interrupt Status Register: KWURST

KWUPST (0xFFFF_F910)

# 19. Table of Special Function Registers

Special function registers are allocated to an 8K-byte address space from FFFFE000H to FFFFFFFH.

- [1] Port registers
- [2] Watchdog timer
- [3] 32-bit timer ( TMRC )
- [4] I²CBUS/ serial channel (SBI)
- [5] UART/ serial channel (SIO/UART)
- [6] 10-bit A/D converter(ADC)
- [7] Key On Wake-up (KWUP)
- [8] Watchdog timer (WDT)
- [9] Interrupt controller(INTC)
- [10] DMA controller (DMAC)
- [11] Chip select/ wait controller
- [12] FLASH control
- [13] ROM correction
- [14] INTUNIT
- [15] Clock generator (CG)
- (Note 1)

The endian setting has no effect on registers that mapped to the addresses from 0xFFFF_F000 to 0xFFFF_FFF. The register addresses from 0xFFFF_E000 to 0xFFFF_EFFF are changed by the endian setting.

(Note 2)

For continuous 8-bit long registers, 16- or 32-bit access is possible. The use of 16- or 32-bit access requires that an even-number address be accessed and that an even-number address does not contain undefined areas.

# 1. Little endian

# [1] PORT registers

ADR	Register	ſ	ADR	Register		ADR	Register		ADR	Register
	name	ŀ		name			name			name
FFFFF000H	P0		FFFFF010H	P1		FFFFF020H	P2	~	FFFFF030H	P3
1H	P0CR		1H	P1CR		1H	P2CR P2FC1		1H	P3CR
2H 3H	P0FC1		2H	P1FC1		2H 3H	P2FC1 P2FC2		2H	P3FC1
3H 4H		┢	3H 4H	P1FC2		3⊓ 4H	P2F62		3H 4H	
4H 5H			4H 5H			4H 5H		/	4H 5H	
5H 6H			5н 6Н			5H 6H	. ((	7/	6H	
7H			7H			7H	$\sim$		) 7Н	
8H		F	8H			8H			8H	
9H			9H			9H		$\geq$	9H	
AH			AH			AH			AH	
BH			BH			ВН			BH	P3PUP
CH		F	CH			СН	$\langle - \checkmark \rangle$		СН	
DH			DH			рн			DH	
EH			EH			(EH	P2IE		())EH-	P3IE
FH			FH			EH		>	(H)	
					I		/		490	/
ADR	Register	Γ	ADR	Register		ADR	Register	$\sim$	ADR	Register
ABR	name		ABR	name	$\langle$		name	$\langle \rangle$		name
FFFFF040H	P4		FFFFF050H	P5		FFFFF060H	P6		FFFFF070H	P7
1H	P4CR		1H	P5CR		1H	P6CR	$\cap$	1H	
2H	P4FC1		2H	P5FC1		2H	P6FC1		2H	
ЗH			3H			7 /зн			3H	
4H			4H		$\geq$	4H			4H	
5H			5H	(( ))		5H			5H	
6H			6H			6H			6H	
7H			7H	$\sim$		<b>7</b> H			7H	
8H			8H			8H			8H	
9H			9H			9H.	}		9H	
AH			( ( / AH			AH			AH	
BH	P4PUP		ВН	/	(	ВН			BH	
СН			CH	$\sim$	$\left( \left( \right) \right)$	()) СН			СН	
DH		$\checkmark$	DH			ОН ОН			DH	
EH	P4IE		EH	P5IE	1	EH	P6IE		EH	P7IE
FH		L	FH			- FH			FH	
<b>F</b>	$\sim$				Þ					
ADR	Register	广	ADR	Register		ADR	Register		ADR	Register
	name		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	name			name			name
FFFF680H	P8		FFFFF090H	P9		FFFFF0A0H	PA		FFFFF0B0H	РВ
1H			~ (1H.	$\sum$		1H			1H	PBCR
2H			2H	))		2H			2H	PBFC1
3H		-	3H			3H			3H	reserved
4H.			4H			4H			4H	
5H	$\checkmark$		5H			5H			5H	
6H			6H			6H			6H	
7H		┠	7H			7H			7H	
8H			8H			8H			8H	
9H			9H			9H			9H	
AH BH			AH BH			AH BH			AH BH	
		┢								
CH DH			CH DH			CH DH			CH DH	
EH	P8IE		EH	P9IE		EH	PAIE		EH	PBIE
FH			FH	1 91		FH			FH	
		L	111		1	111			111	

ADR	Register		ADR	Register	1	ADR	Register		ADR	Register
ADK	name		ADK	name		ADK	name		ADK	name
FFFFF0C0H	PC		FFFFF0D0H	PD		FFFFF0E0H	PE		FFFFF0F0H	PF
1H	PCCR		1H	PDCR		1H	PECR		1H	PFCR
2H	PCFC1		2H	PDFC1		2H	PEFC1	/	2H	PFFC1
3H	reserved		3H	reserved		3H	reserved		3H	PFFC2
4H			4H			4H			AH S	
5H 6H			5H 6H			5H 6H	6	1	5H 6H	
7H			011 7H			7H	$\langle \langle \rangle$		) 7H	
8H			8H			8H		/ /	8H	
9H			9H			9H		$\geq$	9H	
AH			AH			AH	PEOD	~	AH	PFOD
BH			BH			BH			BH	
СН			СН			СН			ССН	$\searrow$
DH			DH			DH	PESEL		DH	PFSEL
EH	PCIE		EH	PDIE			PEIE	~		PFIE
FH			FH			FH		ľ,	, Гн	/
ADR	Register		ADR	Register		ADR	Register		ADR	Register
ADK	name		ADK	name	~	ADR	name			name
FFFFF100H	PG		FFFFF110H	PH		FFFF120H	PI		FFFFF130H	PJ
1H	PGCR		1H	PHCR		1H	PICR	$ \cap $	1H	PJCR
2H	PGFC1		2H	PHFC1		2H	PIEC1	$\mathcal{I}$	2H	PJFC1
3H	PGFC2		3H	PHFC2		3H	PIFC2		3H	PJFC2
4H 5H			4H		$\geq$	4H 5H			4H	
он 6Н			5H 6H	(())		5H 6H			5H 6H	
7H			7H			∧ 7H	$\sim$		7H	
8H			8H			8H			8H	
9H			9H	$\bigcirc$		9H			9H	
AH	PGOD		( AHA	PHOD		AH	PIOD		AH	PJOD
BH		$\left( \right)$	ВН	)	(	BH			BH	
CH	//	r	CH	$\sim$	((	CH			CH	
DH	PGSEL	/	DH	PHSEL		О ОН	PISEL		DH	PJSEL
EH FH	PGIE		EH FH	PHIE	A	EH FH	PIIE		EH FH	PJIE
									111	
ADR	Register		ADR	Register	Þ	ADR	Register		ADR	Register
	name	Ĵ		name			name			name
FFFFF140H	PK		FFFFF150H	PL		FFFFF160H	PM		FFFFF170H	PN
્યમ	PKCR		11	PLCR		1H	PMCR		1H	PNCR
2H	PKFC1		(2H	PLFC1		2H	PMFC1		2H	PNFC1
3H			3म	PLFC2		3H			3H	PNFC2
4H 5H			4H 5H			4H 5H			4H 5H	
он 6Н	$\searrow$		эп 6Н			5H 6H			5H 6H	
7H			7H			7H			7H	
8H			8H			8H			8H	
9H			9H			9H			9H	
AH			AH	PLOD		AH			AH	PNOD
BH	PKPUP		BH			BH			BH	
CH			CH	51.051		CH			CH	
DH	סעוב		DH	PLSEL		DH			DH	PNSEL
EH FH	PKIE		EH FH	PLIE		EH FH	PMIE		EH FH	PNIE
	1		111		I		1		111	

ADR	Register name	ĺ	ADR	Register name	ſ	ADR	Register name			
FFFFF180H	PO	ſ	FFFFF190H	PP	ſ	FFFFF1A0H	PQ			
1H F	POCR		1H	PPCR		1H	PQCR			
2H /	reserved		2H	reserved		2H	PQFC1			
	reserved		3H	reserved		3H				
4H			4H			4H		6		
5H			5H			5H			()7	
6H			6H			6H	6		$\bigcirc$	
7H		ŀ	7H		ŀ	7H	$\sim$ ((	// {	2	
8H			8H			8H		$\bigcirc$	)	
9H			9H			9H				
AH BH			AH BH			AH BH		7		
		ŀ			-				$\frown$	
CH DH /	reserved		CH DH	reserved		CH DH				
	POIE		EH	PPIE		EH	PQIE			$\checkmark$
FH	FOIL		FH			(FH)			$\leq$	×
		L			L		$) < \langle \rangle$	>	$(\bigcirc)$	
[2] 16-bit time	ər							$\langle \rangle$	401	
ADR	Register		ADR	Register	(	ADR	Register	P,	ADR	Register
<u> </u>	name			name	へ		name		)	name
	TB00RUN		FFFFF210H	TB01RUN		FFFFF220H	TB02RUN	$\sim$	FFFFF230H	TB03RUN
	TB00CR		1H	TB01CR		1H	TB02CR		1H	TB03CR
	TB00MOD		2H	TB01MOD		2H	TB02MOD		2H	TB03MOD
	TB00FFCR		3H	TB01FFCR		3H	TB02FFCR	_	3H	TB03FFCR
	TB00ST		4H	TB01ST	>	4H	TB02ST		4H	TB03ST
	TB00IM		5H	TB01IM		5H	TB02IM		5H	TB03IM
	TB00UCL		6H	TB01UCL		6H	TB02UCL		6H	TB03UCL
	TB00UCH		7H	TB01UCH		7H	TB02UCH	_	7H	TB03UCH
	TB00RG0L		8H	TB01RG0L		8H	TB02RG0L		8H	TB03RG0L
	TB00RG0H		9H	TB01RG0H		9H	TB02RG0H		9H	TB03RG0H
	TB00RG1L	_		TB01RG1L		AĤ	TB02RG1L		AH	TB03RG1L
	TB00RG1H		ВН	TB01RG1H	6	BH	TB02RG1H	-	BH	TB03RG1H
	TB00CP0L		CH	TB01CP0L		CH	TB02CP0L		CH	TB03CP0L
	TB00CP0H	$\checkmark$	DH	TB01CP0H			TB02CP0H		DH	TB03CP0H
	TB00CP1L		EH	TB01CP1L TB01CP1H	-	EH	TB02CP1L		EH	TB03CP1L
ΓΠ	TB00CP1H		FH	I BUICPIN	_	FH	TB02CP1H		FH	TB03CP1H
	Register	ſ	455	Register		4.5.5	Register	1 1		Register
ADR	name	力	ADR	name		ADR	name		ADR	name
FFFFF240H T	TB04RUN		FFFFF250H	TB05RUN		FFFFF260H	TB06RUN		FFFFF270H	TB07RUN
< <u>∖</u> 1ң ⊺	TB04CR		111	TB05CR		1H	TB06CR		1H	TB07CR
2H 1	TB04MOD			TB05MOD		2H	TB06MOD		2H	TB07MOD
3H T	TB04FFCR		( ડ્રિઝ ડિમ	TB05FFCR		3H	TB06FFCR		3H	TB07FFCR
4H T	TB04ST	ſ	4H	TB05ST		4H	TB06ST		4H	TB07ST
	TB04IM		5H	TB05IM		5H	TB06IM	1	5H	TB07IM
6Н Т	TB04UCL		6Н	TB05UCL		6H	TB06UCL		6H	TB07UCL
7H T	TB04UCH		7H	TB05UCH		7H	TB06UCH		7H	TB07UCH
8H T	TB04RG0L	ſ	8H	TB05RG0L		8H	TB06RG0L	1	8H	TB07RG0L
9Н Т	TB04RG0H		9H	TB05RG0H		9H	TB06RG0H	1	9H	TB07RG0H
АН Т	TB04RG1L		AH	TB05RG1L		AH	TB06RG1L	1	AH	TB07RG1L
BH T	TB04RG1H		BH	TB05RG1H		BH	TB06RG1H		BH	TB07RG1H
СН Т	TB04CP0L	ĺ	СН	TB05CP0L		СН	TB06CP0L		СН	TB07CP0L
DH T	TB04CP0H		DH	TB05CP0H		DH	TB06CP0H	1	DH	TB07CP0H
4			EH	TB05CP1L			TB06CP1L	1	EH	TB07CP1L
EH T	TB04CP1L		LII	I DOJOI IL		EH	IBUUCFIL		LII	

ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFF280H	TB08RUN		FFFFF290H	TB09RUN		FFFFF2A0H	TB 0 ARUN		FFFFF2B0H	<b>TB0BRUN</b>
1H	TB08CR		1H	TB09CR		1H	TB0ACR		1H	TB0BCR
2H	TB08MOD		2H	TB09MOD		2H	TB0AMOD		2H	TB0BMOD
3H	TB08FFCR		3H	TB09FFCR		3H	TB0AFFCR	1	ЗH	TB0BFFCR
4H	TB08ST		4H	TB09ST		4H	TB0AST		4H	TB0BST
5H	TB08IM		5H	TB09IM		5H	TB0AIM		5Н	TB0BIM
6H	TB08UCL		6H	TB09UCL		6H	TBOAUCL		бН	TB0BUCL
7H	TB08UCH		7H	TB09UCH		7H	TBOAUCH	7	7H	<b>TB0BUCH</b>
8H	TB08RG0L		8H	TB09RG0L		8H	TBOARGOL		) 8н	TB0BRG0L
9H	TB08RG0H		9H	TB09RG0H		9H	TBOARGOH		9H	TB0BRG0H
AH	TB08RG1L		AH	TB09RG1L		AH	TB0ARG1L	>	AH	TB0BRG1L
BH	TB08RG1H		BH	TB09RG1H		BH	TB0ARG1H		BH	TB0BRG1H
CH	TB08CP0L		CH	TB09CP0L		CH	TBOACPOL		CH	TB0BCP0L
DH	TB08CP0H		DH	TB09CP0H		DH	TBOACPOH		DH	TB0BCP0H
EH	TB08CP1L		EH	TB09CP1L		EH	TB0ACP1L		EH	TB0BCP1L
FH	TB08CP1L		FH	TB09CP1L TB09CP1H		(FH	TB0ACP1L		FH	TB0BCP1L
E11	TB00CF III		FII	TB09CF III				,	$(\Theta)$	TBOBCETT
	Degister	1		Degister	1		Degister	$\langle \rangle$		Degister
ADR	Register		ADR	Register		ADR	Register	$\cap$	ADR	Register
	name			name	_(		name	~/		name
FFFFF2C0H	TB0CRUN		FFFFF2D0H	TB0DRUN	$\leq$	FFFFF2E0H	TBOERUN		FFFFF2F0H	TB0FRUN
1H	TB0CCR		1H	TBODCR		1H	TBOECR	2	1H	TB0FCR
2H	TB0CMOD		2H	TBOMOD		2H	TB0EMOD		2H	TB0FMOD
3H	TB0CFFCR		3H	TB0DFFCR		3H	TBOEFFCR		3H	TB0FFFCR
4H	TB0CST		4H	TBODŚT		≥ /4H	TBOEST		4H	TB0FST
5H			5H	TBODIM	>	5H	TBOEIM		5H	TB0FIM
6H	TB0CUCL		6H	TBODUCL	~	6H	TBOEUCL		6H	TB0FUCL
7H	TB0CUCH		7H	TBODUCH		7H	TBOEUCH		7H	TB0FUCH
8H	TB0CRG0L		8H	TB0DRG0L		🔨 8H	TB0ERG0L		8H	TB0FRG0L
9H	TB0CRG0H		9H	TB0DRG0H		9H	TB0ERG0H		9H	TB0FRG0H
AH	TB0CRG1L		AH	TB0DRG1L		AA	TB0ERG1L		AH	TB0FRG1L
BH	TB0CRG1H		( ( BH)	TB0DRG1H		BĤ	TB0ERG1H		BH	TB0FRG1H
СН	TB0CCP0L		СН	TBODCPOL		СН	TB0ECP0L		СН	TB0FCP0L
DH	TB0CCP0H		)) DH	TB0DCP0H		DH	TB0ECP0H		DH	TB0FCP0H
EH	TB0CCP1L		EH	TB0DCP1L	Č.	💛 ЕН	TB0ECP1L		EH	TB0FCP1L
FH	TB0CCP1H		< FH	TB0DCP1H		FH	TB0ECP1H		FH	TB0FCP1H
			$\searrow$	$\langle -$		$\geq$				
ADR	Register		ADR	Register		ADR	Register		ADR	Register
ABR	name		ABR	name	r.	ABR	name		ABR	name
FFFFF300H	TB10RUN	5	FFFFF310H	TB11RUN		FFFFF320H	TB12RUN		FFFFF330H	TB13RUN
1H	TB10CR		11	TB11CR		1H	TB12CR		1H	TB13CR
(2₩	TB10MOD		2H	TB11MOD		2H	TB12MOD		2H	TB13MOD
3H	TB10FFCR		3H	TB11FFCR		211 3H	TBOAFFCR		3H	TB13FFCR
4H	TB10ST		4H	TB11ST		4H	TB12ST		4H	TB13ST
5H	TB1031		5H	TB11IM		411 5H	101231		411 5H	TB13IM
	TB10UCL						TRADUCI			TB13IM TB13UCL
6H 7H	7		6H 7H	TB11UCL		6H 7H	TB12UCL		6H 7H	
	TB10UCH			TB11UCH			TB12UCH			TB13UCH
8H	TB10RG0L		8H	TB11RG0L		8H	TB12RG0L		8H	TB13RG0L
9H	TB10RG0H		9H	TB11RG0H		9H	TB12RG0H		9H	TB13RG0H
AH	TB10RG1L		AH	TB11RG1L		AH	TB12RG1L		AH	TB13RG1L
BH	TB10RG1H		BH	TB11RG1H		BH	TB12RG1H		BH	TB13RG1H
	TB10CP0L		CH	TB11CP0L		CH	TB12CP0L		СН	TB13CP0L
CH										
DH	TB10CP0H		DH	TB11CP0H		DH	TB12CP0H		DH	TB13CP0H
			DH EH FH	TB11CP0H TB11CP1L TB11CP1H		DH EH FH	TB12CP0H TB12CP1L TB12CP1H		DH EH FH	TB13CP0H TB13CP1L TB13CP1H

ADR	Register name	ADR	Register name		ADR	Register name		ADR	Register name
FFFFF340H	TB14RUN	FFFFF350H	TB15RUN		FFFFF360H	TB16RUN		FFFFF370H	TB17RUN
1H	TB14CR	1H	TB15CR		1H	TB16CR		1H	TB17CR
2H	TB14MOD	2H	TB15MOD		2H	TB16MOD		2H	TB17MOD
3H	TB14FFCR	3H	TB15FFCR		3H	TB16FFCR	//	3H	TB17FFCR
4H	TB14ST	4H	TB15ST		4H	TB16ST		4H	TB17ST
5H	TB14IM	5H	TB15IM		5H	TB16IM		5H	TB17IM
6H	TB14UCL	6H	TB15UCL		6H	TB16UCL		бН	TB17UCL
7H	TB14UCH	7H	TB15UCH		7H	TB16UCH	$\sum$	7H	TB17UCH
8H	TB14RG0L	8H	TB15RG0L		8H	TB16RG0L		8H	TB17RG0L
9H	TB14RG0H	9H	TB15RG0H		9H	TB16RG0H		9Н	TB17RG0H
AH	TB14RG1L	AH	TB15RG1L		AH	TB16RG1L		AH	TB17RG1L
BH	TB14RG1E TB14RG1H	ВН	TB15RG1H		BH	TB16RG1H		BH	TB17RG1H
СН	TB14CP0L	CH	TB15CP0L		CH	TB16CP0L		CH	TB17CP0L
DH	TB14CP0L TB14CP0H	DH	TB15CP0L TB15CP0H		DH	TB16CP0L		DH	TB17CP0L TB17CP0H
EH		EH				TB16CP0H			
FH	TB14CP1L TB14CP1H	FH	TB15CP1L		FH			ÊH. FH	TB17CP1L
ГП		ГП	TB15CP1H			TB16CP1H		$(\Theta)$	TB17CP1H
	Desisters		Desister	1			$\langle \rangle$		Deviator
ADR	Register name	ADR	Register name	(	ADR	Register name	$\overline{\Omega}$	ADR	Register name
FFFFF380H	TB18RUN	FFFFF390H	TB19RUN	へ	FFFFF3A0H	TB1ARUN		<b>FFFFSB0H</b>	TB1BRUN
1H	TB18CR	1H	TB19CR		1H	TB1ACR	2	1H	TB1BCR
2H	TB18MOD	2H	TB19MOD		2H	TB1AMOD	$\sum$	2H	TB1BMOD
3H	TB18FFCR	3H	TB19FFCR		3H	TBIAFFCR		3H	TB1BFFCR
4H	TB18ST	4H	TB19ST		4H	TB1AST		4H	TB1BST
5H	TB18IM	5H	TB19IM	>	् 5म	TB1AIM		5H	TB1BIM
6H	TB18UCL	6H	TB19UCL		6Н	TB1AUCL		6H	TB1BUCL
7H	TB18UCH	7H	TB19UCH		7H	TB1AUCH		7H	TB1BUCH
8H	TB18RG0L	8H	TB18RG0L		🔨 8H	TB1ARG0L		8H	TB1BRG0L
9H	TB18RG0H	9Н	TB19RG0H		9H	TB1ARG0H		9H	TB1BRG0H
AH	TB18RG1L	AH	TB19RG1L		AH	TB1ARG1L		AH	TB1BRG1L
BH	TB18RG1H	( BH	TB19RG1H		BH	TB1ARG1H		BH	TB1BRG1H
СН	TB18CP0L	СН	TB19CP0L		СН	TB1ACP0L		СН	TB1BCP0L
DH	TB18CP0H	)) DH	TB19CP0H	(	О ОН	TB1ACP0H		DH	TB1BCP0H
EH	TB18CP1	EH	TB19CP1L	V.	🕖 ен	TB1ACP1L		EH	TB1BCP1L
FH	TB18CP1H	FH	TB19CP1H		FH	TB1ACP1H		FH	TB1BCP1H
		$\sim$	$\langle -$		$\geq$				
ADR	Register	ADR	Register		ADR	Register		ADR	Register
ABR	name	ADR	name	2	ABR	name		ABR	name
FFFFF3C0H	TB1CRUN	FFFFF3D0H	TB1DRUN		FFFFF3E0H	TB1ERUN		FFFFF3F0H	TB1FRUN
1H	TB1CCR	1H	TB1DCR		1H	TB1ECR		1H	TB1FCR
(2Ң	TB1CMOD	2H	TB1DMOD		2H	TB1EMOD		2H	TB1FMOD
3H	TB1CFFCR	3H	TB1DFFCR		3H	TB1EFFCR		3H	TB1FFFCR
4H	TB1CST	4H	TB1DST		4H	TB1EST		4H	TB1FST
5H	TB1C31	5H	TB1DIM		411 5H	TB1EIM		411 5H	TB1FIM
6H	TB1CIM	6H	TB1DUCL		6H	TB1EUCL		6H	TB1FUCL
7H	TB1CUCH	7H	TB1DUCH		7H	TB1EUCH		011 7H	TB1FUCH
8H	TB1CCCI1	8H	TB1D0CI1 TB1DRG0L		8H	TB1ERG0L		8H	TB1F0CI1
8H 9H	TB1CRG0L	8H 9H	TB1DRG0L		8H 9H	TB1ERG0L		8H 9H	TB1FRG0L
9H AH	TB1CRG0H	9H AH	TB1DRG0H		9H AH	TB1ERG0H		9H AH	TB1FRG0H
BH					ВН			BH	
	TB1CRG1H	BH	TB1DRG1H			TB1ERG1H			TB1FRG1H
CH	TB1CCP0L	CH	TB1DCP0L		CH	TB1ECP0L		CH	TB1FCP0L
DH EH	TB1CCP0H	DH	TB1DCP0H		DH	TB1ECP0H		DH	TB1FCP0H
■ ⊢H	TB1CCP1L	EH	TB1DCP1L		EH	TB1ECP1L		EH	TB1FCP1L
FH	TB1CCP1H	FH	TB1DCP1H		FH	TB1ECP1H		FH	TB1FCP1H

ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFF400H	TB20RUN		FFFFF410H	TB21RUN		FFFFF420H	TB22RUN		FFFFF430H	TB23RUN
1H	TB20CR		1H	TB21CR		1H	TB22CR		1H	TB23CR
2H	TB20MOD		2H	TB21MOD		2H	TB22MOD		2H	TB23MOD
3H	TB20FFCR		3H	TB21FFCR		3H	TB22FFCR		3H	TB23FFCR
4H	TB20ST		4H	TB21ST		4H	TB22ST		4H	TB23ST
5H	TB20IM		5H	TB21IM		5H	TB22IM		5H	TB23IM
6H	TB20UCL		6H	TB21UCL		6H	TB22UCL		бН	TB23UCL
7H	TB20UCH		7H	TB21UCH		7H	TB22UCH	27	7H	TB23UCH
8H	TB20RG0L		8H	TB21RG0L		8H	TB22RG0L		)) 8H	TB23RG0L
9H	TB20RG0H		9H	TB21RG0H		9H	TB22RG0H	$\sum$	9Н	TB23RG0H
AH	TB20RG1L		AH	TB21RG1L		AH	TB22RG1L	>	AH	TB23RG1L
BH	TB20RG1H		BH	TB21RG1H		BH	TB22RG1H		BH	TB23RG1H
СН	TB20CP0L		СН	TB21CP0L		CH	TB22CP0L		CH	TB23CP0L
DH	TB20CP0H		DH	TB21CP0H		DH	TB22CP0H		(DH	TB23CP0H
EH	TB20CP1L		EH	TB21CP1L		EH	TB22CP1L		EH.	TB23CP1L
FH	TB20CP1H		FH	TB21CP1H		( ਸਿ	TB22CP1H		FH	TB23CP1H
					•	<u> </u>	$\mathcal{I}$	, 		)
[3] TMRC ADR	Register	1	ADR	Register	/	ADR	Register	$\square$	ADR	Register
	name	J		name	Z		name (		$\sim$	name
FFFFF500H	TCACR		FFFFF510H	CMPA0CTL		FFFF520H	CAPAOCR	1	FFFFF530H	TCBCR
1H	TBTARUN		1H	((		1H	(7/)		1H	TBTBRUN
2H	TBTACR		2H	Â		2H	$\sim$ VC		2H	TBTBCR
3H			3H	$\mathcal{A}(\mathbf{r})$		3H			3H	
4H	TBTACAPLL		4H	CMPA0LL		<b>4</b> H	CAPAOLL		4H	TBTBCAPLL
5H	TBTACAPLH		5H	CMPAOLH	/	5H.	CAPAOLH		5H	TBTBCAPLH
6H	TBTACAPHL		6H	CMPAOHL		6H	CAPAOHL		6H	TBTBCAPHL
7H	ТВТАСАРНН		7H	CMPA0HH		∧ 7H	CAPA0HH		7H	ТВТВСАРНН
8H	TBTARDCAPLL		84	CMPA1CTL		8H	CAPA1CR		8H	TBTBRDCAPLL
9H	TBTARDCAPLH		9H	$\bigcirc$		He			9H	TBTBRDCAPLH
AH	TBTARDCAPHL		( AHA			AH			AH	TBTBRDCAPHL
ВН	TBTARDCAPHH	_	ВН	)	_	ВН			BH	TBTBRDCAPHH
СН	/	$\sim$	СН	CMPA1LL	(C	СН	CAPA1LL		СН	
DH			DH	CMPA1LH	$\setminus$	ОЛОН	CAPA1LH		DH	
EH		$\langle \rangle$	EH	CMPA1HL		EH			EH	
FH			FH	CMPA1HH		FH	CAPA1HH		FH	
							0/11/11/1			
	Register	1		Register						
ADR	name	5	ADR							
		$\sim$	FFFFFFFF		¢.					
FFFFF540H	CMPB0CTL		FFFFF550H	CAPB0CR						
2H			(2H)							
3H		-	3म							
4H	CMPBOLL		4H	CAPBOLL						
5H	CMPB0LH	1	5H	CAPB0LH						
6H	CMPB0HL	1	6H	CAPB0HL						
7H	CMPB0HH	1	7H	CAPB0HH						
8H	CMPB1CTL	1	8H	CAPB1CR						
9H		1	9H							
		1	AH							
AH		1	BH							
BH		-								
BH CH	CMPB1LL		СН	CAPB1LL						
BH CH DH	CMPB1LH		CH DH	CAPB1LH						
BH CH		_	СН							

[4] SBI						[5] SIO/UAF	RT			
ADR	Register	ADI	R	Register		ADR	Register		ADR	Register
	name			name			name			name
FFFFF600H	SBI0CR1	FFFFF		SBI1CR1		FFFFF700H	SC0BUF		FFFFF710H	SC1BUF
1H	SBI0DBR		1H	SBI1DBR		1H	SCOCR		1H	SC1CR
2H	SBI0I2CAR		2H	SBI1I2CAR		2H	SC0MOD0		2H	SC1MOD0
3H	SBI0CR2/SR		3H	SBI1CR2/SR		3H	BROCR	-	3H	BR1CR
4H	SBI0BR0		4H	SBI1BR0		4H	BROADD	$\sim$	) AH	BR1ADD
5H 6H			5H 6H			5H 6H	SC0MOD1 SC0MOD2		5H 6H	SC1MOD1 SC1MOD2
0⊓ 7H	SBI0CR0		6н 7Н	SBI1CR0		он 7Н ^{&lt;}	SCOEN	$\sum$	он 7Н	SC1MOD2
8H	SBIUCKU		8H	SBITCKU		8H	SCORFC	$\mathcal{D}$	8H	SC1RFC
9H			9H			9H	SCOTFC		9H	SC1TFC
AH			AH			AH	SCORST		AH	SC1RST
BH			BH			вн	SCOTST		ВН	SC1TST
CH			CH			СН	SCOFCNF		СН	SC1FCNF
DH			DH			DH			DH	
EH			EH			(7/EA)	$\searrow$		EH	
FH			FH			EH)	$\diamond$			
							<	$\sim$	GAL	
ADR	Register	AD		Register	$\square$	ADR	Register		ADR	Register
ADR	name	AD	۲	name	(	ADR	name	$\cap$	ADR	name
FFFFF720H	SC2BUF	FFFFF	730H	SC3BUF		EFFFF740H	SC4BUF	$\cup$	FFFFF750H	SC5BUF
1H	SC2CR		1H	SC3CR		1H	SC4CR		1H	SC5CR
2H	SC2MOD0		2H	SC3MOD0		2H	SC4MOD0		2H	SC5MOD0
3H	BR2CR		3H	BR3CR	>	3H	BR4CR		3H	BR5CR
4H	BR2ADD		4H	BR3ADD		4H	BR4ADD		4H	BR5ADD
5H	SC2MOD1		5H	SC3MOD1		5H	SC4MOD1		5H	SC5MOD1
6H	SC2MOD2		6H	SC3MOD2		6H	SC4MOD2		6H	SC5MOD2
7H	SC2EN		<b>7H</b>	SC3EN		∧ 7H	SC4EN		7H	SC5EN
8H	SC2RFC	(	(8H	\$C3RFC		~ 8H	SC4RFC		8H	SC5RFC
9H	SC2TFC		9H-	SC3TFC		9Н	SC4TFC		9H	SC5TFC
AH	SC2RST	$\left( \overline{\alpha} \right)$	AH	SC3RST	$\langle \rangle$	AH	SC4RST		AH	SC5RST
BH	SC2TST		вн	SC3TST	_	ВН	SC4TST		BH	SC5TST
СН	SC2FCNF	$) \geq \langle \cdot \rangle$	СН	SC3FCNF	/	🔿 СН	SC4FCNF		СН	SC5FCNF
DH			DH		$\square$	/ он			DH	
EH		$\langle$	EH			EH			EH	
FH			FH		$\geq$	FH			FH	
	$\land \land$	-							-	
ADR	Register	AD	R	Register		ADR	Register		ADR	Register
	name			name			name			name
FFFFF760H	SC6BUF	FFFFF	770H	SC7BUF		FFFFF780H	SC8BUF		FFFFF790H	SC9BUF
(1H	SC6CR		<u>_1H</u>	SC7CR		1H	SC8CR		1H	SC9CR
2H	SC6MOD0	$\rightarrow$ ((	2H	SC7MOD0		2H	SC8MOD0		2H	SC9MOD0
3H	BR6CR	$\langle \rangle \rangle$	3H	BR7CR		3H	BR8CR	I	3H	BR9CR
4H	BR6ADD		4H	BR7ADD		4H	BR8ADD		4H	BR9ADD
5H	SC6MOD1		5H	SC7MOD1		5H	SC8MOD1	1	5H	SC9MOD1
6H	SC6MOD2		6H	SC7MOD2		6H	SC8MOD2		6H	SC9MOD2
7H	SC6EN		7H	SC7EN		7H	SC8EN	1	7H	SC9EN
8H	SC6RFC		8H	SC7RFC		8H	SC8RFC		8H	SC9RFC
9H	SC6TFC		9H	SC7TFC		9H	SC8TFC	1	9H	SC9TFC
AH	SC6RST		AH	SC7RST		AH	SC8RST		AH	SC9RST
BH	SC6TST		BH	SC7TST		BH	SC8TST	1	BH	SC9TST
	SCRECHE		СН	SC7FCNF		CH	SC8FCNF	1	CH	SC9FCNF
СН	SC6FCNF									
CH DH	SCOFCINE		DH			DH			DH	
СН	SCOPCINE					DH EH FH			DH EH FH	

	ADR	Register name	1									
	FFFFF7A0H	SCABUF										
	1H	SCACR										
	2H	SCAMOD0						~				
	3H	BRACR										
	4H	BRAADD							$\geq$			
	5H	SCAMOD1						(	(	$\sum$		
	6H	SCAMOD2							$\langle$	$\mathcal{I}$		
	7H	SCAEN						$(\alpha)$	$\wedge$	<u> </u>		
	8H	SCARFC					4	$\langle \vee \rangle$	))			
	9H	SCATFC										
	AH	SCARST						$(\bigcirc)$				
	BH	SCATST										
	СН	SCAFCNF					((	$\sim$				
	DH						41	$\rightarrow$		$\lambda$	>	
	EH										~	
	FH						(7/		(	$\bigcirc$		
[6]	ADC						$\sim$	<		30		
	ADR	Register		ADR	Register		ADR	Register		ADR	Register	
	ABR.	name		ЛЫК	năme 🧷	.(		name	(	W.BIX	name	l
	FFFFF800H	ADAREG08L		FFFFF810H	ADAREGSPL		EFFFF820H	ADBREG08L		FFFFF830H	ADBREGSPL	l
	1H	ADAREG08H		1H	ADAREGSPH		1H	ADBREG08H		1H	ADBREGSPH	
	2H	ADAREG19L		2H	ADACOMREGL		2H	ADBREG19L		2H	ADBCOMREGL	l
	3H	ADAREG19H		3H	ADACOMREGH	5	3H	ADBREG19H		3H	ADBCOMREGH	
	4H	ADAREG2AL		4H	ADAMODO	Ť	4H	ADBREG2AL		4H	ADBMOD0	
	5H	ADAREG2AH		5H	ADAMOD1		5H	ADBREG2AH		5H	ADBMOD1	l
	6H	ADAREG3BL		6H	ADAMOD2		6H	ADBREG3BL		6H	ADBMOD1	l
	7H	ADAREG3BH		7世	ADAMOD3		∧ 7H	ADBREG3BH		7H	ADBMOD3	l
	8H	ADAREG4CL		( ( _{8H}	ADAMOD4		8H	ADBREG4CL		8H	ADBMOD4	l
	9H	ADAREG4CH		9H	ADACBAS0		9H	ADBREG4CH		9H	ADBCBAS0	
	AH	ADAREG5DL		AH	reserved	5	AH	ADBREG5DL		AH	reserved	
	BH	ADAREG5DH	/	вн	reserved		ВН	ADBREG5DH		BH	reserved	l
	СН	ADAREGEEL	1	СН	ADACLK	7/	СН	ADBREG6EL		CH	ADBCLK	l
	DH	ADAREG6EH	/	DH	reserved	$\langle \langle \rangle$	) DH	ADBREG6EH		DH	reserved	l
		ADAREG7FL	7	EH	reserved			ADBREG7FL		EH	reserved	l
	FH			FH		$\geq$	FH			FH	10001104	l
[7]	KWUP			[8] WDT		~						
	ADR	Register	1 [	ADR	Register							
	ADK	name			name							
	FFFFF900H	KWUPSTO	11	FFFFFA00H	WDMOD							
	1H	KWUPST1		11	WDCR							
	2H	KWUPST2		> (2H)	<b>HBOIR</b>							
	3H	KWUPST3	(	3H	)							
	4H	KWUPST4	Ν	4H	/							
	51	KWUPST5		5H								
	6H	KWUPST6		6H								
	7H	KWUPST7		7H								
	8H		11	8H								
	9H			9H								
	AH			AH								
	BH			BH								
	CH	<u> </u>	11	CH								
	DH			DH								
	EH	KWUPST		EH								
	FH			FH								
	111		. 1									



[9] INTC

<u>] INTC</u>										
ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFE000H	IMC0		FFFFE010H	IMC4		FFFFE020H	IMC8		FFFFE030H	IMCC
1H	"		1H	"		1H	"		1H	"
2H	"		2H	"		2H	"		2H	"
3H	"		3H	"		3H	"		3H	"
4H	IMC1		4H	IMC5		4H	IMC9	>	4H	IMCD
5H	<i>"</i>		5H	<i>"</i>		5H	<i>"</i> (		5H	<i>"</i>
6H	"		6H	"		6H	"		6H	"
7H	"		7H	"		7H	"	~	7H	"
8H	IMC2		8H	IMC6		8H		()	8H	IMCE
он 9Н	//////////////////////////////////////		он 9Н			он 9Н			он 9Н	
9H AH	"		9H AH	"		9H AH	-		9H AH	"
BH	"		BH	"		BH	Y( ))		BH	"
		-								
CH	IMC3		CH	IMC7 ″		CH	IMCB		CH	IMCF
DH	"		DH			DH	<i>"</i>		DH.	7″ ″
EH			EH	"		EH	$\sim$		EH	"
FH	"		FH	"		( ( / FĤ	"		FH.	"
	Deviater	1		Deviater	1			$ \setminus $		Desister
ADR	Register		ADR	Register	(	ADR	Register		ADR	Register
	name			name			name		$\sim$	name
FFFFE040H	IVR		FFFFE050H	<	.(	FFFFE060H	INTCLR	$\cap$	FFFFE070H	
1H	"		1H			1H	"	)	1H	
2H	"		2H	$(\frown$		✓ 2H	"(7/\$		2H	
3H	"		3H			3H	"\\)		3H	
4H			4H	$\langle \langle \langle \rangle \rangle$	$\geq$	4H	reserved		4H	
5H			5H			🧹 5Н	"		5H	
6H			6H	$\sim$		6H	"))		6H	
7H			7H			7H	W/		7H	
8H			8H			∧ 8H	$\sim$		8H	
9H			( (эн	$\langle \rangle$		9H			9H	
AH			AH_	))		AH			AH	
BH			BH			ВН			BH	
СН		1	СН			СН			СН	
DH		$\sum$	ОН	. ((	7/	C DH			DH	
EH			EH	$\langle \langle \rangle$	$\mathbb{Z}$	)) ен			EH	
FH		$\langle \langle \rangle$	FH			FH			FH	
		$\sim$	$\leq$		$\geq$			-		
ADR	Register		$\checkmark$							
	name									
FFFFE100H	reserved	7	$\land$							
1H		1	2(							
2H	( )									
3મ્	w )	~		$\searrow$						
4H	reserved	$\left( \right)$	> (( ))	)						
5H	"		$\mathcal{N}$	/						
6H	"	<								
	1	•								

ADR	Register name
FFFFE100H	reserved
1H	$\sim$
2H	"
<b>3</b> H	"
4H	reserved
5H	
6H	"
7H	
8H	reserved
9H	"
AH	"
BH	"
СН	ILEV
DH	"
EH	"
FH	"



[10] <u>DMAC</u>

DMAC										
ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFE200H	CCR0		FFFFE210H	BCR0		FFFFE220H	CCR1		FFFFE230H	BCR1
1H	"		1H	"		1H	"		1H	"
2H	"		2H	"		2H	"		2H	"
3H	"		3H	"		3H	"		3H	"
4H	CSR0		4H			4H	CSR1	$\lambda$	4H	
5H	"		5H			5H	"		5Н	
6H	"		6H			6H	"		бН	
7H	"		7H			7H	"	~	7H	
8H	SAR0		8H	DTCR0		8H	SAR1	$\left( \right)$	8H	DTCR1
9H	<i>"</i>		9H	<i>"</i>		9H	"		9H	<i>"</i>
9H AH	"		9H AH	"		9H AH	<i>"</i>			"
	"			"			Y( ))		AH	"
BH			BH	"		BH	<i>"</i>		BH	"
СН	DAR0		СН			CH	DAR1		СН	
DH	"		DH			DH	<i>"</i>		CH DH	>
EH	"		EH			EH	×		EH	
FH	"		FH			( ( / / FH	"	(	FH.	
						$\langle \mathcal{O} \rangle$	$\bigcirc$		$\sum_{i=1}^{n}$	
ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFE240H	CCR2		FFFFE250H	BCR2	.(	FFFFE260H	CCR3		FFFFE270H	BCR3
1H	"		1H	"		1H	"	$\mathcal{I}$	1H	"
2H	"		2H	"		2H	"(7)		2H	"
3H	"		3H	"		ЗН	<i>"</i> (V/))		3H	"
4H	CSR2		4H			4H	CSR3		4H	
4H 5H	USR2 ″		4H 5H		$\sim$	5H	USRS "			
	"			$\langle \rangle$			"))		5H	
6H	"		6H	( ) )		6H	<u> </u>		6H	
7H			7H			7H	~~~~~		7H	
8H	SAR2		8H	DTCR2		∧ ^{8H}	SAR3		8H	DTCR3
9H	"		( (эн	Š)		9H	"		9H	"
AH	"		AH-	<u>"</u>		AH	"		AH	"
BH	"		ВН	"	$\langle \rangle$	ВН	"		BH	"
CH	DAR2		СН			СН	DAR3		CH	
DH	"	$\sum$	ОН	~ ((	77	C DH	"		DH	
EH	"		EH		$\langle \rangle$	)) ен	"		EH	
FH	"		FH			FH	"		FH	
		$\langle \rangle$	$\langle \langle \rangle$		$\geq$					
ADR	Register			Register		ADR	Register		ADR	Register
	name			name			name			name
FFFFE280H	CCR4	7	FFFFE290H	BCR4		FFFFE2A0H	CCR5		FFFFE2B0H	BCR5
1H		ľ		"		1H	<i>"</i>		1H	<i>"</i>
2H			2H	"		2H	"		2H	"
3H			3H	<b>&gt;</b>		211 3H	"		211 3H	"
		$\cap$		-						
4H	CSR4 ″		4H	/		4H	CSR5 ″		4H	
5H			5H			5H			5H	
6H	"		6H			6H	"		6H	
7H/	"		→ 7H			7H	"		7H	
8H	SAR4		8H	DTCR4		8H	SAR5		8H	DTCR5
9H	"		9H	"		9H	"		9H	"
AH	"		AH	"		AH	"		AH	"
BH	"		BH	"		BH	"		BH	"
СН	DAR4		СН			СН	DAR5		СН	
DH	"		DH			DH	"		DH	
EH	"		EH			EH	"		EH	
FH	"		FH			FH	"		FH	
1.1.1			1.11			L	1		111	



ADR	Register		Register		Register		Reg	ister
ADK	name	ADR	name	ADR	name	ADR		me
FFFFE2C0H	CCR6	FFFFE2D0H	BCR6	FFFFE2E0H	CCR7	FFFFE2		
1H	<i>"</i>	1H	<i>"</i>	1H	<i>"</i>		1H ″	
2H	"	2H	"	2H	"		2H ″	
3H	"	3H	"	3H	"		3Н ″	
4H	CSR6	4H		4H	CSR7		4H	
5H	"	5H		5H	"	$\langle \rangle \rangle$	5H	
6H	"	6H		6H	"		6H	
7H	"	7H		7H	"	<u></u>	7H	
8H	SAR6	8H	DTCR6	8H <	SAR7	))	8H DTCR	.7
9H	"	9H	"	9H	"		9H ″	
AH	"	AH	"	AH	()		AH ″ BH ″	
BH		BH CH		BH CH	DAR7		ы	
CH DH	DAR6	DH		CH (DH	DAR7		СН DH	
EH	"	EH		EH	*	12	EH	
FH	"	FH		( FM	<b>m</b>	$ \langle \langle \rangle \rangle$	FH	
					$\diamond$		2	
	Desister						//	
ADR	Register name			( )	$\square$			
			5		$(\bigcirc$			
FFFFE300H	DCR ″			$\sim$		$\mathcal{I}$		
1H 2H	"		$( \frown$		(7/1)			
211 3H	"			$\sim$	$\langle \vee \rangle$			
4H	RSR			$\rightarrow$ / $\frown$				
5H	"		$\bigcirc$					
6H	"	(	()		$\checkmark$			
7H	"	$\bigcirc$			$\checkmark$			
8H		(C)	$\Diamond$					
9H			))	$\langle \rangle$				
AH		$\overline{\Box}$		$\sim 10^{-1}$				
BH		$\langle (\vee / ) \rangle$	/	$\langle \rangle$				
CH DH	DHR ″		~ ((	7/\$				
EH	"			$\bigcirc$				
		< ,						
FH	"	$\rightarrow$ $\langle$	$\langle - \rangle$					
	$\sim / 7$							
	Z/ N							
			, ,					
$\sim$	( )	$\sim$						
			$\searrow$					
		$( )   \rangle$	)					
		$\sum_{i=1}^{n}$	/					
		$\sim$						
$\sim$	7	$\sim$						

	T controller									
ADR	Register	1	ADR	Register		ADR	Register		ADR	Register
	name			name			name			name
FFFFE400H	BMA0		FFFFE410H	BMA4	FFI	FFE480H	B01CS		FFFFE500H	
1H	"		1H	"		1H	"		1H	
2H	"		2H	"		2H	″		2H	
3H	"		3H	"		3H	"	/	3H	
4H	BMA1		4H	BMA5		4H	B23CS		4H	reserved
5H	"		5H	"		5H	"		) > 5Н	"
6H	"		6H	"		6H	"		6Н	"
7H	"		7H	"		7H	" (7/	$\land$	7H	"
8H	BMA2		8H			8H <	B45CS	))	8H	
9H	"		9H			9H	"		9H	
AH	"		AH			AH	$\langle ( ) \rangle$		AH	
BH	"		BH			BH	"		BH	
СН	BMA3		СН			СН			СН	
DH	"		DH			(DH	$\searrow$		( DH)	>
EH	"		EH			ĘĤ	$\geq$		EH	
FH	"		FH		(	(7/FA)	~	(	FH	
						$\mathbb{C}$	$\langle \Diamond \rangle$		$\leq 1/n$	
12] FLASH		1	r			$\sim$	<	$\langle \rangle$	90	
ADR	Register		ADR	Register	2	$\searrow$	R	$\sim$	$\searrow$	
	name	Į –		name 📈	$( \ )$	>	$(\bigcirc$		)	
FFFFE510H	SEQMOD		FFFFE520H	FLCS	$\sim$	~		J	/	
1H	"		1H	" ( )	$\sim$		$(0/\wedge)$			
2H	"		2H	"	$\searrow$	$\frown$	$\langle \vee \rangle$			
3H	"		3H	"2( )	>	$\left  \right $				
4H	SEQCNT		4H	reserved						
5H	"		5H				))			
6H	"		6H	( ))			$\leq$			
7H	"		(7日)	*			$\checkmark$			
8H	ROMSEC1		( ( 8н	reserved		$\langle \rangle$				
9H			9H	)")	$\langle c \rangle$	$ \rightarrow $				
AH			AH	"	$\sim$	$\sim$				
BH										
		$\sim$	\\/ )вн	"		$\leq$				
СН	ROMSEC2	2	СН	"	776					
	ROMSEC2	$\sum$	Сн	<i>"</i>	25)					
CH DH EH	ROMSEC2			"	Z					
DH	ROMSEC2		СН	"	$\langle \rangle$					
DH EH	ROMSEC2		CH DH EH	"	7					
DH EH FH			CH DH EH	" 	25					
DH EH FH 13] ROM co	prrection		CH DH EH FH		25		Decistor	1		
DH EH FH	rrection		CH DH EH	Register		ADR	Register	1		
DH EH FH 13] ROM co ADR	Prrection Register name		CH DH EH FH	Register name			name	]		
DH EH FH 13] ROM co ADR FFFFE540H	rrection		ADR FFFFE550H	Register		FFE560H	name ADDREG8			
DH EH FH 13] ROM co ADR FFFFE540H 1H	Prrection Register name ADDREG0		ADR FFFFE550H	Register name ADDREG4		FFE560H 1H	name ADDREG8 ″			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H	Prrection Register name ADDREG0		ADR FFFFE550H 1H 2H	Register name ADDREG4		FFE560H 1H 2H	name ADDREG8 ″			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H	rrection Register name ADDREG0		ADR FFFFE550H 1H 2H 3H	Register name ADDREG4		FFE560H 1H 2H 3H	ADDREG8 " "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H	ADDREG1		ADR FFFFE550H 1H 2H 3H 4H	Register name ADDREG4 "," ADDREG5		FFE560H 1H 2H <u>3H</u> 4H	ADDREG8 " " ADDREG9			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H	ADDREG0		ADR FFFFE550H 1H 2H 3H 4H 5H	Register name ADDREG4 "" ADDREG5 "		FFE560H 1H 2H 3H 4H 5H	ADDREG8 " ADDREG9 "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H	ADDREG1		ADR FFFFE550H 1H 2H 3H 4H 5H 6H	Register name ADDREG4 " " ADDREG5 " "		FFE560H 1H 2H 3H 4H 5H 6H	name ADDREG8 " " " ADDREG9 " "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H	rrection Register name ADDREG0 " " " ADDREG1 " " "		ADR FFFFE550H 1H 2H 3H 4H 5H	Register name ADDREG4 "" ADDREG5 " "		FFE560H 1H 2H 3H 4H 5H	name ADDREG8 " " ADDREG9 " "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H	ADDREG1		ADR FFFFE550H 1H 2H 3H 4H 5H 6H 7H 8H	Register name ADDREG4 "" " ADDREG5 " " " " ADDREG6		FFE560H 1H 2H 3H 4H 5H 6H	name ADDREG8 " " ADDREG9 " " " ADDREGA			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H 9H	ADDREG1		CH DH EH FH FH FH FH FFFFE550H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Register name ADDREG4 "," " ADDREG5 " " " ADDREG6 "		FFE560H 1H 2H 3H 4H 5H 6H 7H	name ADDREG8 " " ADDREG9 " " " ADDREGA "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H	ADDREG1		ADR FFFFE550H 1H 2H 3H 4H 5H 6H 7H 8H	Register name ADDREG4 "" " ADDREG5 " " " " ADDREG6		FFE560H 1H 2H 3H 4H 5H 6H 7H 8H	name ADDREG8 " " ADDREG9 " " " ADDREGA			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H 9H	ADDREG1		CH DH EH FH FH FH FH FFFFE550H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Register name ADDREG4 "," " ADDREG5 " " " ADDREG6 "		FFE560H 1H 2H 3H 4H 5H 6H 7H 8H 9H	name ADDREG8 " " ADDREG9 " " " ADDREGA "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	ADDREG1		ADR FFFFE550H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Register name ADDREG4 "" " ADDREG5 " " " " ADDREG6 " "		FFE560H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	name ADDREG8 " " ADDREG9 " " " ADDREGA " "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	ADDREG1		CH DH EH FH FH FH FH PH 2H 3H 4H 5H 6H 7H 8H 9H AH BH	Register name ADDREG4 "" " ADDREG5 " " " ADDREG6 " " "		FFE560H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	name ADDREG8 " " ADDREG9 " " " ADDREGA " " "			
DH EH FH 13] ROM co ADR FFFFE540H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	ADDREG1		CH DH EH FH FH FH FH SH SH SH SH SH SH SH SH SH SH SH SH SH	Register name ADDREG4 "" " ADDREG5 " " " ADDREG6 " " " " " ADDREG7		FFE560H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH 8H 0H CH	name ADDREG8 " " ADDREG9 " " " ADDREGA " " " " ADDREGB			

TMP19A63 (rev1.1)19 -426

[14]	INTUNIT
------	---------

	I	-			-						
ADR	Register		ADR	Register		ADR	Register		ADR	Register	
<i>N</i> BR	name		, and the second s	name		, and the second s	name		<i>N</i> BR	name	
FFFFE700H	ADCINT		FFFFE710H	TMRBINTD		FFFFE720H	TBTINT		FFFFE740H		
1H	ADOINT		1H	TWINDINTD		1H			1H		
2H						2H	$\sim$		2H		
			2H					1			
3H			3H			3H	(	(	3H		
4H	TMRBINTA		4H	TMRBINTE		4H			) > 4H		
5H			5H			5H		/	5Н		
6H			6H			6H	L ((7/	$\land$	6H		
7H			7H			7H ^{&lt;}		//	7H		
8H	TMRBINTB		8H	CAPINT		8H			8H		
9H			9H			9H	$(()) \geq$		9H		
AH			AH			AH			AH		
BH			BH			ВНГ			BH		
СН	TMRBINTC		СН	CMPINT		Сн	$\sim$		CH CH	>	
DH			DH			DH			DH		
EH			EH			( ( / EĤ	$\sim$	(	EH		
FH			FH			EH)	$\Diamond$		Лян		
						$\sim$	<		GOT		
[15] CG					$( \cap$		(C)	$\square$	$\sim$		
ADR	Register		ADR	Register		ADR	Register	),	ADR	Register	
	name			name		$\langle \rangle$	name			name	
FFFFEE00H	SYSCR0		FFFFEE10H	IMCGA		FFFFEE20H	EICRCG		FFFFEE40H		
1H	SYSCR1		1H	"		111.			1H		
2H	SYSCR2		2H	"	$\sim$	2H	"		2H		
3H	SYSCR3		3H			ЗН	"))		3H		
4H			4H	IMCGB		4H	NMIFLG		4H		
5H			5H,	we have a second		5H			5H		
6H			6H			6H	"		6H		
7H			7H	· )		7H	"		7H		
8H			8H	IMCGC		8H			8H		
он 9Н			( / 9н		$\leq$	ЭН			оп 9Н		
AH			AH	"		AH					
				" \ ((		$\langle \rangle$			AH		
BH			BH		$\leq$	) BH			BH		
CH		$( \langle $	CH	IMCGD	/	СН			CH		
DH			DH		$\geq$	DH			DH		
EH			- EH			EH			EH		
FH			FH	"		FH			FH		
	$\langle \! \! \! \! \! \rangle $	)	$\bigcap$	~							
	$\bigcirc$		$\mathcal{A}($								
$\sim$	(())										
				$\sim$							
		((	$\left( \right) \right)$	)							
		1	$\sim$	7							
		4	$\sim$								

FH

#### The endian setting has effect on registers that mapped to the 2. Big endian addresses from 0xFFFF_E000 to 0xFFFF_EFFF. [1] PORT registers Register Register Register Register ADR ADR ADR ADR name name name name P0 FFFFF000H FFFFF010H P1 FFFFF020H P2 FFFFF030H P3 1H P0CR 1H P1CR 1H P2CR 1H P3CR 2H P0FC1 2H P1FC1 2H P2FC1 2H P3FC1 ЗH ЗH P1FC2 ЗH P2FC2 ЗH 4H 4H 4H 4H 5H 5H 5H 5H 6H 6H 6H 6H 7H 7H 7H 7H 8H 8H 8H 8H 9H 9H 9H 9H AH AH AH AH P3PUP BH BΗ BH BH CH СН CH ĊН DH DH DH DH ΕH EΗ ÆЙ P2IE EH P3IE FH FH FН ЕĤ Register Register Register Register ADR ADR ADR ADR name name name name FFFFF040H P4 FFFFF050H P5 FFFFF060H P6 FFFFF070H P7 P4CR P5CR P6CR 1H 1H 1H 1H P4FC1 P5FC1 P6FC1 2H 2H 2Ĥ 2H ЗH ЗH ЗH 3H 4H 4H 4H 4H 5H 5H 5H 5H 6H 6H 6H 6H 7H 7H 7H 7H 8H 8H 8H 8H 9H 9H 9H 9H AH ΛĤ AH AH ΒH P4PUP BН ΒH ΒH СН СН СН СН DH DΗ DH DH P4IE P5IE P6IE P7IE EΗ EΗ EΗ EΗ FH FH FH FH Register Register Register Register ADR ADR ADR ADR name name name name FFFFF080H **P**8 FFFFF090H FFFFF0A0H PA **FFFFF0B0H** ΡВ P9 PBCR ٩Ĥ 1H 1H 1H 2H PBFC1 2H 2H 2H ЗH ЗÌ ЗH ЗH reserved 4H 4H 4H 4H 5H 5H 5H 5H 6H 6H 6H 6H 7H 7H 7H 7H 8H 8H 8H 8H 9H 9H 9H 9H AH AH AH AH BΗ BH BΗ BΗ СН СН СН СН DH DH DH DH P8IE P9IE PBIE EΗ EΗ EΗ PAIE EΗ

## TMP19A63 (rev1.1)19 -428

FH

FH

FH

ADR	Register		ADR	Register		ADR	Register		ADR	Register
ABR	name		ADR	name		ADR	name		ADR	name
FFFFF0C0H	PC		<b>FFFFF0D0H</b>	PD		FFFFF0E0H	PE		<b>FFFFF0F0H</b>	PF
1H	PCCR		1H	PDCR		1H	PECR	$\sim$	1H	PFCR
2H	PCFC1		2H	PDFC1		2H	PEFC1		2H	PFFC1
3H	reserved		3H	reserved		3H	reserved	(	3H	PFFC2
4H			4H			4H			24H	
5H 6H			5H 6H			5H 6H	G	1	5H 6H	
0H 7H			он 7Н			0H 7H	$\sim$ ((		) он 7Н	
8H			8H			8H		[]]	8H	
9H			9H			9H		>	9H	
AH			AH			AH	PEOD		AH	PFOD
BH			BH			BH			BH	
СН			СН			CH			Сн	$\langle \rangle$
DH			DH			DH	PESEL		DH	PFSEL
EH	PCIE		EH	PDIE		((EH/	PEIE		EH	PFIE
FH			FH			RH.		7	FH	
	Desister	11		Deviator			Desister	_		Desister
ADR	Register name		ADR	Register name	~	ADR	Register name	$\sum$	ADR	Register name
FFFFF100H	PG		FFFFF110H	PH		FFFF120H	PI		EFFFF130H	PJ
1H	PGCR		1H	PHCR		1H	PICR		1H	PJCR
2H	PGFC1		2H	PHFC1		2H	PIEC1		2H	PJFC1
3H	PGFC2		3H	PHFC2		3H	PIFC2		3H	PJFC2
4H 5H			4H 5H		$\geq$	4H 5H			4H 5H	
5H 6H			5H 6H	(())		5H 6H			5H 6H	
7H			7H			∧ 7H	$\sim$		7H	
8H			8H			8H			8H	
9H			9H	$\bigcirc$		9H			9H	
AH	PGOD		( AH	PHOD		AH	PIOD		AH	PJOD
BH		6	ВН	)	$\langle \rangle$	BH			BH	
СН			CH	$\sim$	((	СН			СН	
DH	PGSEL		DH	PHSEL		DH	PISEL		DH	PJSEL
EH	PCIE		EH	PHIE	A	EH	PIIE		EH	PJIE
FH			FH		_	/ FH			FH	
ADR	Register	2	ADR	Register	Þ	ADR	Register		ADR	Register
	name	J		🔿 name			name			name
FFFFF140H	PK		FFFFF150H	PL		FFFFF160H	PM		FFFFF170H	PN
્યમ	PKCR		11	PLCR		1H	PMCR		1H	PNCR
2H	PKFC1		(2H	PLFC1		2H	PMFC1		2H	PNFC1
3H			3म	PLFC2		3H			3H	PNFC2
4H			4H			4H			4H	
5H 6H	$\supset$		5H 6H			5H 6H			5H 6H	
он 7Н			6н 7Н			6⊓ 7H			6н 7Н	
8H			8H			8H			8H	
9H			9H			9H			9H	
AH			AH	PLOD		AH			AH	PNOD
BH	PKPUP		BH			BH			BH	
СН			СН			СН			СН	
DH			DH	PLSEL		DH			DH	PNSEL
EH	PKIE		EH	PLIE		EH	PMIE		EH	PNIE
FH			FH			FH			FH	

ADR	Register name		ADR	Register name		ADR	Register name					
FFFFF180H	PO		FFFFF190H	PP		FFFFF1A0H	PQ					
1H	POCR		1H	PPCR		1H	PQCR					
2H	reserved		2H	reserved		2H	PQFC1	~				
3H	reserved		3H	reserved		ЗН		$\bigcirc$				
4H			4H			4H		$\geq$				
5H			5H			5H			$\rightarrow$			
6H			6H			6H			$\bigcirc$			
7H			7H			7H	((	77/				
8H			8H			8H	$\langle \langle \rangle$	$\langle \rangle$				
9H			9H			9H		$\sum$				
AH			AH			AH	$(\bigcirc)$	>				
BH			ВН			BH						
СН			СН			СН	$\sim$					
DH	reserved		DH	reserved		DH			$\lambda($	$\geq$		
EH	POIE		EH	PPIE		EH	PQIE			$\sim$		
FH			FH			(FH)			$\langle \mathcal{D} \rangle$	2		
							) <	>	$(\bigcirc)$			
[2] 16-bit tim	[2] 16-bit timer											
ADR	Register		ADR	Register	1	ADR	Register	$\mathcal{P}$	ADR	Register		
ADIX	name		ADR	name	$\triangleleft$	ADIN	name			name		
FFFFF200H	TB00RUN		FFFFF210H	TB01RUN		FFFFF220H	TB02RUN	~	FFFFF230H	TB03RUN		
1H	TB00CR		1H	TB01CR		1H	TB02CR	$\sim$	1H	TB03CR		
2H	TB00MOD		2H	TB01MOD		2H	TB02MOD	))	2H	TB03MOD		
211 3H	TB00FFCR		211 3H	TB01NOD		3H	TB02FFCR		211 3H	TB03FFCR		
4H	TB00ST		4H	TB011ST		4.H	TB02ST	-	4H	TB03ST		
411 5H	TB0031		411 5H	TB0131	2	5H	TB0231 TB02IM		411 5H	TB0331 TB03IM		
6H	TB00UCL		6H	TB01UCL		5N 6H	TB02UCL		6H	TB03UCL		
7H	TB00UCH		7H	TB01UCH		→ 7H	TB02UCH		7H	TB03UCH		
8H	TB00RG0L		8H	TB01RG0L		8H	TB02RG0L	-	8H	TB03RG0L		
9H	TBOORGOL		9H	TB01RG0L		9H	TB02RG0L		9H	TB03RG0L		
AH	TB00RG1L		AH	TB01RG1L		AH	TB02RG011		AH	TB03RG01L		
BH	TB00RG1H	_	ВН	TB01RG1H		BH	TB02RG1E		BH	TB03RG1E TB03RG1H		
СН	TB00CP0L	$\frown$	CH	TB01CP0L	6	СН	TB02CP0L	-	CH	TB03CP0L		
DH	TB00CP0L			TB01CP0L	$\mathbb{V}$	О	TB02CP0L TB02CP0H		DH	TB03CP0L TB03CP0H		
		$\geq$										
EH FH	TB00CP1L TB00CP1H		EH FH	TB01CP1L TB01CP1H	-	EH FH	TB02CP1L TB02CP1H		EH FH	TB03CP1L TB03CP1H		
	TBOUCFITT				_	<u>r</u> - FH	TB02CF III			TB03CF III		
	Register			Register	ļ.		Register	1		Register		
ADR	name	力	ADR			ADR	name		ADR	name		
FFFFF240H	TB04RUN		FFFFF250H	TB05RUN		FFFFF260H	TB06RUN		FFFFF270H	TB07RUN		
	TB04R0N			TB05CR		1H	TB06CR		1H	TB07CR		
2H	TB04CK		2H	TB05MOD		2H	TB06MOD		2H	TB07CK TB07MOD		
3H	TB04FFCR		3H	TB05FFCR		211 3H	TB06FFCR		211 3H	TB07FFCR		
4H	TB04FFCK TB04ST		4H	TB05FFCK		3H 4H	TB06ST	1	<u>зн</u> 4Н	TB07FFCK TB07ST		
4H 5H	TB0451 TB04IM		4H 5H	TB05ST TB05IM		4H 5H	TB06ST TB06IM	1	4H 5H	TB07S1 TB07IM		
5н 6Н	TB04IM		<del>5</del> н 6Н	TB05IM TB05UCL		5H 6H	TB06UCL	1	5H 6H	TB07IM TB07UCL		
7H	TB04UCH TB04RG0L		7H	TB05UCH		7H	TB06UCH	1	7H	TB07UCH		
8H 이너			8H	TB05RG0L		8H	TB06RG0L		8H 이니	TB07RG0L		
9H	TB04RG0H		9H	TB05RG0H		9H	TB06RG0H	1	9H	TB07RG0H		
AH BH	TB04RG1L		AH	TB05RG1L		AH BH	TB06RG1L	1	AH BU	TB07RG1L		
BH	TB04RG1H		BH	TB05RG1H		BH	TB06RG1H		BH	TB07RG1H		
CH	TB04CP0L		CH	TB05CP0L		CH	TB06CP0L	1	CH	TB07CP0L		
DH	TB04CP0H		DH	TB05CP0H		DH	TB06CP0H		DH	TB07CP0H		
EH	TB04CP1L		EH	TB05CP1L		EH	TB06CP1L	1	EH	TB07CP1L		
FH	TB04CP1H		FH	TB05CP1H		FH	TB06CP1H	1 1	FH	TB07CP1H		

ADR	Register		ADR	Register		ADR	Register		ADR	Register
	name	_		name			name			name
FFFFF280H	TB08RUN	1	FFFFF290H	TB09RUN		FFFFF2A0H	TB 0 ARUN		FFFFF2B0H	TB0BRUN
1H	TB08CR		1H	TB09CR		1H	TB0ACR		1H	TB0BCR
2H	TB08MOD		2H	TB09MOD		2H	TB0AMOD	1	2H	TB0BMOD
3H	TB08FFCR		3H	TB09FFCR		3H	TB0AFFCR		3H	TBOBFFCR
4H	TB08ST		4H	TB09ST TB09IM		4H	TBOAST	(	4H	TBOBST
5H 6H	TB08IM		5H			5H 6H	TB0AIM TB0AUCL	$\langle$	5H	TB0BIM TB0BUCL
0⊓ 7H	TB08UCL TB08UCH		6H 7H	TB09UCL TB09UCH		он 7Н	TBOAUCH	$\sum_{i=1}^{n}$	6H 7H	TB0BUCL
7H 8H	TB080CH TB08RG0L		7H 8H	TB090CH TB09RG0L		8H	TBOARGOL		8H	TB0B0CH
он 9Н	TB08RG0L		он 9Н	TB09RG0L		он 9Н	TBOARGOL		он 9Н	TB0BRG0L
AH	TB08RG1L		AH	TB09RG011		AH	TB0ARG1L		AH	TB0BRG01L
BH	TB08RG1H		BH	TB09RG1H		BH	TB0ARG1H		BH	TB0BRG1H
СН	TB08CP0L		СН	TB09CP0L		CH	TBOACPOL		CH	TB0BCP0L
DH	TB08CP0H		DH	TB09CP0H		DH	TBOACPOH		DH	TB0BCP0H
EH	TB08CP1L		EH	TB09CP1L		EH	TB0ACP1L		EH	TB0BCP1L
FH	TB08CP1H		FH	TB09CP1H		ਿੱਸ	TB0ACP1H		FH	TB0BCP1H
							$)) \land \Diamond$			
ADR	Register		ADR	Register		ADR	Register	$ \langle$	ADR	Register
ADIX	name		ADIN	name			name	$\bigcap$	ADIC	name
FFFFF2C0H	TB0CRUN	F	FFFFF2D0H	TB0DRUN	$\left  \right\rangle$	FFFFE2E0H	TBOERUN		FFFF2F0H	TB0FRUN
1H	TB0CCR		1H	TB0DCR		1H	TB0ECR	0	1H	TB0FCR
2H	TB0CMOD		2H	TBOMOD (		2H	TBOEMOD		2H	TB0FMOD
3H	TB0CFFCR		3H	TBODFFCR		→ 3H	TBOEFFCR		3H	TB0FFFCR
4H	TB0CST		4H	TBODST		4H	TBOEST	r	4H	TB0FST
5H			5H	TBODIM	>	<b>5</b> H	TBOEIM		5H	TB0FIM
6H	TB0CUCL		6H	TBODUCL	-	6H	TBOEUCL		6H	TB0FUCL
7H	TB0CUCH		7H	TBODUCH		7H	TBOEUCH		7H	TB0FUCH
8H	TB0CRG0L		8H	TB0DRG0L		AH	TB0ERG0L		8H	TB0FRG0L
9H	TB0CRG0H		9H	TB0DRG0H		9H	TB0ERG0H		9H	TB0FRG0H
AH	TB0CRG1L		AH	TB0DRG1L		AH	TB0ERG1L		AH	TB0FRG1L
BH	TB0CRG1H		( ( BH)	TB0DRG1H		BĤ	TB0ERG1H		BH	TB0FRG1H
СН	TB0CCP0L		CH)	TB0DCP0L	(-	СН	TB0ECP0L		СН	TB0FCP0L
DH	ТВОССРОН		)) DH	TB0DCP0H		DH	TB0ECP0H		DH	TB0FCP0H
EH	TB0CCP1L		/EH	TB0DCP1L		EH	TB0ECP1L		EH	TB0FCP1L
FH	TB0CCP1H	Ľ	FH	TB0DCP1H		FH	TB0ECP1H		FH	TB0FCP1H
						/	5			5
ADR	Register		ADR	Register		ADR	Register		ADR	Register
	name	7		name			name			name
FFFFF300H	TB10RUN		FFFFF310H	TB11RUN		FFFFF320H	TB12RUN		FFFFF330H	TB13RUN
1H	TB10CR		14	TB11CR		1H	TB12CR		1H	TB13CR
2H	TB10MOD		2H	TB11MOD		2H	TB12MOD		2H	TB13MOD
3H	TB10FFCR	- 6	( <u>3H</u>	TB11FFCR		3H	TB0AFFCR		3H	TB13FFCR
4H	TB10ST	(	44	TB11ST		4H	TB12ST		4H	TB13ST
5H	TB10IM		5H	TB11IM		5H	TRADUCI		5H	TB13IM
6H 7⊔	TB10UCL		6H	TB11UCL		6H 74	TB12UCL		6H 74	TB13UCL
7H	TB10UCH	-	7H	TB11UCH		7H	TB12UCH		7H 2日	TB13UCH
8H 9H	TB10RG0L TB10RG0H		8H 9H	TB11RG0L TB11RG0H		8H 9H	TB12RG0L TB12RG0H		8H 9H	TB13RG0L TB13RG0H
9H AH	TB10RG0H TB10RG1L		9H AH	TB11RG0H		9H AH	TB12RG0H TB12RG1L		9H AH	TB13RG0H TB13RG1L
BH	TB10RG1L TB10RG1H		BH	TB11RG1L		BH	TB12RG1L TB12RG1H		BH	TB13RG1L TB13RG1H
CH	TB10CP0L	┢	СН	TB11CP0L		CH	TB12KG111 TB12CP0L		CH	TB13CP0L
DH	TB10CP0L TB10CP0H		DH	TB11CP0L TB11CP0H		DH	TB12CP0L TB12CP0H		DH	TB13CP0L TB13CP0H
EH	TB10CP1L		EH	TB11CP1L		EH	TB12CP1L		EH	TB13CP1L
FH	TB10CP1H		FH	TB11CP1H		FH	TB12CP1H		FH	TB13CP1H
· · · ·		-			I					
ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
-----------	----------------------------------	----------------	-----------	----------------------	-------------------	-----------	----------------------	--------	-----------	----------------------
FFFFF340H	TB14RUN		FFFFF350H	TB15RUN		FFFFF360H	TB16RUN		FFFFF370H	TB17RUN
1H	TB14CR		1H	TB15CR		1H	TB16CR		1H	TB17CR
2H	TB14MOD		2H	TB15MOD		2H	TB16MOD		2H	TB17MOD
3H	TB14FFCR		3H	TB15FFCR		3H	TB16FFCR	1	ЗН	TB17FFCR
4H	TB14ST		4H	TB15ST		4H	TB16ST		4H	TB17ST
5H	TB14IM		5H	TB15IM		5H	TB16IM		5H	TB17IM
6H	TB14UCL		6H	TB15UCL		6H	TB16UCL		бН	TB17UCL
7H	TB14UCH		7H	TB15UCH		7H	TB16UCH	7	<7H	TB17UCH
8H	TB14RG0L		8H	TB15RG0L		8H	TB16RG0L		)) 8н	TB17RG0L
9H	TB14RG0H		9H	TB15RG0H		9H	TB16RG0H		9Н	TB17RG0H
AH	TB14RG1L		AH	TB15RG1L		AH	TB16RG1L	>	AH	TB17RG1L
BH	TB14RG1H		BH	TB15RG1H		BH	TB16RG1H		BH	TB17RG1H
СН	TB14CP0L		СН	TB15CP0L		СН	TB16CP0L		CH	TB17CP0L
DH	TB14CP0H		DH	TB15CP0H		DH	TB16CP0H		(DH	TB17CP0H
EH	TB14CP1L		EH	TB15CP1L		EH	TB16CP1L		EH.	TB17CP1L
FH	TB14CP1H		FH	TB15CP1H		( ( ਸੁਜ	TB16CP1H		FH	TB17CP1H
					_		$// \diamond$			)
ADR	Register		ADR	Register		ADR	Register	<	ADR	Register
	name			name		<	name	$\Box$		name
FFFFF380H	TB18RUN		FFFFF390H	TB19RUN	2	FFFFF3A0H	TB1ARUN		FFFFF3B0H	TB1BRUN
1H	TB18CR		1H	TB19CR		1H	TB1ACR	5	/ 1H	TB1BCR
2H	TB18MOD		2H	TB19MOD		2H	TB1AMOD	$\sum$	2H	TB1BMOD
3H	TB18FFCR		3H	TB19FFCR		3H	TB1AFFCR		3H	TB1BFFCR
4H	TB18ST		4H	TB19ST		4H	TB1AST		4H	TB1BST
5H	TB18IM		5H	TB19IM	>	5म	TB1AIM		5H	TB1BIM
6H	TB18UCL		6H	TB19UCL		6H	TB1AUCL		6H	TB1BUCL
7H	TB18UCH		7H	TB19UCH		7H	TB1AUCH		7H	TB1BUCH
8H	TB18RG0L		8H	TB18RG0L		AH	TB1ARG0L		8H	TB1BRG0L
9H	TB18RG0H		9Н	TB19RG0H		9H	TB1ARG0H		9H	TB1BRG0H
AH	TB18RG1L		AH	TB19RG1L		AH	TB1ARG1L		AH	TB1BRG1L
BH	TB18RG1H		( ( BH)	TB19RG1H		BĤ	TB1ARG1H		BH	TB1BRG1H
СН	TB18CP0L		СН	TB19CP0L	$\langle \rangle$	СН	TB1ACP0L		CH	TB1BCP0L
DH	TB18CP0H		) DH	TB19CP0H		DH	TB1ACP0H		DH	TB1BCP0H
EH	TB18CP1L		EH	TB19CP1L	Ň	С ЕН	TB1ACP1L		EH	TB1BCP1L
FH	TB18CP1H	$\overline{\}$	< FH	TB19CP1H		FH	TB1ACP1H		FH	TB1BCP1H
						>				
ADR	Register		ADR	Register		ADR	Register		ADR	Register
	name	~		name	2		name			name
FFFFF3C0H	TB1CRUN	ر	FFFF5D0H	TB1DRUN		FFFFF3E0H	TB1ERUN		FFFFF3F0H	TB1FRUN
1H	TB1CCR		1H	TB1DCR		1H	TB1ECR		1H	TB1FCR
	TB1CMOD		2H	TB1DMOD		2H	TB1EMOD		2H	TB1FMOD
	TB1CFFCR		/ (ЗН	TB1DFFCR		3H	TB1EFFCR		3H	TB1FFFCR
4H	TB1CST		( \ 4H_	TB1DST		4H	TB1EST		4H	TB1FST
	TB1CIM		5H	TB1DIM		5H	TB1EIM		5H	TB1FIM
	TB1CUCL		6H	TB1DUCL		6H	TB1EUCL		6H	TB1FUCL
7H	TB1CUCH		ŤН	TB1DUCH		7H	TB1EUCH		7H	TB1FUCH
	TB1CRG0L		8H	TB1DRG0L		8H	TB1ERG0L		8H	TB1FRG0L
	TB1CRG0H		9H	TB1DRG0H		9H	TB1ERG0H		9H	TB1FRG0H
	TB1CRG1L		AH	TB1DRG1L		AH	TB1ERG1L		AH	TB1FRG1L
	TB1CRG1H		BH	TB1DRG1H		BH	TB1ERG1H		BH	TB1FRG1H
СН	TB1CCP0L		СН	TB1DCP0L		СН	TB1ECP0L		СН	TB1FCP0L
				TB1DCP0H		DH	TB1ECP0H		DH	TB1FCP0H
DH	TB1CCP0H		DH							
DH EH	TB1CCP0H TB1CCP1L TB1CCP1H		EH FH	TB1DCP1L TB1DCP1H		EH FH	TB1ECP1L TB1ECP1H		EH	TB1FCP1L TB1FCP1H

ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFF400H	TB20RUN		FFFFF410H	TB21RUN		FFFFF420H	TB22RUN		FFFFF430H	TB23RUN
1H	TB20CR		1H	TB21CR		1H	TB22CR		1H	TB23CR
2H	TB20MOD		2H	TB21MOD		2H	TB22MOD		2H	TB23MOD
3H	TB20FFCR		3H	TB21FFCR		3H	TB22FFCR		3Н	TB23FFCR
4H	TB20ST		4H	TB21ST		4H	TB22ST	/	4H	TB23ST
5H	TB20IM		5H	TB21IM		5H	TB22IM		5H	TB23IM
6H	TB20UCL		6H	TB21UCL		6H	TB22UCL		бН	TB23UCL
7H	TB20UCH		7H	TB21UCH		7H	TB22UCH	1	7H	TB23UCH
8H	TB20RG0L		8H	TB21RG0L		8H	TB22RG0L		)) вн	TB23RG0L
9H	TB20RG0H		9H	TB21RG0H		9H	TB22RG0H	$\sim$	9Н	TB23RG0H
AH	TB20RG1L		AH	TB21RG1L		AH	TB22RG1L	7	AH	TB23RG1L
BH	TB20RG1H		BH	TB21RG1H		BH	TB22RG1H		BH	TB23RG1H
СН	TB20CP0L		СН	TB21CP0L		CH	TB22CP0L		CH	TB23CP0L
DH	TB20CP0H		DH	TB21CP0H		DH	TB22CP0H			TB23CP0H
EH	TB20CP1L		EH	TB21CP1L		EH	TB22CP1L		EH.	TB23CP1L
FH	TB20CP1H		FH	TB21CP1H		( (FH	TB22CP1H		FH	TB23CP1H
					•		$\mathcal{T}$	, ,		)
[3] TMRC		_			_			<	<u> </u>	/
ADR	Register		ADR	Register	(	ADR	Register	7	ADR	Register
	name			name	へ		name		$\gamma$ )	name
FFFF500H	TCACR		FFFFF510H	CMPA0CTL		FFFFF520H	CAPAOCR	2	FFFFF530H	TCBCR
1H	TBTARUN		1H	5		1H	(7/4)	$\sum_{i=1}^{n}$	1H	TBTBRUN
2H	TBTACR		2H			2H	$\sim$	)	2H	TBTBCR
3H			3H	20		3H			3H	
4H	TBTACAPLL		4H	CMPAOLL	>	<b>≦</b> 4⊬	CAPAOLL		4H	TBTBCAPLL
5H	TBTACAPLH		5H	CMPAOLH		5H	CAPAOLH		5H	TBTBCAPLH
6H	TBTACAPHL		6H	CMPAOHL		6H	CAPAOHL		6H	TBTBCAPHL
7H	TBTACAPHH		7H	CMPAOHH		🔿 7H	CAPA0HH		7H	ТВТВСАРНН
8H	TBTARDCAPLL		8H	CMPA1CTL		8H	CAPA1CR		8H	TBTBRDCAPLL
9H	TBTARDCAPLH		9H			He			9H	TBTBRDCAPLH
AH	TBTARDCAPHL		( AH			AH			AH	TBTBRDCAPHL
BH	TBTARDCAPHH		ВН	)		ВН			BH	TBTBRDCAPHH
СН			)) CH	CMPA1LL	(	СН	CAPA1LL		СН	
DH			DH	CMPA1LH	$\bigvee$	🕖 рн	CAPA1LH		DH	
EH		$\sim$	< EH	CMPA1HL		EH EH	CAPA1HL		EH	
FH			FH	CMPA1HH		FH FH	CAPA1HH		FH	
	$\land \land$	_	4							
ADR	Register		ADR	Register	Þ					
	name	J)		🔿 name						
FFFFF540H	CMPBOCTL		FFFFF550H	CAPB0CR						
< <u>`</u> 1₩,	(( ))		_1H							
2H				$\sim$						
3H	$\geq$		( ) 3H	$\mathcal{D}$						
48	<b>CMPB0LL</b>		AH	CAPBOLL						
5H	CMPB0LH	Í	5H	CAPB0LH						
6H	CMPBOHL		6H	CAPB0HL						
7H	CMPB0HH		7H	CAPB0HH						
8H	CMPB1CTL	1	8H	CAPB1CR						
9H			9H							
AH		Í	AH							
BH			BH							
CH	CMPB1LL	1	СН	CAPB1LL						
DH	CMPB1LH	Í	DH	CAPB1LH						
EH	CMPB1HL	Í	EH	CAPB1HL						
FH	CMPB1HH	Í	FH	CAPB1HH						
111		1	111							

name         name         name         name         name         name           FFFFF600H         SBI0CR1         FFFF610H         SBI1CR1         FFFF710H         SC           11         SBI0DR2CAR         2H         SBI1CR2SR         3H         SCCR         2H         SC           3H         SBI0CR2/SR         3H         SBI1CR2/SR         3H         BROCR         2H         SC           6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC         6H         SC	
FFFF600H         SBI0CR1         FFFFF10H         SBI1CR1         FFFFF70H         SC0BUF           2H         SBI02CR2/SR         3H         SBI1CR2/SR         3H         SBI1CR2/SR           3H         SBI0CR2/SR         3H         SBI1CR2/SR         3H         SBI0CR2/SR           4H         SBI00R0         4H         SBI1BR0         SH         3H         BR0CR           6H         6H         SH         SH         SGN00D         SGN00D         SH           8H         SBI0CR0         7H         SBI1CR0         SH         SGN00D         SGN0DD           8H         SH         SH         SGN0DD         SGNCFC         SH         SGN0DD           8H         SH         SH         SGNCFC         SGNCFC         SH         SGNODD           8H         SH         SGNCFC         SGNCFC         SGNCFC         SH         SGNCFC           9H         SC2BUF         FFFF730H         SG3BUF         SGNCFC         SGNCFC         SGNCFC           1H         SG3MODD         SH         SG3MODD         SH         SGMODD         SH         SGMODD           3H         BR2CR         ADR         REFFF740H         SC4GR	Register name
1H         SBI0DBR         1H         SBI1DBR         1H         SBI1DBR         1H         SBI1DBR         1H         SBI1DBR         1H         SCMOD0         2H         SCMOD0         2H         SCMOD0         2H         SCMOD0         2H         SCMOD0         2H         SC           4H         SBI0CR2/SR         3H         SBI1CR2/SR         3H         SCORCR         3H         SCORCR         3H         SC	C1BUF
2H         SBI0/2CAR         2H         SBI1/CA2SR         2H         SBI1/CA2SR           3H         SBI0/CA2SR         3H         SBI1/CA2SR         3H         BRCR         3H         SBI           4H         SBI0BR0         4H         SBI1BR0         3H         SBI         SH         SH         SH         SH         SH         SH         SCMOD1         SH         SH         SCMOD1         SH         SS         SS         SS         SCMOD1         SH         SS	C1CR
3H         SBIOCR2/SR         3H         SBI1CR2/SR         3H         BROCR         3H         BR           4H         SBI0BR0         4H         SBI1BR0         5H         6H         5H         5H         6H         5H         5H         6H         5H         6H         5H         5H         6H         5H         6H         5H         6H         5H         5H         6H         5H         5H         6H         5H         5H         6H         5H         5C0MOD1         6H         5C0FC         7H         5G         6H         5C0FC         7H         5G         7H         7H         5G         7H         7H         5G         7H         5G         7H         7H         7H </td <td>C1MOD0</td>	C1MOD0
4H         SBI0BR0         4H         SBI1BR0         4H         BR0ADD         4H         BF           6H         5H         5H         5H         5H         5C0MOD1         5H         5H         5C           7H         SBI0CR0         7H         SBI1CR0         7H         SC0MOD2         7H         SC0MOD2         7H         SC           8H         9H         9H         9H         9H         SC         7H         SC         8H         SC         SC         SC         SC         SC         SC         SC         SC         SC	R1CR
SH         SH         SH         SH         SCOMOD1         SH         SCOMOD1         SH         SCOMOD1         SH         SCOMOD1         SH         SCOMOD2         SCOMOD2 <t< td=""><td>R1ADD</td></t<>	R1ADD
6H         SBI0CR0         6H         SBI1CR0         6H         SC0MOD2         6H         SC           8H         8C0TFC         9H         5C         9H         5C <td>C1MOD1</td>	C1MOD1
7H         SBIOCR0         7H         SBI1CR0         7H         SCOEN         7H         SCOEN           8H         9H	C1MOD2
8H     9H     9H     9H     9H     9H     9H     9H     9H     9H     SCORFC     8H     SCORFC       AH     9H     AH     AH     AH     SCORFC     9H     SCORFC     9H     SC       CH     DH     SCORFC     ADR     Register     ADR     Register     ADR     SCORFC     H     SCORFC	C1EN
9H AH9H AH9H AH9H 	C1RFC
AH BHAH BHAH BHAH BHAH BHAH BHAH SCORSTAH SCORSTAH BH SCOTSTCH CH EH FHCHCH DH EH FHCHCH CHSCOFCNF OHDH EH EHDH EH FHDH EHDH EHDH EHDH EHDH EHDH EHDH EHDH EHDH EHDH EHDHDH EHDHFFFFF720H SC2BUF 1H SC2RCSC2BUF 1H SC2RCRADR Register 1H SC3CRRegister CH SC3RDDADR SC3BUFRegister TH SC4MOD0ADR SC4MOD0FFFFF740H SC4MOD0SC4BUF SC4MOD0FFFFF750H SC 2H SC4MOD1FFFFF750H SC4MOD1SC4BUF SC4MOD1FFFFF750H SC 2H SC4MOD1ADR SC4MOD2FFFFF750H SC 2H SC4MOD1ADR SC4MOD2FFFFF750H SC 2H SC4MOD1ADR SC4MOD2FFFF750H SC 2H SC4MOD1ADR SC4MOD2FFFF750H SC SC SC4MOD1SC SC4MOD1ADR SC SC4MOD1FFFF750H SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC <br< td=""><td>C1TFC</td></br<>	C1TFC
BHBHBHBHSCOTSTBHSCCHDHDHDHDHDHDHDHDHDHEHEHEHEHEHEHEHEHEHEHFFFF720HSC2BUFFFFF730HSC3BUFFFFFF740HSC4BUFFFFF750HSC3BUF1HSC2CR2HSC3MOD02HSC4ROD02HSC4MOD02HSC4BUF3HBR2CR3HBR3CR3HBR4CR3HBR4CR3HBR3CR4HBR2ADD4HBR3ADD6HSC4MOD16HSC4MOD26HSC4MOD16HSC2MOD16HSC3MOD26HSC4MOD26HSC4RFC9HSC3TFC9HSC2RFC8HSC3RSTAHSC4RSTBHSC4SHSC48HSC2RSTAHSC3TSTBHSC4TFC9HSC3TFC9HSC4TFC9HSC2RSTAHSC3STSTBHSC4TFC9HSC3TSTBHSC4TFC9HSC2RSTAHSC4RSTBHSC4RSTBHSC6BHSC0HECTFF760HSC6BUFCHSC3FCNFCHSC6RCNFDHEHEH0HEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEHEH	C1RST
CH DH EH FHCH DH EH FHCH DH EH FHCH DH EH FHCH DH EH FHCH DH EH FHCH DH EH FHADR FFFF720HRegister nameADR FFFF720HRegister nameADR FFFF730HRegister nameADR FFFF730HADR FFFF730HRegister nameADR FFFF730HFFFF730H SC3BUFADR FFFF730HRegister nameADR FFFF730HFFFF730H SC4BUFSC4RUFFFFF730H FFFF730HSC SC4BUFADR SH SC2MOD0SC2RC SH SC2MOD1AH SH SC3MOD1BR3CR SH SC3MOD1AH SH SC4MOD1SC4RUFFFFF730H SC SC4BUFFFFFF730H SC SC SH SC4MOD1FFFFF730H SC SC4BUFFFFFF730H SC4ENSC4RUFFFFF730H SC SC SH SC4RUC1FFFFF730H SC SC SH SC4RUC1ADR SC4RUC1Register SC4RUC1ADR SC4RUC1FFFF730H SC4ENSC4RUADR FFFFF730H SC4ENFRegister AH SC4RUC1ADR SC4RUC1Register SC4RUC1ADR SC4RUC1FFFFF730H SC4ENFADR SC4RUC1FFFFF730H SC4ENFFFFFF730H SC4ENFADR FFFFF730H SC4BUFRegister H SC4RUC1ADR SC4RUC1Register SC4RUC1ADR SC4RUC1FFFFF730H SC4ENFADR SC4RUC1FFFFF730H SC4ENFSC4CR SC4ENFADR FFFFF730H SC4BUFRegister H SC4RUC1ADR SC4RUC1Register SC4RUC1ADR SC4RUC1FFFFF730H SC4ENFADR SC4RUC1FFFFF730H SC4ENF <tr< td=""><td>C1TST</td></tr<>	C1TST
DH EH FHDH EH FHDH EH FHDH EH FHDH EH FHDH EH FHADRRegister nameADRRegister nameADRRegister nameADRFFFFF740H SC4BUFSC4BUFFFFFF750H SC4BUFSC4BUF1HSC2CR 2HSC2MOD02HSC3MOD0SC4BUFFFFFF750H SC4MOD0SC4BUFFFFFF750H SC4ROD0SC4BUF4HBR2CR 3HBR3CR3HBR3CR3HBR4CR3HBR4CR4HBR2CR 3HBR3CR3HBR4CR3HBR4CR3HBF4HBR2CR 3HSC3MOD16HSC4MOD26HSC4MOD26HSC7HSC2EN7HSC3EN7HSC4EN7HSC8HSC2RFC9HSC3TFC9HSC4TFC9HSC9HSC2TST0HSC3FC8HSC4RSTAHSC8HSC2RFC9HSC3TFC9HSC4TFC9HSC9HSC2TST0HSC3FCNFCHSC4FCNFCHSC0HSC2TST0HSC3FCNFCHSC4FCNFDHEHFFFFF760HSC6BUFFFFFF770HSC7BUFCHSC4FCNFDH0HEHFFFFF770HSC7BUFCHSC4BUFFFFFF790HSC1HSC60RD03HBR7CR3HBR7CR3HBR7CR3HBR6CR3HBR7CR3HBR7CR<	C1FCNF
EH FHEH FHEH FHEH FHADRRegister nameADRRegister nameADRRegister nameFFFFF720HSC2BUF 1HSC2RC 2HFFFFF730HSC3BUFFFFFF740HSC4BUF 1HFFFFF750HSC SC4BUF2HSC2MOD0 3HBR3CR BR3CRBR3CRFFFFF740HSC4BUF 2HFFFFF750HSC SC4BUF4HBR2CR 3HBR3CR SC3MOD13HBR3AD0 5HSC4MOD1SH SC4MOD2SC 3HBR4CR BR4AD04HBR3AD0 5HSC3MOD1SHSC4MOD1 6HSC SC4MOD1SH SC4MOD2SC 3HSH SC4FC9HSC2FC 9HSC SC2FCFSC 8HSC4FC SC3FCSH SC4FCSC 8H SC4FCSH SC4FC9HSC2FC 9HSC SC3FCSH SC4FCSC4FC 9H SC4FCSH SC4FCSC SH SC4FC9HSC2FC 9HSC SC3FCNFSH SC4FCSC4FC 9H SC4FCSH SC4FCSC SH SC4FC9HSC2FC 9HSC SC3FCNFSH SC4FCSC4FC SC4FCSH SC4FC9HSC2FC 9HSC SC4FCSC SH SC4FCSC SH SC4FCSC SH SC4FC9HSC2FC 9HSC SC4FCSC SC SC SCSC SH SC4FCSC SC4FC9HSC2FC 9HSC SC4FCSC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SCSC SC SC <b< td=""><td></td></b<>	
FHFHFHFHADRRegister nameADRRegister nameADRRegister nameFFFF720HSC2BUFFFFF730HSC3BUFFFFF740HSC4BUFFFFF750HSC1HSC2CR1HSC3CR1HSC4C4CR1HSC2H2HSC2MOD03HBR3CR3HBR4CR3HBR4CR3HBF4HBR2ADD4HBR3ADD4HBR3ADD6HSC4MOD16HSC5HSC2MOD15HSC3MOD16HSC4MOD26HSC6HSC2MOD27HSC3EN7HSC4EN7HSC7HSC2EN7HSC3EN7HSC4EN8HSC4MOD16HSC2TFC8HSC3RFC9HSC4TFC8HSC9HSC2TFC8HSC3TFC9HSC4TFC8HSC9HSC2TSTBHSC3TFC9HSC4TFC8HSC9HSC2TSTCHSCFCNFCHSC4FCNFCHSC0HSC2TSTBHSC3TSTBHSC4TSTBHSC0HSC2TSTCHSCFCNFCHSC4FCNFCHSC0HSC2TSTCHSC4FCNFCHSC4FCNFCHSC0HSC2TSTCHSC4FCNFCHSC4FCNFCHSC0HSC2TSTCHSC4FCNFCHSC4FCNFCHSC0HCH	
ADRRegister nameADRRegister nameADRRegister nameFFFFF720HSC2BUFFFFFF730HSC3BUFFFFFF740HSC4BUFFFFFF750HSC1HSC2CR1HSC3CR1HSC4BUFFFFFF750HSC1HSC2HSC2MOD03HBR3CR3HBR4CR3HBR4CR3HBF4CR4HBR2ADD4HBR3ADD4HBR3ADD6HSC4MOD06HSC5HSC2MOD15HSC3MOD16HSC4MOD26HSC4MOD26HSC6HSC2MOD26HSC3MOD26HSC4MOD26HSCSCSHSC7HSC2EN7HSC3EN7HSC3EN7HSC4ENSHSCSC8HSC2RFC9HSC3TFC8HSC4RFC9HSCSCSHSC9HSC2FC9HSC3TFC9HSC4FC9HSCSCSHSCSC9HSC2FC9HSC3TSTBHSC3TSTBHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSCSCSHSCSCSCSCSCSCSCSCSCSC <td></td>	
namenamenamenameFFFFF720HSC2BUFFFFFF730HSC3BUFFFFFF740HSC4BUF1HSC2CR1HSC3CR1HSC4BUF2HSC2MOD02HSC3MOD02HSC4MOD03HBR2CR3HBR3CR3HBR4CR4HBR2ADD4HBR3ADD4HBR4ADD5HSC2MOD15HSC3MOD15HSC4MOD16HSC2MOD26HSC3MOD26HSC4MOD27HSC2EN7HSC3EN7HSC4EN8HSC2RFC8HSC3RFC8HSC4RFC9HSC3TFC9HSC4TFC9HSC4TFC9HSC3TSTBHSC4TFC8HSC3FC9HSC2TSTBHSC3FCNFCHSC4FCNF0HSC2FCNFCHSC3FCNFCHSC4FCNF0HEHFFFF770HSC7BUFCHSC4FCNF0HEHFHFHFHFHFHFHFHFHFHFHFFFF780H2HSC6BUFADRRegister AHADR7HSC6BUFADR2HSC7MOD02HSC6MOD02HSC7MOD03H3HBR6CR3HBR7CR4HSC6MOD15HSC7MOD15HSC7MOD15HSC8MOD15HSC7MOD15H3HBR6ADD4H5HSC7MOD15H <td></td>	
namenamenameFFFFF720HSC2BUFFFFFF730HSC3BUFFFFFF740HSC4BUF1HSC2CR1HSC3CR1HSC4BUF2HSC2MOD02HSC3MOD02HSC4MOD03HBR2CR3HBR3CR3HBR4CR4HBR2ADD4HBR3ADD4HBR4ADD5HSC2MOD15HSC3MOD26HSC4MOD26HSC2MOD26HSC3MOD26HSC4MOD27HSC2EN7HSC3EN7HSC4EN8HSC2RFC8HSC3RFC8HSC4RFC9HSC3TST8HSC4RFC8HSC4RST8HSC2RSTAHSC3FCNFCHSC4FCNF0HECTFCAHSC3FCNFCHSC4FCNF0HEHFFFF770HSC7NFCHSC4FCNF0HEHFHFHFHFHFHFHFHFHFHFHFFFF780H2HSC6BUFADRRegister AHADR7HSC6BUFADRRegister AHADRFFFF770HSC7BUFCHSC8BUF1HSC6CR2HSC7MOD03HBR6CR3H4HBR6ADD4H5HSC7MOD15H5HSC7MOD15H5HSC7MOD15H5HSC7MOD15H	Register
1HSC2CR1HSC3CR1HSC4CR1HSC2HSC2MOD03HBR3CR3HBR4CR3HBR4CR3HBR4HBR2ADD4HBR3ADD4HBR3ADD3HBR4CR3HBR3HBR4HBR2ADD4HBR3ADD4HBR3ADD3HBR4CR3HBR3HBR6HSC2MOD15HSC3MOD15HSC4MOD26HSCSC3HBRSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSHSCSCSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKS	name
1HSC2CR1HSC3CR1HSC4CR1HSC2HSC2MOD03HBR3CR3HBR4CR3HBR4CR3HBR2CR3HBR3CR3HBR4CR3HBR4CR4HBR2ADD4HBR3ADD3HBR4CR3HBR4CR5HSC2MOD15HSC3MOD15HSC4MOD26HSC6HSC2MOD26HSC3MOD26HSC4MOD26HSC7HSC2EN7HSC3EN7HSC4EN7HSC8HSC2RST8HSC3RST8HSC4FC9HSC9HSC2TFC9HSC3TFC8HSC4TFC9HSC9HSC2TST8HSC3RST8HSC4TST8HSC9HSC2TST8HSC3TST8HSC4TST8HSC9HSC2TST8HSC3RST8HSC4TST8HSC9HSC2TST8HSC3RST8HSC4TST8HSC9HSC2TST8HSC3RST8HSC4TST8HSC9HSC2TST9HSC3TST8HSC4FCNF9HSC9HSC2TST9HSC3TST8HSC4FCNF9HSC9HSC2TST9HSC7TST8HSC4FCNF9HSC9HSC6NOF9HSC7TST9HSCSC9H9HSC6NOF9HSC7NOD09HSC	C5BUF
2HSC2MOD02HSC3MOD02HSC4MOD02HSC4MOD03HBR2CR3HBR3CR3HBR4CR3HBF4HBR2ADD4HBR3ADD4HBR3ADD4HBR4ADD4H5HSC2MOD15HSC3MOD15HSC4MOD15HSC6HSC2MOD26HSC3MOD26HSC4MOD26HSC7HSC2EN7HSC3EN7HSC4EN7HSC8HSC2RFC8HSC3RFC8HSC4RFC8HSC9HSC2TFC8HSC3RST8HSC4RFC8HSC9HSC2TST8HSC3RST8HSC4RST8HSC8HSC2RFC9HSC3TST8HSC4RST8HSC9HSC2TST8HSC3RST8HSC4RST8HSC9HSC2FCNFCHSC3FCNFCHSC4FCNFCHSC0HEEFFFF770HSC7BUFCHSC4FCNFCHSC0HEFFFF770HSC7BUFFFFF780HSC8BUFFFFF790HSC1HSC6CR2HSC7ROD02HSC3MOD02HSC2H2HSC6MOD02HSC7ROD03HBR8CR3HBF4HBR6AD4HBR7AD4HBR8AD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC <td>C5CR</td>	C5CR
3HBR2CR3HBR3CR3HBR4CR3HBF44HBR2ADD4HBR3ADD4HBR3ADD4HBR4ADD4HBF5HSC2MOD15HSC3MOD15HSC4MOD15HSC4MOD26HSC6HSC2MOD26HSC3MOD26HSC4MOD26HSC6HSC7HSC2EN7HSC3EN7HSC4EN7HSC8HSC2RFC9HSC3TFC9HSC4TFC9HSC9HSC2TFC9HSC3TST8HSC4RSTAHSC8HSC2RSTAHSC3RSTAHSC4RSTBHSC8HSC2TSTBHSC3TSTBHSC4TSTBHSC0HSC2FCNFCHSC3FONFCHSC4FCNFCHSC0HECTSTBHSC3TSTBHSC4TSTBHSC0HSC2FCNFCHSC3FONFCHSC4FCNFCHSC0HECTSTBHSCSCCHSCSC0HECTSTCHSC3FONFCHSC4FCNFCHSC0HECTSTCHSC3FONFCHSC4FCNFCHSC0HEFFF770HSC7BUFCHSC80UFSC80UFFFFF770HSC1HSC60R2HSC7MOD03HBR8CR3HBH4HBR6ADD4HBR7ADD4HBR8ADD4HBF<	C5MOD0
4HBR2ADD4HBR3ADD4HBR4ADD5HSC2MOD15HSC3MOD15HSC4MOD16HSC2MOD26HSC3MOD26HSC4MOD27HSC2EN7HSC3EN7HSC4EN8HSC2RFC8HSC3RFC8HSC4RFC9HSC2TFC8HSC3RFC9HSC4TFCAHSC2RST8HSC3RST8HSC4RSTBHSC2TST8HSC3TST8HSC4RSTBHSC2TSTCHSC3FCNFCHSC4FCNFCHSC2FCNFCHSC3FCNFCHSC4FCNFDHEHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFFFF760HSC6BUFADRRegister 1HADRRegister 1HADRRegister 2HSC6MOD0ADRSC7CR3HBR6CR3HBR7CRAHBR8ADDAH4HBR6ADD4HBR7ADDAHBR8ADDAH5HSC6MOD15HSC7MOD15HSC8MOD15H	R5CR
5HSC2MOD15HSC3MOD15HSC4MOD15HSC46HSC2MOD26HSC3MOD26HSC4MOD26HSC7HSC2EN7HSC3EN7HSC4EN7HSC8HSC2RFC9HSC3FC9HSC4FFC9HSC9HSC2TFC9HSC3TFC9HSC4TFC9HSC0HSC2RSTAHSC3RSTAHSC4RSTAHSC0HSC2TSTBHSC3TSTBHSC4TSTBHSC0HSC2FCNFCHSC3FCNFCHSC4FCNFCHSC0HEHFHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HEHFHFHFHFHFH0HFHSC6BUFFFFF770HSC7BUFFFFF780HSC8BUF1HSC6CR2HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBH4HBR6ADD4HBR7A	R5ADD
6HSC2MOD26HSC3MOD26HSC4MOD26HSC47HSC2EN7HSC4EN7HSC4EN7HSC8HSC2RFC9HSC3TFC8HSC4RFC9HSC9HSC2TFC9HSC3TFC9HSC4TFC9HSC8HSC2RST8HSC3RST8HSC4RST8HSC8HSC2TFC9HSC3TFC9HSC4TFC9HSC9HSC2TST8HSC3TST8HSC4RST8HSC0HSC2FCNF0HSC3FCNF0HSC4FCNF0HSC0HEHFHFHFHFHFHSC0HEHFHFHFHFHFHFH0HFHFHFHFHFHFH0HEHFHFHFHFHFH0HFHFHFHFHFHFH0HFHFHFHFHFHFH0HFHFHFHFHFHFH0HFHFHFHFHFHFH0HFHSC6BUFFFFF770HSC7BUFFFFF780HSC8BUF1HSC6CR2HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBH4HBR6ADD4HBR7ADD4HBR8ADD4HSH5H <t< td=""><td>C5MOD1</td></t<>	C5MOD1
THSC2ENTHSC3ENTHSC4ENTHSC4EN8HSC2RFC8HSC3RFC8HSC4RFC8HSC4RFC9HSC2TFC9HSC3TFC9HSC4TFC9HSC4TFCAHSC2RSTAHSC3RSTBHSC4RSTBHSC4RSTBHSC2TSTBHSC3TFCCHSC4ENAHSC4RSTCHSC2FCNFCHSC3FCNFCHSC4ENFCHSC4ENFDHDHBHSC3TSTBHSC4RSTBHSC4RSTDHEHFHFHFHFHFHSC4ENFDHEHFHFHFHFHFHSC4ENFDHEHFHFHFHFHFHFFFF760HSC6BUFFFFF770HSC7BUFFFFF780HSC8BUFFFFFF760HSC6BUFFFFFF770HSC7BUFFFFFF780HSC8BUF1HSC6CR2HSC7MOD03HBR8CR3H4HBR6CR3HBR7CR3HBR8CR3H4HBR6ADD4HBR7ADD4HBR8ADD4H5HSC6MOD15HSC7MOD15HSC8MOD15H	C5MOD2
8HSC2RFC8HSC3RFC8HSC4RFC8HSC4RFC9HSC2TFC9HSC3TFC9HSC4TFC9HSC4TFCAHSC2RSTBHSC3TSTBHSC4TSTAHSC4RSTCHSC2FCNFCHSC3FCNFCHSC4TFCAHSC4RFCDHEHFHFHFHCHSC4RFCSC4RFCSC4RFCDHBHSC3TSTBHSC4TSTBHSC4RFCSC4RFCCHSC2FCNFCHSC3FCNFCHSC4RFCCHSC4RFCDHEHFHFHFHDHDHDHEHFHFHFHFHFHSC4RFCSC4RFCADRRegisterADRRegisterADRRegisterADRFFFF770HSC7BUFFFFF780HSC8BUFFFFFF790HSC1HSC6CR2HSC7MOD03HBR8CR3HBF4HBR6ADD4HBR7ADD5HSC8MOD15HSC	C5EN
9HSC2TFC9HSC3TFC9HSC4TFC9HSC4AHSC2RSTBHSC3RSTAHSC4RSTAHSC4RSTBHSC2TSTCHSC2FCNFCHSC3FCNFCHSC4FCNFCHSC4FCNFDHDHDHCHSC3FCNFCHSC4FCNFCHSC4FCNFDHEHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHChSC6BUFFFFF770HSC7BUFFFFF780HSC8BUFFFFFF790HSC1HSC6CR2HSC7MOD02HSC8MOD02HSC3MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBFAHSC4HBR6ADD4HBR7ADD5HSC8MOD15HSCSC	C5RFC
AHSC2RST BHAHSC3RST BHAHSC4RST BHAHSC4RST BHCHSC2FCNFCHSC3FCNFCHSC4FCNFCHSC4FCNFDHDHDHDHDHDHDHDHEHFHFHFHFHFHFHFHFFFF760HSC6BUFFFFFF770HSC7BUFADRRegister nameADRRegister nameADRFFFF770H1HSC6CR2HSC7MOD02HSC8MOD02HSC8MOD03HBR6CR4HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBR8ADD5HSC6MOD15HSC7MOD15HSC8MOD15HSC8MOD1	C5TFC
BHSC2TSTBHSC3TSTBHSC4TSTBHSC4TSTCHSC2FCNFCHSC3FCNFCHSC4FCNFCHSC4FCNFDHDHDHDHDHDHDHDHEHFHFHFHFHFHFHFHFFFF760HSC6BUFFFFFF770HSC7BUFADRRegister nameADRRegister nameADRFFFFF790HSC1HSC6CRFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSC2HSC6MOD03HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	C5RST
CHSC2FCNFCHSC3FCNFCHSC4FCNFCHSCDHDHDHDHDHDHDHDHEHFHFHFHFHFHFHFHFFFF760HSC6BUFFFFFF770HSC7BUFADRRegister nameADRRegister nameADRFFFF790HSC1HSC6CRFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSCFFFFF790HSC2HSC6MOD02HSC7MOD02HSC8MOD02HSCSC3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBRAHSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSC <td>C5TST</td>	C5TST
DH EH FHDH EH FHDH EH FHDH EH FHDH EH FHDH EH FHADRRegister nameADRRegister nameADRRegister nameADRFFFFF70HADRSC6BUF 1HFFFFF70HSC7BUF 1HSC6CR 2HFFFFF770HSC7BUF 1HFFFFF780HSC8BUF 1HFFFFF790HSC SC8BUF1HSC6CR 2HSC7MOD0 3HBR7CR BR7CRHSC8MOD0 3HSC8MOD0 3HSC8MOD0 3HSC8MOD0 3HSC8MOD0 3HSC8MOD14HBR6ADD 5H4HBR7ADD 5HAHBR8ADD 5HSC8MOD1SC8MOD1	C5FCNF
EH FHEH FHEH FHEH FHEH FHADRRegister nameADRRegister nameADRRegister nameADRSC6BUF 1HSC6BUF 2HFFFFF770HSC7BUF 1HSC6BUF SC6MOD0FFFFF770HSC7BUF 1HFFFFF780HSC8BUF SC8BUFFFFFF790HSC SC8BUF1HSC6CR 2H2HSC7MOD0 3H2HSC3MOD0 3H2HSC3MOD0 3H2HSC3MOD0 3H2HSC3MOD0 3H3HBR8CR 3H3HBF SC4HBR6ADD 5H4HBR7ADD 5H4HBR8ADD 5H4HBR8ADD 5H4HBR SC3MOD14HBR SC3MOD15HSC3MOD1	
FHFHFHFHADRRegister nameADRRegister nameADRRegister nameFFFFF760HSC6BUFFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSC1HSC6CR1HSC7CR1HSC8CRFFFFF790HSC2HSC6MOD02HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	
ADRRegister nameADRRegister nameADRRegister nameADRRegister nameFFFFF760HSC6BUFFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSC1HSC6CR1HSC7CR1HSC8CR1HSC8CR2HSC6MOD02HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	
namenamenamenameFFFFF760HSC6BUFFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSC1HSC6CR1HSC7CR1HSC8CR1HSC2HSC6MOD02HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	
namenamenamenameFFFFF760HSC6BUFFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSC1HSC6CR1HSC7CR1HSC8CR1HSC2HSC6MOD02HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	Register
FFFFF760HSC6BUFFFFFF770HSC7BUFFFFFF780HSC8BUFFFFFF790HSC1HSC6CR1HSC7CR1HSC8CR1HSC2HSC6MOD02HSC7MOD02HSC8MOD02H3HBR6CR3HBR7CR3HBR8CR3H4HBR6ADD4HBR7ADD4HBR8ADD4H5HSC6MOD15HSC7MOD15HSC8MOD1	name
1HSC6CR1HSC7CR1HSC8CR1HSC2HSC6MOD02HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	C9BUF
2HSC6MOD02HSC7MOD02HSC8MOD02HSC3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC8MOD1	C9CR
3HBR6CR3HBR7CR3HBR8CR3HBF4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC8	C9MOD0
4HBR6ADD4HBR7ADD4HBR8ADD4HBF5HSC6MOD15HSC7MOD15HSC8MOD15HSC	R9CR
5H SC6MOD1 5H SC7MOD1 5H SC8MOD1 5H SC	R9ADD
	C9MOD1
	C9MOD2
7H SC6EN 7H SC7EN 7H SC8EN 7H SC	C9EN
	C9RFC
	C9TFC
	C9RST
	C9TST
	C9FCNF
EH EH EH	
FH FH FH FH	

FFFFF7A0H     SCABUF       H     SCARD       H     SCARDOD       H     BRACR       H     BRACR       H     BRACR       H     BRACR       H     SCANDOD       H     SCANDOD       H     SCARDO       H     SCARDO       H     SCARTC       AH     SCARTC       H     ADR       Register     Imame       FFFFF80H     ADRESSER       H     ADRESSER		ADR	Register name	1								
2H       SCAMODO         3H       BRACE         4H       BRADD         6H       SCAMODO         7H       SCAEN         8H       SCANTC         AH       SCATTC         AH       SCAEN         8H       SCATTC         AH       SCAEN         FFFFBOH       ADR         Register       name         FFFFFBOH       ADRESSE         1H       ADRESSE         2H       ADR         1H       ADRESSE         2H       ADRESSE		FFFFF7A0H	SCABUF									
3H         BRADD SH         SCAMOD1 SCAND2 7H           9H         SCANC 9H         SCARC 9H         SCARC 9H         SCARC 9H         SCARC 9H           9H         SCARC 9H		1H	SCACR									
4+     BRANDD BH     SCARCD BH       8+     SCARCC 9+       8+     SCARTC 9+       8+     SCARTC 9+       8+     SCARTC 9+       9+     SCATTC 0+       BH     SCARTC 9+       10+     SCARCOF 0+       11+     ADR       11+     ADARECOSH 1+       12+     ADR       12+     ADARECOSH 1+       14+     ADARECOSH 1+       15+     ADARECOSH 1+       14+     ADARECOSH 1+       15+     ADARECOSH 1+       14+     ADARECOSH 1+       15+     ADARECOSH 1+       16+     ADARECOSH 1+       17+     ADARECOSH 1+       18+     ADARECOSH 1+       19+     ADARECOSH 1+       19+     ADARECOSH 1+       19+     ADARECOSH 1+       19+     ADARECOSH 1+       19+     ADARECOSH 1+       19+     ADARECO		2H	SCAMOD0						~			
SH         SCAMOD1           8H         SCARPC           9H         ADAR           9H         ADARECORL           9H         ADARECORL </td <td></td> <td>3H</td> <td>BRACR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		3H	BRACR									
Best     SCARNOD2 7H     SCARC Best       Best     SCARTC AB     SCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC BESCARTC		4H	BRAADD						(	$\geq$		
TH     SCARC       SH     SCARC       SH     SCARC       SH     SCARST       CH     SCARST       CH     SCARST       CH     SCARST       CH     SCARST       CH     SCARST       CH     SCARST       DH     EH       FFFFF80H     ADR       Register     name       FFFFF80H     ADAREGSH       14     ADAREGSH       24     ADAREGSH       34     ADAREGSH       34     ADAREGSH       44     ADAREGSH       34     ADAREGSH <td></td> <td>5H</td> <td>SCAMOD1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(</td> <td></td> <td>$\mathcal{I}$</td> <td></td>		5H	SCAMOD1						(		$\mathcal{I}$	
BH     SCAFEC       AH     SCATST       CH     SCAFCNF       DH     SCATST       CH     SCAFCNF       DH     SCATST       CH     SCAFCNF       DH     BH       FFFFF800H     ADAREGSH       1H     ADAREGSH       1H     ADAREGSH       2H     ADAREGSH       2H     ADAREGSH       3H     ADAREGSH       2H     ADAREGSH       3H     ADAREGSH<		6H	SCAMOD2									
9H     SCATEC       AH     SCATEC       DH     SCATEC       DH     SCATEC       DH     SCATEC       DH     SCATEC       DH     SCATEC       DH     PFFFF800H       ADR     Register       IH     ADR       FFFFF80H     ADRECSPL       IH     ADARECSPL       IH     ADARECSPL <td< td=""><td></td><td>7H</td><td>SCAEN</td><td></td><td></td><td></td><td></td><td></td><td>. (77</td><td>$\land$</td><td></td><td></td></td<>		7H	SCAEN						. (77	$\land$		
AH     SCARST       CH     SCAFORF       DH     SCAFORF       DH     EH       PH     FFFFF80H       ADR     Register       1H     ADAREGGH       1H     ADAREGGH       1H     ADAREGGH       1H     ADAREGGH       2H     ADAREGGH		8H	SCARFC					4	$\langle \vee \rangle$	))		
BH         SCATST CH         SCATCNF DH           DH         SCATCNF FH           DH         SCATCNF FH           G1 ADC           ADR         Register name           FFFFF80H         ADAREOSE           11         ADAREOSE           21         ADAREOSE           24         ADAREOSE <t< td=""><td></td><td>9H</td><td>SCATFC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		9H	SCATFC									
CH     SCAFCNF       DH     FFFFF80H       ADR     Register       name     FFFFF81H       ADAREGOBL     ADAREGOSH       2H     ADAREGOSH       2H     ADAREGOSH       3H     ADAREGOSH<		AH	SCARST						$(\langle \rangle \rangle$			
DH EH H     ADR     Register name       (6) ADC     ADR     Register name     ADR     Register name       FFFFF800H     ADAREG08L     FFFFF810H     ADAREG9RL     ADR       2H     ADAREG08L     1H     ADAREG9RL     ADREGSRL       2H     ADAREG08L     1H     ADAREG9RL     PFFFF810H       4H     ADAREG08L     3H     ADAREG9RL     2H       4H     ADAREG08L     3H     ADAREG9RL     3H       4H     ADAREG38L     6H     ADAROD0     SH       6H     ADAREG38L     6H     ADAREG9RL     3H       7H     ADAREG38L     6H     ADAREG38L     6H       8H     ADAREG38L     6H     ADAREG38L     6H       7H     ADAREG38L     6H     ADAREG38L     6H       8H     ADAREG36L     6H     ADAREG38L     6H       9H     ADAREG38L     6H     ADAREG38L     6H       7H     ADAREG38L     6H     ADAREG38L     6H       8H     ADAREG38L     6H     ADAREG38L     6H       7H     ADAREG38L     6H     ADAREG38L     6H       8H     ADAREG38L     6H     ADAREG38L     6H       7H     ADAREG38L     6H		BH	SCATST									
EH       ADR       Register         16       ADR       name         FFFFF800H       ADREG0BL       ADR       Register         11       ADAREG0BH       ADAREG0FL       ADR       Register         34       ADAREG1H       1H       ADAREG2H       3H       ADREG2HL         34       ADAREG2H       3H       ADAREG2H       3H       ADREG2H         34       ADAREG2H       3H       ADAREG2H       3H       ADREG2H         34       ADAREG2H       3H       ADAREG2H       3H       ADAREG2H         34       ADAREG2		СН	SCAFCNF					((	$\sim$		$\bigcirc$	
FH         (6) ADC         ADR       Register name         FFFFF800H       ADREG08L         1H       ADREG08L         2H       ADREG08L         3H       ADREC09L		DH						41	$\sim$		~ ) ~	$\geq$
ADR     Register name       FFFFF800H     ADR       FFFFF80H     ADREGSEL       H     ADR       Register     name       FFFFF80H     ADREGSEL       H     ADREGSEL		EH							$\geq$		$\mathcal{L}$	
ADR     Register name       FFFF800H     ADAREGOBL       FFFF800H     ADAREGOBL       2H     ADAREGOBL       2H     ADAREGOBL       3H     ADAREGORH       3H     ADAREGORH       3H     ADAREGORH       4H     ADAREGORH       3H     ADAREGORH       4H     ADAREGORH       3H     ADAREGORH       3H     ADAREGORH       3H     ADAREGORH       4H     ADAREGORH       4H     ADAREGORH       4H     ADAREGORH       4H     ADAREGORH       6H     ADAREGORH       7H     ADAREGORH       8H     ADAREGORH       8H     ADAREGORH       9H     ADAREGORH       9H <t< td=""><td></td><td>FH</td><td></td><td></td><td></td><td></td><td></td><td>(7/</td><td></td><td>(</td><td>$\bigcirc$</td><td></td></t<>		FH						(7/		(	$\bigcirc$	
ADR     Register name       FFFF800H     ADAREGOBL       FFFF800H     ADAREGOBL       2H     ADAREGOBL       2H     ADAREGOBL       3H     ADAREGORH       3H     ADAREGORH       3H     ADAREGORH       4H     ADAREGORH       3H     ADAREGORH       4H     ADAREGORH       3H     ADAREGORH       3H     ADAREGORH       3H     ADAREGORH       4H     ADAREGORH       4H     ADAREGORH       4H     ADAREGORH       4H     ADAREGORH       6H     ADAREGORH       7H     ADAREGORH       8H     ADAREGORH       8H     ADAREGORH       9H     ADAREGORH       9H <t< td=""><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_			_								
FFFFF800H     ADAREGOBL     name     name     name       FFFFF80H     ADAREGOBL     FFFFF81H     ADAREGSPL       1H     ADAREGOBH     1H     ADAREGSPL       2H     ADAREG19L     2H     ADAREGOBH       3H     ADAREG2AL     3H     ADBREG3L       4H     ADAREG2AL     4H     ADAMOD0       5H     ADAREG3BL     6H     ADAMOD0       6H     ADAREG3BL     7H     ADAMOD1       6H     ADAREG3BL     7H     ADBREG3BL       7H     ADAREG3BL     6H     ADBREG3BL       8H     ADAREG4CL     8H     ADAMOD2       9H     ADAREG3DL     8H     ADAMOD2       7H     ADAREG3DL     8H     ADAMOD2       8H     ADAREG4CL     9H     ADBREG3CH       9H     ADAREG3DL     8H     ADAMOD2       1H     ADAREG5PH     8H     ADAMOD2       1H     ADAREG3DL     8H     ADAMOD2       1H     ADAREG3DL     8H     ADACLK       1H     ADR     Register     AH       1H     ADR     Register     ADR       1H     ADREG5PH     1H     ADR       1H     ADAREG4CL     9H     ADBREG5DL	[6]	ADC					_		<	$\sim$	901	
mame         name         name         name         name           FFFF80H         ADAREGOBL         FFFF810H         ADAREGSPL         ADBREGOBL         FFFF830H         ADBREGSPL           1H         ADAREGSPL         1H         ADAREGSPL         ADBREGSPL         1H         ADBREGSPL           3H         ADAREG19L         3H         ADACOMREGI         3H         ADBREG19L         2H         ADBREG31L         3H         ADBREG32L         3H         ADBREG32L         3H         ADBREG32L         3H         ADBREG32L         3H         ADBREG32L         3H         ADBREG32L <t< td=""><td></td><td>ADR</td><td>Register</td><td></td><td>ADR</td><td>Register</td><td></td><td>ADR</td><td>Register</td><td></td><td>ADR</td><td>Register</td></t<>		ADR	Register		ADR	Register		ADR	Register		ADR	Register
1H     ADAREG08H     1H     ADAREGSPH     1H     ADAREGSPH       2H     ADAREG19L     2H     ADACOMREG1     3H     ADBREG19L       3H     ADAREG2AL     3H     ADACOMREG1     3H     ADBREG19L       4H     ADAREG2AL     3H     ADACOMREG1     3H     ADBREG19L       6H     ADAREG2AL     6H     ADAMDD     6H     ADBREG3BL     7H       7H     ADAREG3BL     7H     ADAREG3BL     7H     ADBREG3BL     7H       7H     ADAREG3BL     7H     ADAREG3BL     7H     ADBREGSBL     7H       7H     ADAREG3CH     8H     ADAREG3BL     7H     ADBREGSBL     7H       7H     ADAREG3CH     8H     ADAREG3CH     8H     ADBREGACH       9H     ADAREG3CH     8H     ADAREGACH     9H     ADBREGACH       9H     ADAREG3CH     8H     ADAREGACH     9H     ADBREGACH       9H     ADAREGGEL     0H     reserved     8H     ADBREGACH       9H     ADAREGGEL     0H     reserved     8H     ADBREGACH       9H     ADAREGGEH     0H     reserved     8H     ADBREGACH       9H     ADAREG6EH     0H     reserved     0H     ADBREGACH <t< td=""><td></td><td></td><td>name</td><td></td><td></td><td>name 🏑</td><td></td><td></td><td>name</td><td>$\frown$</td><td></td><td>name</td></t<>			name			name 🏑			name	$\frown$		name
1H     ADAREG08H     1H     ADAREGSPH     1H     ADAREGSPH       2H     ADAREG19L     2H     ADACOMREG1     3H     ADBREG19L       3H     ADAREG2AL     3H     ADACOMREG1     3H     ADBREG19L       4H     ADAREG2AL     3H     ADACOMREG1     3H     ADBREG19L       6H     ADAREG2AL     6H     ADAMDD     6H     ADBREG3BL     7H       7H     ADAREG3BL     7H     ADAREG3BL     7H     ADBREG3BL     7H       7H     ADAREG3BL     7H     ADAREG3BL     7H     ADBREGSBL     7H       7H     ADAREG3CH     8H     ADAREG3BL     7H     ADBREGSBL     7H       7H     ADAREG3CH     8H     ADAREG3CH     8H     ADBREGACH       9H     ADAREG3CH     8H     ADAREGACH     9H     ADBREGACH       9H     ADAREG3CH     8H     ADAREGACH     9H     ADBREGACH       9H     ADAREGGEL     0H     reserved     8H     ADBREGACH       9H     ADAREGGEL     0H     reserved     8H     ADBREGACH       9H     ADAREGGEH     0H     reserved     8H     ADBREGACH       9H     ADAREG6EH     0H     reserved     0H     ADBREGACH <t< td=""><td></td><td>FFFFF800H</td><td>ADAREG08L</td><td></td><td>FFFFF810H</td><td>ADAREGSPL</td><td></td><td>FFFFF820H</td><td>ADBREG08L</td><td>$\square$</td><td>FFFFF830H</td><td>ADBREGSPL</td></t<>		FFFFF800H	ADAREG08L		FFFFF810H	ADAREGSPL		FFFFF820H	ADBREG08L	$\square$	FFFFF830H	ADBREGSPL
2H     ADAREG19L     2H     ADACOMREGL     2H     ADBREG19L     3H     ADBREG19L       3H     ADAREG2AL     3H     ADACOMREGL     3H     ADBREG19L     3H     ADBREG19L       4H     ADAREG2AL     4H     ADAMODO     3H     ADBREG2AL     3H     ADBREG2AL       6H     ADAREG2AL     6H     ADAMODO     5H     ADBREG2AL     4H     ADBRODI       7H     ADAREG3BL     6H     ADAMODO     5H     ADBREG3BL     6H     ADBMODI       8H     ADAREG4CL     8H     ADAMODO     6H     ADBREG3BL     7H     ADBMODI       8H     ADAREG4CL     8H     ADAMODO     8H     ADBREG3DH     8H     ADBREG3DH     8H     ADBREG3DH     8H     ADBREG3DH     8H     ADBREG3DH     8H     ADBREG5DH     8H     ADBREG5FH     8H     ADBREG5FH     8H<		1H	ADAREG08H		1H	ADAREGSPH		$\searrow$ 7			1H	ADBREGSPH
3H     ADAREG19H     3H     ADACOMREGH     3H     ADBREG19H     3H     ADBRCMEGH       4H     ADAREG2AL     4H     ADAMOD     4H     ADBREG2AL     5H     ADAMOD       6H     ADAREG3BL     5H     ADAMOD     6H     ADBREG2AL     5H     ADBMOD       7H     ADAREG3BL     7H     ADAMOD2     6H     ADBREG3BL     7H     ADBROD2       7H     ADAREG3BL     7H     ADAMOD3     6H     ADBREG3CL     8H     ADBROD2       8H     ADAREG3CL     8H     ADAROD3     8H     ADBREG3CL     8H     ADBROD3       8H     ADAREGSCH     8H     ADARCACL     8H     ADBREG3CL     8H     ADBREG3CL       8H     ADAREGSCH     8H     ADARCACL     8H     ADBREG3CL     8H     ADBREG3CL       8H     ADAREGSCH     8H     ADAREGSCH     8H     ADBREG3CL     8H     ADBREG3CL       8H     ADAREGSCH     8H     ADAREG4CL     8H     ADBREG3CL     8H     ADBREG3CL       8H     ADAREGSCH     8H     ADAREGSCH     8H     ADBREG3CL     8H     ADBREG3CL       8H     ADAREGSCH     8H     ADAREG5CH     8H     ADBREG3CL     8H     ADBREG3CL       8H		2H	ADAREG19L		2H			2H			2H	ADBCOMREGL
4H     ADAREG2AL     4H     ADAMODO     4H     ADBREG2AL     4H     ADBRODO       5H     ADAREG3BL     6H     ADARG01     6H     ADBREG2AH     5H     ADBMOD2       6H     ADAREG3BL     7H     ADAREG3BL     6H     ADBROD3     6H     ADBREG2AH     5H     ADBMOD2       7H     ADAREG3BL     7H     ADAREG3BL     7H     ADAREG3BL     6H     ADBMOD2       8H     ADAREG4CL     8H     ADAMOD4     8H     ADBREG3BH     7H     ADBREG3BH       8H     ADAREG5DL     8H     ADAREG4CL     9H     ADACEASO     8H     ADBREG3BH       8H     ADAREG5DH     8H     ADAREG5DH     8H     ADBREG5DH     8H     ADBREG5DH       8H     ADAREG5DH     8H     ADAREG7FH     8H     ADBREG7FH     8H     ADBREG6EH       9H     ADAREG7FH     8H     ADAREG7FH     8H     ADBREG7FH     8H     ADBREG7FH     8H       7H     ADAREG7FH     8H     ADARCFFH     8H     ADBREG7FH     8H     ADBREG7FH     8H       7H     ADAREG7FH     8H     ADARCFFH     8H     ADBREG7FH     8H     ADBREG7FH     8H       7H     ADR     Register     7H     ADBR		3H	ADAREG19H		3H	ADACOMREGH	$\geq$	3H	ADBREG19H		3H	ADBCOMREGH
5H     ADAREG2AH     5H     ADAMOD1     5H     ADBREG2AH     5H     ADBMOD1       6H     ADAREG3BH     7H     ADAREG3BH     7H     ADBREG3BH     6H     ADBMOD2       7H     ADAREG4CL     8H     ADAREG4CL     8H     ADBREG3BH     7H     ADBMOD4       8H     ADAREG4CH     8H     ADAREG4CH     8H     ADBREG3DH     8H     ADBREG3DH       AH     ADAREG5DH     BH     reserved     BH     ADBREG5DH     BH     reserved       BH     ADAREG5DH     BH     reserved     BH     ADBREG5DH     CH     ADBREG5DH       CH     ADAREG6FH     DH     reserved     BH     ADBREG5H     CH     ADBREG7H       FH     ADAREG6FH     EH     ADAREG7FH     FH     ADBREG7FH     CH     ADBREG7H       FFFF900H     KWUPST3     FFFFA0H     WDOC     FFFFA0H     WDCR     FH       AH     KWUPST3     SH     ADR     FFFFA0H     WDCR       SH     SH     BH     BH     BH       GH     KWUPST6     FH     FH     FH       SH     ADB     FFFFA0H     CH     BH       SH     ABH     BH     BH       GH     KWUPST5<		4H	ADAREG2AL		4H			4H			4H	ADBMOD0
7H     ADAREG3BH     7H     ADBREG3BH     7H     ADBREG3BH       8H     ADAREG4CL     8H     ADAMOD4     8H     ADBREG4CL     8H     ADBROD3       9H     ADAREG4CL     9H     ADACBAS0     9H     ADBREG5DL     8H     ADBRC5DL       8H     ADAREG5DL     8H     reserved     8H     ADBREG5DL     8H     ADBRC5DL       8H     ADAREG6EL     0H     ADAREG6EL     0H     ADAREG6EL     0H     ADBREG5DH       0H     ADAREG6EL     0H     reserved     0H     ADBREG5DH     0H     Reserved       0H     ADAREG6EL     0H     reserved     0H     ADBREG5DH     0H     Reserved       0H     ADAREG7FH     0H     reserved     0H     reserved     0H     Reserved       1H     ADAREG7FH     0H     Register     name     0H     0H     0H       1H     KWUPS10     SH		5H	ADAREG2AH		5H	$( \land \lor \lor$		5H	ADBREG2AH		5H	ADBMOD1
7H     ADAREG3BH     7H     ADBREG3BH     7H     ADBREG3BH       8H     ADAREG4CL     8H     ADAMOD4     8H     ADBREG4CL     8H     ADBROD3       9H     ADAREG4CL     9H     ADACBAS0     9H     ADBREG4CL     9H     ADBREG4CL       9H     ADAREG5DL     AH     reserved     AH     ADBREG5DL     AH     Reserved       BH     ADAREG6EL     CH     ADAREG6EL     CH     ADBREG5DH     AH     reserved       CH     ADAREG6FL     DH     reserved     CH     ADBREG5DH     CH     ADBREG6EL       DH     ADAREG6FL     DH     reserved     CH     ADBREG5DH     CH     ADBREG6FL       TH     ADAREG7FH     FH     Register     CH     ADBREG7FL     CH     ADBREG7FL       FFFFF900H     KWUPST0     ADR     Register     name     FFFFFA00H     WDCR       1H     KWUPST3     3H     SH     SH     ADBREG7FL     FH     FH       AH     KWUPST6     FH     SH     SH     SH     SH       7H     ADR     Register     Name     SH     SH     SH       8H     MAR     SH     SH     SH     SH     SH     SH		6H	ADAREG3BL		6H	ADAMOD2			ADBREG3BL		6H	ADBMOD2
9H     ADAREG4CH     9H     ADAREG5DL     9H     ADBREG4CH     9H     ADBREG5DL       BH     ADAREG5DL     BH     reserved     BH     ADBREG5DL     AH     reserved       CH     ADAREG5DH     CH     ADACK     CH     ADBREG6EL     DH     ADBREG6EL       DH     ADAREG6FH     CH     ADAREG7FH     FH     CH     ADBREG7FL     CH     ADBREG7FL       FH     ADAREG7FH     FH     FH     Register     FH     ADBREG7FL     EH     reserved       FFFFF900H     KWUPST1     FFFFFA0H     WDMCR     FH     ADBREG7FL     FH     FH       SH     KWUPST3     SH     SH     SH     SH     SH       SH     KWUPST6     FH     FH     ABH     SH       SH     SH     SH     SH     S		7H			<b>7</b> H			7H	ADBREG3BH		7H	ADBMOD3
9H     ADAREG4CH     9H     ADAREG5DL     9H     ADBREG5DL       BH     ADAREG5DL     BH     reserved     BH     ADBREG5DL       BH     ADAREG5DH     BH     reserved       CH     ADAREG6EL     CH     ADACLK       DH     ADAREG6FH     CH     ADACLK       CH     ADAREG7FH     FH       FH     ADAREG7FH     FH       FH     ADAREG7FH     FH       FH     ADAREG7FH     FH       FFFFF00H     KWUPST1       2H     KWUPST5       3H     KWUPST5       6H     KWUPST6       7H     KWUPST6       7H     KWUPST6       7H     SH       8H     BH       9H     ADH       9H     ADAREG7FL       8H     BH       9H     ADR       7H     KWUPST6       7H     SH       8H     BH       9H     AH       8H     BH       9H     AH       9H     AH       8H     BH       9H     AH       9H     AH       9H     ADR       9H     ADR       9H     ADR		8H	ADAREG4CL		( (8H	ADAMOD4		~ N8H	ADBREG4CL		8H	ADBMOD4
BH     ADAREGSDH     BH     reserved     BH     ADBREGSDH       CH     ADAREGSEL     CH     ADACLK     CH     ADBREGSEL       DH     ADAREGSEH     DH     reserved     DH     ADBREGSEH       EH     ADAREG7FL     EH     DH     reserved     EH     ADBREGSEH       EH     ADAREG7FL     EH     DH     reserved     EH     ADBREG5FL       FH     ADAREG7FH     BWDT     BWDT     EH     ADBREG7FH     EH       Register     name     ADR     Register     name     FH       FFFFF900H     KWUPST0     FFFFFA00H     WDMOD       1H     KWUPST1     2H     3H     SH       4H     KWUPST3     SH     SH     SH       3H     SH     SH     SH       4H     KWUPST6     SH     SH       7H     KWUPST6     SH     SH       8H     SH     SH     SH       9H     SH     SH     SH       SH     SH     SH		9H	ADAREG4CH		9H			He	ADBREG4CH		9H	
CH     ADAREG6EL     CH     ADACLK     CH     ADBREG6EL       DH     ADAREG6EH     DH     reserved     DH     ADBREG6EH       EH     ADAREG7FL     FH       FH     ADAREG7FL     FH       FH     ADAREG7FL     FH       FH     ADAREG7FL     FH       B     WDT       ADR     Register       name     FFFFF900H       KWUPST0     FFFFFA00H       VDCR     3H       4H     KWUPST3       3H     KWUPST5       6H     6H       7H     8H       9H     9H       9H     9H       9H     8H       8H     8H       9H     0H       0H     0H       0H     0H		AH	ADAREG5DL		( AH	reserved		AH	ADBREG5DL		AH	reserved
DH     ADAREGEH     DH     reserved     DH     ADBREGEH     DH     reserved       EH     ADAREG7FL     FH     EH     reserved     EH     ADBREG7FL     EH       FH     ADAR     Register     FH     FH     BWDT       ADR     Register     ADR     Register     ADR     Register       Name     FFFFF900H     KWUPST0     FFFFFA00H     WDMOD       1     H     KWUPST3     SH       3H     KWUPST5     SH       6H     KWUPST6     FH       7H     KWUPST6     SH       8H     8H       9H     9H       9H     9H       9H     BH       BH		BH	ADAREG5DH	/	ВН	reserved		ВН	ADBREG5DH		BH	reserved
DH     ADAREGEH     DH     reserved     DH     ADBREGEH     DH     reserved       EH     ADAREG7FL     FH     FH     BREG7FL     EH     ADBREG7FL     EH       FH     ADAREG7FH     FH     FH     ADBREG7FL     FH     FH       ADR     Register     Name     ADR     Register     Name       FFFFF900H     KWUPST0     FFFFFA00H     WDMOD       1     H     KWUPST2     3H       4H     KWUPST3     SH       4H     KWUPST6     FH       7H     8H     8H       9H     9H     9H       9H     9H     9H       0H     CH     CH		СН	ADAREG6EL	$\sum$	СН	ADACLK (	7/	🔨 сн	ADBREG6EL		СН	ADBCLK
FH     ADAREG7FH     FH       Image: Constraint of the state of t		DH	ADAREG6EH		DH	reserved	$\leq$	Л ОН	ADBREG6EH		DH	reserved
Image: FFFFF900H         Register name         ADR         Register name           FFFFF900H         KWUPST0         FFFFFA00H         WDMOD           1H         KWUPST1         1H         WDCR           2H         KWUPST3         2H         3H           3H         KWUPST3         3H         3H           4H         KWUPST4         4H         4H           5H         6H         KWUPST5         5H           6H         KWUPST6         6H         6H           7H         KWUPST7         7H         8H           9H         9H         9H         9H           AH         AH         BH         BH           CH         CH         CH         CH           DH         DH         EH         H		EH	ADAREG7FL	$\langle$	EH	reserved		EH	ADBREG7FL		EH	reserved
ADRRegister nameADRRegister nameFFFFF900HKWUPST0FFFFFA00HWDMOD1HKWUPST11HWDCR2H2H3H3HKWUPST33H4HKWUPST44H5HKWUPST55H6HKWUPST66H7HKWUPST77H8H8H9H9HAHAHBHBHCHCHCHCHEHKWUPSTEHEH			ADAREG7FH				$\sum$	FH	ADBREG7FH		FH	
ADRRegister nameADRRegister nameFFFFF900HKWUPST0FFFFFA00HWDMOD1HKWUPST11HWDCR2H2H3H3HKWUPST33H4HKWUPST44H5HKWUPST55H6HKWUPST66H7HKWUPST77H8H8H9H9HAHAHBHBHCHCHCHCHEHKWUPSTEHEH	[7]	KWUP	$\land \land$	_	[8] WDT		_					
namenameFFFFF900HKWUPST0FFFFFA00HWDMOD1HKWUPST11HWDCR2HXH2H3HKWUPST33H4HKWUPST44H5HKWUPST55H6HKWUPST66H7HKWUPST77H8H8H9H9HAHAHBHBHCHCHDHDHEHKWUPSTEHEH		ADR	Register	1	ADR	Register						
1H       KWUPST1       1H       WDCR         2H       KWUPST2       2H         3H       KWUPST3       3H         4H       KWUPST4       4H         5H       5H         6H       KWUPST5       5H         6H       KWUPST6       6H         7H       KWUPST7       7H         8H       8H       9H         9H       9H         AH       AH         BH       BH         CH       CH         DH       DH         EH       KWUPST			name		0	name						
1H       KWUPST1       1H       WDCR         2H       KWUPST2       2H         3H       KWUPST3       3H         4H       KWUPST4       4H         5H       5H         6H       KWUPST5       5H         6H       KWUPST6       6H         7H       KWUPST7       7H         8H       8H       9H         9H       9H         AH       AH         BH       BH         CH       CH         DH       DH         EH       KWUPST		FFFFF900H	KWUPST0	1 [	FFFFFA00H	WDMOD						
3HKWUPST33H4HKWUPST44H5HKWUPST55H6HKWUPST66H7HKWUPST77H8H8H9H9HAHAHBHBHCHCHDHDHEHKWUPSTEHKWUPST		(1H	KWUPST1			WDCR						
4H     KWUPST4     4H       5H     KWUPST5     5H       6H     KWUPST6     6H       7H     KWUPST7     7H       8H     8H       9H     9H       AH     AH       BH     BH       CH     CH       DH     DH       EH     KWUPST		2H	KWUPST2	И	> (2H)	$\backslash$						
5H       KWUPST5       5H         6H       KWUPST6       6H         7H       KWUPST7       7H         8H       8H       9H         9H       9H       9H         AH       AH       BH         CH       CH       CH         DH       DH       EH         EH       KWUPST       EH		3H	KWUPST3		3H	)						
6H     KWUPST6     6H       7H     KWUPST7     7H       8H     8H       9H     9H       AH     AH       BH     BH       CH     CH       DH     DH       EH     KWUPST		4H	KWUPST4	D	4H							
7H     KWUPST7     7H       8H     8H       9H     9H       AH     9H       AH     AH       BH     BH       CH     CH       DH     DH       EH     KWUPST		5H	KWUPST5	H	5H							
8H     8H       9H     9H       AH     AH       BH     BH       CH     CH       DH     DH       EH     KWUPST		6H	KWUPST6		~6H							
9H9HAHAHBHBHCHCHDHDHEHKWUPST		7H	KWUPST7		7H							
AHAHBHBHCHCHDHDHEHKWUPST		8H			8H							
BH     BH       CH     CH       DH     DH       EH     KWUPST		9H			9H							
CH CH DH DH EH KWUPST EH		AH			AH							
DH DH EH KWUPST EH		BH			BH							
EH KWUPST EH		СН		II	СН							
		DH			DH							
			KWUPST									
		FH			FH							

[9] INTC

ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFE000H	IMC0		FFFFE010H	IMC4		FFFFE020H	IMC8		FFFFE030H	IMCC
1H	"		1H	"		1H	"		1H	"
2H	"		2H	"		2H	"	2	2H	"
3H	"		3H	"		3H	"		3H	"
4H	IMC1		4H	IMC5		4H	IMC9		_)` 4н	IMCD
5H	"		5H	"		5H	"	<	5H	"
6H	"		6H	"		6H <		))	6H	"
7H	"		7H	"		7H	<i>"</i>		7H	"
8H	IMC2		8H	IMC6		8H	IMCA		8H	IMCE
9H	"		9H	"		9H			9H	"
AH	"		AH	"		AH	×		AH	"
BH	"		BH	"		∠вн	"		BH	"
СН	IMC3		СН	IMC7		СН	ИМСВ		СН	IMCF
DH	"		DH	"		( DH	w	/	DH	"
EH	"		EH	"		(У ЕН)	″ 🔷		О) Ен	"
FH	"		FH	"		FH	"		ГС//́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	"
						$\langle \rangle$				
		8   1				$\bigcirc$				-
ADR	Register		ADR	Register		ADR	Register	/(	ADR	Register
	Register name			Register name		$\bigcirc$	Register name	$\langle \rangle$		Register name
ADR FFFFE040H	name IVR		ADR FFFFE050H			ADR FFFFE060H		$\langle 0 \rangle$	ADR FFFFE070H	
ADR FFFFE040H 1H	name IVR ″		ADR FFFFE050H 1H			ADR FFFFE060H 1H	name	$\langle 0 \rangle$	ADR FFFFE070H 1H	
ADR FFFFE040H 1H 2H	name IVR ″		ADR FFFFE050H 1H 2H			ADR FFFFE060H 1H 2H	name	$\langle 0 \rangle$	ADR FFFFE070H 1H 2H	
ADR FFFFE040H 1H 2H 3H	name IVR ″		ADR FFFFE050H 1H 2H 3H		$\langle \bigcirc / / \rangle$	ADR FFFFE060H 1H 2H 3H	name INTCLR "	(2)	ADR FFFFE070H 1H 2H 3H	
ADR FFFFE040H 1H 2H 3H 4H	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H			ADR FFFFE060H 1H 2H 3H 4H	name	$\langle 0 \rangle$	ADR FFFFE070H 1H 2H 3H 4H	
ADR FFFFE040H 1H 2H 3H 4H 5H	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H			ADR FFFFE060H 1H 2H 3H 4H 5H	name INTCLR "	$\langle 0 \rangle$	ADR FFFFE070H 1H 2H 3H 4H 5H	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H			ADR FFFFE060H 1H 2H 3H 4H 5H 6H	name INTCLR "	$\langle ( ) \rangle$	ADR FFFFE070H 1H 2H 3H 4H 5H 6H	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H 7H	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H 7H			ADR FFFFE060H 1H 2H 3H 4H 5H 6H 7H	name INTCLR "	$\langle (\mathcal{O}) \rangle$	ADR FFFFE070H 1H 2H 3H 4H 5H 6H 7H	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H			ADR FFFFE060H 1H 2H 3H 4H 5H 6H	name INTCLR "	$\langle (\mathcal{O}) \rangle$	ADR FFFFE070H 1H 2H 3H 4H 5H 6H	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H 7H 8H	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH			ADR FFFFE060H 1H 2H 3H 4H 5H 6H 7H 8H	name INTCLR "		ADR FFFFE070H 1H 2H 3H 4H 5H 6H 7H 8H	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH			ADR FFFFE060H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	name INTCLR "		ADR FFFFE070H 1H 2H 3H 4H 5H 6H 7H 8H 9H	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH			ADR FFFFE060H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name INTCLR "		ADR FFFFE070H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH			ADR FFFFE060H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	name INTCLR "		ADR FFFFE070H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH 9H AH BH CH DH	
ADR FFFFE040H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name IVR ″		ADR FFFFE050H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH			ADR FFFFE060H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name INTCLR "		ADR FFFFE070H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	



# TOSHIBA



[10] <u>DMAC</u>

] DMAC										
ADR	Register name		ADR	Register name		ADR	Register name		ADR	Register name
FFFFE200H	CCR0		FFFFE210H	BCR0		FFFFE220H	CCR1		FFFFE230H	BCR1
1H	"		1H	"		1H	"		1H	"
2H	"		2H	"		2H	"		2H	"
3H	"		3H	"		3H	"		3H	"
4H	CSR0		4H			4H	CSR1	$\geq$	4H	
5H	"		5H			5H	" (		5Н	
6H	"		6H			6H	"		бН	
7H	"		7H			7H	"	<	7H	
8H	SAR0		8H	DTCR0		8H	SAR1	$\left( \right)$	8H	DTCR1
9H	<i>"</i>		9H	<i>"</i>		9H	"	$\mathcal{I}$	9H	<i>"</i>
AH	"		AH	"		AH			AH	"
	"			"			()			"
BH			BH			BH			BH	
СН	DAR0		СН			CH	DAR1		СН	
DH	"		DH			DH	<i>"</i>		S DH	7
EH	"		EH			EH	*		EH	
FH	"		FH			( ( / FĤ	"		FH.	
							$\sim$		$\mathcal{S}(A)$	
ADR	Register name		ADR	Register name		ADR	Register name	//	ADR	Register name
FFFFE240H	CCR2		FFFFE250H	BCR2 🔿	. (	FFFFE260H	CCR3		FFFFE270H	BCR3
1H	"		1H	"		1H	"	$\mathcal{I}$	1H	"
2H	"		2H	"		💙 2Н	"(())		2H	"
3H	"		3H	"		3H_	" ( ( ) )		3H	"
4H	CSR2		4H	$\langle \rangle$	$\geq$	4H	CSR3		4H	
5H	"		5H		~	<< 5н	"		5H	
6H	"		6H (	$\sim$		6H	"))		6H	
7H	"		7H	())		7H	~n//		7H	
8H	SAR2		/8H/	DTCR2		∧ 8H	SAR3		8H	DTCR3
9H	»		(9H	w Williams		9H	%		9H	<i>"</i>
	"					$\sim$	"			"
AH	"		AH-	,	~	AH	"		AH	"
BH			BH		4	ВН СН			BH	
СН	DAR2		CH CH		-	$\sim$ CH	DAR3		CH	
					~	7				
DH	"	$\sum$	DH	$\sim$ ((	7/	ОН	"		DH	
DH EH	"	$\Big)$			2	7			DH EH	
		$\sum$	DH		$\mathbb{Z}$	ОН	"			
EH FH	"		DH EH FH			DH EH FH	" "		EH FH	Deviator
EH	", Register		DH EH	Register		DH EH	″ ″ Register		EH	Register
EH FH ADR	" " Register name		DH EH FH ADR	name		DH EH FH ADR	″ ″ Register name		EH FH ADR	name
EH FH	", Register		DH EH FH	name BCR4		DH EH FH	" " Register name CCR5		EH FH	name BCR5
EH FH ADR FFFFE280H 1H	" " Register name		DH EH FH ADR FFFFE290H	name		DH EH FH ADR FFFFE2A0H 1H	" " Register name CCR5 "		EH FH ADR FFFFE2B0H 1H	name BCR5 ″
EH FH ADR FFFFE280H	" " Register name		DH EH FH ADR FFFFE290H 1H 2H	name BCR4		DH EH FH ADR FFFFE2A0H 1H 2H	" " Register name CCR5		EH FH ADR FFFFE2B0H 1H 2H	name BCR5
EH FH ADR FFFFE280H 1H	" " Register name		DH EH FH ADR FFFFE290H	name BCR4		DH EH FH ADR FFFFE2A0H 1H	" " Register name CCR5 "		EH FH ADR FFFFE2B0H 1H	name BCR5 ″
EH FH ADR FFFFE280H 1H 2H	" " Register name		DH EH FH ADR FFFFE290H 1H 2H	name BCR4 ″		DH EH FH ADR FFFFE2A0H 1H 2H	" " Register name CCR5 " "		EH FH ADR FFFFE2B0H 1H 2H	name BCR5 ″
EH FH ADR FFFFE280H 1H 2H 3H	" Register name CCR4		DH EH FH ADR FFFFE290H 1H 2H 3H	name BCR4 ″		ADR FFFFE2A0H 1H 2H 3H	" " Register name CCR5 " "		EH FH ADR FFFFE2B0H 1H 2H 3H	name BCR5 ″
EH FH ADR FFFFE280H 1H 2H 3H 4H	" Register name CCR4 " " CSR4		DH EH FH ADR FFFFE290H 1H 2H 3H 4H	name BCR4 ″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H	" " Register name CCR5 " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H	name BCR5 ″
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H	" " Register name CCR4 " " CSR4 "		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H	name BCR4 ″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H	" " Register name CCR5 " " " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H	name BCR5 ″
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H	" " Register name CCR4 " " CSR4 " " "		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H	name BCR4 ″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H	" " " Register name CCR5 " " " CSR5 " " " " " " " " " " " " " " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H	name BCR5 ″ ″
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H	" " Register name CCR4 " " CSR4 " "		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H	name BCR4 ″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H	" " Register name CCR5 " " " " " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H	name BCR5 ″
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H 9H	" " Register name CCR4 " " " CSR4 " " " SAR4		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H 9H	name BCR4 ″ ″ ״		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H 9H	" " Register name CCR5 " " " " CSR5 " " " " " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H 9H	name BCR5 ″ ″ Z DTCR5
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	" " Register name CCR4 " " CSR4 " " SAR4 " " "		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	name BCR4 ″″ ″ DTCR4 ″″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	" " " " " " " " " " " " " " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	name BCR5 " " " " " " " "
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	" " Register name CCR4 " " " SAR4 " " " " SAR4 " " " "		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	name BCR4 ″ ″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	" " " Register name CCR5 " " " CSR5 " " " SAR5 " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	name BCR5 " " " " DTCR5
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	" " Register name CCR4 " " " SAR4 " " SAR4 " " DAR4		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name BCR4 ″″ ″ DTCR4 ″″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	" " " " Register name CCR5 " " " " CSR5 " " " SAR5 " " " DAR5		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name BCR5 " " " " DTCR5 " "
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	" " Register name CCR4 " " " CSR4 " " SAR4 " " DAR4 "		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	name BCR4 ″″ ″ DTCR4 ″″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	" " " " " " " " " " " " " " " " " " "		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	name BCR5 " " " " DTCR5 " "
EH FH ADR FFFFE280H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	" " Register name CCR4 " " " SAR4 " " SAR4 " " DAR4		DH EH FH ADR FFFFE290H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name BCR4 ″″ ″ DTCR4 ″″		DH EH FH ADR FFFFE2A0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	" " " " Register name CCR5 " " " " CSR5 " " " SAR5 " " " DAR5		EH FH ADR FFFFE2B0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	name BCR5 " " " " DTCR5 " "

# TOSHIBA



ADR	Register	ADR	Register	ADR	Register	A	DR	Register
	name		name		name			name
FFFFE2C0H	CCR6	FFFFE2D0H	BCR6	FFFFE2E0H	CCR7	FFFF	E2F0H	BCR7
1H	"	1H	"	1H	"		1H	"
2H	"	2H	"	2H	″ 		2H	"
3H	"	3H	"	3H	"		ЗH	"
4H	CSR6 ″	4H		4H	CSR7	$\sim$	4H	
5H	"	5H		5H	"	4()	5H	
6H 7H	"	6H 7H		6H 7H			6H 7H	
8H	SAR6	8H	DTCR6	8H	SAR7	$\wedge$ —	8H	DTCR7
он 9Н	3AR0 "	9H	WICK0	9H	JART /	$\mathcal{I}$	оп 9Н	m m
AH	"	AH	"	AH			AH	"
BH	"	ВН	"	BH	4())		BH	"
CH	DAR6	CH		СН	DAR7		CH	
DH	<i>"</i>	DH		<dh< td=""><td>"</td><td>1</td><td>DH</td><td></td></dh<>	"	1	DH	
EH	"	EH		EH	~		EH	ſ
FH	"	FH		( FM	<b>m</b>	6	FH	
					$\diamond$		$\overline{\mathcal{A}}$	
455	Register				<	K	)/	
ADR	name			$\langle \langle \rangle$	P	$\sim$		
FFFFE300H	DCR		<			)		
1H	<i>"</i>					9		
2H	"		10	$\searrow$	(7/1)			
3H	"							
4H	RSR			マー / / ^				
5H	"		$\bigcirc$					
6H	"	(	()		$\checkmark$			
7H	"	$\bigcirc$			$\sim$			
8H		(C'	$\bigtriangleup$	$\langle \rangle$				
9H			$\mathcal{D}$	$\langle \rangle$				
AH								
BH		$\langle (// 5) \rangle$						
CH	DHR ″		. ((	7/5				
DH	"		$\langle \langle \langle \rangle \rangle$	$\langle O \rangle$				
EH	"							
FH	"		$\langle - \rangle$	$\geq$				
	$\land \land$	$\sim$						
	XX r		$\sim$					
	$\sim$	/						
~	( )	91						
$\sim$	$(\bigcirc)$		$\diamond$					
		$\bigcirc$ (( $\bigcirc$						
$\langle -$	$\geq$	$\langle \bigcirc \rangle$	/					
		$\sim$						
	>	$\searrow$						
~								

# TOSHIBA

ADR         Register name         ADR         Register name           FFFFE40H         BMA0 H         FFFFE40H         BMA0 H         FFFFE40H         BMA0 H         FFFFE40H         BMCS           3H         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	[11] CS/WAI	T controller									
name         name <tt< td=""><td></td><td></td><td></td><td>ADR</td><td>Register</td><td></td><td>ADR</td><td>Register</td><td></td><td>ADR</td><td>Register</td></tt<>				ADR	Register		ADR	Register		ADR	Register
1H       -       -       1H       -       3H       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		name		,	name		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7.2.1	
21     -     21     -     21     -     21       34     -     34     -     34     -     34       34     -     -     34     -     34     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -     -       34     -     -     -     -     -	FFFFE400H	BMA0		FFFFE410H	BMA4		FFFFE480H	B01CS		FFFFE500H	
33     *     33     *     33     *     34       44     BMA1     44     BMA5     44     reserved       64     *     64     *     64     *       74     *     64     *     64     *       74     *     64     *     64     *       74     *     84     845C3     84       94     *     94     845C3     84       94     *     94     84     845C3       94     *     84     845C3     84       94     *     94     84     845C3       94     *     84     845C3     84       94     *     84     84     84       94     *     84     84     84       94     *     84     84     84       94     *     84     84     84       94     *     84     84     84       12     FLAS     *     84     84       14     *     14     FLESCH     64       14     *     84     84     84       14     *     84     *       14     SEQAND     84	1H	"		1H	"		1H	"		1H	
MH         BMA1         MA         MA         BMA5         MA         MA <th< td=""><td>2H</td><td>"</td><td></td><td>2H</td><td>"</td><td></td><td>2H</td><td>″</td><td></td><td>2H</td><td></td></th<>	2H	"		2H	"		2H	″		2H	
6H     *     7H     *     7H <t< td=""><td>3H</td><td>"</td><td></td><td>3H</td><td>"</td><td></td><td>3H</td><td>"</td><td></td><td>3H</td><td></td></t<>	3H	"		3H	"		3H	"		3H	
Bit     *     *     Bit     * <t< td=""><td>4H</td><td>BMA1</td><td></td><td>4H</td><td>BMA5</td><td></td><td>4H</td><td>B23CS</td><td></td><td>4H</td><td>reserved</td></t<>	4H	BMA1		4H	BMA5		4H	B23CS		4H	reserved
71         *         71         *         71         *           8H         BMA2         8H         *         71         *         71         *           8H         BMA2         8H         *         8H         *         71         *         71         *           8H         *         8H         *         8H         *         8H         8H         *         8H         *         8H         *         8H         8H         *         8H         8H         8H         *         8H	5H	"		5H			5H			) > 5H	
BHA2         BHA2         BH         BH <th< td=""><td></td><td>"</td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td><td></td><td></td></th<>		"						"			
9H       -       -       9H       -       -       9H       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -					"				$ \land $	7H	"
AH       -       AH       AH       AH       AH       AH         BH       -       BH								B45CS	))		
BH         BH<								"			
CH       BMA3 DH       CH       DH       CH       DH         DH       P       P       DH       DH       DH       DH         EH       FH       FH       FH       DH       DH       DH       DH       DH         12] FLASH control       ADR       Register name       ADR       Register name       FFFFE520H       FLCS       FLCS       FFF       FH								$\langle \langle \rangle \rangle$			
DH         ''         DH         EH         FH         DH         EH         EH         FH         DH<			-					"		-	
EH       *       EH       FH							A11				
FH         FH         FH         FH           12] FLASH control         ADR         Register name         FFFFE510H         SECMOD         FFFFE520H         FLCS           14         *         *         3H         *         *         *         *           3H         *         *         3H         *         *         *         *           4H         SECONT         *         *         *         *         *         *           8H         ROMSEC1         8H         reserved         8H         *         *           8H         ROMSEC2         0H         *         *         *         *           13] ROM correction         *         *         *         *         *         *           *         Register name         *         *         *         *         *           *         *         *         *         *         *         *         *           *         *         *         *         *         *         *         *         *           *         #         *         *         *         *         *         *           *<											7
ADR       Register name         FFFFESDH       SEOMOD 3H       FFFFESDH         4H       *         3H       *         4H       *         6H       *         7H       *         8H       ROMSEC1         9H       *         8H       ROMSEC1         9H       *         ADR       Register rame         7H       *         8H       ROMSEC2         0H       CH         ROM correction       *         ADR       Register name         FFFFE550H       ADDREG4         13  ROM correction       *         ADR       Register name         FFFFE550H       ADDREG4         14  *       *         3H       *         4H       ADDREG5         5H       *         6H       *         7H       *         8H       ADDREG6         9H       *         4H       ADDREG6         6H       *         7H       *         8H       ADDREG6         9H       ADDRE66								$\supset$			
ADR         Register name           FFFFE510H         SEQMOD           H         "           3H         "           3H         "           3H         "           4H         SEQNOT           5H         "           4H         SEQNOT           5H         "           6H         "           7H         "           8H         ROMSEC1           9H         AH           8H         ROMSEC1           9H         AH           CH         ROMSEC2           DH         BH           CH         ROMSEC2           DH         EH           FFFFE50H         ADR           Register         name           FFFFE50H         ADR           Register         name           FFFFE50H         ADR           Register         name           FFFFE50H         ADR           Register         name           FFFFE50H         ADREG6           H         "           H         H           H         ADR           FFFFE50H         A	FH	"		FH			( / FH			¥H	
ADR         Register name           FFFFE510H         SEQMOD           H         "           3H         "           3H         "           3H         "           4H         SEQNOT           5H         "           4H         SEQNOT           5H         "           6H         "           7H         "           8H         ROMSEC1           9H         AH           8H         ROMSEC1           9H         AH           CH         ROMSEC2           DH         BH           CH         ROMSEC2           DH         EH           FFFFE50H         ADR           Register         name           FFFFE50H         ADR           Register         name           FFFFE50H         ADR           Register         name           FFFFE50H         ADR           Register         name           FFFFE50H         ADREG6           H         "           H         H           H         ADR           FFFFE50H         A		control					$\sim$	$\sim$	$\langle \rangle$	$ \langle U \rangle $	
name         name           FFFFE510H         SEQMOD           H         "           H         "           H         "           H         "           H         "           H         "           H         "           H         "           H         "           H         "           H         "           H         "           H         Register           ADR         Register           name         FFFFE50H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H           H         H			1		Degister	1 (			$\sim$		
FFFFE510H       SEQMOD       IH       *         1H       *       1H       *         3H       *       3H       *         4H       SEQCNT       SEQCNT       SH         5H       *       3H       *         4H       SEQCNT       SH       SH         6H       *       3H       *         7H       *       SH       FFFFE50H         8H       ROMSEC1       SH       SH         9H       AH       SH       *         0H       BH       *       O         0H       BH       *       O         13] ROM correction       ADR       Register name         FFFFE50H       ADDREG0       TH       *         14H       ADR       Register name       FFFFE560H         7H       *       H       ADR       FFFFE560H         1H       *       *       H       PH         2H       *       H       ADR       Register name         FFFFE50H       ADDREG1       SH       *       H         2H       *       H       ADR       H         2H       *	ADR			ADR		6		(C)	$\sim$	$\searrow$	
1H       *       1H       *         3H       *       3H       *         3H       *       3H       *         4H       SEQCNT       4H       FLPGEND         5H       *       6H       *         6H       *       6H       *         7H       *       7H       *         8H       ROMSEC1       9H       9H         AH       H       *       8H         CH       ROMSEC2       CH       9H         BH       *       8H       *         CH       ROMSEC2       CH       9H         H       FFFFE50H       ADR       Register         name       FFFFE50H       ADDREG4       1H         7H       *       3H       *         3H       *       3H       *         4H       ADDREG1       H       ADR       Register         1H       *       3H       *       3H         4H       ADDREG2       8H       ADDREG5       SH         6H       *       7H       *       8H         6H       *       8H       ADDREG2       9							$\rightarrow$	C	$\bigcirc$	)	
2H       "       3H       "         3H       "       3H       "         3H       SEQCNT       3H       "         5H       "       4H       ELPGEND         6H       "       6H       "         7H       "       8H       Recent of the second o							$\geq$		>	/	
3H       #       3H       #         3H       #       SH       #         4H       SEQCNT       5H       SH         5H       *       6H       SH         7H       *       6H       SH         7H       *       8H       ROMSEC1       8H         9H       SH       *       8H       *         8H       ROMSEC2       CH       H       SH         0H       BH       *       CH       Register         13] ROM correction       ADR       Register       name         FFFFE540H       ADDREG0       H       *       SH         14       -       -       -       ADR       Register         13H       *       -       -       -       -         13H       *       -       -       -       -         14       -       -       -       -       -       -         2H       *       -       -       -       -       -         3H       *       -       -       -       -       -         4DH       ADDREG1       -       -       -							>	((// )			
4H       SEQCNT       4H       FLPGEND         5H       "       6H       SH       SH         7H       "       7H       "       SH       ROMSEC1         9H       AH       BH       "       SH       ROMSEC1         9H       AH       "       BH       "         AH       BH       "       SH       "         BH       ROMSEC2       CH       DH       SH       "         CH       ROMSEC2       CH       DH       SH       "         13] ROM correction       ADR       Register name       ADR       Register name       FFFFE560H       ADDREG4       FFFFE560H       ADDREG4       FFFFE560H       ADDREG3       SH       "       SH       SH       "       SH       SH </td <td></td> <td></td> <td></td> <td></td> <td>$( \land )$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					$( \land )$						
SH       "       SH       SH       "         RH       "       TH       "       TH       "         RH       ROMSEC1       BH       reserved       H       "         RH       ROMSEC2       CH       BH       "       H       H         CH       ROMSEC2       CH       BH       "       H       H       H         CH       ROMSEC2       CH       DH       EH       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H			-			2					
6H       "       6H       "         7H       "       6H       "         7H       "       8H       ROMSEC1       8H       reserved         9H       AH       AH       "       8H       "         8H       ROMSEC2       CH       0H       H"       "         13] ROM correction       ADR       Register       name       FFFFE550H       ADDREG0         14       -       ADR       Register       name       FFFFE560H       ADDREG8         14       -       2H       '       3H       "       3H       "         3H       "       3H       '       3H       '       3H       '         3H       "       3H       '       '       H       ADR       Register         1H       '       '       H       ADDREG5       '       H       ADDREG8         1H       '       '       '       '       '       '       '       '         3H       '       '       '       '       '       '       '       '       '       '       '       '       '       '       '       '					FLPGEND						
7H       "       7H       "         8H       ROMSEC1       8H       reserved         9H       8H       "       8H       "         AH       BH       "       0       0       0         AH       BH       "       0       0       0       0         AH       BH       "       0       0       0       0       0         AH       BH       "       0       0       0       0       0       0         13] ROM corrrection       ADR       Register name       FFFFE560H       ADDREG4       1H       "       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td>											
8H       ROMSEC1       8H       reserved         9H       AH       %         AH       BH       "         CH       ROMSEC2       DH         DH       EH       "         ADR       Register       ADR         ADR       Register       ADR         ADR       Register       name         FFFFE540H       ADDREG0       H         1H       "       2H         3H       "       ADR         4H       ADDREG1       SH         5H       "       6H         7H       "         8H       ADDREG2         9H       "         AH       ADDREG6         FFFFE540H       ADDREG1         7H       "         3H       "         4H       ADDREG2         9H       "         4H       ADDREG2         9H       "         AH       "         BH       "         AH       ADR         BH       BH         ADDREG2       H         9H       "         AH       ADDREG3								$\sim$			
9H AH BH       ROMSEC2       9H AH       "         CH BH FH       ROMSEC2       CH BH FH       BH       "         13] ROM correction       ADR       Register name       ADR       Register name         ADR       Register name       FFFFE50H       ADDREG4       H       "         14) 2H       "       3H       "       ADDREG5       FFFFE50H       ADDREG6         1H       "       3H       "       3H       "       SH       "         2H       "       3H       "       SH       "       SH       "         4H       ADDREG1       SH       "       SH       "       SH       "         8H       ADDREG2       SH       ADDREG6       SH       "       SH       "         8H       ADDREG2       SH       ADDREG6       SH       ADDREG3       SH       ADR       BH       "         H       "       AH       "       AH       "       AH       "       AH       "         H       ADDREG3       CH       ADDREG6       SH       ADDREG8       H       ADDREG8         H       "       H       AH       " <t< td=""><td></td><td></td><td>-</td><td></td><td>(manufacture d</td><td>-</td><td>$\sim$</td><td></td><td></td><td></td><td></td></t<>			-		(manufacture d	-	$\sim$				
AH       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H		ROMSECT			reserved "		$\sim$				
BHROMSEC2BH"CHROMSEC2CHDHEHFHFHFHFHADRRegister nameADRFFFFE540HADDREG0FFFFE550H1H''2H2H''3H2H''3H''3H''HADDREG1SH''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H''H <t< td=""><td></td><td></td><td></td><td></td><td></td><td>~</td><td>$\langle \langle \langle \rangle \rangle$</td><td></td><td></td><td></td><td></td></t<>						~	$\langle \langle \langle \rangle \rangle$				
CH       ROMSEC2       CH       DH         DH       H       DH       H         H       H       FH       H         13] ROM correction       ADR       Register name         FFFFE540H       ADDREG0       FFFFE550H       ADDREG4         1H       "       ADR       Register name         7H       "       2H       "         3H       "       3H       "         4H       ADDREG1       5H       "         5H       "       6H       "         7H       "       7H       "         8H       ADDREG2       8H       ADDREG6       8H         9H       "       9H<"					"	_	$\geq$				
DH EH FHDH EH FHDH EH FH13] ROM correctionADRRegister nameADRRegister nameFFFFE540HADDREG0 1H 2H14ADDREG0 1H 2H14ADDREG1 3H4HADDREG1 5H6H* 7H 4H7H* 7H8HADDREG2 9H *9H* 7H8HADDREG2 9H9H* 7H8HADDREG3 6H6H* 6H7H* 7H8HADDREG2 9H9H* 7H8HADDREG3 7H0H* 7H8HADDREG3 7H0H* 7H8HADDREG3 7H0H* 7H8HADDREG3 7H7H* 7H8HADDREG3 7H7H* 7H8HADDREG3 7H7H* 7H8HADDREG3 7H7H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H8H* 7H <td></td> <td>POMSEO2</td> <td></td> <td></td> <td>6</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>		POMSEO2			6	5					
EH FHEH FHADRRegister nameADRRegister nameFFFFE540HADDRE601H 2H 3HFFFFE550HADRFFFFE550HADRFFFFE550HADDREG1 5H 7H4H 6H 7H4H 6H 7H7H 6H 7H8H ADDREG2 9H H8H ADDREG3 HCH ADDREG3 HCH ADDREG3 HCH ADDREG3 HCH ADDREG3 HCH ADDREG3 HCH ADDREG3 HCH H HADR HCH H HADR HCH H HADR HCH H HADR HCH H HADR HCH H HADREG3 HCH H HCH H HADREG3 HCH H HCH H HADREG3 HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H HCH H H HCH H H HCH H H H <t< td=""><td></td><td>ROMBLOZ</td><td></td><td>/</td><td>$\sim (0$</td><td></td><td>()</td><td></td><td></td><td></td><td></td></t<>		ROMBLOZ		/	$\sim (0$		()				
FHFH13] ROM correctionADRRegister nameFFFFE540HADDREG01H"2H"3H"4HADDREG15H"6H"7H"8HADDREG29H"8HADDREG36H"7H"7H"7H"7H"8HADDREG29H"9H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H"7H" </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>/ /</td> <td>9</td> <td></td> <td></td> <td></td> <td></td>						/ /	9				
ADR       Register name       ADR       Register name       ADR       Register name         FFFFE540H       ADDREG0       FFFFE550H       ADDREG4       FFFFE560H       ADDREG8         1H       "       2H       "       2H       "         3H       "       3H       "       3H       "         4H       ADDREG1       4H       ADDREG5       4H       ADDREG9         5H       "       6H       "       6H       "         7H       "       7H       "       7H       "         8H       ADDREG2       8H       ADDREG6       8H       ADDREG6         9H       "       3H       "       3H       "         CH       ADDREG3       CH       ADDREG7       CH       ADDREG8         9H       "       BH       "       BH       "         CH       ADDREG3       CH       ADDREG7       CH       ADDREG8         DH       "       BH       "       BH       "         EH       "       EH       "       EH       TH			$\langle \rangle$								
ADRRegister nameADRRegister nameADRRegister nameFFFFE540HADDREG0FFFFE550HADDREG4FFFFE560HADDREG81H"1H"1H"2H"2H"2H3H"3H"3H4HADDREG14HADDREG54H5H"6H"6H7H"6H"6H7H"7H"8HADDREG28HADDREG68H9H"9H"6HM6H%6HH1H"6H1H"1H1H1H"1H1H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H1H1D2H1H1D2H1H1D2H1H1D2H1H1D2H1H1D </td <td></td> <td></td> <td></td> <td>$\geq$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				$\geq$							
ADRRegister nameADRRegister nameADRRegister nameFFFFE540HADDREG0FFFFE550HADDREG4FFFFE560HADDREG81H"1H"1H"2H"2H"2H3H"3H"3H4HADDREG14HADDREG54H5H"6H"6H7H"6H"6H7H"7H"8HADDREG28HADDREG68H9H"9H"6HM6H%6HH1H"6H1H"1H1H1H"1H1H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H"1H2H1H1D2H1H1D2H1H1D2H1H1D2H1H1D2H1H1D </td <td></td> <td>$\sim$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		$\sim$									
namenamenamenameFFFFE540HADDREG0FFFFE550HADDREG4FFFFE560HADDREG81H"1H"2H"2H"2H"2H"3H"3H"3H"4HADDREG14HADDREG54HADDREG95H"6H"6H"6H"6H"6H"7H"7H"7H8HADDREG28HADDREG68HADDREGA9H"9H"9H"AH"BH"BH"CHADDREG3CHADDREG7CHADDREGBDH"EH"EH"	[13] ROM co				$\sim$				-		
FFFFE540HADDREG0FFFFE550HADDREG4FFFFE560HADDREG81H"1H"2H1H"2H"2H2H2H"3H"3H"3H"4HADDREG14HADDREG54HADDREG95H"6H"6H"6H"6H"6H7H"7H"7H8HADDREG28HADDREG68H9H"9H"6H4H%8H%8H6H"6H%6H7H%6H%6H7H%6H%6H%6H%6H8HADDREG28HADDREG68HADDREG36H%6H%6H%6H%6H6H%6H%6H6H%6H%7H%6H%7H%6H%8HADDREG28HADDREG69H%6H%6H%6H%7H%6H7H%6H7H%6H8HADDREG28H8H%6H7H%6H7H%6H7H%6H7H%6H7H%	ADR		<i>(</i>	ADR			ADR				
1H"1H"1H"2H"2H"2H"3H"3H"2H"3H"3H"3H"4HADDREG14HADDREG54HADDREG95H"6H"6H"6H"6H"6H"7H"7H"7H"8HADDREG28HADDREG68HADDREGA9H"9H"9H"AH"BH"BH"CHADDREG3CHADDREG7CHADDREGBDH"EH"EH"		name		$\langle \rangle$	name			name			
1H       1H       1H       1H       1H       2H       1H         2H       2H       2H       1H       2H       1H         3H       1H       2H       1H       2H       1H         3H       1H       3H       1H       3H       1H         3H       1H       3H       1H       3H       1H         3H       1H       3H       1H       3H       3H         4H       ADDREG1       4H       ADDREG5       4H       ADDREG9         6H       1H       7H       1H       7H       1H       1H         6H       1H       7H       1H       7H       1H       1H         8H       ADDREG2       8H       ADDREG6       8H       ADDREGA         9H       1H       1H       1H       1H       1H       1H         AH       1H       1H       1H       1H       1H       1H       1H		ADDREG0			ADDREG4				1		
3H       "       3H       "       3H       "         3H       "       3H       "       3H       "         4H       ADDREG1       4H       ADDREG5       4H       ADDREG9         5H       "       5H       "       5H       "         6H       "       6H       "       6H       "         7H       "       7H       "       6H       "         8H       ADDREG2       8H       ADDREG6       8H       ADDREGA         9H       "       7H       "       7H       "         8H       ADDREG2       8H       ADDREG6       8H       ADDREGA         9H       "       9H       "       9H       "         AH       "       8H       ADDREG2       8H       ADDREG6         9H       "       9H       "       9H       "       9H         AH       "       8H       ADDREG3       CH       ADDREG7       CH       ADDREGB         DH       "       EH       "       EH       "       EH       "       H		"			"				1		
4HADDREG14HADDREG54HADDREG95H"5H"5H"6H"6H"6H"7H"7H"7H"8HADDREG28HADDREG68HADDREGA9H"9H"9H"AH"BH"BH"CHADDREG3CHADDREG7CHADDREGBDH"EH"EH"			7						1		
5H"SH"SH"6H"6H"6H"7H"7H"7H"7H"7H"7H"8HADDREG28HADDREG68HADDREGA9H"9H"9H"AH"6H"9H"BH"6H"6H"CHADDREG3CHADDREG7CHADDREGBDH"6H"6H"EH"6H"6H"									1		
311 <t< td=""><td>~</td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>	~			~					1		
OffOffOffOffOff7H7H7H7H7H8HADDREG28HADDREG68HADDREGA9H"9H"9H"AH"AH"AH"BH"BH"BH"CHADDREG3CHADDREG7CHADDREGBDH"DH"DH"EH"EH"EH"									1		
NINININI8HADDREG28HADDREG68HADDREGA9H"9H"9H"AH"AH"AH"BH"BH"BH"CHADDREG3CHADDREG7CHADDREGBDH"DH"DH"EH"EH"EH"									1		
9H"9H"9H"AH"AH"AH"BH"BH"BH"CHADDREG3CHADDREG7CHADDREGBDH"DH"DH"EH"EH"EH"									1		
AH"AH"AHBH"BH"BHCHADDREG3CHADDREG7CHADDREGBDH"DH"DH"EH"EH"EH"									1		
BH"BH"CHADDREG3CHADDREG7CHDH"DH"DHEH"EH"EH									1		
CHADDREG3CHADDREG7CHADDREGBDH"DH"DH"EH"EH"EH"									1		
DH     "     DH     "       EH     "     EH     "									1		
EH " EH " EH "									1		
									1		
FH   ″FH   ″									1		
	FH	"		FH	"		FH	"	J		

TMP19A63 (rev1.1)19 -439

[14] INTUNIT

ADR	Register		ADR	Register		ADR	Register		ADR	Register
	name			name			name			name
FFFFE700H	ADCINT		FFFFE710H	TMRBINTD		FFFFE720H	TBTINT		FFFFE740H	
1H			1H			1H			1H	
2H			2H			2H	$\langle$		2H	
3H			3H			211 3H		>	3H	
4H	TMRBINTA		4H	TMRBINTE		4H	(	$\square$	4H	
5H			5H			5H			5H	
6H			6H			6H	$\overline{\Omega}$	~	6H	
7H			7H			7H ⁴		5)	7H	
8H	TMRBINTB			CAPINT				$\mathcal{I}$	8H	
он 9Н	IWRDINID		8H 9H	CAPINT		8H 9H			оп 9Н	
9H AH						9H AH	4())		эн АН	
BH			AH BH			ВН			BH	
	THERING			OMPINIT						
CH	TMRBINTC		CH	CMPINT		Сн			CH	7
DH			DH			DH	$\langle \rangle$	/	DH	
EH			EH			( / EA	$\sim$	(	C) EH	
FH			FH			EH			<u> </u>	
					(	$\frown$		$\sim$		
15] CG					6		$(\mathcal{C})$	$\sim$		
ADR	Register		ADR	Register		ADR	Register	$\cap$	ADR	Register
ADK	name		ADK	name		ADR	name		ADK	name
FFFFEE00H	SYSCR3		FFFFEE10H	IMCGA		FFFFEE20H	EICRCG ))		FFFFEE40H	
1H	SYSCR2		1H	"		1111 222011	w Not		1H	
2H	SYSCR1		2H	, <	$\geq$	2H			2H	
211 3H	SYSCR0		211 3H			3H	"		211 3H	
4H	515010		4H	IMCGB		4H	NMIFLG		4H	
4H 5H			4H 5H	WICGB		4R 5H	WWIFLG		4H 5H	
6H			6H			6H	"		6H	
7H			7H	2)		7H	"			
				14000					7H	
8H			8H		$\langle \rangle$	8H			8H	
9H		1	9н Ан	"		9H			9H	
AH		$\sum$		" ~ ((	77	AH			AH	
BH			BH		$\langle \rangle$	) BH			BH	
CH		$\left( \right)$	СН	IMCGD	/	СН			CH	
DH		/	DH		$\geq$	DH			DH	
EH	~ ~		C EH			EH			EH	
FH			FH	"		FH			FH	
		)	$\mathcal{A}$							
	$(\bigcirc)$	~		$\searrow$						
			$\sim (\bigcirc)$	)						

# 20. JTAG Interface

The TMP19A63 is equipped with the boundary scan interface that conforms to the Joint Test Action Group (JTAG) standard. This interface uses the industry-standard JTAG protocol (IEEE Standard 1149.1/D6). This chapter describes this JTAG interface with a mention of boundary scan, interface pins, interface signals, and test access ports (TAP).

# 20.1 Boundary Scan Overview

IC (Integrated Circuit) density is ever increasing, SMDs (Surface Mount Devices) continue to decrease in size, components are now mounted on both sides of printed circuit boards (PCBs), and there are considerable technical developments related to embedding holes. Conventional internal circuit testing techniques are dependent on the physical contact between internal circuitry and chips and, therefore, their limitations with respect to efficiency and accuracy are manifest. With the ever-increasing IC complexity, tests conducted to perform inspections on all chips integrated into an IC are becoming larger in scale, and it is becoming more difficult to design an efficient, reliable IC testing program.

To overcome this difficulty in performing IC tests, the "boundary scan" circuit was developed. It is a group of shift registers called "boundary scan cells" established between pins and internal circuitry (see Fig. 20.1). These boundary scan cells are bypassed under normal conditions. When an IC goes into test mode, data is sent from the boundary scan cells through the shift register bus in response to the instruction given by a test program, and various diagnostic tests are executed. In IC tests, five signals TDI, TDO, TMS, TCK and TRST are used. These signals are explained in the next section.



Fig.20.1 JTAG Boundary Scan Cells

(Note) The optional instructions IDCODE, USERCODE, INTEST and RUNBIST are not implemented in the TMP19A63.

# 20.2 JTAG Interface Signals

JTAG interface signals are as follows (see Fig. 20.2):

- TDI To input JTAG serial data •
- TDO To output JTAG serial data
- TMS To select JTAG test mode
- TCK To input JTAG serial clock
- TRST To input JTAG test reset



Fig. 20.2 Interface Signals and Registers

The JTAG boundary scan mechanism (hereafter called "JTAG mechanism") enables testing of the processor, printed circuit boards connected to the processor, and connections between other components on printed circuit boards.

The JTAG mechanism does not have a function of testing the processor itself.

# 20.3 JTAG Controller and Registers

The following JTAG controller and registers are built into the processor:

- Instruction register
- Boundary scan register
- Bypass register
- Device identification register
- Test Access Port (TAP) controller

In the JTAG basic mechanism, the TAP controller state machine monitors the signals input through the JTMS pin. As the JTAG mechanism starts operation, the TAP controller determines a test function to be executed by loading data into the JTAG instruction register (IR) and performing a serial data scan via the data register (DR), as shown in Table 20.1. When data is scanned, the state of the JTMS pin represents new specific data words and the end of data flow. The data register is selected according to data loaded into the instruction register.

#### 20.3.1 Instruction Register

The JTAG instruction register consists of four cells, including shift registers. It is used to select either a test to be executed or a test data register to be accessed or to select both. Either the boundary scan register or the bypass register is selected according to combinations shown in Table 20.1.

Instruction code Most significant to least significant bit		Data register to be selected
0000	EXTEST	Boundary scan register
0001	SAMPLE/PRELOAD	Boundary scan register
0010 ~1110	Reserved	Reserved
1111	BYPASS	Bypass register

#### Table 20.1 Bit Configurations of the JTAG Instruction Register

Fig. 20.3 shows the format of the instruction register.



The instruction code is shifted from the least significant bit to the instruction register.



Fig. 20.4 Direction of a Shift of the Instruction Code to the Instruction Register

### 20.3.2 Bypass Register

The bypass register has a one-bit width. If the TAP controller is in the Shift-DR state (bypass state), data at the TDI pin is shifted into the bypass register, and the output from the bypass register is shifted out to the TDO output pin.

Simply put, the bypass register is a circuit for bypassing the devices in a serial boundary scan chain connected to the substrates that are not required for a test to be conducted. Fig. 20.5 shows the logical position of the bypass register in a boundary scan chain.

If the bypass register is used, the speed of access to boundary scan registers in an active IC in a data path used for substrate level testing can be increased.



Fig. 20.5 Function of the Bypass Register

### 20.3.3 Boundary Scan Register

The boundary scan register has all the inputs and outputs for TMP19A63 except for some analog output signals and the control signals. Pins of the TMP19A63 can drive any test patterns by scanning data into the boundary scan register in the Shift-DR state. After the boundary scan register goes into the Capture-DR state, data enters the processor, is shifted, and inspected.

The boundary scan register forms a data path. It basically functions as a single shift register of 297-bit width. Cells in this data path are connected to all input and output pads of the TMP19A63.

The TDI input is introduced to the least significant bit (LSB) in the boundary scan register. The most significant bit in the boundary scan register is taken out of the TDO output.

#### 20.3.4 Test Access Port (TAP)

The test access port (TAP) consists of five signal pins: TRST, TDI, TDO, TMS, and TCK. Serial test data, instructions and test control signals are sent and received through these signal pins.

Data is serially scanned into one of three registers (instruction register, bypass register and boundary scan register) via the TDI pin or it is scanned out from one of these three registers into the TDO pin, as shown in Fig. 20.6.

The TMS input is used to control the state transitions of the main TAP controller state machine. The TCK input is a test clock exclusively for shifting serial JTAG data synchronously; it works independently of a chip core clock or a system clock.





Data through the TDI and TMS pins are sampled on the rising edge of the input clock signal TCK. Data through the TDO pin changes on the falling edge of the clock signal TCK.

### 20.3.5 TAP Controller

In the processor, a 16-state TAP controller specified in the IEEE JTAG standard is implemented.

### 20.3.6 Controller Reset

To reset the state machine of the TAP controller,

- assert the TRST signal input (Low) to reset the TAP controller or
- continue to assert the input signal TMS by using the rising edge of the TCK input five times successively after clearing the reset state of the processor.

The reset state can be maintained by keeping TMS in an asserted state.

# 20.3.7 State Transitions of the TAP Controller

Fig. 20.7 shows the state transitions of the TAP controller. The state of the TAP controller changes depending on which value TMS will select on the rising edge of TCK, 0 or 1. In this figure, the arrow shows a state transition and the value that TMS selects to execute each state transition is shown alongside of the arrow.



The TAP controller operates in each state described below. In Fig. 20.7, a column to the left is the data column and a column to the right is the instruction column. The data column represents the data register (DR), and the instruction column represents the instruction register (IR).

Test-Logic-Reset

If the TAP controller is in a reset state, the device identification register is selected by default. The most significant bit in the boundary scan register is cleared to "0," and the output is disabled. The TAP controller remains in the Test-Logic-Reset state if TMS is "1." If "0" is input into TMS in the Test-Logic-Reset state, the TAP controller goes into the Run-Test/Idle state.

Run-Test/Idle

In the Run-Test/Idle state, the IC goes into test mode only if a specific instruction, such as the built-in self test (BIST) instruction, is issued. If an instruction that cannot be executed in the Run-Test/Idle state has been issued, the test data register selected by the last instruction maintains the existing state.

The TAP controller remains in the Run-Test/Idle state if TMS is "0." If "1" is input into TMS, the TAP controller goes into the Select-DR-Scan state.

Select-DR-Scan

The Select-DR-Scan state of the TAP controller is a transient state. In this state, the IC performs no operations. If "0" is input into TMS when the TAP controller is in the Select-DR-Scan state, the TAP controller goes into the Capture-DR state. If "1" is input into TMS, the instruction column goes into the Select-IR-Scan state.

Select-IR-Scan

The Select-IR-Scan state of the TAP controller is a transient state. In this state, the IC performs no operations.

If "0" is input into TMS when the TAP controller is in the Select-IR-Scan state, the TAP controller goes into the Capture-IR state. If "1" is input into TMS, the TAP controller returns to the Test-Logic-Reset state.

### Capture-DR

If the data register selected by the instruction register has parallel inputs when the TAP controller is in the Capture-DR state, data is loaded into the data register in a parallel fashion. If the data register does not have parallel inputs or if data does not need to be loaded into the selected test data register, the data register maintains the existing state.

If "0" is input into TMS when the TAP controller is in the Capture-DR state, the TAP controller goes into the Shift-DR state. If "1" is input into TMS, the TAP controller goes into the Exit 1-DR state.

### Shift-DR

If the TAP controller is in the Shift-DR state, data is serially shifted out by the data register connected between TDI and TDO.

If the TAP controller is in the Shift-DR state, the Shift-DR state is maintained while TMS is "0." If "1" is input into TMS, the TAP controller goes into the Exit 1-DR state.

• Exit 1-DR

The Exit 1-DR state of the TAP controller is a transient state.

If "0" is input into TMS when the TAP controller is in the Exit 1-DR state, the TAP controller goes into the Pause-DR state. If "1" is input into TMS, it goes into the Update-DR state.

• Pause-DR

In the Pause-DR state, the shift operation performed by the data register selected by the instruction register is temporarily suspended. The instruction register and the data register maintain their existing state.

The TAP controller remains in the Pause-DR state while TMS is "0". If "1" is input into TMS, it goes into the Exit 2-DR state.

• Exit 2-DR

The Exit 2-DR state of the TAP controller is a transient state.

If "0" is input into TMS when the TAP controller is in the Exit 2-DR state, the TAP controller returns to the Shift-DR state. If "1" is input into TMS, it goes into the Update-DR state.

Update-DR

In the Update-DR state, data is output in a parallel fashion from the data register having a parallel output synchronously to the rising edge of TCK. The data register with a parallel output latch does not output data during the shift operation; it outputs data only in the Update-DR state.

If "0" is input into TMS when the TAP controller is in the Update-DR state, the TAP controller goes into the Run-Test/Idle state. If "1" is input into TMS, it goes into the Select-DR-Scan state.

Capture-IR

In the Capture-IR state, data is loaded into the instruction register in a parallel fashion. Data loaded is 0001. The Capture-IR state is used to test the instruction register. A malfunction of the instruction register can be detected by shifting out the data loaded.

If "0" is input into TMS when the TAP controller is in the Capture-IR state, the TAP controller goes into the Shift-IR state. If "1" is input into TMS, it goes into the Exit 1-IR state.

### • Shift-IR

In the Shift-IR state, the instruction register is connected between TDI and TDO, and data loaded synchronously to the rising edge of TCK is serially shifted out.

The TAP controller remains in the Shift-IR state while TMS is "0". If "1" is input into TMS, the TAP controller goes into the Exit 1-IR state.

#### Exit 1-IR

The Exit 1-IR state of the TAP controller is a transient state.

If "0" is input into TMS when the TAP controller is in the Exit 1-IR state, the TAP controller goes into the Pause-IR state. If "1" is input into TMS, it goes into the Update-IR state.

### Pause-IR

In the Pause-IR state, the shift operation performed by the instruction register is temporarily suspended. The existing state of the instruction register and that of the data register are maintained.

The TAP controller remains in the Pause-IR state while TMS is "0." If "+" is input into TMS, it goes into the Exit 2-IR state.

• Exit 2-IR

The Exit 2-IR state of the TAP controller is a transient state.

If "0" is input into TMS when the TAP controller is in the Exit 2-IR state, the TAP controller goes into the Shift-IR state. If "1" is input into TMS, it goes into the Update-IR state.

• Update-IR

In the Update-IR state, instructions shifted into the instruction register are updated by outputting them in a parallel fashion synchronously to the rising edge of TCK.

If "0" is input into TMS when the TAP controller is in the Update-IR state, the TAP controller goes into the Run-Test/Idle state. If "1" is input into TMS, it goes into the Select-DR-Scan state.

Table 20.2 shows the boundary scan sequence relative to processor signals.

1         TOVR         2         PQ3         3         PQ2         4         PQ1         5         PQ0         6         PP7         7         PP6           8         PP5         9         PP4         10         PP3         11         PP2         12         PP0         13         PO7         14         PO6           15         POS         16         PO4         17         PO3         18         PO2         19         PO1         20         PO0         21         PN7           29         PM6         23         PN6         24         PN1         25         PN3         26         PN2         27         PN1         28         PN3           36         PM0         37         PLSEL         38         PL7         39         PL6         40         PL5         41         PL4         42         PL3           37         PL4         48         PL7         47         PL6         48         PL7         63         PL6         64         PL5         65         PL7         63         PL6         66         PL7         63         PL6         66         PL3         67         PL4         64			AG Scan Sequer		THE TIME TEADS F		
15         PO5         16         PO4         17         PO3         18         PO2         19         PO1         20         PO0         21         PN7           22         PN6         23         PN5         24         PN4         25         PN3         26         PN2         27         PN1         28         PN0           29         PM7         30         PM6         31         PM5         32         PM4         33         PM3         34         PM2         35         PM1           36         PM0         37         PLLSEL         38         PL7         39         PL6         40         PL5         41         PL4         42         PL3           36         PM0         35         PL2         60         PL1         61         PJ0         62         PJ7         63         PK4           50         PK3         51         PK2         52         PK1         53         PK0         54         PJ7         65         PK6         96         PD1         70         PH7         70         PK6         88         PF3         76         PH1         77         PH0         78         PF6 <t< td=""><td>1 TOVR</td><td>2 PQ3</td><td>3 PQ2</td><td>4 PQ1</td><td>5 PQ0</td><td>6 PP7</td><td>7 PP6</td></t<>	1 TOVR	2 PQ3	3 PQ2	4 PQ1	5 PQ0	6 PP7	7 PP6
22         PN6         23         PN5         24         PN4         25         PN3         26         PN2         27         PN1         28         PN0           29         PM7         30         PM6         31         PM5         32         PM4         33         PM3         34         PM2         35         PM1           36         PM0         37         PLSEL         38         PL7         39         PL6         40         PL5         41         PL4         42         PL3           43         PL2         44         PL1         45         PL0         46         PK7         47         PK6         48         PK4         50         PK3         59         PL2         60         PJ1         61         PJ0         62         PJ7         63         PI6           64         PI5         65         PI4         66         PI3         67         PI2         68         PI1         77         PI0         78         PG7         79         PG6         80         PG5         89         PF4         90         PF3         91         PF2           92         PF1         93         PF0 <td< td=""><td>8 PP5</td><td>9 PP4</td><td>10 PP3</td><td>11 PP2</td><td>12 PP0</td><td>13 PO7</td><td>14 PO6</td></td<>	8 PP5	9 PP4	10 PP3	11 PP2	12 PP0	13 PO7	14 PO6
29         PM7         30         PM6         31         PM5         32         PM4         33         PM3         34         PM2         35         PM1           36         PM0         37         PLLSEL         38         PL7         39         PL6         40         PL5         41         PL4         42         PL3           43         PL2         44         PL1         45         PL0         46         PK7         47         PK6         48         PK5         49         PK4           50         PK3         51         PK2         52         PK1         53         PK0         54         PJ7         55         PJ6         56         PJ3         57         PJ4         58         PJ3         59         PJ2         60         PJ1         61         PJ0         70         PH7         71         PH6         72         PH5         73         PH4         74         PH3         75         PH4         76         PH1         77         PH0         78         PS7         79         PG6         80         PS5         89         PF4         90         PF3         91         PF2         92         PF1	15 PO5	16 PO4	17 PO3	18 PO2	19 PO1	20 PO0	21 PN7
36         PM0         37         PLLSEL         38         PL7         39         PL6         40         PL5         44         PL4         42         PL3           43         PL2         44         PL1         45         PL0         46         PK7         47         PK6         48         PK5         49         PK4           50         PK3         51         PK2         52         PK1         53         PK0         54         PJ7         63         PK6         56         PJ3           57         PJ4         58         PJ3         59         PJ2         60         PJ1         61         PJ0         62         PJ7         63         PI6           64         PI5         65         PI4         66         PI3         67         PI2         68         PI1         77         PH0         78         PG7         79         PG6         80         PG5         81         PG4         82         PG3         83         PG2         84         PG1         98         PE3         97         PE4         98         PE3         99         PE2         100         PE1         101         PE0         102	22 PN6	23 PN5	24 PN4	25 PN3	26 PN2	27 PN1	28 PN0
43       PL2       44       PL1       45       PL0       46       PK7       47       PK6       48       PK5       49       PK4         50       PK3       51       PK2       52       PK1       53       PK0       54       PJ7       55       PJ6       56       PJ5         57       PJ4       58       PJ3       59       PJ2       60       PJ1       61       PJ0       62       PJ7       63       PI6         64       PJ5       65       PI4       66       PI3       67       PI2       68       PI1       69       PI0       70       PH7         71       PH6       72       PH5       73       PH4       74       PH3       75       PH2       76       PH1       77       PH0         78       PG7       79       PG6       80       PC5       81       PC4       82       PG3       83       PG2       84       PG1         79       PE6       86       PF7       87       PF6       88       PF5       89       PF4       90       PF3       91       PF2         92       PF1       93       PF0	29 PM7	30 PM6	31 PM5	32 PM4	33 PM3	34 PM2	35 PM1
50         PK3         51         PK2         52         PK1         53         PK0         54         PJ7         55         PJ6         66         PJ5           57         PJ4         58         PJ3         59         PJ2         60         PJ1         61         PJ0         62         PI7         63         PI6           64         PI5         65         PI4         66         PI3         67         PI2         68         PI1         69         PI0         70         PH7           71         PH6         72         PH5         73         PH4         74         PH3         75         PH2         76         PH1         77         PH0           78         PG7         79         PG6         80         PG5         81         PG4         82         PG3         83         PG2         84         PG1           92         PF1         93         PF0         94         PE7         95         PE6         96         PE5         97         PE4         98         PE3           99         PE2         100         PE1         101         PE0         102         PD7         103 <td< td=""><td>36 PM0</td><td>37 PLLSEL</td><td>38 PL7</td><td>39 PL6</td><td>40 PL5</td><td>41 PL4</td><td>42 PL3</td></td<>	36 PM0	37 PLLSEL	38 PL7	39 PL6	40 PL5	41 PL4	42 PL3
57       PJ4       58       PJ3       59       PJ2       60       PJ1       61       PJ0       62       PI7       63       PI6         64       PI5       65       PI4       66       PI3       67       PI2       68       PI1       69       PI0       70       PH7         71       PH6       72       PH5       73       PH4       74       PH3       75       PH2       76       PH1       77       PH0         78       PG7       79       PG6       80       PG5       81       PG4       82       PG3       83       PG2       84       PG1         85       PG0       86       PF7       87       PF6       88       PF5       89       PF4       90       PF3       91       PF2         92       PF1       93       PF0       94       PE7       95       PE6       96       PE5       97       PE4       98       PE3       99       PE2       100       PE1       101       PE0       102       PD7       103       PD6       104       PD5       105       PD4         106       PC2       121       PC1       122 <td>43 PL2</td> <td>44 PL1</td> <td>45 PL0</td> <td>46 PK7</td> <td>47 PK6</td> <td>48 PK5</td> <td>49 PK4</td>	43 PL2	44 PL1	45 PL0	46 PK7	47 PK6	48 PK5	49 PK4
64         PI5         65         PI4         66         PI3         67         PI2         68         PI1         69         PI0         70         PH7           71         PH6         72         PH5         73         PH4         74         PH3         75         PH2         76         PH1         77         PH0           78         PG7         79         PG6         80         PG5         81         PG4         82         PG3         83         PG2         84         PG1           85         PG0         86         PF7         87         PF6         88         PF5         89         PF4         90         PF3         91         PF2           92         PF1         93         PF0         94         PE7         95         PE6         96         PE5         97         PE4         98         PE3           99         PE2         100         PE1         101         PE0         102         PD7         103         PD5         110         PD5         110         PD5         112         PC3         112         PC3         112         PC5         113         PC4         119         PC3	50 PK3	51 PK2	52 PK1	53 PK0	54 PJ7	55 PJ6	56 PJ5
71       PH6       72       PH5       73       PH4       74       PH3       75       PH2       76       PH1       77       PH0         78       PG7       79       PG6       80       PG5       81       PG4       82       PG3       83       PG2       84       PG1         85       PG0       86       PF7       87       PF6       88       PF5       89       PF4       90       PF3       91       PF2         92       PF1       93       PF0       94       PE7       95       PE6       96       PE5       97       PE4       98       PE3         99       PE2       100       PE1       101       PE0       102       PD7       103       PD6       104       PD5       105       PD4         106       PD3       107       PD2       108       PD1       109       PD0       110       PCST4       111       PCST3       112       PCST2         113       PC21       121       PC0       123       PB7       124       PB6       125       PB5       126       PB4         127       PB3       128       PB2       137<	57 PJ4	58 PJ3	59 PJ2	60 PJ1	61 PJ0	62 PI7	63 PI6
78         PG7         79         PG6         80         PG5         81         PG4         82         PG3         83         PG2         84         PG1           85         PG0         86         PF7         87         PF6         88         PF5         89         PF4         90         PF3         91         PF2           92         PF1         93         PF0         94         PE7         95         PE6         96         PE5         97         PE4         98         PE3           99         PE2         100         PE1         101         PE0         102         PD7         103         PD6         104         PD5         105         PD4           106         PD3         107         PD2         108         PD1         109         PD0         110         PCST4         111         PCST3         112         PCST2           113         PC2         121         PC1         122         PC0         123         PB7         132         PB6         133         PA5           134         PA4         135         PA3         136         PA2         137         PA1         138         PA0	64 PI5	65 PI4	66 PI3	67 Pl2	68 PI1	69 PI0	70 PH7
85         PG0         86         PF7         87         PF6         88         PF5         89         PF4         90         PF3         91         PF2           92         PF1         93         PF0         94         PE7         95         PE6         96         PE5         97         PE4         98         PE3           99         PE2         100         PE1         101         PE0         102         PD7         163         PD6         104         PD5         105         PD4           106         PD3         107         PD2         108         PD1         109         PD0         110         PCST4         111         PCST3         112         PCST2           113         PCST1         114         PCST0         115         PC7         116         PC6         117         PC5         118         PC4         119         PC3           120         PC2         121         PC1         122         PC0         123         PB7         124         PB6         125         PB5         126         PB4           131         PA4         135         PA3         136         PA2         137         PA1	71 PH6	72 PH5	73 PH4	74 PH3	75 PH2	76 PH1	77 PH0
92         PF1         93         PF0         94         PE7         95         PE6         96         PE5         97         PE4         98         PE3           99         PE2         100         PE1         101         PE0         102         PD7         103         PD6         104         PD5         105         PD4           106         PD3         107         PD2         108         PD1         109         PD0         110         PCST4         111         PCST3         112         PCST2           113         PCST1         114         PCST0         115         PC7         116         PC6         147         PC5         118         PC4         119         PC3           120         PC2         121         PC1         122         PC0         123         PB7         124         PB6         125         PB5         126         PB4           127         PB3         128         PB2         129         PB1         130         PB0         131         PA7         132         PA6         133         PA5           134         PA4         135         PA3         136         PA2         137	78 PG7	79 PG6	80 PG5	81 PG4	82 PG3	83 PG2	84 PG1
99         PE2         100         PE1         101         PE0         102         PD7         103         PD6         104         PD5         105         PD4           106         PD3         107         PD2         108         PD1         109         PD0         110         PCST4         111         PCST3         112         PCST2           113         PCST1         114         PCST0         115         PC7         116         PC6         117         PC5         118         PC4         119         PC3           120         PC2         121         PC1         122         PC0         123         PB7         124         PB6         125         PB5         126         PB4           127         PB3         128         PB2         129         PB1         130         PB0         131         PA7         132         PA6         133         PA5           134         PA4         135         PA3         136         PA2         137         PA1         138         PA0         139         P97         140         P96           141         P95         142         P94         143         P93         144	85 PG0	86 PF7	87 PF6	88 PF5	89 PF4	90 PF3	91 PF2
106 PD3         107 PD2         108 PD1         109 PD0         110 PCST4         111 PCST3         112 PCST2           113 PCST1         114 PCST0         115 PC7         116 PC6         117 PC5         118 PC4         119 PC3           120 PC2         121 PC1         122 PC0         123 PB7         124 PB6         125 PB5         126 PB4           127 PB3         128 PB2         129 PB1         130 PB0         131 PA7         132 PA6         133 PA5           134 PA4         135 PA3         136 PA2         137 PA1         138 PA0         139 P97         140 P96           141 P95         142 P94         143 P93         144 P92         145 P91         146 P90         147 P87           148 P86         149 P85         150 P84         151 P83         152 P82         153 P81         154 P80           155 P77         156 P76         157 P75         158 P74         169 P73         160 P72         161 P71           162 P70         163 P67         164 P66         165 P65         166 P64         167 P63         168 P62           169 P61         170 P60         171 P57         172 P56         173 P55         174 P54         175 P53           176 P52         177 P51         178 P50 <t< td=""><td>92 PF1</td><td>93 PF0</td><td>94 PE7</td><td>95 PE6</td><td>96 PE5</td><td>97 PE4</td><td>98 PE3</td></t<>	92 PF1	93 PF0	94 PE7	95 PE6	96 PE5	97 PE4	98 PE3
113 PCST1114 PCST0115 PC7116 PC6117 PC5118 PC4119 PC3120 PC2121 PC1122 PC0123 PB7124 PB6125 PB5126 PB4127 PB3128 PB2129 PB1130 PB0131 PA7132 PA6133 PA5134 PA4135 PA3136 PA2137 PA1138 PA0139 P97140 P96141 P95142 P94143 P93144 P92145 P91146 P90147 P87148 P86149 P85150 P84151 P83152 P82153 P81154 P80155 P77156 P76157 P75158 P74159 P73160 P72161 P71162 P70163 P67164 P66165 P65166 P64167 P63168 P62169 P61170 P60171 P57172 P56173 P55174 P54175 P53176 P52177 P51178 P50179 P47180 P46181 P45182 P44183 P43184 P42185 P41186 P40187 P37188 P36189 P35190 P34191 P33192 P32200 P22201 P21202 P20203 P17204 P16205 P15206 P14207 P13208 P12209 P11210 P10211 P07212 P06213 P05214 P04215 P03216 P02217 P01218 P00219 NMI220 ENDIAN221 DINT222 DCLK223 BW1224 BW0	99 PE2	100 PE1	101 PE0	102 PD7	103 PD6	104 PD5	105 PD4
120         PC2         121         PC1         122         PC0         123         PB7         124         PB6         125         PB5         126         PB4           127         PB3         128         PB2         129         PB1         130         PB0         131         PA7         132         PA6         133         PA5           134         PA4         135         PA3         136         PA2         137         PA1         138         PA0         139         P97         140         P96           141         P95         142         P94         143         P93         144         P92         145         P91         146         P90         147         P87           148         P86         149         P85         150         P84         151         P83         152         P82         153         P81         154         P80           155         P77         156         P76         157         P75         158         P74         159         P73         160         P72         161         P71           162         P70         163         P67         164         P66         165 <t< td=""><td>106 PD3</td><td>107 PD2</td><td>108 PD1</td><td>109 PD0</td><td>110 PCST4</td><td>111 PCST3</td><td>112 PCST2</td></t<>	106 PD3	107 PD2	108 PD1	109 PD0	110 PCST4	111 PCST3	112 PCST2
127 PB3128 PB2129 PB1130 PB0131 PA7132 PA6133 PA5134 PA4135 PA3136 PA2137 PA1138 PA0139 P97140 P96141 P95142 P94143 P93144 P92145 P91146 P90147 P87148 P86149 P85150 P84151 P83152 P82153 P81154 P80155 P77156 P76157 P75158 P74159 P73160 P72161 P71162 P70163 P67164 P66165 P65166 P64167 P63168 P62169 P61170 P60171 P57172 P56173 P55174 P54175 P53176 P52177 P51178 P50179 P47180 P46181 P45182 P44183 P43184 P42185 P41186 P40187 P37188 P36189 P35190 P34191 P33192 P32193 P31194 P30195 P27196 P26197 P25198 P24199 P23200 P22201 P21202 P20203 P17204 P16205 P15206 P14207 P13208 P12209 P11210 P10211 P07212 P06213 P05214 P04215 P03216 P02217 P01218 P00219 NMI220 ENDIAN221 DINT222 DCLK223 BW1224 BW0	113 PCST1	114 PCST0	115 PC7	116 PC6	117 PC5	118 PC4	119 PC3
134 PA4       135 PA3       136 PA2       137 PA1       138 PA0       139 P97       140 P96         141 P95       142 P94       143 P93       144 P92       145 P91       146 P90       147 P87         148 P86       149 P85       150 P84       151 P83       152 P82       153 P81       154 P80         155 P77       156 P76       157 P75       158 P74       159 P73       160 P72       161 P71         162 P70       163 P67       164 P66       165 P65       166 P64       167 P63       168 P62         169 P61       170 P60       171 P57       172 P56       173 P55       174 P54       175 P53         176 P52       177 P51       178 P50       179 P47       180 P46       181 P45       182 P44         183 P43       184 P42       185 P41       186 P40       187 P37       188 P36       189 P35         190 P34       191 P33       192 P32       193 P31       194 P30       195 P27       196 P26         197 P25       198 P24       199 P23       200 P22       201 P21       202 P20       203 P17         204 P16       205 P15       206 P14       207 P13       208 P12       209 P11       210 P10         211 P07       212 P06	120 PC2	121 PC1	122 PC0	123 PB7	124 PB6	125 PB5	126 PB4
141P95142P94143P93144P92145P91146P90147P87148P86149P85150P84151P83152P82153P81154P80155P77156P76157P75158P74159P73160P72161P71162P70163P67164P66165P65166P64167P63168P62169P61170P60171P57172P56173P55174P54175P53176P52177P51178P50179P47180P46181P45182P44183P43184P42185P41186P40187P37188P36189P35190P34191P33192P32193P31194P30195P27196P26197P25198P24199P23200P22201P21202P20203P17204P16205P15206P14207P13208P12209P11210P10211P07212P06213P05214P04215P03216P02217P01218P00219NMI220ENDIAN221	127 PB3	128 PB2	129 PB1	130 PB0	131 PA7	132 PA6	133 PA5
148P86149P85150P84151P83152P82153P81154P80155P77156P76157P75158P74159P73160P72161P71162P70163P67164P66165P65166P64167P63168P62169P61170P60171P57172P56173P55174P54175P53176P52177P51178P50179P47180P46181P45182P44183P43184P42185P41186P40187P37188P36189P35190P34191P33192P32193P31194P30195P27196P26197P25198P24199P23200P22201P21202P20203P17204P16205P15206P14207P13208P12209P11210P10211P07212P06213P05214P04215P03216P02217P01218P00219NMI220ENDIAN221DINT222DCLK223BW1224BW0	134 PA4	135 PA3	136 PA2	137 PA1	138 PA0	139 P97	140 P96
155P77156P76157P75158P74159P73160P72161P71162P70163P67164P66165P65166P64167P63168P62169P61170P60171P57172P56173P55174P54175P53176P52177P51178P50179P47180P46181P45182P44183P43184P42185P41186P40187P37188P36189P35190P34191P33192P32193P31194P30195P27196P26197P25198P24199P23200P22201P21202P20203P17204P16205P15206P14207P13208P12209P11210P10211P07212P06213P05214P04215P03216P02217P01218P00219NMI220ENDIAN221DINT222DCLK223BW1224BW0	141 P95	142 P94	143 P93	144 P92	145 P91	146 P90	147 P87
162P70163P67164P66165P65166P64167P63168P62169P61170P60171P57172P56173P55174P54175P53176P52177P51178P50179P47180P46181P45182P44183P43184P42185P41186P40187P37188P36189P35190P34191P33192P32193P31194P30195P27196P26197P25198P24199P23200P22201P21202P20203P17204P16205P15206P14207P13208P12209P11210P10211P07212P06213P05214P04215P03216P02217P01218P00219NMI220ENDIAN221DINT222DCLK223BW1224BW0	148 P86	149 P85	150 P84	151 P83	152 P82	153 P81	154 P80
169P61170P60171P57172P56173P55174P54175P53176P52177P51178P50179P47180P46181P45182P44183P43184P42185P41186P40187P37188P36189P35190P34191P33192P32193P31194P30195P27196P26197P25198P24199P23200P22201P21202P20203P17204P16205P15206P14207P13208P12209P11210P10211P07212P06213P05214P04215P03216P02217P01218P00219NMI220ENDIAN221DINT222DCLK223BW1224BW0	155 P77	156 P76	157 P75	158 P74	159 P73	160 P72	161 P71
176P52177P51178P50179P47180P46181P45182P44183P43184P42185P41186P40187P37188P36189P35190P34191P33192P32193P31194P30195P27196P26197P25198P24199P23200P22201P21202P20203P17204P16205P15206P14207P13208P12209P11210P10211P07212P06213P05214P04215P03216P02217P01218P00219NMI220ENDIAN221DINT222DCLK223BW1224BW0	162 P70	163 P67	164 P66	165 P65	166 P64	167 P63	168 P62
183       P43       184       P42       185       P41       186       P40       187       P37       188       P36       189       P35         190       P34       191       P33       192       P32       193       P31       194       P30       195       P27       196       P26         197       P25       198       P24       199       P23       200       P22       201       P21       202       P20       203       P17         204       P16       205       P15       206       P14       207       P13       208       P12       209       P11       210       P10         211       P07       212       P06       213       P05       214       P04       215       P03       216       P02       217       P01         218       P00       219       NMI       220       ENDIAN       221       DINT       222       DCLK       223       BW1       224       BW0	169 P61	170 P60	171 P57	172 P56	173 P55	174 P54	175 P53
190 P34191 P33192 P32193 P31194 P30195 P27196 P26197 P25198 P24199 P23200 P22201 P21202 P20203 P17204 P16205 P15206 P14207 P13208 P12209 P11210 P10211 P07212 P06213 P05214 P04215 P03216 P02217 P01218 P00219 NMI220 ENDIAN221 DINT222 DCLK223 BW1224 BW0	176 P52	177 P51	178 P50	179 P47	180 P46	181 P45	182 P44
197 P25198 P24199 P23200 P22201 P21202 P20203 P17204 P16205 P15206 P14207 P13208 P12209 P11210 P10211 P07212 P06213 P05214 P04215 P03216 P02217 P01218 P00219 NMI220 ENDIAN221 DINT222 DCLK223 BW1224 BW0	183 P43	184 P42	185 P41	186 P40	187 P37	188 P36	189 P35
204 P16205 P15206 P14207 P13208 P12209 P11210 P10211 P07212 P06213 P05214 P04215 P03216 P02217 P01218 P00219 NMI220 ENDIAN221 DINT222 DCLK223 BW1224 BW0	190 P34	191 P33	192 P32	193 P31	194 P30	195 P27	196 P26
211 P07         212 P06         213 P05         214 P04         215 P03         216 P02         217 P01           218 P00         219 NMI         220 ENDIAN         221 DINT         222 DCLK         223 BW1         224 BW0	197 P25	198 P24	199 P23	200 P22	201 P21	202 P20	203 P17
218 P00 219 NMI 220 ENDIAN 221 DINT 222 DCLK 223 BW1 224 BW0	204 P16	205 P15	206 P14	207 P13	208 P12	209 P11	210 P10
	211 P07	212 P06	213 P05)	214 P04	215 P03	216 P02	217 P01
225 BUSMD	218 P00	219 NMI	220 ENDIAN	221 DINT	222 DCLK	223 BW1	224 BW0
	225 BUSMD						

Table 20.2 JTAG Scan Sequence Relative to the TMP19A63 Processor Pins

Note: The pins shown above are JTAG scan available.

# 20.4 Instructions Supported by the JTAG Controller Cells

This section describes the instructions supported by the JTAG controller cells of the TMP19A63.

## 20.4.1 EXTEST instruction

The EXTEST instruction is used for external interconnect test. If this instruction is issued, the BSR cells at output pins output test patterns in the Update-DR state, and the BSR cells at input pins capture test results in the Capture-DR state.

Before the EXTEST instruction is selected, the boundary scan register is usually initialized using the SAMPLE/PRELOAD instruction. If the boundary scan register has not been initialized, there is the possibility that indeterminate data will be transmitted in the Update-DR state and bus conflicts may occur between ICs. Fig. 20.8 shows the flow of data while the EXTEST instruction is selected.



Fig.20.8 Flow of Data While the EXTEST Instruction Is Selected

The basic external interconnect test procedure is as follows:

- 1. Initialize the TAP controller to put it in the Test-Logic-Reset state.
- 2. Load the SAMPLE/PRELOAD instruction into the instruction register. This allows the boundary scan register to be connected between TDI and TDO.
- 3. Initialize the boundary scan register by shifting in determinate data.
- 4. Load the initial test data into the boundary scan register.
- 5. Load the EXTEST instruction into the instruction register.
- 6. Capture the data applied to the input pin and input it into the boundary scan register.
- 7. Shift out the captured data while simultaneously shifting in the next test pattern.
- 8. Output the test pattern that was shifted into the boundary scan register for output to the output pin.

Repeat steps 6 through 8 for each test pattern.

(Note) When using EXTEST instruction, please note that malfunction may occur depending on the data input from terminal pin on ground that CPU is in operating state and make sure to execute the test after the system reset is released

### 20.4.2 SAMPLE/PRELOAD Instructions

The SAMPLE and PRELOAD instructions are used to connect TDI and TDO by way of the boundary scan register. This instruction has two functions.

The SAMPLE instruction is used to monitor the I/O pad of an IC. While SAMPLE is
monitoring the I/O pads, the internal logic is not disconnected from the I/O pins of an IC.
This instruction is executed in the Capture-DR state. A main function of SAMPLE is to read
values of the I/O pins of an IC at the rising edge of TCK during normal functional operation.
Fig. 20-9 shows the flow of data while the SAMPLE instruction is selected.



 The PRELOAD instruction is used to initialize the boundary scan register before selecting other instructions. For example, the boundary scan register is initialized using PRELOAD before selecting the EXTEST instruction, as previously explained. PRELOAD shifts data into the boundary scan register without affecting the normal operation of the system logic. Fig. 20.10 shows the flow of data while the PRELOAD instruction is selected.



When using the SAMPLE instruction, complete the instruction update during the system reset. After the reset is released, do not switch the TAP instruction.

### 20.4.3 BYPASS instruction

When conducting the type of test in which an IC does not need to be controlled or monitored, the BYPASS instruction is used to form the shortest serial path bypassing an IC by connecting the bypass register between JTDI and JTDO. The BYPASS instruction does not affect the normal operation of the system logic implemented on a chip. Data passes through the bypass register while the BYPASS instruction is selected, as shown in Fig. 20.11.



Fig. 20.11 Flow of Data While the Bypass Register Is Selected

## 20.5 Points to Note

This section describes the points to note regarding JTAG boundary scan operations implemented in this processor.

- The X2 and X1 signal pads do not comply with JTAG.
- To reset the JTAG circuit, execute either of the following:
  - 1 Initialize the JTAG circuit by asserting TRST, and then negate TRST.
  - ² Set the TMS pin to "1," and supply TCK with more than 5 clocks.

# 21. Flash Memory Operation

This section describes the hardware configuration and operation of the flash memory.

### Flash Memory

### Features

1) Memory capacity

The TMP19A63 F10XBG device contains 8M bits (1024kB) of flash memory capacity. The memory area consists of 8 independent memory blocks (128 kB  $\times$  8) to enable independent write access to each block. When the CPU is to access the internal flash memory, 32-bit data bus width is used.

- Flash memory access
   Interleave access is used in this device.
- 3) Write/erase time

Write time: 1sec/Chip (Typ) 0.5sec/128Kbyte (Typ,)

Erase: 0.2sec/Chip (Typ) 100msec/128Kbyte(Typ.)

(Note) The above values are theoretical values not including data transfer time. The write time per chip depends on the write method to be used by the user.

### Programming method

The onboard programming mode is available for the user to program (rewrite) the device while it is mounted on the user's board.

4-1) User boot mode

The user's original rewriting method can be supported.

4-2) Single boot mode

The rewriting method to use serial data transfer (Toshiba's unique method) can be supported.

Rewriting method

The flash memory included in this device is generally compliant with the applicable JEDEC standards except for some specific functions. Therefore, if the user is currently using an external flash memory device, it is easy to implement the functions into this device. Furthermore, the user is not required to build his/her own programs to realize complicated write and erase functions because such functions are automatically performed using the circuits already built-in the flash memory chip.

This device is also implemented with a read-protect function to inhibit reading flash memory data from any external writer device. On the other hand, rewrite protection is available only through command-based software programming; any hardware setting method to apply +12VDC is not supported. The above described protection function is automatically enabled when all the two area are configured for protection. When the user removes protection, the internal data is automatically erased before the protection is actually removed.



Fig. 21.1 Block Diagram of the Flash Memory Section

# **Operation Mode**

This device has two operation modes including the mode not to use the internal flash memory.

	Table21.1 Operation Modes
Operation mode	Operation details
Single chip mode	After reset is cleared, it starts up from the internal flash memory.
Normal mode	In this operation mode, two different modes, i.e., the mode to execute user application programs and the mode to rewrite the flash memory onboard the user's card, are defined. The former is referred to as "normal mode" and the latter "user boot mode."
User boot mode	The user can uniquely configure the system to switch between these two modes. For example, the user can freely design the system such that the normal mode is selected when the port "00" is set to "1" and the user boot mode is selected when it is set to "0." The user should prepare a routine as part of the application program to make the decision on the selection of the modes.

Among the flash memory operation modes listed in the above table, the User Boot mode is the programmable modes. This mode is referred to as "Onboard Programming" modes where onboard rewriting of internal flash memory can be made on the user's card.

Either the Single Chip or Single Boot operation mode can be selected by externally setting the level of the  $\overrightarrow{\text{BOOT}}$  input pin while the device is in reset status.

After the level is set, the CPU starts operation in the selected operation mode when the reset condition is removed. Regarding the BOOT pin, be sure not to change the levels during operation once the mode is selected.

The mode setting method and the mode transition diagram are shown below:



### 21.2.1 Reset Operation

To reset the device, ensure that the power supply voltage is within the operating voltage range, that the internal oscillator has been stabilized, and that the  $\overrightarrow{\text{RESET}}$  input is held at "0" for a minimum duration of 12 system clocks (1.8 µs with 54MHz operation; the "1/8" clock gear mode is applied after reset).

(Note 1)	Regarding power-on reset of devices with internal flash memory;
	For devices with internal flash memory, it is necessary to apply "0" to the RESET
	inputs upon power on for a minimum duration of 500 microseconds regardless of the operating frequency.
(Note 2)	While flash programming or deletion is in progress, at least 0.5 microseconds of reset period is required regardless of the system clock frequency.

### 21.2.2 DSU (EJTAG) - PROBE Interface

This interface is used when the DSU probe is used in debugging. This is the dedicated interface for connection to the DSU probe. Please refer to the operation manual for the DSU probe you are going to use for details of debugging procedures to use the DSU probe. Here, the function to enable/disable the DSU probe in the DSU (EJTAG) mode is described.

1) Protect function

This device allows use of on-board DSU probes for debugging. To facilitate this, the device is implemented with a protection function to prevent easy reading of the internal flash memory by a third party other than the authorized user. By enabling the protection function, it becomes impossible to read the internal flash memory from a DSU probe. Use this function together with the protection function of the internal flash memory itself as described later.

2) DSU probe enable/disable function

This device allows use of on-board DSU probes for debugging operations. To facilitate this, the device is implemented with the "DSU probe inhibit" function (hereafter referred to as the **"DSU inhibit" function**) to prevent easy reading of the internal flash memory by a third party other than the authorized user. By enabling the DSU inhibit function, use of any DSU probe becomes impossible.

3) DSU enable (Enables use of DSU probes for debugging)

In order to prevent the DSU inhibit function from being accidentally removed by system runaway, etc., the method to cancel the DSU inhibit function is in double protection structure so it is necessary to set SEQMOD<DSUOFF> to "0" and also write the protect code "0x0000_00C5" to the DSU protect control register SEQCNT to cancel the function. Then, debugging to use a DSU probe can be allowed. While power to the device is still applied, setting SEQMOD <SEQON> to "1" and writing "0x0000_00C5" to the SEQCNT register will enable the protection function again.

		$\mathcal{A}$	/ 6	5	774	3	2	1	0		
SEQMOD	Bit Symbol										
(0xFFFF_E510)	Read/Write		R								
	After reset		0								
	Function	$\sim$	Always reads "0."								
									0: DSU disable		
	The state of the s	15	/1/4	13	12	11	10	9	8		
(	Bit Symbol										
	Read/Write	R									
	After reset	0									
	Function	$( \land [ ] )$	Always reads "0."								
		23	22	21	20	19	18	17	16		
	Bit Symbol										
$\sim$	Read/Write					R					
	After reset	0									
	Function										
		31	30	29	28	27	26	25	24		
	Bit Symbol										
	Read/Write	R									
	After reset	0									
	Function		Always reads "0."								

Table 21.3 DSU Protect Mode Register

(Note 1) This register must be 32-bit accessed.(Note 2) This register is initialized only by power-on reset. It is not initialized by a normal reset.

		Tabl	0 21.4 00		Control Re	Sgister					
		7	6	5	4	3	2	1	0		
EQCNT	Bit Symbol										
(0xFFFF_E514)	Read/Write	Ŵ									
	After reset										
	Function	Write "0x0000_00C5".									
		15	14	13	12	11	10	9	8		
	Bit Symbol										
	Read/Write	W									
	After reset					~ (	7/				
	Function	Write "0x0000_00C5".									
		23	22	21	20	19	18	17	16		
	Bit Symbol						1 M				
	Read/Write	W									
	After reset				7						
	Function	Write "0x0000_00C5".									
		31	30	29	287	27	26	25	24		
	Bit Symbol					))	$\mathcal{O}$ (C	20			
	Read/Write	W									
	After reset				$( \ )$		$\square$				
	Function	Write "0x0000_00C5".									

Table 21.4 DSU Protect Control Register

(Note 1)

This register must be 32-bit accessed.

4) Example use by the user

An example to use a DSU probe together with this function is shown as follows:



Fig. 21.3 Example Use of DSU Inhibit Function

## 21.2.3 User Boot Mode (Single chip mode)

User Boot mode is to use flash memory programming routine defined by users. It is used when the data transfer buses for flash memory program code on the old application and for serial I/O are different. It operates at the single chip mode; therefore, a switch from normal mode in which user application is activated at the single chip mode to User Boot Mode for programming flash is required. Specifically, add a mode judgment routine to a reset program in the old application.

The condition to switch the modes needs to be set by using the I/O of 19A63 in conformity with the user's system setup condition. Also, flash memory programming routine that the user uniquely makes up needs to be set in the new application. This routine is used for programming after being switched to User Boot Mode. The execution of the programming routine must take place while it is stored in the area other than the flash memory since the data in the internal flash memory cannot be read out during delete/ writing mode. Once re-programming is complete, it is recommended to protect relevant flash blocks from accidental corruption during subsequent Single-Chip (Normal mode) operations. All the interruption including a non-maskable are inhibited at User Boot Mode.

(1-A) and (1-B) are the examples of programming with routines in the internal flash memory and in the external memory. For a detailed description of the erase and program sequence, refer to 21.3 On-board Programming of Flash Memory (Rewrite/Erase).

User Boot Mode

(1-A) Storing a Programming Routine in the Flash Memory

### (Step-1)

Determine the conditions (e.g., pin states) required for the flash memory to enter User Boot mode and the I/O bus to be used to transfer new program code. Create hardware and software accordingly. Before installing the TMP19A63 on a printed circuit board, write the following three program routines into an arbitrary flash block using programming equipment.

- (a) Mode judgment routine: Code to determine whether or not to switch to User Boot mode
- (b) Programming routine: Code to download new program code from a host controller and re-program the flash memory
- (c) Copy routine: Code to copy the flash programming routine from the TMP19A63 flash memory to either the TMP19A63 on-chip RAM or external memory device.



#### (Step-2)

After RESET is released, the reset procedure determines whether to put the TMP19A63 flash memory in User Boot mode. If mode switching conditions are met, the flash memory enters User Boot mode. (All interrupts including NMI must be disabled while in User Boot mode.)



#### (Step-3)

Once transition to User Boot mode is occurred, execute the copy routine (c) to copy the flash programming routine (b) to either the TMP19A63 on-chip RAM or an external memory device. (In the following figure, the on-chip RAM is used).



#### (Step-4)

Jump to the flash programming routine in the on-chip RAM. Cancel the protection for overwriting to erase a flash block containing the old application program code.



### (Step-5)

Continue executing the flash programming routine to download new program code from the host controller and program it into the erased flash block. Once programming is complete, turn on the protection of that flash block.



### (Step-6)

Set RESET to "0" to reset the TMP19A63. Upon reset, the on-chip flash memory is put in Normal mode. After RESET is released, the CPU will start executing the new application program code.



(1-B) Transferring a Programming Routine from an External Host

#### (Step-1)

Determine the conditions (e.g., pin states) required for the flash memory to enter User Boot mode and the I/O bus to be used to transfer new program code. Create hardware and software accordingly. Before installing the TMP19A63 on a printed circuit board, write the following two program routines into an arbitrary flash block using programming equipment.

- (a) Mode judgment routine: Code to determine whether or not to switch to User Boot mode
- (b) Transfer routine: Code to download new program code from a host controller

Also, prepare a programming routine shown below on the host controller:

(c) Programming routine: Code to download new program code from an external host controller and re-program the flash memory



#### (Step-2)

After RESET is released, the reset procedure determines whether to put the TMP19A63 flash memory in User Boot mode. If mode switching conditions are met, the flash memory enters User Boot mode. (All interrupts including NMI must be disabled while in User Boot mode).



### (Step-3)

Once User Boot mode is entered, execute the transfer routine (b) to download the flash programming routine (c) from the host controller to either the TMP19A63 on-chip RAM or an external memory device. (In the following figure, the on-chip RAM is used).



### (Step-4)

Jump to the flash programming routine in the on-chip RAM. Cancel the protection for overwriting to erase a flash block containing the old application program code.



### (Step-5)

Continue executing the flash programming routine (c) to download new program code from the host controller and program it into the erased flash block. Once programming is complete, turn on the protection of that flash block.



### (Step-6)

Set RESET to "0" to reset the TMP19A63. Upon reset, the on-chip flash memory is put in Normal mode. After RESET is released, the CPU will start executing the new application program code.


### 21.3 On-board Programming of Flash Memory (Rewrite/Erase)

In on-board programming, the CPU is to execute software commands for rewriting or erasing the flash memory. The rewrite/erase control program should be prepared by the user beforehand. Because the flash memory content cannot be read while it is being written or erased, it is necessary to run the rewrite/erase program from the internal RAM or from an external memory device after shifting to the user boot mode. In this section, flash memory addresses are represented in virtual addresses unless otherwise noted.

### 21.3.1 Flash Memory

Except for some functions, writing and erasing flash memory data are in accordance with the standard JEDEC commands. In writing or erasing, use the SW command of the CPU to enter commands to the flash memory. Once the command is entered, the actual write or erase operation is automatically performed internally.

Major functions	Description			
Automatic page program	Writes data automatically.			
Automatic chip erase	Erases the entire area of the flash memory automatically.			
Automatic block erase	Erases a selected block automatically. (128 kB at a time)			
Write protect	The write or erase function can be individually inhibited for each block (of 128 kB).			
	When all blocks are set for protection, the entire protection function is automatically enabled.			
Protect function	By writing a 4-bit protection code, the write or erase function can be individually inhibited for			
	each block.			

### Table 21.5 Flash Memory Functions

Note that addressing of operation commands is different from the case of standard commands due to the specific interface arrangements with the CRU as detailed operation of the user boot mode and RAM transfer mode is described later. Also note that the flash memory is written in 32-bit blocks. So, 32-bit (word) data transfer commands must be used in writing the flash memory.

(1) Block configuration

				128 words
	Protect area 3	0xBFCF_FFFF	Block 7 128KB	x 256
			Block 6 128KB	128 words
Z~ N	Protect area 2	~	Block 5 128KB	
	$\mathcal{A}($		Block 4 128KB	
$\langle (() \rangle \rangle$	Protect area 1		Block 3 128KB	
	( )		Block 2 128KB	
	Protect area 0	-	Block 1 128KB	
		0xBFC0_0000	Block 0 128KB	
	$\searrow$	_		-

Fig.21.4 Block Configuration of Flash Memory

### (2) Basic operation

Generally speaking, this flash memory device has the following two operation modes:

- The mode to read memory data (Read mode)
- The mode to automatically erase or rewrite memory data (Automatic operation)

Transition to the automatic mode is made by executing a command sequence while it is in the memory read mode. In the automatic operation mode, flash memory data cannot be read and any commands stored in the flash memory cannot be executed. In the automatic operation mode, any interrupt or exception generation cannot set the device to the read mode except when a hardware reset is generated. During automatic operation, be sure not to cause any exceptions other than debug exceptions and reset while a DSU probe is connected. Any interrupt or exception generation cannot set the device to the read mode except when a hardware reset is generated.

1) Read

When data is to be read, the flash memory must be set to the read mode. The flash memory will be set to the read mode immediately after power is applied, when CPU reset is removed, or when an automatic operation is normally terminated. In order to return to the read mode from other modes or after an automatic operation has been abnormally terminated, either the Read/reset command (a software command to be described later) or a hardware reset is used. The device must also be in the read mode when any command written on the flash memory is to be executed.

### · Read/reset command and Read command (software reset)

When an automatic operation is abnormally terminated, the flash memory cannot return to the read mode by itself (When FLCS<RDY/BSY> = 0, data read from the flash memory is undefined.) In this case, the Read/reset command can be used to return the flash memory to the read mode. Also, when a command that has not been completely written has to be canceled, the Read/reset command must be used to return to the read mode. The Read command is used to return to the read mode after executing the SW command to write the data " $0x0000_00F0$ " to an arbitrary address of the flash memory.

 With the Read/reset command, the device is returned to the read mode after completing the third bus write cycle.

### 2) Command write

This flash memory uses the command control method. Commands are executed by executing a command sequence to the flash memory. The flash memory executes automatic operation commands according to the address and data combinations applied (refer to Command Sequence).

If it is desired to cancel a command write operation already in progress or when any incorrect command sequence has been entered, the Read/reset command is to be executed. Then, the flash memory will terminate the command execution and return to the read mode.

While commands are generally comprised of several bus cycles, the operation to apply the SW command to the flash memory is called "bus write cycle." The bus write cycles are to be in a specific sequential order and the flash memory will perform an automatic operation when the sequence of the bus write cycle data and address of a command write operation is in accordance

with a predefined specific sequence. If any bus write cycle does not follow a predefined command write sequence, the flash memory will terminate the command execution and return to the read mode. The address [31:21] in each bus write cycle should be the virtual address [31:21] of command execution. It will be explained later for the address bits [20:8].

(Note 1) Command sequences are executed from outside the flash memory area.

- (Note 2) The interval between bus write cycles for this device must be <u>15 system clock cycles or</u> <u>longer</u>. The command sequencer in the flash memory device requires a certain time period to recognize a bus write cycle. If more than one bus write cycles are executed within this time period, normal operation cannot be expected. For adjusting the applicable bus write cycle interval using a software timer to be operated at the operating frequency, use the section <u>10</u> "ID-Read" to check for the appropriateness.
- (Note 3) Between the bus write cycles, never use any load command (such as LW, LH, or LB) to the flash memory or perform a DMA transmission by specifying the flash area as the source address. Also, don't execute a Jump command to the flash memory. While a command sequence is being executed, don't generate any interrupt such as maskable interrupts (except debug exceptions when a DSU probe is connected).

If such an operation is made, it can result in an unexpected read access to the flash memory and the command sequencer may not be able to correctly recognize the command. While it could cause an abnormal termination of the command sequence, it is also possible that the written command is incorrectly recognized.

(Note 4) The SYNC command must be executed immediately after the SW command for each bus write cycle.

- (Note 5) For the command sequencer to recognize a command, the device must be in the read mode prior to executing the command. Be sure to check before the first bus write cycle that the FLCS[0] RDY/BSY bit is set to "1." It is recommended to subsequently execute a Read command.
- (Note 6) Upon issuing a command, if any address or data is incorrectly written, be sure to perform a

system reset operation or issue a reset command to return to the read mode again.

3) Reset

### Hardware reset

The flash memory has a reset input as the memory block and it is connected to the CPU reset signal. Therefore, when the RESET input pin of this device is set to  $V_{IL}$  or when the CPU is reset due to any overflow of the watch dog timer, the flash memory will return to the read mode terminating any automatic operation that may be in progress. The CPU reset is also used in returning to the read mode when an automatic operation is abnormally terminated or when any mode set by a command is to be canceled. It should also be noted that applying a hardware reset during an automatic operation can result in incorrect rewriting of data. In such a case, be sure to perform the rewriting again.

Refer to Section 21.2.1 "Reset Operation" for CPU reset operations. After a given reset input, the CPU will read the reset vector data from the flash memory and starts operation after the reset is removed.

### 4) Automatic Page Programming

Writing to a flash memory device is to make "1" data cells to "0" data cells. Any "0" data cell cannot be changed to a "1" data cell. For making "0" data cells to "1" data cells, it is necessary to perform an erase operation.

The automatic page programming function of this device writes data in 128 word blocks. A 128 word block is defined by a same [31:9] address and it starts from the address [8:0] = 0 and ends at the address [8:0] = 0x1FF. This programming unit is hereafter referred to as a "page."

Writing to data cells is automatically performed by an internal sequencer and no external control by the CPU is required. The state of automatic page programming (whether it is in writing operation or not) can be checked by the FLCS [0] <RDY/BSY> register.

Also, any new command sequence is not accepted while it is in the automatic page programming mode. If it is desired to interrupt the automatic page programming, use the hardware reset function. If the operation is stopped by a hardware reset operation, it is necessary to once erase the page and then perform the automatic page programming again because writing to the page has not been normally terminated.

The automatic page programming operation is allowed only once for a page already erased. No programming can be performed twice or more times irrespective of the data cell value whether it is "1" or "0." Note that rewriting to a page that has been once written requires execution of the automatic block erase or automatic chip erase command before executing the automatic page programming command again. Note that an attempt to rewrite a page twice or more without erasing the content can cause damages to the device.

No automatic verify operation is performed internally to the device. So, be sure to read the data programmed to confirm that it has been correctly written.

The automatic page programming operation starts when the fourth bus write cycle of the command cycle is completed. On and after the fifth bus write cycle, data will be written sequentially starting from the next address of the address specified in the fourth bus write cycle (in the fourth bus write cycle, the page top address will be command written) (32 bits of data is input at a time). Be sure to use the SW command in writing commands on and after the fourth bus cycle. In this, any SW command shall not be placed across word boundary. On and after the fifth bus write cycle, data is command written to the same page area. Even if it is desired to write the page only partially, it is required to perform the automatic page programming for the entire page. In this case, the address input for the fourth bus write cycle shall be set to the top address of the page. Be sure to perform command write operation with the input data set to "1" for the data cells not to be set to "0." For example, if the top address of a page is not to be written, set the input data of the fourth bus write cycle to 0xFFFFFFFF to command write the data.

Once the fourth bus cycle is executed, it is in the automatic programming operation. This condition can be checked by monitoring the register bit FLCS [0] <RDY/BSY> (See Table 21.16). Any new command sequence is not accepted while it is in automatic page programming mode. If it is desired to stop operation, use the hardware reset function. Be careful in doing so because data cannot be written normally if the operation is interrupted. When a single page has been command written normally terminating the automatic page writing process, the FLCS [0] <RDY/BSY> bit is set to "1" and it returns to the read mode.

When multiple pages are to be written, it is necessary to execute the page programming command for each page because the number of pages to be written by a single execution of the automatic page program command is limited to only one page. It is not allowed for automatic page programming to process input data across pages.

Data cannot be written to a protected block. When automatic programming is finished, it automatically returns to the read mode. This condition can be checked by monitoring FLCS [0] <RDY/BSY> (See Table 21.16). If automatic programming has failed, the flash memory is locked in the mode and will not return to the read mode. For returning to the read mode, it is necessary to use the reset command or hardware reset to reset the flash memory or the device. In this case, while writing to the address has failed, it is recommended not to use the device or not to use the block that includes the failed address.

Note: Software reset becomes ineffective in bus write cycles on and after the fourth bus write cycle of the automatic page programming command.

5) Automatic chip erase

The automatic chip erase operation starts when the sixth bus write cycle of the command cycle is completed.

This condition can be checked by monitoring FLCS [0] <RDY/BSY> (See Table 21.16). While no automatic verify operation is performed internally to the device, be sure to read the data to confirm that data has been correctly erased. Any new command sequence is not accepted while it is in an automatic chip erase operation. If it is desired to stop operation, use the hardware reset function. If the operation is forced to stop, it is necessary to perform the automatic chip erase operation again because the data erasing operation has not been normally terminated.

Also, any protected blocks cannot be erased. If all the blocks are protected, the automatic chip erase operation will not be performed and it returns to the read mode after completing the sixth bus read cycle of the command sequence. When an automatic chip erase operation is normally terminated, it automatically returns to the read mode. If an automatic chip erase operation has failed, the flash memory is locked in the mode and will not return to the read mode.

For returning to the read mode, it is necessary to use the reset command or hardware reset to reset the flash memory or the device. In this case, the failed block cannot be detected. It is recommended not to use the device anymore or to identify the failed block by using the block erase function for not to use the identified block anymore.

6) Automatic block erase (128 kB at a time)

The automatic block erase operation starts when the sixth bus write cycle of the command cycle is completed.

This status of the automatic block erase operation can be checked by monitoring FLCS [0] <RDY/BSY> (See Table 21.16). While no automatic verify operation is performed internally to the device, be sure to read the data to confirm that data has been correctly erased. Any new command sequence is not accepted while it is in an automatic block erase operation. If it is desired to stop operation, use the hardware reset function. In this case, it is necessary to perform the automatic block erase operation again because the data erasing operation has not been normally terminated.

Also, any protected blocks cannot be erased. If an automatic block erase operation has

failed, the flash memory is locked in the mode and will not return to the read mode. In this case, use the reset command or hardware reset to reset the flash memory or the device.

7) Automatic programming of protection bits

This device is implemented with four protection bits. The protection bits can be individually set in the automatic programming. The applicable protection bit is specified in the seventh bus write cycle. By automatically programming the protection bits, write and/or erase functions can be inhibited (for protection) individually for each block. The protection status of each block can be checked by the FLCS <BLPRO 3:0> register to be described later. This status of the automatic programming operation to set protection bits can be checked by monitoring FLCS <RDY/BSY> (See Table 21.16). Any new command sequence is not accepted while automatic programming operation, use the hardware reset function. In this case, it is necessary to perform the programming operation again because the protection bits may not have been correctly programmed. If all the protection bits have been programmed, the flash memory cannot be read from any area outside the flash memory such as the internal RAM. In this condition, the FLCS <BLPRO 3:0> bits are set to "0 x F" indicating that it is in the protected state (See Table 21.16). After this, no command writing can be performed.

Note: Software reset is ineffective in the seventh bus write cycle of the automatic protection bit programming command. The FLCS <RDY/BSY> bit turns to "0" after entering the seventh bus write cycle.

8) Automatic erasing of protection bits

Different results will be obtained when the automatic protection bit erase command is executed depending on the status of the protection bits. It depends on the status of FLCS <BLPRO 3:0> before the command execution whether it is set to "0 x F" or to any other values. Be sure to check the value of FLCS <BLPRO 3:0> before executing the automatic protection bit erase command.

• When FLCS <BLPRO 3:0> is set to "0 x F" (all the protection bits are programmed): When the automatic protection bit erase command is command written, the flash memory is automatically initialized within the device. When the seventh bus write cycle is completed, the entire area of the flash memory data cells is erased and then the protection bits are erased. This operation can be checked by monitoring FLCS <RDY/BSY>. If the automatic operation to erase protection bits is normally terminated, FLCS will be set to "0x01." While no automatic verify operation is performed internally to the device, be sure to read the data to confirm that it has been correctly erased. For returning to the read mode while the automatic operation after the seventh bus cycle is in progress, it is necessary to use the hardware reset to reset the flash memory or the device. If this is done, it is necessary to check the status of protection bits by FLCS <BLPRO 3:0> after retuning to the read mode and perform either the automatic protection bit erase, automatic chip erase, or automatic block erase operation, as appropriate.

# • When FLCS <BLPRO 3:0> is other than "0 x F" (not all the protection bits are programmed):

The protection condition can be canceled by the automatic protection bit erase operation. With this device, protection bits can be erased handling two bits at a time. The target bits are specified in the seventh bus write cycle and when the command is completed, the device is

in a condition the two bits are erased. The protection status of each block can be checked by FLCS <BLPRO 3:0> to be described later. This status of the programming operation for automatic protection bits can be checked by monitoring FLCS <RDY/BSY>. When the automatic operation to erase protection bits is normally terminated, the two protection bits of FLCS <BLPRO 3:0> selected for erasure are set to "0."

In any case, any new command sequence is not accepted while it is in an automatic operation to erase protection bits. If it is desired to stop the operation, use the hardware reset function. When the automatic operation to erase protection bits is normally terminated, it returns to the read mode.

The FLCS <RDY/BSY> bit is "0" while in automatic operation and it turns to "1" when the automatic operation is terminated.

 Flash control/ status register
 This resister is used to monitor the status of the flash memory and to indicate the block protection status.

		7	6	5	4	3	2	1	0
FLCS	Bit Symbol	BLPRO3	BLPRO2	BLPRO1	BLPRO0		$\neg$		RDY/BSY
(0xFFFF_E520)	Read/Write		F			R	R	R	R
,	After reset	0	0	0	0	0		0	1
	Function	Protection a	rea setting (fo	or each 256 k	B)	Always	Always	Always	Ready/Busy
		0000:No blo	cks are prote	cted		reads "0."	reads "0."	reads "0."	0: in
		xxx1:Block (	) is protected						operation
		xx1x:Block 1	is protected				$\mathcal{Y}$		1: Operation
			2 is protected			$\langle \rangle$		$\bigcirc$	is
		1xxx:Block 3	3 is protected		<u> </u>	$\langle \rangle$		<u> </u>	terminated.
		15	14	13	12	11	10	9	8
	Bit Symbol						$\sim$		
	Read/Write					$\mathcal{V}$		2/	
	After reset	0	0	0	0	0	0	900/	0
	Function			(	$\sim$		$\mathcal{C}$	$\geq$	
		23	22	21	20	19	(18)	17	16
	Bit Symbol				$\sim$				
	Read/Write			$\square(\square)$	F	<del>کار ( ( )</del>			
	After reset	0	0		0	0	0	0	0
	Function			$\langle \langle \rangle$					
		31	30	29	28	27	26	25	24
	Bit Symbol		t	$\downarrow$		$\swarrow$			
	Read/Write			$\mathcal{D}$	F	$\sim$	-	-	
	After reset	0	$(0 \land$	0	0	0	0	0	0
	Function				$\square$				

Table 21.6 Flash Control Register

Bit 0: Ready/Busy flag bit

The RDY/BSY output is provided as a means to monitor the status of automatic operation. This bit is a function bit for the CPU to monitor the function. When the flash memory is in automatic operation, it outputs "0" to indicate that it is busy. When the automatic operation is terminated, it returns to the ready state and outputs "1" to accept the next command. If the automatic operation has failed, this bit maintains the "0" output. By applying a hardware reset, it returns to "1."

(Note) Please issue it after confirming the command issue is always a ready state. A normal command not only is sent when the command is issued to a busy inside but also there is a possibility that the command after that cannot be input. In that case, please return by system reset or the reset command.

Bits [7:4]: Protection status bits (can be set to any combination of blocks)

Each of the protection bits (4 bits) represents the protection status of the corresponding block. When a bit is set to "1," it indicates that the block corresponding to the bit is protected. When the block is protected, data cannot be written to it.

### 10) ID-Read

Using the ID-Read command, you can obtain the type and other information on the flash memory contained in the device. The data to be loaded will be different depending on the address [15:14] of the fourth and subsequent bus write cycles (any input data other than 0xF can be used). On and after the fourth bus write cycle, when an LW command (to read an arbitrary flash memory area) is executed after an SW command, the ID value will be loaded (execute a SYNC command immediately after the LW command). Once the fourth bus write cycle of an ID-Read command has passed, the device will not automatically return to the read mode. In this condition, the set of the fourth bus write cycle and LW/SYNC commands can be repetitively executed. For returning to the read mode, reset the system or use the Read or Read/reset command.

(Important) The "interval between bus write cycles" between successive command sequences must be 15 system clock cycles or longer irrespective of the operating frequency used. This device doesn't have any function to automatically adjust the interval between bus write cycles regarding execution of multiple SW commands to the flash memory. Therefore, if an inadequate interval is used between two sets of bus write cycles, the flash memory cannot be written as expected. Prior to setting the device to work in the onboard programming mode, adjust the bus write cycle interval using a software timer, etc., to verify that the ID-Read command can be successfully executed at the operating frequency of the application program. In the onboard programming mode, use the bus write cycle interval at which the ID-Read command can be operated normally to execute command sequences to rewrite the flash memory.

	First bus	Second bus	Third bus	Fourth bus	Fifth bus	Sixth bus	Seventh bus	
Command	cycle	cycle	cycle	cycle	cycle	cycle	cycle	
sequence	Addr.	Addr.	Addr.	Addr.	Addr. 🚫	Addr.	Addr.	
	Data	Data	Data	Data	Data	Data	Data	
Read	0xXX			R	Α ((	$\sum$		
	0xF0			R	D	$\sum$		
Read/reset	0x55XX	0xAAXX	0x55XX		R	Â		
	0xAA	0x55	0xF0					
ID-Read	0x55XX	0xAAXX	0x55XX	IA	0xXX		-	
	0xAA	0x55	0x90	0x00	TD		-	
Automatic page	0x55XX	0xAAXX	0x55XX	PA	(PA)	PA	PA	
programming (note)	0xAA	0x55	0xA0	PD0	PD1	PD2	PD3	
Automatic chip	0x55XX	0xAAXX	0x55XX	0x55XX	0xAAXX	0x55XX	- \	
erase	0xAA	0x55	0x80	0xAA	0x55	0x10	-	
Auto	0x55XX	0xAAXX	0x55XX	0x55XX	0xAAXX	BA	-	
Block erase (note)	0xAA	0x55	0x80	0xAA	0x55	0x30	-	
Protection bit	0x55XX	0xAAXX	0x55XX	0x55XX	0xAAXX	0x55XX	PBA	
programming	0xAA	0x55	0x9A	0xAA	0x55	0x9A	0x9A	
Protection bit	0x55XX	0xAAXX	0x55XX 📈	0x55XX	0xAAXX	0x55XX	PBA	
erase	0xAA	0x55	0x6A	0xAA	0x55	0x6A	0x6A	

### (3) List of Command Sequences

### Table 21.7 Flash Memory Access from the Internal CPU

(4) Supplementary explanation

- RA: Read address
- RD: Read data
- IA: ID address
- ID: ID data
- PA: Program page address
   PD: Program data (32-bit data)
   After the fourth bus cycle, enter data in the order of the address for a page.
- BA: Block address
- PBA: Protection bit address

# (Note 1) Always set "0" to the address bits [1:0] in the entire bus cycle. (Setting values to bits [7:2] are undefined.) (Note 2) Bus cycles are "bus write cycles" except for the second bus cycle of the Read command, the fourth bus cycle of the Read/reset command, and the fifth bus cycle of the ID-Read command. Bus write cycles are executed by SW commands. Use "Data" in the table for the store data of SW commands. The address [31:16] in each bus write cycle should be the target flash memory address [31:16] of the command sequence. Use "Addr." in the table for the address [15:0]. (Note 3) In executing the bus write cycles, the interval between each bus write cycle shall be 15 system clocks or more. (Note 4) The "Sync command" must be executed immediately after completing each bus write cycle. (Note 5) Execute the "Sync command" immediately following the "LW command" after the fourth bus write cycle of the ID-Read command.

### (5) Address bit configuration for bus write cycles

						5			,		
Address	Addr	Addr	Addr	Addr	Addr	Addr	Addr	Addr	Addr	Addr	Addr
	[31:21]	[20]	[19]	[18:17]	[16]	[15]	[14]	[13]	[12:9]	[8]	[7:0]
				Norma	al bus v	write cycle ad	dress co	nfigura	tion	$\sum$	
Normal	Flash								$\sim$	J	Addr [1:0]=0
comman ds	area	"C	)" is reco	mmended	ł		Com	mand	$\overline{\Omega}$		(fixed), Others: 0
							<	> $/$	$\mathcal{V}$		(recommended)
		-							$\sim$		(
								$ \langle \rangle$			

Table 21.8 Address Bit Configuration for Bus Write Cycles

		<b>BA</b> Block ad	droce (Sot the	sixth bus write syste addre	ess for block erase operation)	
Block erase	Flash area	"0" is recommended	Block selecti on	((	ed), Others: 0 (recommended)	
Auto	PA: F	Program page ad	dress (Set the	e fourth bus write cycle addr	ess for page programming operation)	
page progra mming	Flash area	"0" is recommended	Block selecti on	Page selection	Addr [1:0]=0 (fixed),	
ID-REA		IA: ID add	ress (Set the	fourth bus write cycle addre	ess for ID-Read operation)	
D	Flash area	"0" is reco	mmended	ID address	Addr [1:0]=0 (fixed), Others: 0 (recommended)	
	PBA: Protection bit address (Set the seventh bus write cycle address for protection bit programming)					
Protecti on bit progra mming	Flash area	"0" is reco	ommended	Protection bit write "00": Block 0 "01": Block 1 "10": Block 2 "11": Block 3	Addr [1:0]=0 (fixed), Others: 0 (recommended)	
	PE	<b>BA:</b> Protection bit	address (Set	the seventh bus write cvcle	address for protection bit erasure)	
Protecti on bit erase	Flash area	ash "0" is recommended		Erase protection for	dr [1:0]=0 (fixed), Others: 0 (recommended)	

(Note)	Table 21.17 "Flash Memory Access from the Internal CPU" can also be used.
(Note)	Address setting can be performed according to the "Normal bus write cycle address configuration" from the first bus cycle.
(Note)	"0" is recommended" can be changed as necessary.

	Address		
BA	Flash Memory Address	When applied to the projected area	Size
Block 0	0xBFC0_0000~0xBFC1_FFFF	0x0000_0000~0x0001_FFFF	128 KB
Block 1	0xBFC2_0000~0xBFC3_FFFF	0x0002_0000~0x0003_FFFF	128 KB
Block 2	0xBFC4_0000~0xBFC5_FFFF	0x0004_0000~0x0005_FFFF	128 KB
Block 3	0xBFC6_0000~0xBFC7_FFFF	0x0006_0000~0x0007_FFFF	128 KB
Block 4	0xBFC8_0000~0xBFC9_FFFF	0x0008_0000~0x0009_FFFF	128 KB
Block 5	0xBFCA_0000~0xBFCB_FFFF	0x000A_0000~0x000B_FFFF	128 KB
Block 6	0xBFCC_0000~0xBFCD_FFFF	0x000C_0000~0x000D_FFEF	128 KB
Block 7	0xBFCE_0000~0xBFCF_FFFF	0x000E_0000~0x000F_FFFF	128 KB

### Table 21.9 Block Erase Address Table

Example: When BA0 is to be selected, any single address in the range 0xBFC0_0000 to 0xBFC1_FFFF may be entered.

As for the addresses from the first to the sixth bus cycles, specify the upper 4 bit with the corresponding flash memory addresses of the blocks to be erased,

	Table 21116 1 Telestien Bit 1 Tegra				
ОРВА	The seventh bus write cycle address [15:14]				
OFBA	Address [15]	Address [14]			
Block 0	0 0	0			
Block 1	0				
Block 2		)) 0			
Block 3		1			

### Table 21.10 Protection Bit Programming Address Table

Table 21.11 Protection Bit Erase Address Table	
------------------------------------------------	--

OPBA	The seventh bus write	cycle address [15:14]
OFBA	Address [15]	Address [14]
Block 0		Х
Block 1	0	Х
Block 2		Х
Block 3		Х

The protection bit erase command will erase bits 0 and 1 together. The bits 2 and 3 are also erased together.

Table 21.12 The ID-Read command's fourth bus write cycle ID address (IA) and the data to be read by the following LW command (ID)

/~	IA[15:14]	ID [7: 0 ]	Code
	00b	0x98	Manufacturer code
	01b	0x5A	Device code
	10b	Reserved	
	11b	0x08	Macro code

(6) Flowchart





# 23. Electrical Characteristics

# 23.1 Absolute Maximum Ratings

The letter x in equations represents the cycle period of the fsys clock selected through the programming of the SYSCR1 <SYSCK> bit. The x value may vary if clock gear or low-speed oscillator is used. All relevant values in this chapter are calculated with the high-speed (fc) system clock (SYSCR1.<SYSCK> = 0) and a clock gear factor of 1/1 (SYSCR1.GEAR[1:0] = 00).

			(O)	
Pa	arameter	Symbol	Rating	Unit
Supply voltag	e	Vcc15(Core)	- 0.3~3.0	
		Vcc3(I/O)	- 0.3~3.9	N/
		AVCC(A/D)	-0.3~3.9	V
		FVCC3	- 0.3~3.9	$\langle \langle \rangle$
Input voltage		V _{IN}	-0.3-V _{cc} +0.3	N
Low-level	Per pin	I _{OL}	5 0	20
output current	Total	Σl _{OL}	50	mA
High-level	Per pin	I _{он}	-5	
output current	Total	ΣΙ _{ΟΗ}	50	
Power consu	mption (Ta = 85°C)	PD	6007	mW
Soldering terr	nperature (10s)	T _{SOLDER}	260	°C
Storage temp	perature	T _{STG}	-40~125	°C
Operating Temperature	Except during Flash W/E	TOPR	-20~85	°C
remperature	During Flash W/E		0~70	
Write/erase c	ycles	New	100	cycle

$$\label{eq:VCC15} \begin{split} &V_{CC15} = DVCC15 = CVCC15 = FVCC15, \ V_{CC}3 = DVCC3n \ (n=0\mathcar{-}4), \\ &AVCC = AVCC3m \ (m=1\mathcar{-}2), \ V_{SS} = DVSS^* = AVSS^* = CVSS \end{split}$$

Note: Absolute maximum ratings are limiting values of operating and environmental conditions which should not be exceeded under the worst possible conditions. The equipment manufacturer should design so that no Absolute maximum rating value is exceeded with respect to current, voltage, power consumption, temperature, etc. Exposure to conditions beyond those listed above may cause permanent damage to the device or affect device reliability, which could increase potential risks of personal injury due to IC blowup and/or burning.

# 23.2 DC Electrical Characteristics (1/4)

Ta=-20~85°C (n=0~4, m=1, 2)

	Parameter	Symbol	Rating	Min.	Typ. (Note	Max.	Unit
Supply voltage CVCC15=DVCC15		DVCC15	fosc = 8~13.5MHz fsys = 4MHz~54MH PLLON、	1.35	$\bigcirc$	1.65	V
CVSS	=DVSS=0V	DVCC3n (n=0~4)	fsys = 4~54MHz	1.65	Ŋ	3.3	
	P7~PA	V _{IL1}	2.7V≤AVCC32≤AVCC31≤3.3V			0.3AVCC31 0.3AVCC32	
Low-level input voltage	Normal port	V _{IL2}	1.65V≤DVCC3n≤3.3V (n=0~4)		0.3DVCC3n		
			1.65V≤DVCC3n≤3.3V(n=0~4)	-0.3		0.2DVCC3n	V
	Schmitt-Triggered port	V _{IL3}	1.35V≤DVCC15≤1.65V			0.1DVCC15	
	X1	V _{IL5}	1.35V≤CVCC15≤1.65V			0.1CVCC15	



# 23.3 DC Electrical Characteristics (2/4)

Symbol Parameter		Symbol Rating			Тур.	Max.	Unit
					(Note		
	P7~PA	V _{IH1}	2.7V≤AVCC32≤AVCC31≤3.3V	0.7AVCC31 0.7AVCC32	$\sum$	AVCC31+0.3 AVCC32+0.3	_
High-level i	Normal port	V _{IH2}	1.65V≤DVCC3n≤3.3V(n=0~4)	0.7DVCC3n			
High-level input voltage	Schmitt-Triggered port VIH3		1.65V≤DVCC3n≤3.3V(n=0~4)	0.8DVCC3n	E C	DVCC3n+0.2	V
			1.35V≤DVCC15≤1.65V	0.9DVCC15	L T	DVCC15+0.2	
	X1	V _{IH4}	1.35V≤CVCC15≤1.65V	0.9CVCC15		CVCC15+0.2	
Low-level output voltage		V _{OL}	I _{OL} =2mA DVCC3n≥2.7V I _{OL} =500μA DVCC3n<2.7V	(7)	Y	0.4 0.4	
High-lev	vel output voltage	V _{OH}	I _{OH} =-2mA DVCC3n≥2.7V I _{OH} =-500μA DVCC3n<2.7V	2.4 0.8DVCC3n			V

Ta=-20~85°C (n=0~4, m=1, 2)

(Note 1) Ta=25°C, DVCC15=1.5V, DVCC3n=3.0V, AVCC3m=3.3V, unless otherwise noted.

# **23.4** DC Electrical Characteristics (3/4)

Ta=-20~85°C (n=0~4, m=1, 2)
-----------------------------

Symbol		Rating	Min.	Тур.	Max.	Unit
Parameter				(Note 1)		
Input leakage current	ILI	$\begin{array}{l} 0.0 \leq V_{IN} \leq DVCC15 \\ 0.0 \leq V_{IN} \leq DVCC3n(n=0{\text -}4) \\ 0.0 \leq V_{IN} \leq AVCC31 \\ 0.0 \leq V_{IN} \leq AVCC32 \end{array}$		0.02	±5	
Output leakage current	ILO	$\begin{array}{l} 0.2 \leq V_{IN} \leq DVCC15 - 0.2 \\ 0.2 \leq V_{IN} \leq DVCC3n - 0.2(n=0{-}4) \\ 0.2 \leq V_{IN} \leq AVCC31 - 0.2 \\ 0.2 \leq V_{IN} \leq AVCC32 - 0.2 \end{array}$	)?	0.05	±10	μA
	V _{STOP} (DVCC15)		1.35		1.65	-
Power down voltage (@STOP)	V _{STOP2} (AVCC3)	V _{IL1} =0.3AVCC31,32 V _{IH1} =0.7AVCC31,32	2.7		3.3	V
	V _{STOP3} (DVCC3)	$V_{  L2}=0.3DVCC3n, V_{  L3}=0.1DVCC3n$ $V_{  H2}=0.7DVCC3n, V_{  H3}=0.9DVCC3n$ (n=0~4)	1.65	/	3.3	
Pull-up resister at Reset	RRST	DVCC15=1.5V ± 0.15V	20	50	150	kΩ
Schmitt-Triggered port	VTH	1.65V≤DVCC3n≤3.3V(n=0~4) 1.35V≤DVCC15≤1.65V	0.3	0.6		v
Programmable pull-up/ pull-down resistor	RKH	DVCC3n=1.65V~3.3V(n=0~4) DVCC15=1.35V~1.65V	20	50	150	kΩ
Pin capacitance (Except power supply pins)	CIO	Fc=1MHz			10	pF

(Note 1) Ta=25°C, DVCC15=1.5V, DVCC3=3.0V, AVCC3m=3.3V, unless otherwise noted.



# **23.5 DC Electrical Characteristics** (4/4)

 $\label{eq:starses} \begin{array}{l} \mathsf{DVCC15}{=}\mathsf{CVCC}{=}\mathsf{FVCC15}{=}1.5\mathsf{V}{\pm}0.15\mathsf{V},\\ \mathsf{FVCC3}{=}\mathsf{DVCC3n}{=}3.0\mathsf{V}{\pm}0.3\mathsf{V}, \ \mathsf{AVCC3m}{=}3.0\mathsf{V}{\pm}0.3\mathsf{V}, \end{array}$ 

Ta=-20~85°C (n=0~4, m=1, 2)

Parameter	Symbol	Rating	Min.	Тур.	Max.	Unit
Farameter			$(\overline{\alpha})$	(Note 1)		
NORMAL(Note 2) Gear 1/1		F _{sys} =54 MHz	$\lor$	55	70	
IDLE(Doze)		( _{fosc} =13.5 MHz, PLLON)		18	28	mA
IDLE(Halt)	ICC		7	14	23	
	00	DVCC15=FVCC15=CVCC15=1.35~1.65V	$\mathcal{D}$	$\frown$		
STOP		DVCC3n=1.65~3.3V		50	2000	μA
		AVCC3m=2.7~3.3V				μα
		FVCC3=2.7~3.3V		24		

(Note 1) Ta=25°C, DVCC15=1.5V, DVCC15x=1.5V, DVCC3n=3.0V, AVCC3m=3.3V, unless otherwise noted.

(Note 2) I_{CC} NORMAL

Measured with the CPU dhrystone operating and all the embedded peripheral I/O operating by the 4 system clock of external bus 16-bit width.

(Note 3) The currents flow through DVCC15, DVCC3n, CVCC15 and AVCC3m are included.

# 23.6 10-bit ADC Electrical Characteristics

DVCC15=CVCC15=1.35V~1.65V, CVCC3= DVCC3=AVCC3=VREFH=2.7V~3.3V, AVCC=2.3V~2.7V, AVSS=DVSS, Ta=-20~85°C AVCC3 load capacitance  $\geq$ 3.3µF, VREFH load capacitance  $\geq$ 3.3µF

Para	meter	Symbol	Rating	Min	Тур	Max	Unit	
Analog reference voltage (+) VR		VREFH		2.7	3.3	3.3	V	
Analog referend	ce voltage (-)	VREFL		AVSS	Avss	AVSS	V	
Analog input vo	ltage	VAIN		VREFL		VREFH	V	
Analog supply	A/D conversion	IREF	DVSS = AVSS = VREFL		4.5	5.5	mA	
current	Non-A/D conversion		DVSS = AVSS = VREFL		±0.02	±5	μA	
Supply current	A/D conversion	-	Non-IREF	$() \sim ($	$\rightarrow 0/$	3	mA	
INL error			AIN resistance ≤1kΩ		<u>+2</u>	±3		
DNL error			AIN load capacitance≥0.1µF Conversion time≥2.0µs	((	TT T	±2		
Offset error		-	@27MHz(ADCLK)		<u>+2</u>	±4		
Full-scale error					) ±2	±4		
INL error			AIN resistance ≤10kΩ		±2	±3		
DNL error		(	AIN load capacitance≥0.01µF Conversion time≥2.0µs		±1	±2		
Offset error		- (	@27MHz(ADCLK)		±2	±4	LSB	
Full-scale error		C		~	±2	±4		
INL error			AIN resistance ≤600Ω	>	±2	±3		
DNL error		(0/5)	AIN load capacitance ≤30pF		±1	±2		
Offset error			Conversion time ≥1.15µs		±2	±4		
Full-scale error			@40MHz(ADCLK)		±2	±4		

(Note 1) 1LSB=(VREFH-VREFL)/ 1024[V]

# 23.7 AC Electrical Characteristics

### [1] Separate bus mode

(1)DVCC15=CVCC15=1.35V~1.65V, DVCC3n=2.3V~3.3V

SYSCR3<ALESEL>="0", 2 programmed wait state

No.	Parameter	Symbol	Equation		54 MH	z (fsys)	Unit
			Min	Max	Min	Max	
1	System clock period (x)	tSYS	х		18.5		ns
2	A0-23 valid to $\overline{RD} / \overline{WR} / \overline{HWR}$ asserted	t _{AC}	(1+ALE)x-20		17		ns
3	A0 – 23 hold after $\overline{RD} / \overline{WR}$ or HWR negated	t _{CAR}	x -14		4.5		ns
4	A0 – 23valid to D0 – 15data in	t _{AD}	(	x(2+W+ALE)- 42	Ê	50.5	ns
5	$\overline{\text{RD}}$ asserted to D0 – 15 data in	t _{RD}	(	x(1+W)-28		27.5	ns
6	RD pulse width low	t _{RR}	x(1+W)-10		45.5	GO ,	ns
7	D0 – 15 hold after $\overline{RD}$ negated	t _{HR}	0		0	~	ns
8	$\overline{\text{RD}}$ negated to A0 – 23 output	t _{RAE}	x-15		3.5)		ns
9	WR /HWR pulse width low	tww	x(1+W)-10	$\overline{\alpha}$	45.5		ns
10	$\overline{\text{WR}}$ or $\overline{\text{HWR}}$ asserted to D0-15 valid	t _{DO}		12.3	$\mathcal{D}$	12.3	ns
11	D0-15 valid to WR /HWR negated	t _{DW}	x(1+W)-18		37.5		ns
12	D0 – 15 hold after $\overline{WR}$ /HWR rising	twp	x–15		3.5		ns
13	A0 - 23 valid to WAIT input	taw		x+(ALĔ)x+ (w-1)x-30		25.5	ns
14	WAIT hold after RD / WR / HWR	tcw	x(TW-3)-1	x(TW-1)-30	17.5	25.5	ns

(Note) No. 1 to 14:

Internal 2 wait insertion, ALE "1" Clock, @54MHz

TW = W + 2N,

ALE=ALE output width

No. 21

(2W+2N)

W: Number of Auto wait insertion, 2N: Number of external wait insertion

TW = 2 + 2*1 = 4

AC measurement conditions:

Output levels: High = 0.8DVCC33 V/Low 0.2DVCC33 V, CL = 30 pF

Input levels:High = 0.7DVCC33 V/Low 0.3DVCC33 V

(2) DVCC15=CVCC15=1.35V~1.65V, DVCC3n=1.65V~1.95V, DVCC15  $\leq$  DVCC3n+0.2V

No.	Parameter	Symb	Equ	ation	54 MHz (fsys)		Unit
INO.	Faldinetei	ol	Min	Max	Min	Max	
1	System clock period (x)	tsys	х		18.5		ns
2	A0-23 valid to RD / WR /HWR asserted	t _{AC}	(1+ALE)x-20		17		ns
3	A0 – 23 hold after $\overline{RD} / \overline{WR}$ or $\overline{HWR}$ negated	^t CAR	x-7	$\langle 2 \rangle$	11.5		ns
4	A0 – 23 valid to D0 – 15 data in	t _{AD}		x(2+W+ALE)-4 2		50.5	ns
5	$\overline{\text{RD}}$ asserted to D0 – 15 data in	t _{RD}		x(1+W)-28		27.5	ns
6	RD pulse width low	t _{RR}	x(1+W)-10		45.5		ns
7	D0 – 15 hold after $\overline{RD}$ negated	t _{HR}	0		01	$\searrow$	ns
8	$\overline{\text{RD}}$ negated to next A0 – 23 output	t _{RAE}	x-15		3.5	$\geq$	ns
9	WR /HWR pulse width low	tww	x(1+W)-10	$()) \qquad \diamondsuit$	45.5	5	ns
10	WR or HWR asserted to D0-15 valid	t _{DO}		12.3		12.3	ns
11	D0-15 valid to WR /HWR negated	t _{DW}	x(1+W)-18	$\overline{C}$	37.5	/	ns
12	D0 – 15 hold after WR /HWR negated	t _{WD}	x–15		3.5		ns
13	A0 – 23 valid to $\overline{WAIT}$ input	t _{AW}		x+(ALE)x+(w-1) x-30	)	25.5	ns
14	WAIT hold after RD / WR / HWR	tcw	x(TW-3)-7	x(TW-1)-40	13.5	15.5	ns

### SYSCR3<ALESEL> = "0", 2 programmed wait state

(Note)

No. 1 to 14:

Internal 2 wait insertion, ALE "1" Clock, @54MHz TW = W + 2N,

ALE=ALE output width

No. 21

(2W+2N)

W: Number of Auto wait insertion, 2N: Number of external wait insertion

 $TW = 2 + 2^*1 = 4$ 

AC measurement conditions:

Output levels: High = 0.8DVCC33 V/Low 0.2DVCC33 V, CL = 30 pF Input levels: High = 0.7DVCC33 V/Low 0.3DVCC33 V



(1) Read cycle timing (SYSCR3<ALESEL>="0", 1 programmed wait state)



(2) Read timing (SYSCR3<ALESEL>="1", 1 programmed wait state)

(3) Read timing (SYSCR3<ALESEL>="1", 2 wait (1+N externally generated wait states with N=1)









(5) Write timing (SYSCR3<ALESEL>="1", 0 wait state)

### [2] Multiplex bus mode

(1) DVCC15=CVCC15=1.35V~1.65V, DVCC3n=2.3V~3.3V

	1) ALE=1 Clock cycle, 2 programi				1		
No.	Parameter	Symbol	Equ	ation	54 N (fsy		Unit
			Min	Max	Min	Max	
1	System clock period (x)	t _{SYS}	Х	$\langle \langle \vee \rangle \rangle$	18.5		ns
2	A0-15 valid to ALE low	t _{AL}	(ALE)x-12		6.5		ns
3	A0-15 hold after ALE low	t _{LA}	x-8	(())	10.5		ns
4	ALE pulse width high	t _{LL}	(ALE)x-6		12.5		ns
5	ALE low to $\overline{RD}$ / $\overline{WR}$ or $\overline{HWR}$ asserted	t _{LC}	x-8		10.5		ns
6	$\overline{\text{RD}}$ / $\overline{\text{WR}}$ or $\overline{\text{HWR}}$ negated to ALE high	t _{CL}	x-15		3.5	$ \land \land$	ns
7	A0-15 valid to $\overline{\text{RD}}$ / $\overline{\text{WR}}$ or $\overline{\text{HWR}}$ asserted	t _{ACL}	2x-20		17.0	/	ns
8	A16-23 valid to $\overline{RD}$ / $\overline{WR}$ or $\overline{HWR}$ asserted	t _{ACH}	2x-20	$(\bigcirc)$	17.0		ns
9	A16-23 hold after $\overline{RD} / \overline{WR}$ or $\overline{HWR}$ negated	t _{CAR}	x-14	(75)	4.5		ns
10	A0-15 valid to D0-15 data in	t _{ADL}		x(2+W+ALE)-42		50.5	ns
11	A16-23 valid to D0-15 data in	t _{ADH}		x(2+W+ALE)-42		50.5	ns
12	$\overline{\text{RD}}$ asserted to D0-15 data in	t _{RD}	× //	x(1+W)-28		27.5	ns
13	RD pulse width low	t _{RR}	x(1+W)-10		45.5		ns
14	D0-15 hold after RD negated	t _{HR}	0 🚫	~	0		ns
15	RD negated to next A0-15 output	t _{RAE}	x-15		3.5		ns
16	WR / HWR pulse width low	tww	x(1+W)-10		45.5		ns
17	D0-15 valid to WR or HWR negated	t _{DW}	x(1+W)-18		37.5		ns
18	D0-15 hold after WR or HWR negated	t _{WD}	( /x-15		3.5		ns
19	A16-23 valid to WAIT input	t _{AWH}		x+(ALE)x+(W-1)x -30		25.5	ns
20	A0-15 valid to WAIT input	t _{AWL}		x+(ALE)x+(W-1)x -30		25.5	ns
21	WAIT hold after RD / WR or HWR	t _{cw}	x(TW-3)-1	x(TW-1)-30	17.5	25.5	ns

1)		clock	cvcla	2	programmed wait state
1)	ALC=1	CIUCK	cycle,	2	programmed wait state

(Note)

No. 1 to 21:

Internal 2 wait insertion, ALE "1" Clock, @54MHz

 $\mathsf{TW} = \mathsf{W} + 2\mathsf{N},$ 

W: Number of Auto wait insertion, 2N: Number of external wait insertion ALE=ALE output width

 $TW = 2 + 2^*1 = 4$ 

AC measurement conditions:

Output levels: High = 0.8DVCC33 V/Low 0.2DVCC33 V, CL = 30 pF

Input levels: High = 0.7DVCC33 V/Low 0.3DVCC33 V

### (2) DVCC15=CVCC15=1.35V~1.65V, DVCC15 ≤DVCC3n+0.2V

No.	Deremeter	Symbol	Equa	ation	54 MHz	z (fsys)	Unit
INO.	Parameter	Symbol	Min	Max	Min	Max	
1	System clock period (x)	t _{sys}	х		18.5		ns
2	A0-15 valid to ALE low	t _{AL}	(ALE)x-12		6.5		ns
3	A0-15 hold after ALE low	t _{LA}	x-8	$\sim$ ((// $)$	10.5		ns
4	ALE pulse width high	t _{LL}	(ALE)x-6		12.5		ns
5	ALE low to RD / WR or HWR asserted	t _{LC}	x-8		10.5		ns
6	$\overline{\text{RD}}$ / $\overline{\text{WR}}$ or $\overline{\text{HWR}}$ negated to ALE high	t _{CL}	x-15		3.5		ns
7	A0-15 valid to $\overline{\text{RD}}$ / $\overline{\text{WR}}$ or $\overline{\text{HWR}}$ asserted	t _{ACL}	2x-20		17.0		ns
8	A16-23 valid to $\overline{RD} / \overline{WR}$ or $\overline{HWR}$ asserted	t _{ACH}	2x-20		17.0		ns
9	A16-23 hold after $\overline{RD} / \overline{WR}$ or $\overline{HWR}$ negated	t _{CAR}	X-7	$\mathbb{C}$	11.5		ns
10	A0-15 valid to D0-15 data in	t _{ADL}		x(2+W+ALE)-42		50.5	ns
11	A16-23 valid to D0-15 data in	t _{ADH}		x(2+W+ALE)-42		50.5	ns
12	RD asserted to D0-15 data in	t _{RD}		x(1+W)-28		27.5	ns
13	RD pulse width low	t _{RR}	x(1+W)-10		45.5		ns
14	D0-15 hold after RD negated	(t _{HR}	> 0 //		0		ns
15	RD negated to next A0-15 output	t _{RAE}	x-15		3.5		ns
16	WR / HWR pulse width low	tww	x(1+W)-10	$\sim$	45.5		ns
17	D0-15 valid to WR / HWR negated	t _{DW}	x(1+W)-18		37.5		ns
18	D0-15 hold after WR / HWR negated	two	x-15		3.5		ns
19	A16-23 valid to WAIT input	t _{AWH}		x+(ALE)x+(W-1)x -30		25.5	ns
20	A0-15 valid to WAIT input	tawk		x+(ALE)x+(W-1)x -30		25.5	ns
21	WAIT hold after RD/WR or HWR	-t _{cw}	x(TW-3) - 7	x(TW-1) – 40	13.5	15.5	ns

### ALE=1 clock cycle, 2 programmed wait state

(Note)

No. 1 to 21:

Internal 2 wait insertion, ALE "1" Clock, @54MHz

 $\mathsf{TW} = \mathsf{W} + 2\mathsf{N},$ 

W: Number of Auto wait insertion, 2N: Number of external wait insertion ALE=ALE output width

No. 21

(2W+2N)

 $TW = 2 + 2^*1 = 4$ 

AC measurement conditions:

Output levels: High = 0.8DVCC33 V/Low 0.2DVCC33 V, CL = 30 pF Input levels: High = 0.7DVCC33 V/Low 0.3DVCC33 V



(1) Read timing (ALE=1 clock cycle, 1programmed wait state)



(2) Read timing (ALE=1 clock cycle, 2 programmed wait state)



(3) Read timing (ALE = 1 clock cycle, 4 externally generated wait states (2+2N) with N=1



(4) Read timing (ALE = 2 clock cycle, 1programmed wait state)



(5) Read timing (ALE = 2clock cycles, 4 externally generated wait states (2+2N) with N=1



(6) Write timing (ALE = 2 clock timing, 0 wait state)



### (7) Write timing (ALE = 1 clock cycle, 2 programmed wait state)



(8) Write timing (ALE = 2 clock cycle, 4 externally generated wait states (2+2N) with N=1)

### 23.8 Transfer with DMA Request

The following shows an example of a transfer between the on-chip RAM and an external device in multiplex bus mode.

- 16-bit data bus width, non-recovery time
- Level data transfer mode
- Transfer size of 16 bits, device port size (DPS) of 16 bits
- Source/destination: on-chip RAM/external device

The following shows transfer operation timing of the on-chip RAM to an external bus during write operation (memory-to-memory transfer).



- 1) Indicates the condition under which Nth transfer is performed successfully.
- 2) Indicates the condition under which (N+1)th transfer is not performed.

### (1) DVCC15=CVCC15=1.35V~1.65V, AVCC3m=2.7V~3.3V

### DVCC33=2.3V~3.3V, DVCC30/31/32/34=1.65V~3.3V, Ta= -20~85°C (m=1~2)

No.	Parameter	Symbol	Equ	ation	54 MHz	(fsys)	Unit
			①Min	⊘Max _	Min	Max	
2	RD asserted to DREQn negated (external device to on-chip RAM transfer)	tDREQ_r	(W+1)x	(2W+ALE+8)x-5 1	37	152.5	ns
3	WR / HWR rising to DREQn negated (on-chip RAM to external device transfer)	tDREQ_ w	-(W+2)x	(5+WAIT)x-51.8	-55.5	59.2	ns

### (2) DVCC15=CVCC15=1.35V~1.65V, AVCC3m =2.7V~3.3V

DVCC33=1.65V~1.95V, DVCC30/31/32/34=1.65V~3.3V, Ta=-20~85°C (m=1~2)

No.	Parameter	Symbol	Equ	ation	54 MHz	(fsys)	Unit
			@Min	◎Max ( )	Min	Max	
2	RD asserted to DREQn negated (external device to on-chip RAM transfer)	tDREQ_r	(W+1)x	(2W+ALE+8)x-5	37	147.5	ns
3	WR / HWR rising to DREQn negated (on-chip RAM to external device transfer)	tDREQ_ w	-(W+2)x	(5+WAIT)x-56.8	-55.5	54.2	ns

W: number of wait

- Ex.)
- 2 External wait +2N wait (N=1)

W=4

ALE: 1 is substituted for it at 1 clock cycle. 2 is substituted for it at 2 clock cycles. The equations shown in the above table are calculated provided W=1 and ALE=1.

### 23.9 Serial Channel Timing

(1) I/O Interface mode (DVCC3=1.65V~3.3V)

In the table below, the letter x represents the fsys cycle period, which varies depending on the programming of the clock gear function.

 $(\Pi \land$ 

① SCLK input mode (SIO0~SIO6)

1 (						
Parameter	Symbol	Equation	Equation			Unit
Falameter	Symbol	Min	Max	Min	Max	
SCLK period	tSCY	12x		222	7/	ns
TxD data to SCLK rise or fall*	toss	2x-35	4	2	$\langle \mathcal{O} \rangle$	ns
TxD data hold after SCLK rise or fall*	tohs	8x-15		133		ns
RxD data valid to SCLK rise or fall*	tSRD	30		30	7(	ns
RxD data hold after SCLK rise or fall*	t _{HSR}	2x+29	G	66	/	ns

*SCLK rise or fall: Measured relative to the programmed active edge of SCLK.

② SCLK output mode (SI	② SCLK output mode (SIO0~SIO6)					96
Parameter	Sumbol	Equatio	Equation		54 MHz	
Falameter	Symbol	Min	Max	Min	Max	Unit
SCLK period (programmable)	tSCY	8X		222	$\sum$	ns
TxD data to SCLK rise	toss	4x-14		607	$\langle \wedge \rangle$	ns
TxD data hold after SCLK rise	tOHS	4x-14		60 <	$\mathcal{D}$	ns
RxD data valid to SCLK rise	t _{SRD} <	45		45		ns
RxD data hold after SCLK rise	tHSR	0		0		ns



### 23.10 SBI Timing

### (1) I2C mode

In the table below, the letters x and t represent the fsys periods and  $\phi T0$  respectively.

n denotes the value of n programmed into the SCK (SCL output frequency select) field in the SBI0CR1.

Parameter	Symbol	Equa	Equation		Standard mode $f_{SYS} = 8 \text{ MHz} \text{ n} = 4$		Fast mode f _{sys} = 32 MHz n = 4	
		Min	Max	Min	Max	Min	Max	
SCL clock frequency	t _{SC L}	0		0	100	0	400	kHz
Hold time for START condition	^t HD:STA			4.0	$\left( \left( \right) \right)$	0.6		μs
SCL clock low width (Input) (Note 1)	tLOW			4.7	)	1.3	(	μs
SCL clock high width (Input) (Note 2)	thigh			4.0		0.6	$\langle \rangle$	μs
Setup time for a repeated START condition	t _{SU;STA}	(Note 5)		4.7		0.6		μs
Data hold time (Input) (Note 3, 4)	^t HD;DAT			0.0		0.0)	$\bigcirc$	μs
Data setup time	^t SU;DAT		()	250		100	O	ns
Setup time for STOP condition	tsu;sto		2	4.0		0.6	)	μs
Bus free time between STOP and START conditions	t _{BUF}	(Note 5)	AL (	4.7		1.3		μs

Note 1) SCL clock low width (output) is calculated with:  $(2^{(n-1)}+4)$  T.

Normal mode: 6usec@Typ(fsys=8MHZ, n=4)

Fast mode: 1.5usec@Typ(fsys=32MHZ, n=4)

Note 2) SCL high width (output) is calculated with:  $(2^{(n-1)})$  T.

Normal mode: 4usec@Typ(fsys=8MHZ, n=4) Fast mode: 1usec@Typ(fsys=32MHZ, n=4)

Note 3) The output data hold time is equal to 12x

Note 4) The Philips  $I^2C$ -bus specification states that a device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the fall edge of SCL. However, this SBI does not satisfy this requirement. Also, the output buffer for SCL does not incorporate slope control of the falling edges; therefore, the equipment manufacturer should design it to satisfy the input data hold time shown in the table, including tr/tf of the SCL and SDA lines.



Fast mode: fsys  $\ge$  20 MHz Standard mode: fsys  $\ge$  4 MHz (2) Clock-Synchronous 8-Bit SIO mode

In the table below, the letters x and t represent the fsys periods and  $\phi$ T0 respectively. The letter n denotes the value of n programmed into the SCK (SCL output frequency select) field in the SBI0CR1.

The electrical specifications below are for an SCLK signal with a 50% duty cycle.

Parameter	Symbol	Equation Equation			54 MHz			
Falameter	Symbol	Min	Max	Min	Max	Unit		
SCK period	tSCY	16x	$\bigcirc$	296		ns		
TxD data to SCK rise	toss	(t _{SCY} /2)–(6x + 20)	(	17		ns		
TxD data hold after SCK rise	tOHS	(t _{SCY} /2)+4x		222		ns		
RxD data valid to SCK rise	tSRD	0 21		0		ns		
RxD data hold after SCK rise	tHSR	4x+10	/	84		ns		
			~	$\Diamond$	)/	2		

3 SCK	input	mode

④ SCK output mode							
Parameter	Symbol	Equatior	) (	54 N	ИНz	Unit	
Falameter	Symbol	Min	Max	Min	Max	Unit	
SCK period (programmable)	tSCY	16x		296		ns	
TxD data to SCK rise	toss	(t _{SCY} /2)-20		128		ns	
TxD data hold after SCK rise	tOHS	(t _{SCY} /2)-20	$\overline{)}$	128		ns	
RxD data valid to SCK rise	tSRD	2x+30		67		ns	
RxD data hold after SCK rise	^t HSR	0	$\bigvee$	0		ns	



### 23.11 Event Counter

Parameter	Symbol	Equ	ation	54 N	ЛНz	Unit
	Symbol	Min	Max	Min	Max 🗸	Uniit
Clock low pulse width	t _{VCKL}	2X+100		137		ns
Clock high pulse width	^t vcкн	2X+100		137		ns

In the table below, the letter x represents the fsys cycle period.

### 23.12 Capture

In the table below, the letter x represents the fsys cycle period.

Parameter	Symbol	Equ	ation	54 MHz	Unit	
	Symbol	Min	Max	Min Max	Unit	$\square$
Low pulse width	tCPL	2X+100		137	ns	$\sim$
High pulse width	t _{CPH}	2X+100		137	ns	

# 23.13 General Interrupt (INTC)

In the table below, the letter x represents the fsys cycle period.

Parameter	Symbol	Equation	54 MHz	Unit
	Symbol	Min Max	Min Max	
Low pulse width for INT0-INTA	tINTAL	X+100	118.5	ns
High pulse width for INT0-INTA	t _{INTAH}	X+100	118.5	ns

# 23.14 NMI/STOP Release Interrupt

Parameter	Symbol	Equa	ation	54 N	ИНz	Unit
Falameter	Symbol	Min	Max	Min	Max	Unit
Low pulse width for $\overline{\text{NMI}}$ and INT0-INT4	<b>t</b> INTBL	100		100		ns
High pulse width for INT0-INT4	t _{INTBH}	100		100		ns

# 23.15 SCOUT Pin

Parameter	Symbol	Equation		54 MHz		Unit
		Min	Max	Min	Max	Onit
Clock high pulse width	tSCH	0.5T–5		4.3		ns
Clock low pulse width	/ISCL	0.5T-5		4.3		ns

Note: In the above table, the letter T represents the cycle period of the SCOUT output clock.





### 23.16 Bus Request and Bus Acknowledge Signals

- (Note 1) If the current bus cycle has not terminated due to wait-state insertion, the TMP19A63 does not respond to BUSRQ low until the wait state ends.
- (Note 2) This broken line indicates that output buffers are disabled, not that the signals are at indeterminate states. The pin holds the last logic value present at that pin before the bus is relinquished. This is dynamically accomplished through external load capacitances. In case of using the external load capacitance to maintain the bus at a predefined state, the equipment manufacturer needs to consider the additional time (determined by the CR constant) required for the signal transmission through the external load capacitances. The on-chip, integrated programmable pullup/pulldown resistors remain active, depending on internal signal states.

# 23.17 KWUP Input

Wi<u>th Pull up</u>

	Parameter	Symbol	Equation		54 MHz		Unit
			Min	Max	Min	Max	Onit
	Low pulse width for KEY0~D	tky _{TBL}	X+100		118		ns
	High pulse width for KEY0~D	tky _{TBH}	X+100		118		ns
Without pull up							
	Parameter	Symbol	Equation		54 MHz		Unit
			Min	Max	Min	Max	
	Low pulse width for KEY0~D	tky _{TBL}	100		100	$\langle \bigcirc \rangle$	ns

# 23.18 Dual Pulse Input

					*	$\overline{}$
Parameter	Symbol	Equation		54 MHz		Unit
Falameter		Min	Max	Min	Max	
Dual input pulse period	Tdcyc	8Y	$\sim$	296		ns
Dual input pulse setup	Tabs	Y+20	$\langle \rangle$	57	(7/	ns
Dual input pulse hold	Tabh	Y+20		57	$\nabla$	ns

Y: fsys/2



24. Package

# P-TFBGA289-1111-0.50A

