TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Pb-free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a temporary substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

- 1. Part number
 - Example: TMPxxxxxF TMPxxxxxFG

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions (

Example: LQFP100-P-1414-0.50C \ LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb-free, notes on lead solderability have been added.

4. RESTRICTIONS ON PRODUCT USE

The previous (obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

2. Package code and dimensions

Previous Part Number (in Body Text)	Previous Package Code (in Body Text)	New Part Number	New Package Code	OTP
TMP87P808N	P-SDIP28-400-1.78	TMP87P808NG	SDIP28-R-400-1.78	—
TMP87P808M	P-SOP28-450-1.27	TMP87P808MG	SOP28-P-450-1.27B	—
TMP87P808LN	P-SDIP28-400-1.78	TMP87P808LNG	SDIP28-P-400-1.78	—
TMP87P808LM	P-SOP28-450-1.27	TMP87P808LMG	SOP28-P-450-1.27B	—

*: For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device.

Lead solderability of Pb-free devices (with the G suffix)

Test	Test Conditions	Remark
Solderability	 (1) Use of Lead (Pb) solder bath temperature = 230°C dipping time = 5 seconds the number of times = once use of R-type flux (2) Use of Lead (Pb)-Free solder bath temperature = 245°C dipping time = 5 seconds the number of times = once use of R-type flux 	Is with over 95% solder coverage Il lead forming are acceptable.

4. RESTRICTIONS ON PRODUCT USE

The following replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text.

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as

set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

5. Publication date of the datasheet

The publication date of this datasheet is printed at the lower right corner of this notification.

(Annex)

Package Dimensions

SDIP28-P-400-1.78

SOP28-P-450-1.27B

Unit: mm

CMOS 8-Bit Microcontroller

TMP87P808M, TMP87P808N TMP87P808LM, TMP87P808LN

The 87P808/808L is a high-speed, high-performance 8-bit single chip microcomputer, which has 64K bits One-Time PROM. The 87P808/808L is pin compatible with the 87C408/808/408L/808L. The operations possible with the 87C408/808/408L/808L can be performed by writing programs to PROM. The 87P808/808L can write and verify in the same way as the TC57256AD using an adapter socket and a general-purpose PROM programmer.

Part No.	ROM	RAM	Package	Adapter socket	Operation Voltage Range
TMP87P808M			P-SOP28-450-1.27	BM11116	2.7 V to 5.5 V at 4.2 MHz
TMP87P808N		256 × 8-bit	P-SDIP28-400-1.78	BM11122	4.5 V to 5.5 V at 8 MHz
TMP87P808LM	8 K x 8-bit	250 X 8-DIL	P-SOP28-450-1.27	BM11116	
TMP87P808LN		P-SDIP28-400-1.78	BM11122	1.8 V to 4.0 V at 4.2 MHz	
				_ / /	

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic applications (computer, transportation instruments, traffic signal instruments, combustion control instruments, arefula or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document are subject to the foreign exchange and foreign trade laws.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The products described in this document are subject to the foreign exchange and foreign trade la

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

Pin Function

The 87P808/808L has two modes: MCU and PROM.

(1) MCU mode

In this mode, the 87P808/808L is pin compatible with the 87C408/808/408L/808L (fix the TEST pin at low level).

(2) PROM mode

Pin Name (PROM mode)	Input / Output	Functions	Pin name (MCU mode)
A14 to A8			P10 to P15, P64, P65
A7 to A0	Input	Program memory address inputs	P10 to P15, P64, P65
D7 to D0	I/O	Program memory data input/outputs	P10 to P15, P64, P65
CE		Chip enable signal input	P66
ŌĒ	Input	Output enable signal input	P67
VPP		+ 12.5 V / 5 V (Program supply voltage)	TEST
vcc	Power supply	+5V	VDD
GND		ov (())	VSS
P17 to P16			
P63 to P60	I/O		
P77 to P72	1/0	PROM mode setting pins. Be fixed at low level.	
RESET			
XIN	Input		
XOUT	Output	Connect an 8 MHz oscillator to stabilize the internal s	tate.
VAREF			
VASS	Power supply	0 V (GND)	

Operational Description

The configuration and function of the 87P808/808L are the same as those of the 87C408/808/408L/808L, except in that a one-time PROM is used instead of an on-chip mask ROM.

1. Operating Mode

The 87P808/808L has two modes: MCU and PROM.

1.1 MCU Mode

The MCU mode is activated by fixing the TEST/VPP pin at low level. In the MCU mode, operation is the same as with the 87C408/808/408L/808L (TEST/VPP pin cannot be used open because it has no built in pull-down resistance.)

1.1.1 Program Memory

The 87P808/808L have an 8 Kbytes (addresses E000 to FFFF_H in the MCU mode, addresses 6000 to 7FFF_H in the PROM mode) one-time PROM.

When the 87P808/808L is used as a system evaluation of the 87C408/808/408L/808L, the data is written to the program storage area shown in Figure 1-1.

Note: Either write the data FFH to the unused area or set the general-purpose PROM programmer to access only the program storage area

1.1.2 Data Memory

The 87P808/808L has an 256 bytes data memory (static RAM).

1.1.3 Input / Output Circuits

(1) Control pins

The control pins of the 87P808/808L are the same as those of the 87C408/808/408L/808L except that the TEST pin has no built-in pull-down resistance.

(2) I/O port

The I/O circuits of 87P808/808L ports are the same as 87C408/808/408L/808L

1.2 PROM Mode

The PROM mode is used to write and verify programs with a general-purpose PROM programmer.

Note: 24The high-speed programming mode (I, II) can be used for program operation. (Please set the high-speed programming mode according to each manual of PROM programmer.) The 87P808/808L is not supported an electric signature mode.

 \bigcirc

Figure 1-3. Setting for PROM Mode

1.2.1 Programming Flowchart (High-speed Programming Mode-I)

The high-speed programming mode is achieved by applying the program voltage (+ 12.5 V) to the V_{PP} pin when Vcc = 6 V. After the address and input data are stable, the data is programmed by applying a single 1ms program pulse to the \overline{CE} input. The programmed data is verified. If incorrect, another 1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. Programming for one address is ended by applying additional program pulse with width 3 times that needed for initial programming (number of programmed times \times 1 ms). After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = V_{PP} = 5 V.

Figure 1-4. Flowchart of High-speed Programming Mode - I

1.2.2 Programming Flowchart (High-speed Programming Mode-II)

The high-speed programming mode is achieved by applying the program voltage (+ 12.75 V) to the V_{PP} pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the \overline{CE} input. The programmed data is verified. If incorrect, another 0.1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = V_{PP} = 5 V.

Figure 1-5. Flowchart of High-speed Programming Mode - II

TOSHIBA

1.2.3 Writing Method for General-purpose PROM Program

- (1) Adapters BM11116: TMP87P808M/TMP87P808LM BM11122: TMP87P808N/TMP87P808LN
- (2) Adapter setting Switch (SW1) is set to side N.
- (3) PROM programmer specifying
 - i) PROM type is specified to TC57256AD. Writing voltage: 12.5 V (high-speed program I mode) 12.75 V (high-speed program II mode)
 - ii) Data transfer (copy) (note 1)

In TMP87P808/808L, EPROM is within the addresses 6000 to 7FFF_H. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in Figure 1-1.

Ex. In the block transfer (copy) mode, executed as below. ROM capacity of 4KB: transferred addresses F000 to FFF_H to addresses 7000 to 7FFF_H

 iii) Writing address is specified. (note 1) Start address: 7000_H End address: 7FFF_H

(4) Writing

Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure.

Note 1: The specifying method is referred to the PROM programmer description. The data in addresses 0000 to 5FFE_H must be specified to FF_H.

- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3:TMP87P808/808L does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying 12 V ± 0.5 V to the address pin 9 (A9). The signature must not be used.

Electrical Characteristics

(1) 87P808

Absolute Maximum Ratings			$(V_{SS} = 0 V)$		
Parameter Symbol			Conditions	Ratings	Unit
Supply Voltage		V _{DD}		– 0.3 to 6.5	V
Program Voltage		V _{PP}	TEST /V _{PP} pin	- 0.3 to 13.0	V
Input Voltage		V _{IN}		– 0.3 to V _{DD} + 0.3	V
Output Voltage		V _{OUT}		– 0.3 to V _{DD} + 0.3	V
	IOL	I _{OUT1}	P1, P6	3.2	mA
Output Current (Per 1 pin)		I _{OUT2}	P7 (Middle current port)	15	mA
	юн	I _{OUT3}	P1, P6, P7	-1.8	mA
	IOL	ΣI_{OUT1}	P1, P6	50	mA
Output Current (Total)		ΣI_{OUT2}	P7 (Middle current port)	60	mA
	юн	ΣI_{OUT3}	P1, P6, P7	30	mA
Power Dissipation [Topr = 70°C]		PD	SDIP SOP	300 180	mW
Soldering Temperature (time) Tsld		Tsld		260 (10 s)	°C
Storage Temperature		Tstg		– 55 to 125	°C
Operating Temperature		Topr		– 30 to 70	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended O	perating	Conditions (V _{SS} =	0 V, Topr = -30) to 70°C)				
Parameter	Symbol	Pins		conditions	Min	Max	Unit	
		$F(\nabla)$		NORMAL mode	4.5			
			fc=8MHz	IDLE mode	4.5			
Supply Voltage	VDD			NORMAL mode	2.7	5.5	v	
			fc = 4.2 MHz	IDLE mode	2.7			
~	\wedge			STOP mode	2.0			
	VIH1	Except hysteresis input	\triangleright	> 4 5 1/	$V_{DD} \times 0.70$			
Innut I linh Valtan	V _{IH2}	Hysteresis input	V _{DD} ≧4.5 V		$V_{DD} \times 0.75$	V		
Input High Voltage	V _{IH3}		2.7 \	$I \leq V_D < 4.5 V$	$V_{DD} \times 0.90$	V _{DD}	V	
			V _{DD} <2.7 V		V _{DD} × 0.95			
	V _{IL1}	Except hysteresis input		> 4 5 1/		V _{DD} x 0.30		
Input Low Voltage	V _{IL2}	Hysteresis input	V	_{DD} ≧4.5 V	0	V _{DD} x 0.25	v	
	V _{IL3}		2.7 V	$2.7 V \le V_{DD} < 4.5 V$ $V_{DD} \times$		V _{DD} x 0.10		
Clock Frequency	fc		V _{DD}	V _{DD} = 4.5 to 5.5 V		8.0		
Clock Frequency		XIN, XOUT	V _{DD}	= 2.7 to 5.5 V	1.0	4.2	MHz	

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL mode and IDLE mode.

Note 3: Minimum of clock frequency: $1 \text{ MHz} \leq \text{fcqck}$

ſ

D.C. Chara	acterist	ics (V _{SS} = 0	V, Topr = -30 to 70°C)						
Parameter	Symbol	PINS	Condition	S	\sim	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs				-	0.9	-	V
	I _{IN1}	TEST			$\left(\right)$				
Input Current	I _{IN2}	Tri-state ports	V _{DD} = 5.5 V V _{IN} = 5.5 V / 0 V			2)~	-	2	μA
	I _{IN3}	RESET, STOP	V _{IN} = 5.5 V / 0 V	($\overline{\partial}$				
	R _{IN1}	TEST	<	(($\sqrt{5}$	30	70	150	
Input Resistance	R _{IN2}	RESET		>	\bigcirc	100	220	450	kΩ
	R _{IN3}	STOPi	i = 2 to 5	$(\bigcirc$		30	130	250	
Output Leak Current	I_{LO}	Tri-state ports	$V_{DD} = 5.5 V, V_{OUT} = 5.5$	VXOV)	-2	-	2	μA
Output High Voltage	V _{OH2}	Tri-state ports Ports P1, P6	$V_{DD} = 4.5 V, I_{OH} = -0.7$	7 mA		4.1		-	V
Low Output Voltage	V _{OL}	Except XOUT and P7	$V_{DD} = 4.5V$, $I_{OL} = 1.6$ m/	↓		4		0.4	V
Low Output Current	I _{OL3}	P7	$V_{DD} = 4.5 V, V_{OL} = 1.0 V$	\supset		$\langle \zeta \rangle$	Z	-	mA
			(\checkmark)		fc	(\bigcirc)	7.0	11	-
Supply Current in				fcgck	fc/2	74	4.4	7.0	-
NORMAL mode			V _{DD} =5.5 V		fc/4	\searrow	2.8	5.1	-
			fc=8 MHz	(fc/8	<u>}</u>	2.2	4.5	-
			$V_{IN} = 5.3 V / 0.2 V$		fc	//-	3.6	5.5	-
Supply Current in IDLE mode				fcgck	fc/2 fc/4	_	2.6 2.0	4.2	-
mode		AC			fc/8	_	1.7	3.5	mA
	I _{DD}			$\overline{)}$	fc	-	1.7	2.8	-
Supply Current in			\sim	fcgck	fc/2	-	1.1	2.0	
NORMAL mode			V _{DD} = 3.0 V	7	fc/4	_	0.7	1.4	
		\overline{C}	fc = 4.19 MHz	~	fc	_	0.9	1.6	1
Supply Current in IDLE		(())	$V_{IN} = 2.8 V / 0.2 V$	fcgck	fc/2	-	0.7	1.4	
mode				_	fc/4	-	0.5	1.0	
Supply Current in STOP mode	6		$V_{DD} = 5.5 V$ $V_{IN} = 5.3 V / 0.2 V$			-	0.5	10	μΑ

Note 1: Typical values show those at Topr = 25°C, VDD = 5 V. Note 2: Input Current I_{IN1}, I_{IN3}: The current through resistor is not included, when the input resistor (pull-up or pull-down) is contained. Note 3: I_{DD}; Except for I_{REF}

 \bigwedge

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Poteronco Voltago	VAREF		2.7	-	V _{DD}	
Analog Reference Voltage	VASS			V _{SS}		- V
Analog Input Voltage Range	V _{AIN}		V _{ASS}	-	VAREF	V
Analog Reference Current	I _{REF}	$V_{AREF} = 5.5 V, V_{ASS} (V_{SS}) = 0.0 V$	-	0.8	1.0	mA
Nonlinearity Error		V _{DD} = 5.0 V, V _{AREF} = 5.000 V	I	-	± 1	
Zero Point Error		$V_{ASS}(V_{SS}) = 0.000 V$	-	-	± 1]
Full Scale Error		or V _{DD} = 2.7 V, V _{ABEE} = 2.700 V	-	-	± 1	- LSB
Total Error		$V_{ASS}(V_{SS}) = 0.000 V$	-	-	± 2	1

Note: Quantizing error is not contained in those errors.

A.C. Characteristics (I)	$(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V,$	Topr = -30 to 70°C)			
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Mashina Cuala Timan	4.0.1	In NORMAL mode				
Machine Cycle Timer	tcy	In IDLE mode	0.5	7	4	μS
High Level Clock Pulse Width	t _{WCH}	For external clock operation	50			
Low Level Clock Pulse Width	t _{WCL}	fc = 8 MHz	30	-	_	ns
A/D Conversion Time	t _{ADC}	ACK = 0		46	_	
	ADC	ACK = 1		184		tcy
A/D Sampling Time	t _{AIN}	41	<u> </u>	4	\searrow	
		(7/5)			>	
A.C. Characteristics (II)	$(V_{SS} = 0 V, V_{DD} = 2.7 \text{ to } 5.5 V,$	Topr = - 30 to 70°C)	Ç)	
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		In NORMAL mode	(75)			
Machine Cycle Time	tcy	In IDLE mode	0.95	-	4	μs
High Level Clock Pulse Width	t _{WCH}	For external clock operation				
Low Level Clock Pulse Width	t _{WCL}	fc = 4.2 MHz	110	-	-	ns
A/D Conversion Time	task	АСК = 0	~	46		
	t _{ADC}	ACK=1		184		tcy
A/D Sampling Time			_	4		
lote: A/D conversion timing:		$\langle \langle 2 \rangle \rangle$				
Internal circuit for AIN0 to 5	A	D conversion timing				
AIN selector		os		((
	EOG)) ((
	A)) ((
K To maintain a precision of A/D conversion, internal condenser	select)) ((
must be charged until $t_{\mbox{AIN}}$ is over	conversio		tadc)/		
	\leq					

Recommende	d Oscillating Condit	ions(I) $(V_{SS}=0$	V, $V_{DD} = 4.5 t$	o 5.5 V, Topr = – 3	0 to 70°C)		
Parameter	Oscillator	Oscillation	Recomme	nded Oscillator	Recommended Condition		
rarameter	Oscillator	Frequency	Recomme		C ₁	C ₂	
			KYOCERA	KBR8.0M	30 pF	30 pF	
		8 MHz	MURATA	CSAC8.00MT	30 pF	30 pF	
Coromic Pos	Ceramic Resonator	(VDD = 4.5 to 5.5 V)	MURATA	CSA8.00MTZ CST8.00MTW CSTS8.00MT) –	_	
High-frequency		4.19 MHz	MURATA	CSA4.19MG	30 pF	30 pF	
Oscillation		(VDD = 2.7 to 5.5 V)	MURATA	CST4.19MGW	7	_	
		4 MHz (VDD = 2.7 to 5.5 V)	KYOCERA	KBR4.0MS	30 pF	30 pF	
		8 MHz (VDD = 4.5 to 5.5 V)	точосом	210B 8,0000	\bigcirc		
	Crystal Oscillator	4 MHz (VDD = 2.7 to 5.5 V)	ΤΟΥΟCOM	204B 4.000	20 pF	20 pF	

Recommended Oscillating Conditions (${\rm II}$)	$(V_{SS} = 0 V, V_{DD} = 2.7 \text{ to})$
---	---

o 5.5 V, Topr = - 30 to 70°C)

Dama waataa	Ossillatan	Oscillation	Burne		Recommended Conditions			
Parameter	Oscillator	Frequency	Recommen	ded Oscillator	C ₁	C ₂		
		4.19 MHz	MURATA	CSA4.19MG	30 pF	30 pF		
		(VDD = 2.7 to 5.5 V)	MURATA	CST4.19MGW	_	_		
High-frequency		\frown \land	MURATA	CSA4.00MG	30 pF	30 pF		
	Ceramic Resonator	()		CSA4.00MGC	—	—		
Oscillation		4 MHz	MURATA	CST4.00MGW				
		(VDD = 2.7 to 5.5 V)	$\sim // \sim$	CSTC4.00MG	_	_		
)	MURATA	CSTCS4.00MG	_	_		
			())					

Note: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.

D.C. Characteristics, A.C. Characteristics

 $(V_{SS} = 0 V)$

(1) Read Operation ($T_{opr} = 0$ to 70°C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}		V _{CC} × 0.67	(-)	V _{CC}	V
Input Low Voltage	V _{IL4}		0		V _{CC} × 0.3	V
Supply Voltage	V _{CC}		4,75	5.00	5.25	
Program Supply Voltage	V _{PP}		V _{cc} -0.6	Vcc	V _{CC+0.6}	
Address Set-up Time	t _{ASU}		400		-	ns
Address Access Time	t _{ACC}	$V_{CC} = 5.0 \pm 0.25 V$		5tcyc	-	ns

Note: tcyc = 400 ns

(2) Program Operation (High speed write mode - I) (Topr = $25 \pm 5^{\circ}$ C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}		V _{CC} × 0.7	_	V _{CC}	V
Input Low Voltage	V _{IL4}		0	-	$V_{CC} \times 0.12$	V
Supply Voltage	Vec		5.75	6.0	6.25	v
Program Supply Voltage	VPP	$(\overline{\Omega})$	12.0	12.5	13.0	V
Initial Program Pulse Width	$V_{CC} = 6.0$ $V_{PP} = 12.$	V ± 0.25 V, 5 V ± 0.25 V	0.95	1.0	1.05	ms
	AL ta output (10 to 17) a input (10 to 17)	Program AL ; Address input AH ; Address input				

Note 1: When V_{cc} power supply is turned on or after, V_{PP} must be increased.

When V_{cc} power supply is turned off or before, V_{PP} must be decreased.

Note 2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.5 V \pm 0.5 V) to the V_{PP} pin as the device is damaged.

Note 3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.

Electrical Characteristics

(1) 87P808L

Absolute Maximun	n Ratin	gs	(V _{SS} = 0 V)	$\langle \rangle$		
Parameter		Symbol	Conditions	2	Ratings	Unit
Supply Voltage		V _{DD}		\int	- 0.3 to 6.5	V
Program Voltage	ram Voltage V _{PP} TEST /V _{PP} pin		- 0.3 to 13.0	V		
Input Voltage		V _{IN}				V
Output Voltage		V _{OUT}			– 0.3 to V _{DD} + 0.3	V
		I _{OUT1}	P1, P6	>	3.2	mA
Output Current (Per 1 pin)		I _{OUT2}	P7 (Middle current port)		15	mA
	IOL	I _{OUT3}	P1, P6, P7		- 1.8	mA
	IOL	ΣI_{OUT1}	P1, P6		50	mA
Output Current (Total)	IOL	ΣI_{OUT2}	P7 (Middle current port)		60	mA
	IOL	ΣI_{OUT3}	P1, P6, P7		30	mA
Power Dissinction [Tenr - 70	٥°C1	PD	SDIF	5	300	mW
Power Dissipation [Topr = 70) Cj	PD	SOP	Γ	180	mvv
Soldering Temperature (time)		Tsld		2	260 (10 s)	°C
Storage Temperature		Tstg			– 55 to 125	°C
Operating Temperature		Topr		/	– 30 to 70	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Parameter	Symbol	Pins	Con	ditions	Min	Max	Unit
			fc=4.2 MHz	NORMAL mode			
Supply Voltage	V_{DD}	\rightarrow $\langle \subset$	16=4,2 IVIH2	IDLE mode	1.8	4.0	v
\langle	$\sqrt{7}$		STO	P mode			
Input High Voltage	V _H	\land	\checkmark		V _{DD} × 0.90	V _{DD}	V
Input Low Voltage	VIL	21			0	V _{DD} × 0.10	v
Clock Frequency) fc	XIN, XOUT	V _{DD} = 1	.8 to 4.0 V	1.0	4.2	MHz

the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL mode and IDLE mode.

Note 3: Minimum of clock frequency: $1 \text{ MHz} \leq \text{fcgck}$

D.C.	Characteristics	
------	-----------------	--

 $(V_{SS} = 0 V, Topr = -30 to 70^{\circ}C)$

	Symbol	PINS	Conditi	ons	\wedge	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs					0.9	-	V
	I _{IN1}	TEST			((\langle			
Input Current	I _{IN2}	Tri-state ports	$-V_{DD} = 4.0 V$			_2)~	-	2	μA
	I _{IN3}	RESET, STOP	$V_{IN} = 4.0 V / 0 V$	VIN = 4.0 V / 0 V					
	R _{IN1}	TEST	<	((// 5	30	70	150	
Input Resistance	R _{IN2}	RESET		>/	\bigcirc	100	220	450	kΩ
	R _{IN3}	STOPi	i = 2 to 5	$(\bigcirc$	$\mathbf{\Sigma}$	30	130	250	
Output Leakl Current	I _{LO}	Tri-state ports	V _{DD} = 4.0 V, V _{OUT} =	= 4.0 V /	οv	-2	-	2	μA
Output High Voltage	V _{OH2}	Tri-state ports	$V_{DD} = 4.0 V, I_{OH} =$	– 0.5 m/	4	3.6		I	V
Output Low Voltage	V _{OL}	Except XOUT and P7	$V_{DD} = 4.0V, I_{OL} = 1$	3 mA		X	-	0.4	V
Output Low Current	I _{OL3}	P7	$V_{DD} = 4.0 V, V_{OL} =$	1.0 V			6	-	mA
			$(\sqrt{5})$		fc	(\bigcirc)	2.25	3.6	
Supply Current in				fcgck	fc/2	40	1.35	2.5	
NORMAL mode			$V_{DD} = 4 V$		fc/4	77	0.9	1.9	
			$f_{c} = 4.19 \text{ MHz}$	(fc/8	57	0.7	1.65	
			$V_{1N} = 3.8 V / 0.2 V$		fc	<u> </u>	1.2	1.9	
Supply Current in IDLE		((VIN - 3.8 V / 0.2 V	fcgck	fc/2	-	0.9	1.7	
mode		al al			fc/4	-	0.7	1.5	
		$\leq \langle \rangle$			fc/8	-	0.6	1.4	
			\rightarrow	$\left(\right) \right)$	fc	-	1.5	2.5	
Supply Current in				l fcáck ⊢	fc/2	-	0. 8 5	1.6	
NORMAL mode			$V_{DD} = 3.0 V$		fc/4	-	0.6	1.2	
		$(\mathcal{C} \wedge$	$f_{DD} = 3.0 \text{ V}$ fc = 4.19 MHz		fc/8	-	0.4	1.0	- mA
			$V_{\rm IN} = 2.8 V/0.2 V$		fc	-	0.8	1.4	
Supply Current in IDLE	IDD		VIN=2.0 V/ 0.2V	fcgck	fc/2	-	0.55	1.1	
mode					fc/4	-	0.45	0.9	
	1				fc/8	-	0.35	0.85	
			(\mathcal{A})		fc	I	0.9	1.3	
Supply Current in				fcgck	fc/2	-	0.5	0.8	1
NORMAL mode			V _{DD} = 1.8 V		fc/4	I	0.3	0.45	
~	~		$v_{DD} = 1.8 v$ fc = 4.19 MHz		fc/8	I	0.2	0.35	
	$\langle \rangle$		$V_{IN} = 1.6 V / 0.2V$		fc	I	0.35	0.5	
Supply Current in IDLE	\searrow	$\left(\right)$	$\mathbf{v}_{\rm IN} = 1.6 \text{v} 7 0.2 \text{v}$	feach	fc/2	I	0.23	0.35	
mode	$\sum_{i=1}^{n}$	41		fcgck	fc/4	I	0.17	0.26	
))				fc/8	I	0.14	0.24	
			V _{DD} = 4.0 V				0.5	10	μΑ
Supply Current in									ι <i>π</i> Δ

Note3: IDD ; Except for I_{REF}

Parameter	Symbol	Conditions	Miŋ	Тур.	Max	Unit
Analog Poforonco Voltago	V _{AREF}		1.8	-	V _{DD}	v
Analog Reference Voltage	V _{ASS}		Vs	5		v
Analog Input Voltage Range	V _{AIN}		V _{ASS}	<u>)</u>)^	V _{AREF}	V
Nonlinearity Error			~ (7/5)	-	± 2	
Zero Point Error		$\begin{array}{l} 1.8 V \leq V_{AREF} < 2.7 V \\ V_{AREF} \leq V_{DD} \leq 4.0 \end{array}$	<u>NO</u>	-	± 2	
Full Scale Error		$V_{ASS}(V_{SS}) = 0.000V$ ACK = 1 (Note2)		-	± 2	LSB
Total Error		.((<u> </u>		±4	
	0E _H). conver	ose errors. sion time = 184 tcy (175.6 µs/ at fcg (V _{SS} = 0V, V _{DD} = 2.7 to 4.0 V, T			\rangle	
Note2: ACK ; bit5 of ADCCR (#00	0E _H). conver	sion time = 184 tcy (175.6 µs / at fcg		Тур.	Max	Unit
A/D Conversion Characte Parameter	0E _H). conver	sion time = 184 tcy (175.6 µs / at fcg (V _{SS} = 0V, V _{DD} = 2.7 to 4.0 V, T	opr = - 30 to 70°C)	Тур.		Unit
Note2: ACK ; bit5 of ADCCR (#00 A/D Conversion Characte Parameter	0E _H). conver ristics (II) Symbol	sion time = 184 tcy (175.6 µs / at fcg (V _{SS} = 0V, V _{DD} = 2.7 to 4.0 V, T	Fopr = - 30 to 70°C)	-	Max V _{DD}	Unit V
Note2: ACK ; bit5 of ADCCR (#00 A/D Conversion Characte Parameter Analog Reference Voltage	0E _H). conver ristics (II) Symbol V _{AREF}	sion time = 184 tcy (175.6 µs / at fcg (V _{SS} = 0V, V _{DD} = 2.7 to 4.0 V, T	Fopr = - 30 to 70°C) Min 2.7	-		
Note2: ACK ; bit5 of ADCCR (#00 A/D Conversion Characte Parameter Analog Reference Voltage Analog Input Voltage Range	0E _H). conver ristics (II) Symbol V _{AREF} V _{ASS}	sion time = 184 tcy (175.6 µs / at fcg (V _{SS} = 0V, V _{DD} = 2.7 to 4.0 V, T	Topr = - 30 to 70°C) Min 2.7 Vs:	- 5	V _{DD}	v
Note2: ACK ; bit5 of ADCCR (#00 A/D Conversion Characte Parameter Analog Reference Voltage Analog Input Voltage Range Analog Reference Current	0E _H). conver ristics (II) Symbol V _{AREF} V _{ASS} V _{AIN}	sion time = 184 tcy (175.6 μ s / at fcg $(V_{SS} = 0V, V_{DD} = 2.7 \text{ to } 4.0 \text{ V}, T$ Conditions $V_{AREF} = 4.0V, V_{ASS} (V_{SS}) = 0.0V$ $V_{DD} = 4.0 \text{ V}$	Topr = - 30 to 70°C) Min 2.7 Vs:	- 	V _{DD}	v v
Note2: ACK ; bit5 of ADCCR (#00 A/D Conversion Characte Parameter Analog Reference Voltage Analog Input Voltage Range Analog Reference Current Nonlinearity Error	0E _H). conver ristics (II) Symbol V _{AREF} V _{ASS} V _{AIN}	sion time = 184 tcy (175.6 μ s / at fcg $(V_{SS} = 0V, V_{DD} = 2.7 \text{ to } 4.0 \text{ V}, T$ Conditions $V_{AREF} = 4.0V, V_{ASS} (V_{SS}) = 0.0V$ $V_{DD} = 4.0 \text{ V}$ $V_{AREF} = 4.000V$ $V_{ASS} (V_{SS}) = 0.000V$	Topr = - 30 to 70°C) Min 2.7 Vs:	- 	V _{DD} V _{AREF} 1.0	V V mA
Note2: ACK ; bit5 of ADCCR (#00 A/D Conversion Characte	0E _H). conver ristics (II) Symbol V _{AREF} V _{ASS} V _{AIN}	sion time = 184 tcy (175.6 μ s / at fcg $(V_{SS} = 0V, V_{DD} = 2.7 \text{ to } 4.0 \text{ V}, T$ Conditions $V_{AREF} = 4.0V, V_{ASS} (V_{SS}) = 0.0V$ $V_{DD} = 4.0 \text{ V}$ $V_{AREF} = 4.000V$	Topr = - 30 to 70°C) Min 2.7 Vs:		V _{DD} V _{AREF} 1.0 ± 1	V V

Recommended	Recommended Oscillating Conditions		$(V_{SS} = 0 V, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$					
Parameter	Oscillator	Oscillation Frequency Recommended Oscillator		Recommende C ₁	ended Conditions			
		4.19 MHz (VDD = 2.7 to 5.5 V)	MURATA	CSA4.19MG	30 pF	30 pF		
High-frequency Oscillation		(100 - 2., 10 0.0 1)	MURATA MURATA	CST4.19MGW CSA4.00MG	30 pF	C ₂		
	Ceramic Resonator (VD	4 MHz (VDD = 2.7 to 5.5 V)	MURATA	CSA4.00MGC CST4.00MGW CSTC4.00MG		_		
		(MURATA	CSTCS4.00MG	_	_		

Note: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.

D.C. Characteristics, A.C. Characteristics (Characteristics, A.C. Characteristics	Vs
--	---------------------------------------	----

 $(V_{SS} = 0 V)$

(1) Read Operation ($T_{opr} = 0$ to 70°C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}		V _{CC} × 0.67	(-)	V _{CC}	V
Input Low Voltage	V _{IL4}		0		V _{CC} × 0.3	V
Supply Voltage	V _{CC}		4.75	5.00	5.25	
Program Supply Voltage	V _{PP}		V _{CC} -0.6	Vcc	V _{CC+0.6}	
Address Set-up Time	t _{ASU}		400		-	ns
Address Access Time	t _{ACC}	$V_{CC} = 5.0 \pm 0.25 V$		5tcyc	-	ns
				Note: touc	- 100 ps	

Note: tcyc = 400 ns

(2) Program Operation (High speed write mode - I) (Topr = $25 \pm 5^{\circ}$ C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}		V _{CC} ×0.7	_	V _{CC}	V
Input Low Voltage	V _{IL4}		0	-	V _{CC} × 0.12	V
Supply Voltage	Vec		5.75	6.0	6.25	V
Program Supply Voltage	VPP	$(\overline{\Omega})$	12.0	12.5	13.0	V
Initial Program Pulse Width	$V_{CC} = 6$ $V_{PP} = 1$	0 V ± 0.25 V, 2.5 V ± 0.25 V	0.95	1.0	1.05	ms
	AL ta output (10 to 17) a input (10 to 17)	Program AL ; Address input AH ; Address input	(A0 to A7)			_

Note 1: When V_{cc} power supply is turned on or after, V_{PP} must be increased. When V_{cc} power supply is turned off or before, V_{PP} must be decreased.
Note2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.5 V ± 0.5 V) to the V_{PP} pin as the device is damaged.
Note3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.

(3) Program Operation (High speed write mode - II) (Topr = $25 \pm 5^{\circ}$ C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}		V _{CC} × 0.7	<u> </u>	V _{CC}	V
Input Low Voltage	V _{IL4}		0	-	V _{CC} × 0.12	V
Supply Voltage	V _{CC}		6.00	6.25	6.50	V
Program Supply Voltage	V _{PP}		12.50	12.75	13.0	V
Initial Program Pulse Width	t _{PW}	$V_{CC} = 6.25 V \pm 0.25 V,$ $V_{PP} = 12.75 V \pm 0.25 V$	0.095	0,1	0.105	ms

Note1: When V_{cc} power supply is turned on or after, V_{PP} must be increased. When V_{cc} power supply is turned off or before, V_{PP} must be decreased.

Note2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.5 V \pm 0.5 V) to the V_{PP} pin as the device is damaged.

Note3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.

Recommended EPROM Programmer DATA I/O UNISTTE (SITE40) **ADVANTEST** R4945A AVAL DATA PECKER11 MARK-II (version 5.5)