TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = (NMI, INTO), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with

higher priority is handled first followed by the other interrupt.

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Pb-free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

- 1. Part number
 - Example: TMPxxxxxF TMPxxxxxFG

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions

Example: LQFP100-P-1414-0.50C \ LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb-free, notes on lead solderability have been added.

4. RESTRICTIONS ON PRODUCT USE

The previous (obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

2. Package code and dimensions

TMP95C061BF P-QFP100-1414-0.50 TMP95C061BFG QFP100-P-1414-0.50 (Note) (Note) (Note) (Note) (Note) (Note)	Previous Part Number (in Body Text)	Previous Package Code (in Body Text)	New Part Number	New Package Code
(Note) (Note)	TMP95C061BF	P-QFP100-1414-0.50	TMP95C061BFG	QFP100-P-1414-0.50
_ (1000) _ (1000) _ TMP95C061BDFG LQFP100-P-1414-0.50F	_ (Note)	_ (Note)	TMP95C061BDFG	LQFP100-P-1414-0.50F

Note: Pb-containing variant not available.

*: For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device.

Solderability

Test Parameter	Test Condition	Note
Solderability	Use of Sn-37Pb solder Bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux	Pass: Solderability rate until forming

4. RESTRICTIONS ON PRODUCT USE

It replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text. For details, see the attached RESTRICTIONS ON PRODUCT USE.

5. Publication date of the datasheet

The publication date of this datasheet is printed at the lower right corner of this notification.

(Annex)

Package Dimensions

QFP100-P-1414-0.50

LQFP100-P-1414-0.50F

Unit: mm

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics applications or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
 infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to
 any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

CMOS 16-bit Microcontroller TMP95C061BF

1. Outline and Device Characteristics

TMP95C061BF is high-speed advanced 16-bit microcontroller developed for controlling medium to large-scale equipment. TMP95C061BF is housed in an 100-pin mini flat package (QFP100-P-1414-0.50). TMP95C061BEF is housed in QFP100-P-2222-0.80A package.

Device characteristics are as follows:

- (1) Original High speed 16-bit CPU (900/H CPU)
 - TLCS-90/900 instruction mnemonic upward compatible,
 - 16M-byte linear address space
 - General-purpose registers and register bank system
 - 16-bit multiplication / division and bit transfer / arithmetic instructions
 - Micro DMA : 4 channels (640 ns / 2 bytes at 25 MHz)
- (2) Minimum instruction execution time : 160 ns at 25 MHz
- (3) Internal RAM : None
 - Internal ROM : None
- (4) External memory expansion
 - Can be expanded up to 16 Mbytes (for both programs and data).
 - AM8 / 16 pin (select the external data bus width)
 - Can mix 8- and 16-bit external data buses. ... Dynamic data bus sizing
- (5) DRAM Controller
- (6) 8-bit timer : 4 channels
- (7) 16-bit timer : 2 channels
- (8) Pattern generator : 4 bits, 2 channels

000707EBP1

	For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled
_	Quality and Reliability Assurance / Handling Precautions.
	TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
	devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.
	It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in
	making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA
	products could cause loss of human life, bodily injury or damage to property.
	In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set
2	forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set
	forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc
•	The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer,
	personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These
	TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high
	quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury
	("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments,
	transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of
	safety devices, etc Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
	own risk.
	The products described in this document are subject to the foreign exchange and foreign trade laws.
	The information contained herein is presented only as a guide for the applications of our products. No responsibility
	is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third
	parties which may result from its use. No license is granted by implication or otherwise under any intellectual
	property or other rights of TOSHIBA CORPORATION or others.
_	property of other rights of roomba conformation of others.

• The information contained herein is subject to change without notice.

TOSHIBA

	(9)	Serial interface	:2 channels
	(10)	(Only for channel 0, external c 10-bit A/D converter	lock can be used in UART mode.) :4 channels
	(11)	Watchdog timer	
	(12)	Chip select / wait controller	:4 blocks
	(13)	Interrupt functions	
		• 2 CPU interrupts	
		• 18 internal interrupts	
	(1.4)	• 6 external interrupts	7-level priority can be set.
	(14)	I/O ports 56 pins	
	(15)	Standby function	: 3 HALT modes (RUN, IDLE, STOP)
	. ,	0	
		<pre>c</pre>	
		\mathcal{C}	
		$\overline{(7)}$	
			\searrow
	\langle		
~			
<			
		\rightarrow \sim \rightarrow	

2. Pin Assignment and Functions

The assignment of input / output pins for TMP95C061B their name and outline functions are described below.

2.1 Pin Assignment

Figure 2.1 shows pin assignment of TMP95C061B.

Figure 2.1 Pin Assignment (100-pin MFP)

2.2 Pin Names and Functions

The names of input / output pins and their functions are described below. Table 2.2 Pin Names and Functions.

	_		Table 2.2
Pin name	Number of pins	I/O	Functions
D0 to D7	8	I/O	Data : 0 to 7 for data bus
P10 to P17 D8 to D15	8	I/O I/O	Port 1 : I/O ports that allow I/O to be selected on a bit basls Data : 8 to 15 for data bus
P20 to P27 A16 to A23	8	Output Output	Port 2 : Output ports Address : 16 to 23 for address bus
A8 to A15	8	Output	Address : 8 to 15 for address bus
A0 to A7	8	Output	Address : 0 to 7 for address bus
RD	1	Output	Read : Strobe signal for reading external memory
WR	1	Output	Write : Strobe signal for writing data on pins D0 to 7
P52 HWR	1	l/O Output	Port 52 : I/O port (with pull-up resistor) High Write : Strobe signal for writing data on pins D8 to 15
P53 BUSRQ	1	l/O Input	Port 53 : I/O port (with pull-up resistor) Bus request : Signal used to request high impedance for D0 to 15, A0 to 23, RD, WR, HWR, R/W, CS0 to CS3, RAS, CAS and REFOUT (*) pins. (for external DMAC)
P54 BUSAK	1	l/O Output	Port 54 Bus Acknowledge : Signal indicating that D0 to 15, A0 to 23, RD, WR, HWR, R/W, CS0 to CS3, RAS, CAS and REFOUT (*) pins are at high impedance after receiving BUSRQ. (for external DMAC)
P55 R/W	1	l/O Output	Port 55 : Output port (with pull-up resistor) Read/Write : 1 : indicates read or dummy cycle 0 : indicates write cycle
P60 CS0		Output Output	Port 60 : Output port Chip Select 0 : Outputs 0 when address is within specified address area
P61 CS1		Output Output	Port 61 : Output port Chip Select 1: Output 0 when address is within specified address area

Table 2.2

Note: With the external DMA controller, this device's built-in memory or built-in I/O cannot be accessed using the BUSRQ and BUSAK pins.

(*) RAS, CAS, and REFOUT are set to high impedance only when bus release mode is set using the DRAM controller. For details, see 3.7, Dynamic RAM (DRAM) Controller.

Pin name	Number of pins	I/O	Functions	
P62 CS2	1	Output Output	Port 62 : Output port Chip Select 2 : Outputs 0 if address is within specified address area	
P63 CS3 CAS	1	Output Output Output	Port 63 : Output port Chip Select 3 : Outputs 0 if address is within specified address area Column address strobe : Outputs CAS strobe for DRAM if address is within specified address area	
P64 RAS	1	Output Output	Port 64 : Output port Low address strobe : Output RAS strobe for DRAM if address is within specified address area	
P65	1	Output	Port 65 : Output port	
REFOUT		Output	Refresh Output : 0 : indicates priod of refresh cycle	
P70 to P73 PG00 to PG03	4	l/O Output	Port 70 to 73 : 1/0 port that allow selection of 1/0 on a bit basis (with pull-up resister) Pattern generator Port : 00 to 03	
P74 to P77 PG10 to PG13	4	l/O Output	Port 74 to 77 : I/O port that allow selection of I/O on a bit basis (with pull-up resister) Pattern generator Port : 10 to 13	
P80	1	l/O	Port 80 : I/O port (with pull-up resister)	
TXD0		Output	Serial send data 0	
P81	1	l/O	Port 81 : I/O port (with pull-up resister)	
RXD0		Input	Serial receive data 0	
P82	1	l/O	Port 82 : I/O port (with pull-up resister)	
CTS0		Input	Serial data send enable (clear to send)	
SCLK0		I/O	Serial Clock I/O 0	
P83		I/O	Port 83 : 1/O port (with pull-up resister)	
TXD1		Output	Serial send data 1	
P84	1	l/O	Port 84 : I/O port (with pull-up resister)	
RXD1		Input	Serial receive data 1	
P85	1	1/0	Port 85 : I/O port (with pull-up resister)	
SCLK1		1/0	Serial clock I/O 1	
P90 to P93	4	Input	Port 9 : Input port	
AN0 to AN3		Input	Analog input : Input to A/D converter	
PA0		I/O	Port A0 : I/O port (with pull-up resister)	
WAIT		Input	Wait : Pin used to request CPU us wait	
PA1	1	1/O	Port A1 : I/O port (with pull-up resister)	
TI0		Input	Timer input 0 : Timer 0 input	
PA2	1	l/O	Port A2 : I/O port (with pull-up resister)	
TO1		Output	Timer output 1 : Timer 0 or 1 output	

Pin name	Number of pins	I/O	Functions	
PA3 TO3	1	l/O Output	Port A3 : I/O port (with pull-up resistor) Timer output3 : Timer 2 or 3 output	
PBO TI4 INT4	1	l/O Input Input	Port B0 : I/O port (with pull-up resistor) Timer input 4 : Timer 4 count / capture trigger signal input Interrupt request pin 4 : Interrupt request pin with programmable rising / falling edge	
PB1 TI5 INT5	1	l/O Input Input	Port 86: I/O port (with pull-up resistor)Timer input 5: Timer 4 count / capture trigger signal inputInterrupt request pin 5: Interrupt request pin with rising edge	
РВ2 ТО4	1	l/O Output	Port B2 : I/O port (with pull-up resistor) Timer output4 : Timer4 output	
РВ3 ТО5	1	l/O Output	Port B3 : I/O port (with pull-up resistor) Timer output5 : Timer4 output	
PB4 TI6 INT6	1	l/O Input	Port B4 Timer input 6 Interrupt request pin 6 Interrupt request pin 6 Interrupt request pin with progmnable rising / fulling edge	
PB5 TI7 INT7	1	l/O Input Input	Port B5 : I/O port (with pull-up resistor) Timer input 7 : Timer 5 count / capture trigger signal input Interrupt request pin 7 : Interrupt request pin with rising edge	
PB6 TO6	1	l/O Output	Port B6 : I/O port (with pull-up resistor) Timer output6 : Timer5 output pin	
PB7 INTO	1	l/O Input	Port B7 : I/O port (with pull-up resistor) Interrupt request pin 0 : Interrupt request pin with progmmable level / rising edge	
V _{REF} (V _{REFH})	1	Input	Pin for refereme voltage input to A/D connecter	
AGND (V _{REFL})	7	Input	Ground pin for A/D converter	
WDTOUT	1	Output	Watchdog timer output pin	
NMI	1	Input	Non-maskable interrupt request pin : Interrupt request pin with falling edge. Can also be operated at rising edge by program.	
CLK		Output	Clock output : Outputs 「external input clock X1÷4」 clock. Pulled-up during reset.	
EA	1	Input <	fixed GND	
AM8/16		Inpút	Address mode : Selects external Data Bus width "0" should be inputted with fixed 16 bit Bus width or 16 bit Bus interlorded with 8 bit Bus. "1" should be inputted with fixed 8 bit Bus width	
RESET	1	Input	Reset : Initializes LSI (with pull-up resister)	
X1/X2	2	I/O	Oscillator connecting pin	
VCC	4		Power supply pin (+ 5 V) (All Vcc pins should be connected with the power supply pin.)	
VSS	4		GND pin (0 V) (All Vss pins should be connected with GND (0 V).)	

Note 1: Pull-up resistor can be released from the pin by software.

Note 2: Connect all VCC pins to power supply and all VSS pins to GND.

3. Operation

This section describes in blocks the functions and basic operations of TMP95C061B devices.

Check the $\lceil 7$. Care Points and Restriction $\ \]$ because of the Care Points etc are described.

3.1 CPU

TMP95C061B devices has a built-in high-performance 16-bit CPU (900/H CPU). (For CPU operation, see TLCS-900 CPU in the previous section).

This section describes CPU functions unique to TMP95C061B that are not described in the previous section.

3.1.1 Reset

To reset the TMP95C061B, the RESET input must be kept at 0 for at least 10 system clocks (10 states: 0.8 μ s at 25 MHz) within an operating voltage range and with a stable oscillation.

When reset is accepted, the CPU sets as follows:

• Program Counter (PC) according to Reset Vector that is stored 0FFFF00H to 0FFFF02H.

- $PC(7:0) \leftarrow stored data to 0FFFF00H$
- $PC(15:8) \leftarrow stored data to 0FFFF01H$
- PC $(23:16) \leftarrow$ stored data to 0FFFF02H
- Stack pointer (XSP) for system mode to 100H.
- IFF2 to 0 bits of status register to 111. (Sets mask register to interrupt level 7.)
- Sets the MAX bit of the status register (SR) to 1 (this sets maximum mode).
 (Note: This product does not support minimum mode. Do not use the MIN instruction.)
- Bits RFP2 to 0 of status register to 000. (Sets register banks to 0.)

When reset is released, instruction execution starts from PC (reset vector). CPU internal registers other than the above are not changed.

When reset is accepted, processing for built-in I/Os, ports, and other pins is as follows

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to general-purpose input / output port mode.
- Sets the WDTOUT pin to 0. (Watchdog timer is set to enable after reset.)
- Pulls up the CLK pin to 1.

3.1.2 External data width selection pin (AM8 / $\overline{16}$)

After Reset operation, TMP95C061B operates 8 bits or 16 bits external data width according to input to AM8 / $\overline{16}$ pin.

• In case with fixed 16 bit bus or 16 bit bus interlarded with 8 bit bus

"0" should be inputted. In this case, Port 1 (P10 to P17) operate as data bus D8 to 15. The data bus width for external access is set by Chip Select / Wait Control resister.

• In case with fixed 8 bit bus

"1" should be inputted. In this case, Port 1 (P10 to P17) operate as 8 bit I/O ports. And the value set in Chip Select / Wait Control resister <B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> and <BEXBUS> are neglected.

3.2 Memory Map

Figure 3.2 shows a memory map of the TMP95C061B.

Note: After reset operation, Stack point (XSP) is set to 100H.

Figure 3.2 Memory Map

3.2.1 Operation at internal I/O area access

TMP95C061B uses 128 bytes of address space (0H to 7FH) as an internal I/O area. Internal I/O registers are mapped on this area.

Operation of the internal I/O area access is different from that of the other address area access about following two points.

(1) In the internal I/O area access, RD, and WR (HWR) strobe signals are nonactive and fixed to high level.

However, in PSRAM mode set by P5 < RDE > register, \overline{RD} strobe signal becomes active also in the internal I/O area access. (See 3.5.3 Port5 (P52 to P55).)

(2) In the internal I/O area access, the number of waits becomes zero or one depending on the internal state of the CPU. This wait can't be controlled by chip select / wait controller (see 3.6 Chip Select / Wait Controller, AM8/16 pin). When the specified address area overlaps with the internal I/O area, the operation as the internal I/O area takes priority of the specified address area.

3.3 Interrupts

TLCS-900 interrupts are controlled by the CPU interrupt mask flip-flop (IFF2 to 0) and the built-in interrupt controller.

TMP95C061B has the following 26 interrupt sources:

- Interrupts from the CPU…2 (Software interrupts, and Illegal (undefined) instruction execution)
- Interrupts from external pins $(\overline{NMI}, INT0, and INT4 to 7) \cdots 6$
- Interrupts from built-in I/Os…14
- Interrupts from micro DMA…4

A fixed individual interrupt vector number is assigned to each interrupt source; six levels of priority (variable) can also be assigned to each maskable interrupt. Nonmaskable interrupts have a fixed priority of 7.

When an interrupt is generated, the interrupt controller sends the value of the priority of the interrupt source to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the value of the highest priority (7 for non-maskable interrupts is the highest) to the CPU.

The CPU compares the value of the priority sent with the value in the CPU interrupt mask register (IFF2 to 0). If the value is higher or equal to that of the CPU interrupt mask register, the interrupt is accepted. However, software interrupts and illegal instruction interrupts generated by the CPU are processed without comparison with the IFF<2:0>value.

The value in the CPU interrupt mask register (IFF2 to 0) can be changed using the EI instruction (contents of the EI num / IFF $\langle 2:0 \rangle =$ num). For example, programming EI 3 enables acceptance of maskable interrupts with a priority of 3 or greater, and non-maskable interrupts which are set in the interrupt controller. The DI instruction (IFF $\langle 2:0 \rangle = 7$) operates in the same way as the EI 7 instruction. Since the priority values for maskable interrupts are 0 to 6, the DI instruction is used to disable maskable interrupts to be accepted. The EI instruction becomes effective immediately after execution. (With the TLCS-90, the EI instruction becomes effective after execution of the subsequent instruction.)

In addition to the general-purpose interrupt processing mode described above, there is also micro DMA processing mode. Micro DMA is a mode used by the CPU to automatically transfer byte, word and 4-byte data. It enables the CPU to process interrupts such as data saves to built-in I/Os at high speed.

Figure 3.3 (1) is a flowchart showing overall interrupt processing.

3.3.1 General-Purpose Interrupt Processing

When accepting an interrupt, the CPU operates as follows:

However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips (1) and (3) and executes steps (2), (4), and (5).

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated simultaneously, the interrupt controller generates interrupt vectors in accordance with the default priority (which is fixed as follows: the smaller the vector value, the higher the priority), then clears the interrupt request.
- (2) The CPU pushes the program counter and the status register to the system stack area (area indicated by the system mode stack pointer (XSP)).
- (3) The CPU sets a value in the CPU interrupt mask register <IFF2 to 0> that is higher by 1 than the value of the accepted interrupt level. However, if the value is 7, 7 is set without an increment.
- (4) The CPU increments the INTNEST (Interrupt Nesting Counter).
- (5) The CPU jumps to address stored at FFFF00H + interrupt vector, then starts the interrupt processing routine.

Bus Width of Stack Area	Bus Width of Interrupt Vector Area	Interrupt processing state number
8 bit	8 bit	28
obit	16 bit	24
16 bit	8 bit	22
	16 bit	18

The following diagram shows all the above processing state number.

To return to the main routine after completion of the interrupt processing, the RETI instruction is usually used. Executing this instruction restores the contents of the program counter and the status registers and decrements INTNEST (Interrupt Nesting Counter).

Though acceptance of non-maskable interrupts cannot be disabled by program, acceptance of maskable interrupts can. A priority can be set for each source of maskable interrupts. The CPU accepts an interrupt request with a priority higher or equal to the value in the CPU mask register <IFF2 to 0>. The CPU mask register <IFF2 to 0> is set to a value higher by 1 than the priority of the accepted interrupt. Thus, if an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest.

If an interrupt generated while the CPU is performing processes (1) to (5) for an earlier interrupt, the new interrupt is sampled immediately after the start instruction of the interrupt processing routine is executed. Setting DI as the start instruction disables maskable interrupt nesting. (Note: With the 900 and 900/L, an interrupt is sampled before the start instruction is executed.)

Resetting initializes the CPU mask registers $\langle IFF2 \text{ to } 0 \rangle$ to 7; therefore, maskable interrupts are disabled.

The addresses 0FFFF00H to 0FFFFFFH (256 bytes) of the TMP95C061B are assigned for interrupt vector area.

	Туре	Interrupt source	Vector value	Address refer	Micro DMA
priority	1966		<u> </u>	to vector	start vector
1		Reset, or SWI0 instruction	0000H	FEFF00H	-
2		SWI 1 instruction	00044	FFFF04H	-
3		INTUNDEF : Illegal instruction, or SWI2	0008H	FFFF08H	-
4	Non-	SWI 3 instruction	000СН		-
5	maskable	SWI 4 instruction	0010H	FFFF10H	-
6		SWI 5 instruction	0014H		-
7		SWI 6 instruction	0018H	FFFF18H	-
8		SWI 7 instruction	001.CH	FFFF1CH	-
9		NMI Pin	0020H	FFFF20H	-
10		INTWD : Watchdog timer	0024H	FFFF24H	-
-		(Micro DMA)	// -	-	-
11		INTO pin	0 0 2 8 H	FFFF28H	0AH
12		INT4 pin	002СН	FFFF2CH	ОВН
13		INT5 pin	0030H	FFFF30H	0СН
14		INT6 pin	0034H	FFFF34H	0DH
15		INT7 pin	0038H	FFFF38H	0EH
-		(Reserved)	003CH	FFFF3CH	-
16		INTTO 8-bit timer0	0040H	FFFF40H	10H
17		INT(1 28-bit timer1 2000)	0044H	FFFF44H	11H
18		INTT2 : 8-bit timer2	0048H	FFFF48H	12H
19		INTT3 : 8-bit timer3	004CH	FFFF4CH	13H
20	Maskable	INTTR4 : 16-bit timer4 (TREG4)	0050H	FFFF50H	14H
21	\sim	INTTR5 : 16-bit timer4 (TREG5)	0054H	FFFF54H	15H
22	2	NTTR6 : 16-bit timer5 (TREG6)	0058H	FFFF58H	16H
23		NTTR7 : 16-bit timer5 (TREG7)	005CH	FFFF5CH	17H
24		INTRX0 : Serial receive (Channel.0)	0060H	FFFF60H	18H
25		INTTX0 : Serial send (Channel.0)	0064H	FFFF64H	19H
26	\frown	INTRX1 🔶 Serial receive (Channel.1)	0068H	FFFF68H	1AH
27		INTTX1 : Serial send (Channel.1)	006CH	FFFF6CH	1BH
28		INTAD ; A/D conversion completion	0070H	FFFF70H	1CH
29		INTTC0 Micro DMA completion (channel.0)	0074H	FFFF74H	-
30	\sim	INTTC1 Micro DMA completion (channel.1)	0078H	FFFF78H	-
31		INTTC2 Micro DMA completion (channel.2)	007СН	FFFF7CH	_
32		INTTC3 Micro DMA completion (channel.3)	0080H	FFFF80H	_
–		(Reserved)	0084H	FFFF84H	_
to		to	to	to	to
_		(Reserved)	<u>00FCH</u>	FFFFFCH	_

Table3.3 (1) TMP95C061B Interrupt Table

Setting to Reset / Interrupt Vector

① Reset Vector

FFFF00H	PC (7:0)
FFFF01H	PC (15:8)
FFFF02H	PC (23:16)
FFFF03H	XX

② Interrupt Vector (except Reset Vector)

(Address refer to vector)

+0	PC (7:0)	
+ 1	PC (15:8)	
+ 2	PC (23:16)	
+ 3	XX	

XX : Don't care

(Setting Example)

Reset Vectir: 8100H, NMI Vector: 9ABCH, INTAD Vector: 123456h.

3.3.2 Micro DMA

In addition to conventional interrupt processing, TMP95C061B supports the micro DMA function. For interrupt requests set for micro DMA, micro DMA processing is performed at the highest priority for maskable interrupts (level 6), regardless of the actual interrupt level set for the interrupt.

Because the function of micro DMA has been implemented with the cooperative operation of CPU, when CPU is a state of stand-by by HALT instruction, the requirement of micro DMA will be ignored (pending).

(1) Micro DMA Operation

When an interrupt request occurs for an interrupt specified by the micro DMA start vector register, micro DMA sends the micro DMA request to the CPU with the highest priority for maskable interrupts (level 6), regardless of the actual interrupt level set for the interrupt, and starts micro DMA. The micro DMA function has four channels. This allows micro DMA to be set for up to four interrupts at the same time.

When micro DMA is accepted, the interrupt request F-F for the micro DMA channel is cleared, data are automatically transferred from the transfer source address to the transfer destination address (the addresses are set in the control register), and the transfer count is decremented. If the decremented result is other than zero, micro DMA processing terminates. If the decremented result is zero, the CPU sends a micro DMA transfer end interrupt (INTTCn) to the interrupt controller, clears the micro DMA start vector register to 0, disables the next micro DMA startup, and terminates micro DMA processing.

If an interrupt request for the interrupt source used is received between the time that the micro DMA start vector is cleared and the time that it is reset, the CPU performs general-purpose processing at the specified interrupt level. Therefore, if the interrupt source is only being used for starting micro DMA (not used as an interrupt), set the interrupt level to zero.

When simultaneously using the same interrupt resource for both the micro DMA and general-purpose interrupts as described above, set the level of the interrupt source used to start micro DMA lower than the levels of all other interrupt sources. In this case, the cause of general interrupt is limited to the edge interrupt.

Example :

: When using timers 0 to 3 for running micro DMA 0 to 3 Set the interrupt level of timers 0 to 3 to 1 Set other interrupt levels to 2 to 6 Like other maskable interrupts, the priority of the micro DMA transfer end interrupt is determined by the interrupt level and default priority.

If multiple-channel micro DMA requests occur at the same time, the priority is determined by the channel numbers, not the interrupt levels. The lower the channel number, the higher the priority. $(CH0 (high) \rightarrow CH3 (low))$

The transfer source and transfer destination addresses are set in 32-bit control registers. However, as only 24-bit addresses are output, the address space available to micro DMA is 16M bytes.

Three transfer modes are supported: 1-byte transfer, 1-word transfer (= two bytes), and 4-byte transfer. For each transfer mode, it is possible to specify whether to increment, decrement, or fix source and destination addresses after transfer. These modes facilitate data transfer from I/O to memory, from memory to I/O, and from I/O to I/O. For transfer mode details, see "Transfer Mode Register Details" later in this manual.

As a 16-bit transfer counter is used, micro DMA can perform a maximum of 65536 transfers (initializing the counter to 0000H specifies the maximum number of transfers).

The 18 interrupt sources with micro DMA start vectors (as listed in Table 3.3 (1)) can be used to start micro DMA processing.

Figure 3.3.2 (1) shows the micro DMA cycle for 1-word transfer in transfer destination address INC mode (the same apart from counter mode). (The conditions for this cycle are based on a 16-bit bus, 0 waits, and transfer source/transfer destination addresses both even-numbered values.).

TOSHIBA

- Note 1 : If the source address area uses an 8-bit bus, two states are added. If also the source address area uses a 16-bit bus and the source address is an oddnumbered address, two states are added.
- Note 2 : If the destination address area uses an 8-bit bus, two states are added. If also the destination address area uses a 16-bit bus and the destination address is an odd-numbered address, two states are added.

(2) Register configuration (CPU control register)

These Control Register can not be set only "LDC cr, r" instruction.

TOSHIBA

(3) Transfer mode register details

(DMAM0 to 3)	<
0 0 0	Mode Note : When setting values for this register, set the upper 3 bits to 0.	46
\downarrow \downarrow \downarrow	ZZ: 0 = byte transfer, 1 = word transfer, 2 = 4-byte transfer, 3 = reservation	execution time (Min.at 25 MHz)
0 0 0 Z Z	Transfer destination address INC mode \dots for I/O to memory (DMADn +) \leftarrow (DMASn) DMACn \leftarrow DMACn - 1 if DMACn = 0 then INTTC.	8 states (640 ns) @ Byte / word transfer 12 states (960 ns) @ 4-byte transfer
0 0 1 Z Z	Transfer destination address DEC mode \dots for I/O to memory (DMADn –) \leftarrow (DMASn) DMACn \leftarrow DMACn – 1 if DMACn = 0 then INTTC.	8 states (640 ns) @ Byte / word transfer 12 states (960 ns) @ 4-byte transfer
0 1 0 Z Z	Transfer source address INC mode for memory to I/O (DMADn) \leftarrow (DMASn +) DMACn \leftarrow DMACn - 1 if DMACn = 0 then INTTC.	8 states (640 ns) @ Byte / word transfer 12 states (960 ns) @ 4-byte transfer
0 1 1 Z Z	Transfer source address DEC mode for memory to $1/0$ (DMADn) \leftarrow (DMASn –) DMACn \leftarrow DMACn – 1 if DMACn = 0 then INTTC.	8 states (640 ns) @ Byte / word transfer 12 states (960 ns) @ 4-byte transfer
1 0 0 Z Z	Fixed address mode I/O to I/O (DMADn) \leftarrow (DMASn) DMACn \leftarrow DMACn = 1 if DMACn = 0 then INTTC.	8 states (640 ns) @ Byte / word transfer 12 states (960 ns) @ 4-byte transfer
1 0 1 0 0	Counter mode DMASn←DMASn + 1 DMACn←DMACn - 1 if DMACn = 0 then INTTC.	5 states (400 ns)
	(1 states = 8	0 ns at 25 MHz)

Note :n : corresponds to micro DMA channels 0 to 3.DMADn +/ DMASn + :Post-increment (Increments register value after transfer.)DMADn -/ DMASn - :Post-decrement (Decrement register value after transfer.)"I/O" means the fixed address, "memory" means the increased or decreased address in this table.

Do not use undefined codes for transfer mode control.

3.3.3 Interrupt Controller

Figure 3.3.3 (1) is a block diagram of the interrupt circuits. The left half of the diagram shows the interrupt controller; the right half includes the CPU interrupt request signal circuit and the HALT release signal circuit.

Each interrupt channel (total of 24 channels) in the interrupt controller has an interrupt request flip-flop, interrupt priority setting register, and a register for storing the micro DMA start vector. The interrupt request fip-flop is used to latch interrupt requests from peripheral devices. The flip-flop is cleared to 0 at reset, when the CPU reads the interrupt channel vector after the acceptance of interrupt, when the CPU accepts the micro DMA request or when the CPU executes an instruction that clears the interrupt of that channel (writes 0 in the clear bit of the interrupt priority setting register).

For example, to clear the INTO interrupt request, set the register after the DI instruction as follows.

INTEOAD $\leftarrow \dots 0 \dots$ Zero-clears the INTO Flip Flop.

The status of the interrupt request flip-flop is detected by reading the clear bit. Detects whether there is an interrupt request for an interrupt channel.

The interrupt priority can be set by writing the priority in the interrupt priority setting register (eg, INTE0AD, INTE45, etc.) provided for each interrupt source. Interrupt levels to be set are from 1 to 6. Writing 0 or 7 as the interrupt priority disables the corresponding interrupt request. The priority of the non-maskable interrupt ($\overline{\text{NMI}}$ pin, watchdog timer, etc.) is fixed to 7. If interrupt requests with the same interrupt level are generated simultaneously, interrupts are accepted in accordance with the default priority (the smaller the vector value, the higher the priority).

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the interrupt mask register <IFF2 to 0> set in the Status Register by the interrupt request signal with the priority value sent; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 in the CPU SR<IFF2 to 0>. Interrupt requests where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine. When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the value in the interrupt mask register saved in the stack before the interrupt was generated to the CPU SR<IFF2 to 0>.

The interrupt controller also has four registers used to store the micro DMA start vector. These are I/O registers; unlike other micro DMA registers (DMAS, DMAD, DMAM, and DMAC). Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.3.(1)), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (eg, DMAS and DMAD) prior to the micro DMA processing.

Figure 3.3.3 (1) Block Diagram of Interrupt Controller

(1) Interrupt priority setting register

(Read-modify-write is prohibited.)

Symbol	Address	7	6	5	4	3	2	1	0	
			INT	AD			IN	то 🔨		←Interrupt sourc
	007011	IADC	IADM2	IADM1	IADM0	10C	10M2	10M1	IOMO	←bit Symbol
INTE0AD	0070H	R/W		W		R/W		w		←Read / Write
		0	0	0	0	0	0	0	0	\leftarrow After reset
			IN	T5			IN	74	\bigcirc	
		15C	15M2	15M1	15M0	14C	•	(14M1\)	14M0	
INTE45	0071H	R/W		W		R/W		WW))	
		0	0		0	0	0	C O	0	
			IN	Τ7			((IN	T6		
		17C	17M2	. <i></i> I7M1	I7M0	16C		DI6M1	: I6M0	
INTE67	0072H	R/W		w		R/W		w		
		0	0	0	0	0		0	<u> </u>	\sim
			INTT1 (T	imer 1)			<u> </u>	Timer 0)	12	\sim
		IT1C	IT1M2	IT1M1	IT1M0	(ITOC)	1T0M2	ITOM1	TOMO	
INTET01	0073H	R/W		W		R/W		~W	(\bigcirc)	\sim
		0	0	0	0	\mathbb{N}_{0}	0		0	\mathbf{D}
		• .	INTT3 (T		· (, v	/ · ·	Timer 2)		//
		ІТЗС	IT3M2	. /		IT2C	•	итег 2) И 2M1	: IT2M0	
INTET23	0074H	R/W	1131012	<u>- 1131011</u> W		R/W		W	- 112,010	
		0	0	0	: 0	0	: : 0	i 0	2) 0	
		:	INTTR5 (INTTR4	\sim	. 0	
		IT5C	IT5M2		IT5M0	IT4C	: IT4M2		IT4M0	
INTET45	0075H	R/W	TI JIVIZ			R/W		W	1141010	
		0	0	R a		0	0	0	0	
		0		- <u></u>	<u> </u>	~~	· · · · ·		0	
			INTTR7 (. 177040	ITCC		(TREG6)		
INTET67	0076H	IT7C	IT7M2 :		: IT7M0	IT6C			: IT6M0	
		R/W		<u> </u>	: 0	R/W		<u></u>	: 0	
		0			0	0	0	0	0	
	0077H					171/06		RXO		
INTES0		-	ITX0M2			IRXOC			IRX0M0	
		R/W		<u></u>		R/W/		<u></u>		
		0//:	<u> </u>			0		0	: 0	
	0078H					1014.0		RX1		
INTES1			TTX1M2	$\langle - \rangle$	<u>: 11X 1100</u>	IRX1C	IRX1M2		: IRX1IVI0	
		RAW		W	\sim	R/W		<u></u>	· .	
		0 :	0	0	0	0	: 0	: 0	: 0	
		\searrow	<u> </u>					TC0	:	
INTETC01	0079н		ITC1M2	. / /	: ITC1M0	ITCOC	ITC0M2		: ITC0M0	
		R/W		W		R/W		<u></u>		
	\searrow	0	0	0	0	0	0	0	0	
					·		INT		·	
INTETC23	007AH		ІТСЗМ2		ITC3M0		ITC2M2		ITC2M0	
	1	R/W	$\rightarrow \rightarrow$	W		R/W		W		
		> 0((:	0	0	0	0	0	0	0	
\rightarrow	(\rightarrow	-						
lxxM2	lxxM1	IxxMC			Function					
0	0	0			rrupt requ					
0	0	Sets interrupt request le 0 Sets interrupt request le				evel to "1".				
0		1 Sets interrupt request level to "3". 0 Sets interrupt request level to "4".					".			
ĭ	o o									
1	0	1 Sets interrupt reque				evel to "5	<i>"</i> .			
1	1	0			t request le		<i>.</i>			
1		1 1	I Proi	HIDITS INTE	errupt requ	1851.		1		
1	· ·					E .'			-	
1 IxxC		Function	(Read)				n (Write)	flag]	
1 xxC 0 1		Function tes no inte ates interr	(Read) rrupt requ	uest.	Clea	rs interru	on (Write) pt request 't care	flag.		

Interrupt Input Mode Control Register											
		7		6	5	4	3	2		0	
IIMC	bit Symbol					/		IOIE	IOLE	NMIREE	
(007BH)	Read/Write							w	W	l w	
	After reset							∧ ⁰ ()	0	0	
	Function							1: INTO input enable	0: INT0 edge mode 1: INT0 level mode	1: Can be accepted in NMI rising edge.	
Read-mod prohibited				- IN	IT0 input en	able (Note)			NML risir	ng edge enable	
			0	1	-	7 function or	nly)	0 Interrupt request generation at			
			1	Inpu	ıt enable	-40	$\overline{}$		lling edge	j	
Note	: The INTO r								terrupt requ alling edge	est generation	at rising
					dby release, tring standb	setting this y mode.	register to		INTO	level enable	
					(\bigcirc)	\sim		0 Ri:	sing edge de	etect interrupt	
					(\bigcirc))		1/Ні	gh level inte	errupt	

(2) External interrupt control

Setting of External Interrupt Pin Functions

Interrupt	Pin name	Mode	Setting method		
NIN AL		Falling edge	JIMC <nmiree> = 0</nmiree>		
NMI		Falling and rising edges	HMC <nmiree> = 1</nmiree>		
	007	A Rising edge	IIMC <i0le> = 0, <i0ie> = 1</i0ie></i0le>		
	PB7	● Level	IIMC <i0le> = 1, <i0ie> = 1</i0ie></i0le>		
INT4	PBO	Rising edge	T4MOC <cap12m1,0> = 0,0 or 0,1 or 1,1</cap12m1,0>		
	РВО	Falling edge	T4MOD <cap12m1, 0=""> = 1, 0</cap12m1,>		
INT5	PB1	Rising edge			
	DD 4	Rising edge	T5MOC <cap34m1,0> = 0,0 or 0,1 or 1,1</cap34m1,0>		
INT6	PB4 <	Falling edge	T5MOD <cap34m1, 0=""> = 1, 0</cap34m1,>		
INT7	PB5	_/ Rising edge			

ζ

(3) Micro DMA start vector

Register used to assign micro DMA processing to an interrupt source. The interrupt source whose micro DMA start vector matches the vector value set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches 0, the interrupt controller is notified of the micro DMA transfer end interrupt corresponding to the channel, the micro DMA start vector register is cleared, and the micro DMA start source of the channel is also cleared. To continue the micro DMA processing, the micro DMA start vector register must be set again within the micro DMA transfer end interrupt processing.

If the same vector is set in the micro DMA start vector registers of the multiple channels, the interrupt generated in the channel with the smaller number has a higher priority.

Thus, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the smaller number is processed until the micro DMA transfer end. If the micro DMA start vector of this channel is not set again, the next micro DMA is started for the channel with the higher number. (micro DMA chaining)

	ſ	Micro DN	/IA0 Star	t Vector		(re	ad-modify-	write is not p	oossible.)		
		7	6	ا ل 5	4	3	2	1	0		
DMA0V	bit Symbol		\sim		DMA0V8	DMA0V7	DMA0V6	DMA0V5	DMA0V4		
(007CH)	Read/Write		\bigcirc				W				
	After reset	(7)	$\langle \rangle$	4	9	0	0	0	0		
Micro DMA1 Start Vector (read-modify-write is not possi											
	Ł		6 <	5)]4	3	2	1	0		
DMA1V	bit Symbol	\sim	\searrow	\mathbb{N}	DMA1V8	DMA1V7	DMA1V6	DMA1V5	DMA1V4		
(007DH)	Read/Write	\searrow	$\overline{\langle}$				W				
\langle	After reset				0	0	0	0	0		
	\sim	licro DM	A2 Start	Vector		(re	ead-modify-	write is not	possible.)		
~ ((\downarrow	7	6	5	4	3	2	1	0		
DMA2V	bit Symbol	X	\sim		DMA2V8	DMA2V7	DMA2V6	DMA2V5	DMA2V4		
(007EH)	Read/Write	\sum))				W				
\square	After reset				0	0	0	0	0		
Micro DMA3 Start Vector (read-mod									possible.)		
DMA3V	/	7	6	5	4	3	2	1	0		
	bit Symbol	/			DMA3V8	DMA3V7	DMA3V6	DMA3V5	DMA3V4		
(007FH)	Read/Write						W				
	After reset				0	0	0	0	0		

(4) Notes

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag between accepting and reading the interrupt vector. In this case, the CPU reads the default vector 0028H and reads the interrupt vector at address FFFF28H.

To avoid the above problem, place instructions that clear interrupt request flags after a DI instruction. In the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing instruction and following more than one instruction are executed. When EI instruction is placed immediately after clearing instruction, an interrupt becomes enable before interrupt request flags are cleared.

In the case of changing the value of the interrupt mask register <IFF2 to 0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following three circuits are exceptional and demand special attention.

3.4 Standby Controller

When the 'HALT' instruction is executed, the operating mode changes RUN, IDLE, or STOP mode depending on the contents of the HALT mode setting register WDMOD <HALTM 1:0>.

- (1) RUN : Only the CPU halts ; power consumption remains unchanged.
- (2) IDLE : Only the built-in oscillator operates, while all other built-in circuits stop. The Power Consumption is reduced to 1/10 or less than that during NORMAL operation.
- (3) STOP : All internal circuits including the built-in oscillator stop. This greatly reduces power consumption.

The HALT release depends on these three modes. For details, see "table 3.4 (2)". (Note : The HALT state cannot be released by micro DMA start except for INTO.)

(Example releasing "RUN" mode)

INTO interrupt releases HALT state when the RUN mode is on.

(1) RUN mode

TOSHIBA

Figure 3.4.1 shows the timing for releasing the HALT state by interrupts in the RUN mode.

In the RUN mode, the system clock in the MCU continues to operate even after a HALT instruction is executed. Only the CPU stops executing the instruction. Until the HALT state is released, the CPU repeats dummy cycles. In the HALT state, an interrupt request is sampled with the falling edge of the "CLK" signal.

The external interrupts (INT4, 5, 6, 7) releases only RUN mode.

TOSHIBA

(2) IDLE mode

Figure 3.4.2 illustrates the timing for releasing the HALT state by interrupts in the IDLE mode.

In the IDLE mode, only the internal oscillator operates. The system clock in the MCU stops, and the CLK pin is fixed at the "1" level.

In the HALT state, an interrupt request is sampled asynchronously with the system clock, however the HALT release (restart of operation) is performed synchronously with it.

The interrupts except $\overline{\text{NMI}}$ and INT0 is disabled during this mode.

Figure 3.4.2 Timing Chart of HALT Released by Interrupts in IDLE Mode

(3) STOP mode

Figure 3.4.3 is a timing chart for releasing the HALT state by interrupts in the STOP mode.

The STOP mode is selected to stop all internal circuits including the internal oscillator. In this mode, all pins except special ones are put in the high-impedance state, independent of the internal operation of the MCU. Note, however, that the pre-halt state (The status prior to execution of HALT instruction) of all output pins can be retained by setting the internal I/O register WDMOD < DRVE > to "1". The content of this register is initialized to "0" by resetting.

When the CPU accepts an interrupt request, the internal oscillator is restarted immediately. However, to get the stabilized oscillation, the system clock starts its output after the time set by the warming up counter WDMOD<WARM>. A warming-up time of either the clock oscillation time $\times 2^{14}$ or 2^{16} can be set by setting this bit to either "0" or "1". This bit is initialized to "0" by resetting.

Only the either $\overline{\text{NMI}}$, INTO, or $\overline{\text{RESET}}$ can release the STOP mode.

When the STOP mode is released by the except $\overline{\text{RESET}}$, the system clock is started outputting after warming up time to get the stabilized oscillation.

When the STOP mode is released by <u>RESET</u>, it is necessary to keep the <u>RESET</u> signal at '0' long enough to release to get the stabilized oscillation because of the warming up counter is ignored.

The warming up counter operates when the STOP mode is released even the system which is used an external oscillator. As a result, it takes warming up time from inputting the releasing request to outputting the system clock.

Note: Usually, interrupts can release all halts status. However, the interrupts = (NMI, INTO), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

Pin name	I/O	DRVE = 0	DRVE = 1
D0 to 7	I/O	HI-Z*	HI-Z*
P10 to P17 (D8 to D15)	Input mode (P10 to P17) Output mode (P10 to P17) I/O (D8 to D15)	HI-Z* HI-Z* HI-Z*	HI-Z* Output HI-Z*
P20 to P27 (A16 to A23)	Output	(HI-Z)	Output
A0 to A15	Output	HI-Z	Output
RD, WR	Output	нı-z	"1"
P52 to P55 (HWR, BUSRQ, BUSAK, R/W)	Input mode Output mode	PU* PU*	PU Output
P60 to P65 (CS, RAS, CAS, REFOUT)	Output	HI-Z	Output
P70 to P77 (PG00 to PG13)	Input mode Output mode	PU* PU*	PU∆ Output
P80 to P85 (TXD, RXD, SCLK, CTS)	Input mode Output mode	PU* PŪ*	PU∆ Output
P90 to P93 (AN0 to AN3)	Input (PORT) Input (AN0 to AN3)	invalid ©	invalid ©
PA0 (WAIT)	Input mode Output mode	PU* PU*	PU∆ Output
PA1 to PA3 (TI0, TO1, TO3)	Input mode Output mode	PU* PU*	PU∆ Output
PB0 to PB6 (TI4 to 7, TO4 to 6, INT4 to 7)	Input mode Output mode	PU* PU*	PU∆ Output
PB7 (INT0)	Input mode Output mode	PU∆ PU∆	PU∆ Output
NMI	Input	valid	valid
WDTOUT	Output	Output	Output
CLK	Output	HI-Z	"1"
RESET	Input	valid	valid
AM (8 / 16)	Input	0	Ø
EA	Input	Ø	0
X1	Input	invalid	invalid
X2 ())	Output	"1"	"1"

Table 3.4 (1) Pin states in STOP mode

Output : Output state before HALT state.

: Programmable pull-up pin.

Input gate disable state. No through current even if the pin is set to high impedance.

An instruction to access the port register (Ex. P8) should not be placed before the HALT instruction. There is possibility that the input gate is not disabled.

 \triangle : Fix the pin to avoid through current since the input gate operates when the pin is at high impedance.

◎ : need to be driven externally.

valid : Input is valid.

PU

invalid : Input is invalid. No through current since input gate is disable.

	Halt mode	RUN	IDLE	STOP	\sim
WD	MOD 〈 HALTM1, 0 〉	00	10	01	
	CPU		Stopped		
	I/O port			See Table 3.4 (1)	
	8 bit Timer				(7/5)
	8 bit PWM Timer			•	
Operation	16 bit Timer				
block	Pattern Generator	Operating	Stop	oped	
	Serial Interface			20	
	A/D Converter				
	Watch Dog Timer			(7/	\sim \sim
	DRAM Controller			∇	
	Interrupt Controller			$\overline{\ }$	

Table 3.4 (2) I/O operation and cancel during halt mod
--

<u>і</u>	nterrup	rt mask,	Inter	rupt request	level	Interrupt request level*2			
	reques	it level	\geq Interrupt mask \langle IFF2 to 0 \rangle			< Interrupt mask 〈 IFF2 to 0			
	Halt r	mode	RUN	IDLE	STOP	RUN	IDLE	STOP	
		NMI	0	\bigcirc	©*1	\bigcirc) (0)	⊚*1	
		INTWD	0	×	×	0	×	×	
		ΙΝΤΟ	()	0	©*1	0	0	○ *1	
Halt	Inter-	INT4 to 7) ×	×	×	×	×	
release sources	rupt	INTT0 to 3		×	×	$>_{\times}$	×	×	
		INTTR4 to 7		×	×	×	×	×	
		INTRXD0, 1	0	× ((/ ×	×	×	×	
		INTTXD0,1	~ 0	×	×	×	×	×	
		INTAD	\circ	×	×	×	×	×	
	\wedge	RESET	0	Q	O	O	\odot	\odot	

- © : Interrupt processing is processed after releasing HALT state. (Reset initializes LSI.)
- O: Start excuting an instruction that follows the HALT instruction after releasing HALT state.
- × : Cannot be used for halt release.
- *1 : Release HALT state after the warming up time.
- *2 : The DI instruction operates in the same way.

3.5 Functions of Ports

The TMP95C061B has a total of 56 bits when the AM8/16 pin is set to high level; a total of 48 bits when the AM8 / 16 pin is set to low level.

These ports are also used for internal CPU and I/O. Table 3.5 (1) lists port pin functions. Table 3.5 (2) lists I/O port setting.

		Table 3.5			ons of Ports	
Port	Pin name	Number of pins	Direction	R	Direction setting unit	Pin name for built-in function
Port1	P10 to P17	8	I/O	-	Biţ	D8 to D15
Port2	P20 to P27	8	Output	I	(Fixed)	A16 to A23
Port5	P52	1	I/O	↑	Bit	HWR
	P53	1	I/O	\ ↑	(Bit)	BUSRQ
	P54	1	I/O	↑	Bit	BUSAK
	P55	1	I/O	\ ↑	Bit	R/W
Port6	P60	1	Output	6	(Fixed)	CSO
	P61	1	Output	9	(Fixed)	CS1
	P62	1	Output	1	(Fixed)	CS2
	P63	1	Output	X	(Fixed)	CS3/CAS
	P64	1	Output	1	(Fixed)	RAS
	P65	1	Output	$\langle \rangle$	(Fixed)	REFOUT
Port7	P70 to P77	8	t/O	↑↑	Bit	PG00 to PG03,
						PG10 to PG13
Port8	P80	1	1/0	↑	Bit	TXD0
	P81	1/~	<u> </u>	ĺ ∱	Bit	RXD0
	P82	1))I/O	\	Bit	CTS0/SCLK0
	P83		//O	1	Bit	TXD1
	P84	(7)	I/O	1	Bit	RXD1
	P85		I/O	(Bit	SCLK1
Port9	P90 to P93	4	Input ($\left(\right)$	(Fixed)	AN0 to AN3
PortA	PA0	7	1/Q	Ŷ	Bit	WAIT
	PA1	1	1/0	$\mathbf{\mathbf{A}}$	Bit	ТІО
	PA2	> 1	1/0		Bit	TO1
\sim	PA3	1	1/Q	ĺ ↑	Bit	ТОЗ
PortB	PB0	1	I/O	↑	Bit	TI4 / INT4
\sim	PB1	1 ()	I/O	↑	Bit	TI5 / INT5
$(\bigcirc$	PB2	101	I/O	ĺ ∱	Bit	TO4
	РВЗ		1/0	↑	Bit	ТО5
	РВ4	(1)	∕_I/O	11	Bit	TI6 / INT6
	РВ5 (С	$\langle \mathbf{v} \rangle$) I/O	11	Bit	TI7 / INT7
	PB6	$\langle \rangle$	I/O	ĺ ↑	Bit	ТО6
	РВ7 🗸	1	I/O		Bit	INT0

(R: = With programmable pull-up resistor = With programmable pull-down)

Port	Pin Name	Port (I/O) or Function		I/O Regis	ter
TOIL	1 III Name		Pn	PnCR	PnFC
Port1	P1 (0 : 7)	Input Port	X	0	
	(Note 1)	Output Port	(X	\sum	-
		D (8 : 15)	X	×	
Port2	P2 (0 : 2)	Output Port	$\lambda $	-	0
		A (16 : 23)	(x))		1
Port5	RD	RD Output only for External Access	7	-	-
		Always RD Output	> 0		
	P5 (2 : 5)	Input Port (no pull-up)	0	0	0
		Input Port (with pull-up)	1	0	0
		Output Port	Х	4	0
	P52	HER Output	Х	21	1
	P53	BUSRQ Input (no pull-up)	0 (1
		BUSRQ Input (with pull-up)	1)) 1
	P54	BUSAK Output	X		1
	P55	R/W Output	~X_	$\overline{\mathbf{N}}$	1
Port6	P6 (0 : 5)	Output Port	X)	0
	P60	CSO Output	X	/	1
	P61	CS1 Output	() X	1	1
	P62	CS2 Output	/x	1 – 1	1
	P63	CS3 / CAS Output (Note 2)	X	1	1
	P64	RAS Output	Х	1	1
	P65	REFOUT Output	Х	1	1
Port7	P7 (0 : 7)	Input Port (no pull-up)	0	0	0
		Input Port (with pull-up)	1	0	0
		Output Port)	Х	1	0
		PGn Output	Х	1	1
Port8	P8 (0 : 5)	Input Port (no pull-up)	0	0	0
		Input Port (with pull-up)	1	0	0
		Output Port	Х	1	0
	P80	TXD0 Output	Х	1	1
	P83	TXD1 Output	Х	1	1
	P81	RXD0 Input (no pull-up)	0	0	
\sim	$\sqrt{7}$	RXD0 Input (with pull-up)	1	0	_
	P84	RXD1 Input (no pull-up)	0	0	
		RXD1 Input (with pull-up)	1	0	
\sim (C	P82	SCLK0 Output	Х	1	1
$\langle // \rangle$	\cup	CTS0/SCLK0Input (no pull-up)	0	0	0
		CTS0 / SCLK0 Input (with pull-up)	1	0	0
	P85	SCLK1 Output	X	1	1
		CTS0 / SCLK1 Input (no pull-up)	0	0	0
		CTS0/SCLK1 Input (with pull-up)	1	0	0

Table 3.5 (2) I/O Port Setting

Note 1: Function is fixed according to input to AM8 / $\overline{16}$ pin.

Note 2: The function of P63 (CS3 / CAS) is selected using CS / WAIT control register B3CS <B3CAS>.

Port	Pin Name	Port (1/0) or Eurotian		I/O Regis	ter
Port	Pin Name	Port (I/O) or Function	Pn	PnCR	PnFC
Port9	P9 (0 : 3)	Input Port 🤇	X	-	-
		AN (0 : 3) Input (Note 3)	X		
PortA	PA (0 : 3)	Input Port (no pull-up)	0	0	0
		Input Port (with pull-up)	Z))Ó	0
		Output Port	X	1	0
	PA0	WAIT Input (no pull-up)	(0)	0	
		WAIT Input (with pull-up)	γ	0	-
	PA1	TI0 Input (no pull-up)	0	0	
		TIO Input (with pull-up)	1	0	
	PA2	TO1 Output	Х	1	1
	PA3	TO3 Output	Х	1(``	7
PortB	PB (0 : 7)	Input Port (no pull-up)	0	0	0
		Input Port (with pull-up)	1 (0	> 0
		Output Port	X		0
	PB0	TI4 / INT4 Input (no pull-up)	0	~Q/	
		TI4 / INT4 Input (pull-up)	$\supset 1$	$\supset 0$	
	PB1	TI5 / INT5 Input (no pull-up)	0	0	
		TI5 / INT5 Input (pull-up)	(L)	0	-
	PB4	TI6 / INT6 Input (no pull-up)	0	0	
		TI6 / INT6 Input (pull-up)) 1	0	
	PB5	TI7 / INT7 Input (no pull-up)	0	0	
		TI7 / INT7 Input (pull-up)	1	0	
	PB2	TO4 Output	Х	1	1
	PB3	TO5 Output	Х	1	1
	PB6	TO6 Output	Х	1	1
	PB7	INT0 Input (no pull-up)	0	0	
	(Note 4)	INTO Input (with pull-up)	1	0	-

Note 3: When P9 (0 : 3) are used as Input channels of the A / D converter, channels are selected using ADMOD<ADCHn>.

Note 4: When PB7 pin is used as INT0 pin, set IIMC<IOIE>to "1". (enable interrupt Input.)

3.5.1 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis using control register P1CR. Resetting resets all bits of output latch P1 and control register P1CR to 0 and sets Port 1 to input mode.

In addition to functioning as a general-purpose I/O port, Port 1 also functions as a data bus (D8 to 15).

TMP95C061B determines the port function and the data bus function according to the input state of AM8/16 pin after reset. When AM8/16 is set to low level, the data bus functions. When AM8/16 is set to high level, the port functions. When using as the data bus (AM8/16 = "0"), the bit of P1CR register should not be set to 1.

				Port	: 1 Regist	er			
	/	7	6	5	4	3	2	<u>_</u> 1	0
	bit Symbol	P17	P16	P15	P14	P13	P12	P11	P10
)01H)	Read/Write				R / 1	W		$(\cap$	
	After reset		In	put mode (O	utput latch i	egister is cl	leared to "0'	'.)	\mathcal{Y}
				Port 1 C	ontrol Re	egister	\sim (0/5	
		7	6	5	4	3	2	Y	0
CR	bit Symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
04H)	Read/Write				N	/		9	\frown
	After reset	0	0	0	0	0		0	0
	Function				0: IN	1 : OUT			\sim
	Read-modify prohibited for	/-write is	PICR			Port 1 f	function sett	inĝ	
	promoted it	on registers			P1CR <p1< td=""><td>AM8/16</td><td>0</td><td></td><td></td></p1<>	AM8/16	0		
					$\mathcal{A}($		Data bus		out port
						\rightarrow	(D15 to 8		
				(400		Don't set	Out	put port
				4	Note:	<p1xc> is</p1xc>	bitX in regi	ster P1CR.	
					$\langle \rangle$				
			Fig	ure 3.5 (2) Regist	ers for F	Port 1		
							>		
\sim				The second secon					
	$\langle \langle \langle \rangle \rangle$								

P2

3.5.2 Port 2 (P20 to P27)

Port 2 is an 8-bit general-purpose output-only port. A reset sets all bits of the output latches in the port 2 register (P2) to "1" and all port pins output "1"

In addition to functioning as a general-purpose output port, port 2 can also function as address bus (A16 to 23). The port function is specified by function register P2FC. Port pins can be selected individually as either output ports or address bus pins.

In TMP95C061B with external ROM, a reset sets all bits of the function register to "1", and sets the pins as address bus pins (A16 to A23).

Read-modify-write is prohibited for registers and P2FC.

Figure 3.5 (4) Registers for Port 2

3.5.3 Port5 (P52 to P55)

Port 5 is a 4-bit general-purpose I/O port. I/O can be set on a bit basis using control register P5CR and function register P5FC. Resetting does the following : Resets all bits of the Port 5 output latch, the control register P5CR and the function register P5FC to "0" and sets each port input mode with pull-up resisters.

Figure 3.5 (7) Registers for Port5

3.5.4 Port6 (P60 to P65)

Port 6 is a 6-bit general-purpose output port. Resetting sets each output latch P62="0", P60, P61, P63 to P65="1". Functions can be selected using P6FC and provided chip select and DRAM control functions ($\overline{CS0}$ to $\overline{3}$, \overline{CAS} , \overline{RAS} and \overline{REFOUT}). After resetting, each port operates as output port.

Note: The function of P63 ($\overline{CS3}$ / \overline{CAS}) is selected using B3CS register.

Figure 3.5 (9) Register for Port 6

3.5.5 Port7 (P70 to P77)

Port 7 is an 8-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 7 as an input port and connects a pull-up resistor. It also sets all bits of the output latch to 1. In addition to functioning as a general-purpose I/O port, Port 7 also functions as a pattern generator PG0/PG1 output. PG0 is assigned to P70 to P73; PG1, to P74 to P77. Writing 1 in the corresponding bit of the port 7 control register (P7CR) and function register (P7FC) enables PG output. Resetting resets the function register P7FC value to 0, and sets all bits to ports.

				Por	t 7 Register						
		7	6	5	4	3	2	1	0		
97 (0013H)	bit Symbol	P77	P76	P75	P74	P73	P72	R71	P70		
00150)	Read/Write	R/W									
	After reset	Input mode (with pull-up resistor)									
	Alterreset	1	1	1	1	1	<u>_</u> 1 (7/1	1		
				Port 7 Cont	rol Register						
		7	6	5	4	3	2) / ² 1	0		
P7CR	bit Symbol	P77C	P76C	P75C	P74C	P73C	P72C	P71C	P70C		
0016H)	Read/Write				V	v <	$\left(\right)$		$\mathcal{A}(\mathcal{D})$		
	After reset	0	0	0	0	07	0	0	0		
	Function				0 : IN	1 : OUT))	0,0			
	L			•			/		<u> </u>		
				<u> </u>	20	\nearrow			rt 7 I/O setting		
									Output		
				Port 7 Fund	tion Registe	er	. (7				
		7	6	5	4	3	2	<u>1</u>	0		
97FC 0017H)	bit Symbol	P77F	P76F	P75F	P74F	P73F	P72F	P71F	P70F		
001711)	Read/Write			(\bigcirc)	.)	v ·	\searrow				
	After reset	0	0	0	0	0	0	0	0		
	Function	(): PORT	1 : PG1-OUT	-		0 : PORT	1 : PG0-OU1	<u> </u>		
	Read-modify prohibited for P7CR and P7 Read-modify prohibited for ON/OFF of th resistor for resistor for	or registers FC y-write is or controllin ne pull-up					0 G	Function sett eneral-purpo repping moto attern genera	or control /		
		,	✓ Figu	ire 3.5 (1	1) Refis	ter for P	ort 7				
					\searrow						

3.5.6 Port 8 (P80 to P85)

Port 8 is an 6-bit general-purpose I/O port. I/O can be set on a bit basis. Resetting sets Port 8 as an input port and connects a pull-up resistor. It also sets all bits of the output latch register P8 to 1. In addition to functioning as a general-purpose I/O port, Port 8 also functions as an I/O for serial channel 1, 0. Writing '1' in the corresponding bit of the Port 8 function register enables those functions. Resetting resets the function register value to '0' and sets all bits to ports.

(1) Port 80, 83 (TXD0 / TXD1)

P80 and P83 also function as serial channel TXD output pins in addition to I/O ports. They have programmable open drain function.

(2) Port 81, 84 (RXD0, 1)

P81 and P84 are I/O ports, and also used as RXD input pins for serial channels.

Figure 3.5 (14) Port 82

(4) Port 85 (SCLK1)

P85 is general-purpose I/O port. It is also used as a SCLK1 I/O pin for serial channel

1.

Note: To set the TxD pin to open drain, write '1' in bit 0 (for TxD0 pin) or bit 1 (for TxD1 pin) of the ODE register.

P81 / RxD0, P84 / RxD1 pins do not have a register changing PORT / FUNCTION.

For example, even when the pins are used as input port pins (P81/P84), the input data for P81/P84 are input to SIO as a serial receive data (RxD0/RxD1).

Figure 3.5 (16) Register for Port 8

3.5.7 Port 9 (P90 to P93)

Port 9 is a 4-bit Input port, also used as analog input pins for the internal A/D Converter.

Note : Select the input channels for the A/D converter in A/D converter mode register ADMOD.

3.5.8 Port A (PA0 to PA3)

Port A is a 4-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 7 as an input port and connects a pull-up resistor. In addition to functioning as a general-purpose I/O port, Port A0 also functions as an wait input pin WAIT; Port A1 as an 8-bit timer input (TI0), Port A2 as an 8-bit timer output (TO1), and Port A3 as an 8bit timer output (TO3) pin. Writing 1 in the corresponding bit of the Port A function register (PAFC) enables output of the timer. Resetting resets the function register PAFC value to 0, and sets all bits to ports.

Figure 3.5 (19) Port A

3.5.9 Port B (PB0 to PB7)

Port B is an 8-bit general-purpose I/O port. I/O can be set on a bit basis. Resetting sets Port B as an input port and connects a pull-up resistor. It also sets all bits of the output latch register PB to 1. In addition to functioning as a general-purpose I/O port, Port B also functions as an input for 16-bit timer 4 & 5 clocks, an output for 16-bit timer F/F 4, 5, & 6 output, and an input for INTO. Writing '1' in the corresponding bit of the Port 8 function register (PBFC) enables those functions. Resetting resets the function register PBFC value to '0' and sets all bits to ports.

(1) PB0 to PB6

TOSHIBA

(2) PB7 (INT0)

Port B7 is a general-purpose I/O port, and also used as an INTO pin for external interrupt request input.

When PB7 / INT0 pin is used as an INT0 pin, set PBCR $<\!PB7C\!>$ to "0" and IIMC $<\!IOIE\!>$ to "1".

Figure 3.5 (23) Register for Port B

3.6 Chip Select / Wait Controller, AM8 / 16 pin

TMP95C061B has a built-in chip select / wait controller used to control chip select $(\overline{CS0} \text{ to } \overline{CS3} \text{ pins})$, wait $(\overline{WAIT} \text{ pin})$, and data bus size (8 or 16 bits) for any of the four block address areas.

And there is an AM8 / $\overline{16}$ pin which selects external data bus width for TMP95C061B.

3.6.1 Control Register

Table 3.6 (1) shows control registers.

Each block address area is controlled using CS / WAIT control register. Start address register (MSAR0 to MSAR3) and address mask register (MAMR0 to 3).

		7	6	5	4	(3//	2		0
	bit Symbol		//	\sim	BOE		BOBUS	BOW1	BOWO
	Read/Write				w (\sim	W	Ŵ	$\frac{10}{10}$
BOCS	After reset				0	$\langle \rangle$	0		0
(0068H) (Prohibit RMW)	Function				1:B0CS master bit		0: 16 BIT 1: 8 BIT	00: 2 WAIT 01: 1 WAIT 10: 1 WAIT	+ n
	bit Symbol		<u> </u>	$\sim c$	BIE		B1BUS	11:0WAIT B1W1	B1W0
	Read/Write				BIE W		BIBOS		втичо
B1CS					0		0	W	0
(0069H)	After reset				1:B1CS		0: 16/BIT		0
(Prohibit RMW)	Function		((master bit		1:8 BIT	00: 2 WAIT 01: 1 WAIT 10: 1 WAIT 11: 0 WAIT	+ n
	bit Symbol			y -	B2E	B2M	B2BUS	B2W1	B2W0
	Read/Write		$\left(\overline{\Omega} \right)$		W	W	W	Ŵ	
B2CS (006AH)	After reset	\frown	(∇))	1	0	0	0	0
(Prohibit RMW)	Function				1:B2CS master bit	0: 16 M Area 1:Set MREG	0: 16 BIT 1: 8 BIT	00: 2 WAIT 01: 1 WAIT 10: 1 WAIT 11: 0 WAIT	+ n
	bit Symbol	\sim	\sum	$\overline{\langle}$	B3E	B3CAS	B3BUS	B3W1	B3W0
	Read/Write	,	× • •		w	W	W	Ŵ	
B3CS (006BH)	After reset				0	0	0	0	0
(Prohibit RMW)	Function				1:B3CS master bit	0: CS3 output 1: CAS output	0: 16 BIT 1: 8 BIT	00: 2 WAIT 01: 1 WAIT 10: 1 WAIT 11: 0 WAIT	+ n
	bit Symbol	~ 2			_	—	BEXBUS	BEXW1	BEXW0
DEVCC	Read/Write		$\sqrt{\sqrt{2}}$	J	_	_	W	W	
BEXCS (006CH)	After reset	4	\sim		—	—	0	0	0
(Prohibit RMW)	Function		\searrow		_	-	0: 16 BIT 1: 8 BIT	00: 2 WAIT 01: 1 WAIT 10: 1 WAIT 11: 0 WAIT	+ n

Table 3.6 (1) Chipselect / wait control register

Note : Read-modify-write is prohibited for registers BOCS, B1CS, B2CS, B3CS and BEXCS.

(1) Enable

Bit 4 (B0E, B1E, B2E and B3E) of control register BXCS is a master bit used to specify enable (1) / disable (0) of the setting.

Resetting sets B0E, B1E and B3E to disable (0) and B2E to enable (1).

(2) Data bus size select

Bit 2 (B0BUS, B1BUS, B2BUS, B3BUS, BEXBUS) of the control register is used to specify data bus size. Setting this bit to 0 accesses the memory in 16-bit data bus mode; setting it to 1 accesses the memory in 8-bit data bus mode.

This bit is effective only in 16 bit bus mode (AM8/ $\overline{16}=0$). In 8 bit bus mode (AM8/ $\overline{16}=1$), this bit is negligible and all external memory areas are accessed in fixed 8 bit bus (See 3.1.2 External Data width selection pin (AM8/ $\overline{16}$).

Changing data bus size depending on the access address is called dynamic bus sizing. Table 3.6 (2) shows the details of the bus operation.

(3) Wait control

Control register bits 1 and 0 (B0W1,0; B1W1,0; B2W1,0, B3W1,0, BEXW1,0) are used to specify the number of waits. Setting these bits to 00 inserts a 2-state wait regardless of the WAIT pin status. Setting them to 01 inserts a 1-state wait regardless of the WAIT status. Setting them to 10 inserts a 1-state wait and samples the WAIT pin status. If the pin is low, inserting the wait maintains the bus cycle until the pin goes high. Setting them to 11 completes the bus cycle without a wait regardless of the WAIT pin status.

Resetting sets these bits to 00 (2-state wait mode).

Note: In case of competition of accessing and refreshing to DRAM, TMP95C061B automatically inserts refresh cycle in addition to settled wait cycle.

(4) CS / CAS Waveform select

Bit3 of Control register B3CS is used to specify waveform mode output from the chip select pin ($\overline{CS3}$ / \overline{CAS}). Setting this bit to 0 specifies $\overline{CS3}$ waveforms; setting it to 1 specifies \overline{CAS} waveforms.

Resetting clears bit 5 to 0.

				-	
Operand data	Operand start	Memory data	CPU address	CPU	data
size	address	size		D15 to D8	D7 to D0
8 bits	2n + 0	8 bits	2n + 0	XXXXX	b7 to b0
	(even number)	16 bits	2n + 0	ххххх	b7 to b0
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0
	(odd number)	16 bits	2n + 1	b7 to b0	ххххх
16 bits	2n + 0	8 bits	2n + 0	xxxxx	b7 to b0
	(even number)		2n + 1	ххххх	b15 to b8
		16 bits	2n + 0	b15 to b8	b7 to b0
	2n + 1	8 bits	2n + 1	ххххх	b7 to b0
	(odd number)		2n+2	ххххх	b15 to b8
		16 bits	2n + 1	b7 to b0	XXXXX
			2n + 2	ххххх	b15 to b8
32 bits	2n + 0	8 bits	2n+0	ххххх 🗸	b7 to b0
	(even number)		2n+1/)	XXXXX	b15 to b8
			2n+2	xxxxx	b23 to b16
			2n + 3	ххххх	b31 to b24
		16 bits	2n+0	b15 to b8	b7 to b0
		<	2n+2	b31 to b24	b23 to b16
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0
	(odd number)		2n + 2	(xxxxx	b15 to b8
			2n + 3	ххххх	b23 to b16
			2n + 4	XXXXX	b31 to b24
		16 bits	2n + 1	b7 to b0	ххххх
			2n + 2	b23 to b16	b15 to b8
			2n+4	ххххх	b31 to b24

Table 3.6 (2) Dynamic Bus Sizing

xxxxx : During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains non-active.

(5) Extra CS area bus size / wait control

BEXCS register is used to specify the data bus size and the number of wait in case of accessing address area which is not specified using CS0 to 3 registers. This register has no master enable bit, so always enable to unspecified area. Each bit has same meaning as BxCS.

(6) Accessing 16M-byte Area / Address Setting Area

Setting B2CS \langle B2M $\rangle = 0$ selects CS2 in the 16M-byte area (000080H to FFFFFFH). Setting B2CS \langle B2M $\rangle = 1$ selects CS2 according to the setting area for start address register MSAR2 and address mask register MAMR2, the same as for CS0 and SC1. A reset zero-clears this bit.

3.6.2 Address area specification

The address space is specified with the start address register (MSAR0 to 3) and address mask register (MSAR0 to 3). For each bus cycle, the chip select controller compares the address on the bus and value of this start address register. The value of the address mask register is used to ignore result of this address comparison. When there is a match, the specified space is assumed to be accessed and a low strobe signal is outputted from the corresponding chip select pin ($\overline{CS0}$ to $\overline{CS3}$) if it is enabled (BxE = "1").

If the set address areas overlap or $\overline{CS2}$ is enable for the 16M-byte area, the one with a smaller \overline{CS} number is selected.

When the set address area overlaps with the internal I/O area, the functions as the internal I/O area take priority of the set address area.

Memory start address register /

(1)

Memory address mask register Memory address register ($\overline{CS0}$ to $\overline{CS3}$) 7 6 5 4 3 2 1 0 bit Symbol S23 S22 **S**21 **S**20 S19 518 **S**17 **S16 MSAR0** MSAR1 (003CH) (003EH) Read/Write R/W After reset 1 1 1 1 1 1 1 MSAR2 MSAR3 (005EH) (005CH) Set start address A23 to A16 Function \checkmark Set start address for CSO to CS3 Table 3.6 (3) Memory Start Address Register Memory address mask register (\overline{CSO}) ∕√5(7 6 4 3 0 2 1 bit Symbol V20 V19 V18 V17 V16 <u>_____</u> V14 to 9 V8 ÷ Read/Write MAMR0 R/W (003DH) After reset 1 ì 1 1 1 1 1 1 Function 0: Compare enable 1: Compare disable Control comparison of \overline{CSO} address A8 to A20 Memory address mask register (CS1) 7 6 5 4 3 2 1 0 **V21** V20 V19 V18 V16 bit Symbol V17 V15 to 9 V8 Read/Write R/W MAMR1 (003FH) After reset £ $\vee_{l'}$ 1 1 1 1 1 1 0: Compare enable 1: Compare disable Function Control comparison of CS1 address A8 to A21 Memory address mask register ($\overline{CS2}, \overline{CS3}$) 7 6 4 3 2 0 5 1 V19 bit Symbol N22 V21 V20 V18 V17 V16 V15 MAMR2 MAMR3 Read/Write R/W (005DH) (005FH) After reset 1 1 1 1 1 1 1 1 0: Compare enable 1: Compare disable Function Control comparison of CS2 to CS3 address A15 to A22

 $\begin{array}{l} MMSAR0\ 3 < S23 > to < S16 > correspond to addresses A23 to A16 and S15, S14 to 9, \\ and S8 corresponding to addresses A15, A14 to 9, and A8 are "0" by default. MAMR0 \\ <V20 > to <V8 > enable / disable comparison of value set with MSAR0 and address \\ and <V20 > to <V8 > correspond to <S20 > to S16 >, S15, S14, to 9, and S8. In \\ addition, V21, V22, and V23 corresponding to <S21 >, <S22 >, and <S23 > are "0" by \\ default and comparison is always enabled. \end{array}$

Example of enabling / disabling comparison $(\overline{CS0} \text{ registers MASR0 and MSAMR0})$

When comparison is disabled by setting $\langle V16 \rangle = 1$, the comparison of the value of $\langle S16 \rangle$ and address A16 is disabled and the value of $\langle S16 \rangle$ becomes invalid.

When comparison is enabled by setting $\langle S16 \rangle = 0$, the comparison of the value of $\langle S16 \rangle$ and address A16 is enabled and CS0 is enabled only when match.

 $\overline{\text{CS1}}$, $\overline{\text{CS2}}$, and $\overline{\text{CS3}}$ can be used in the same manner.

Resetting sets the registers MSAR0, MSA1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2 and MAMR3 to "0FFH", and sets the control register bits B0E, B1E, to "0". So chip select $\overline{CS0}$, $\overline{CS1}$ and $\overline{CS3}$ are disable after resetting, while Bit B2E=1, B2M=0 and $\overline{CS2}$ is enable for memory area 000080H to 0FFFFFFH (16Mbyte).

(2) How to set the start address

The address decoder is output by specifying the start address for $\overline{\text{CS}}$ output and the space size.

The start address is set every 64K-byte because it is decoded by A16 to A23 as shown in the block diagram.

In other words, the DRAM start address is set to one of the 64K-byte intervals after "000000H".

However, note that the start address may be changed cue to the value of the MAMR.

(3) How to set the address space

The address space is specified by setting the memory start address mask register (MAMR0 to 3).

As shown in the address decoder block diagram (Figures 3.6 (2) to (4)), $\overline{\text{CS0}}$, $\overline{\text{CS1}}$, or $\overline{\text{CS2}}$ / $\overline{\text{CS3}}$ can specify the address area for which the chip select signal can be output depending on whether to compare the addresses A8 to A20, A8 to A21, or A15 to A22 respectively.

Size CS	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0		6	0	0	0	0	0	0		
CS1	0	0	\langle	0	0	0	0	0	0	0	
CS2			0	0	0	0	0	0	0	0	0
CS3			0	0	0	0	0	0	0	0	0

Figure 3.6 (6) Chip Select and Space Size
- (4) Start address / address space setting procedure
 - ① Set memory start address register (MSARx) (Set start address)
 - ② Set memory start address mask register (MAMRx) (Set address area)
 - ③ Set control register (BxCS) data bus width, number of waits, enable / disable of the area

(Example)

When setting the $\overline{\text{CS0}}$ area to 64Kbyte (010000 to 01FFFFH), 16 bit data width and non-wait,

MSAR0=01H	start address 010000H
	address area 64 Kbyte
B0CS=13H	16 bit data width, 0-wait

3.7 Dynamic RAM (DRAM) Controller

TMP95C061B incorporates a DRAM controller for interface with $\times 8$ / 16 bit DRAM. The DRAM controller consists of a control circuit to refresh the DRAM, an access circuit for reading and writing, and a row / column address multiplexer.

- $1) \ refresh \ mode \\ \overline{CAS} \ before \ \overline{RAS} \ refresh \ mode \\$
- 2) refresh interval 31-195 states (programmable)
- 3) refresh cycle width 2-9 states (programmable)
- 4) address mapping size CS3 area: 64 K - 8 Mbyte
- 5) memory access address length 8-11bits
- 6) wait control

depends on the setting CS / WAIT controller.

7) arbitration between refresh and memory access

refreshing is prior to memory access, automatically inserted wait cycle during memory access cycle.

Control Register

Figure 3.7 (1) Refresh Control Register

Read-modify-write is prohibited for registers DMEMCR

Figure 3.7 (2) DRAM memory access control register

Operation description

(1) Memory access control

Access control block is enable when DMEMCR < MAC > = 1. And then DRAM control signals (RAS, CAS and REFOUT) are output during the time CPU accesses CS3 area. The cycle (bus width and number of wait) depend on the value of CS / WAIT controller.

To facilitate connection with low-speed DRAM, the DRAM controller can accelerate RAS rise at wait insertion and delay RAS precharge time (RAS high width). This is called slow access mode. Set mode to slow access using DMEMCR<MACM>.

In the access cycle, Address multiplexer outputs row / column address through A0 to A11 pin. The enable / disable setting of address multiplexing and multiplexed address width are controlled by DMEMCR<MUXE> and <MUXW0, 1>. The relation between address width and bus width is below.

Figure 3.7 (3), (4) shows the access timing.

				$-(\cap$			$\overline{(A)}$	<u> </u>	1
				column	address	\frown	(\vee))	
row address	8 E	зіт	9 E	ût (10	вит	11	віт	multiplexed address width
	8	16	8	16	8	16	8	16	······bus width
A0	A8	-	A9)	A10	- /	A11	-	depend on the` value of
A1	A9	A9	A10	A10	A11	A11	A12	A12	CS / WAIT controller
A2	A10	A10	A11	A11	A12	A12	A13	A13	
A3	A11	A117	A12	A12	A13	A13	A14	A14	
A4	A12	A12	A13	A13	A14	A14	A15	A15	
A5	A13	A13	A14 <	A14	A15	A15	A16	A16	
A6	A14	A14	A15	A15	A16	A16	A17	A17	
A7	A15	A15	A16	A16	A17	A17	A18	A18	
A8 🔷	2	A16	A17	A17	A18	A18	A19	A19	
A9	\searrow	-	$(\overline{7})$	A18	A19	A19	A20	A20	
A10	<u> </u>	-	47	-	-	A20	A21	A21	
A11	IJ-	~ - C	\sim	-	-	-	-	A22	
	($\mathcal{I}_{\mathcal{A}}$	\bigcirc						-

	Table 3.7	Address	multiplex
--	-----------	---------	-----------

(2) Refresh controller

The TMP95C061B can output \overline{RAS} / \overline{CAS} used to refresh the DRAM. At the same time the state signal \overline{REFOUT} which indicates a refresh cycle is output. (Only for interval refresh mode.)

DRAM can be refreshed easily because RAS / CAS / REFOUT output frequency and pulse width are programmable.

The refresh controller has the following features.

- Refresh mode : \overline{CAS} before \overline{RAS} interval refresh mode \overline{CAS} before \overline{RAS} self refresh mode
- Refresh interval: 31 to 195 states (programmable)
- Refresh cycle width: 2 to 9 states (programmable)
- Dummy cycle can be generated
- Refresh cycle is asynchronous with CPU operation cycle.
- i) CAS before RAS interval refresh mode

The refresh interval and refresh width for \overline{CAS} before \overline{RAS} interval refresh mode depends on the DRAM being used.

Therefore, TMP95C061B enables the refresh interval and refresh cycle width to be set with the refresh controller register value according to the system clock and DRAM that are being used.

Figure 3.7 (5) shows a timing example for \overline{CAS} before \overline{RAS} refresh cycle.

Figure 3.7(5) Refresh Cycle Timing Example

How to set the register is described next.

Figure 3.7(1) shows the bit structure of the refresh control register DREFCR.

1 Refresh cycle insertion interval

The insertion interval is set with the three bits DREFCR<RS2 to 0> according to the system clock being used.

Example : When the system clock is 25 MHz and the DRAM refresh cycle is to be $15.6 \ \mu$ s, set these bits to "111".

Re	fresh Cy	cle	Insertion	Frequency (f _{OSC})							
RS2	RS1	RS0	Interval (states)	8 MHz	10 MHz	12.5 MHz	14 MHz	16 MHz	20 MHz	25 MHz	
0	0	0	31	7.55	6.2	4.96	/ 4.43	3.88	(3.1)	2.5	
0	0	1	62	15.5	12.4	9.92	8.86	7.75	6.2	5.0	
0	1	0	78	19.5	15.6	12.48	11.14	9.75	7.8	6.2	
0	1	1	97	24.25	19.4	15.52	13.86	12.13	9.7	7.7	
1	0	0	109	27.25	21.8	17.44	15.57	13.63	10.9	8.7	
1	0	1	124	31.0	24.8	19.84	17.72	15.5	12.4	9.9	
1	1	0	154	38.5	30.8	24.7	22.0	19.3	15.4	12.3	
1	1	1	195	48.75	39.0	31.2	27.86	24.4	19.5	15.6	
				$\left(\begin{array}{c} \\ \end{array} \right)$					(۱	Jnit : μ s)	

Table 3.13 ((2) Refresh	Cycle Insertion	nterval

- (2) The three bits DREFCR < RW2 to 0> can be used to change the refresh cycle width (RAS, CAS Low output width). (2 to 9 states)
- 3 Refresh cycle control

The refresh cycle can be disabled/enabled with the bit DREFCR<RC>.

ii) CAS before RAS self refresh mode

This mode is used when DRAM controller or is halted with a HALT (IDLE, STOP) instruction while refreshing with \overline{CAS} before \overline{RAS} interval refresh mode (hereafter referred to as interval mode).

However, <u>REFOUT</u> is not output. ("1" is output.) Figure 3.7 (6) shows the self refresh mode timing diagram

Figure 3.7 (6) Self Refresh Cycle Timing

This mode is executed as follows. First, the settings are made for interval mode. Then B3CS < SRFC > is set to "0" before a HALT instruction to perform one refresh. Then the \overline{CAS} pin and \overline{RAS} pin are kept at low level and the self refresh mode is entered. Cancelling (HALT) and supplying a clock to the DRAM controller automatically sets DMEMCR<SRFC> to 1 and cancels self refresh mode. After cancellation, refresh is performed once and processing returns to interval mode. (Note that when HALT is cancelled by a reset, the I/O registers are initialized, therefore, refresh is not performed.)

After setting DMEMCR<SRFC> to "0", make sure that the HALT instruction comes after NOP or some instructions.

(3) DRAM initialize

The DRAM controller can generate consecutive \overline{CAS} before \overline{RAS} dummy cycles necessary when using DRAM. This is executed by setting DREFCR $\leq DMI >$ bit to "1".

Writing 0 to $\langle DMI \rangle$ (including reset), enabling refresh cycle insert (DREFCR $\langle RC \rangle = 1$), or enabling access control (DMEMCE $\langle MAC \rangle = 1$) cancels a dummy cycle.

If a dummy cycle is canceled by enabling refresh cycle insert or access control, the <DMI> bit is not zero-cleared.

The dummy cycle width is fixed to 4 states and the interval is fixed to 6 states. Figure 3.7 (7) shows the CAS before RAS dummy cycle timing.

Figure 3.7 (7) \overline{CAS} Before \overline{RAS} Dummy Cycle Timing

(4) Priority

The DRAM refresh cycle may overlap with the DRAM read/write cycle because it is not synchronized with the CPU operating cycle. In this case, the DRAM controller gives priority to the cycle that starts operation first. If the priority is given to the refresh cycle, a wait is automatically inserted in the memory access cycle.

(5) Bus Release Mode

The TMP95C061B has a bus release function. Setting dedicated DRAM control pins (RAS, CAS, REFOUT) enables selection of release mode (by setting the pins to high impedance like other pins) or non-release (remain driving) mode in which refresh cycle output only is supported. For the states of other pins at bus release, see 3.14 (2), Pin states at bus release.

(i) Mode used by DRAM control dedicated pin to release bus (DMEMCR < BRM > = 0)

When the bus release request (BUSRQ) pin is set to active (low level), the TMP95C061B acknowledges the bus release request. After the current bus cycle (including DRAM access cycle) ends, the TMP95C061B sets the DRAM control dedicated pin (RAS, CAS, REFOUT) to high, sets the output buffer to off, and sets the pin to high impedance.

The refresh cycle is asynchronous with the access cycle. When a refresh request is generated and the refresh cycle is at wait because of a conflict with the access cycle until the bus release, the bus release timing is delayed until the refresh cycle is completed.

The refresh counter keeps counting during bus release. The refresh request generated during bus release is held for one cycle. The refresh cycle is performed immediately after the TMP95C061B regains bus mastership.

The bus release request or refresh counter is asynchronous with the bus cycle. To use this mode, the external bus master must generate a refresh cycle during bus release.

(ii) Mode used not to release DRAM control dedicated pin (DMEMCR<BRM> = 1)

Valid even if the DRAM is not accessed by the external bus master during bus release. If this mode is set, the DRAM dedicated pin does not release the bus even if a bus release request is generated but keeps supporting a refresh cycle only. Note that all other pins release the bus. Unlike (i), bus release timing is not influenced by a refresh request.

A reset resets DMECR<BRM> to 0 and the DRAM control dedicated pin to bus release mode.

(6) Notes

When refresh and access contend, the \overline{WR} and \overline{HWR} pins are set to active and output refresh signals. (Figure 3.7 (8))

- ① When DRAM is used for executing WRITE or CAS-before-RAS refresh cycle test mode at timing (a) in Figure 3.7 (8), a circuit, such as the one shown in 3.7 (7) Connection Example (v), external circuit example (a), is required to avoid test mode. Direct connection is not allowed.
- ② When DRAM is used to set write-per-bit mode at timing (b) in Figure 3.7 (8), a circuit, such as the one shown in 3.7 (7) Connection Example (vi), external circuit example (b), to avoid this mode is required. Direct connection is not allowed. (TMP95C061B does not support write-per-bit mode.)

For DRAM supporting both test mode in ①. above and write-per-bit mode, use a bypass circuit, such as the one shown in 3.7 (7) Connection Example (vi), external circuit example (b).

(7) Connection Example

Connection Example (iii) 16-bit bus configuration (2WE mode)

Connection Example (iv) 16-bit bus configuration (2CAS mode)

 $\begin{array}{c} \mbox{Connection Example (vi) Connection to DRAM supporting write-per-bit mode or DRAM} \\ supporting both write-per-bit mode and \hline WRITE or \hline CAS-before-\\ \hline RAS refresh test mode. \end{array}$

3.8 8-bit Timers

TMP95C061B contains four 8-bit timers (timers 0, 1, 2 and 3), each of which can be operated independently. The cascade connection allows these timers to be used as 16-bit timer. The following four operating modes are provided for the 8-bit timers.

- 8-bit interval timer mode (4 timers)
- 16-bit interval timer mode (2 timers)
- 8-bit programmable square wave pulse generation (PPG: variable duty with variable cycle) output mode (2 timers)
- 8-bit pulse width modulation (PWM: variable duty with constant cycle) output mode (2 timers)

Figure 3.8 (1) shows the block diagram of 8-bit timer (timer 0 and 1).

Timer 2 / 3 have the same configuration of circuit as Timer 0 / 1. The difference between Timer 0 and Timer 2 is that Timer 0 has external clock input pin (TI0), while Timer 2 has none.

Each interval timer consists of an 8-bit up-counter, 8-bit comparator, and 8-bit timer register. Besides, timer flip-flops (TFF1, TFF3), are provided for pair of timer 0/1 and 2/3.

Among the input clock sources for the interval timers, the internal clocks of ϕ T1, ϕ T4, ϕ T16, and ϕ T256 are obtained from the 9-bit prescaler shown in Figure 3.8 (2).

The operation modes and timer flip-flops of the 8-bit timer are controlled by five control registers T01MOD, T23MOD, TFFCR, TRUN and TRDC.

Figure 3.8 (1) Block Diagram of 8-bit Timers (Timers 0 and 1)

Selector

111

TMOD < T0CLK1, 0>

Internal bus

TRDC < TRODE >

Select

PWMTRG TREG-WR

PPGTRG

1 Prescaler

These are 9 bit prescaler and prescaler clock selection register to generate input clock for 8 bit Timer 0/1, Timer 4/5 and Serial Interface 0/1.

The 8 bit Timer 0, 1 uses 4 types of clock : ϕ T1, ϕ T4, ϕ T16, and ϕ T256 among the prescaler output.

This prescaler can be run or stopped by the timer control register TRUN<PRRUN>. Counting starts when <PRRUN> is set to '1', while the prescaler is cleared to zero and stops operation when <PRRUN> is set to '0'.

Figure 3.8 (2) Prescaler

2 Up-counter

These are an 8 bit binary counter which counts up by the input clock pulse specified by Timer 0 / 1 mode register T01MOD and Timer 2 / 3 mode register T23MOD.

The input clocks of timer 0/2 are selected from the three internal clocks $\phi T1$, $\phi T4$, and $\phi T16$ and the external clock input (TI0 : timer 0 only) using the mode register T01MOD and T23MOD.

The input clocks of timer 1 / 3 differ depending on the operation mode. When the timers are set to 16 bit timer mode, the overflows output of timer 1 / 3 are used as the input clock. When the timers are not set to 16 bit mode, the input clock is selected from the internal clocks ϕ T1, ϕ T16 and ϕ T256, and the output of comparator (match detection).

Example: When T01MOD < T10M1, 0 > = 01, the overflow output of timer 0 becomes the input clock of timer 1 (16-bit timer).

When T01MOD7, 6=00, T01MOD3, 2=01, ϕ T1 becomes the input of timer 1 (8 bit timer mode).

Operation mode is also set by T01MOD register and T23MOD register. When reset, it is initialized to T01MOD <T01M1, 0 > = 00, T23MOD <T23M1, 0 > = 00 whereby the up-counter is placed in the 8-bit timer mode.

The counting and stop & clear of up-counter can be controlled for each interval timer by the timer operation control register TRUN. When reset, all up-counters will be cleared to stop the timers.

③ Timer register

This is an 8-bit register for setting an interval time. When the set value of timer registers TREG0, TREG1, TREG2, TREG3, matches the value of up-counter, the comparator match detect signal becomes active. If the set value is 00H, this signal becomes active when the up-counter overflows.

Timer register TREG0 / TREG2 is of double buffer structure, each of which makes a pair with register buffer.

The timer register double buffer controll register TRDC <TR0DE, TR2DE> bit controls whether the double buffer structure in the TREG0 / TREG2 should be enabled or disabled. It is disabled when <TR0DE>/<TR2DE>=0 and enabled when they are set to 1.

In the condition of double buffer enable state, the data is transferred from the register buffer to the timer register when the $2^n - 1$ overflow occurs in PWM mode, or at the PPG cycle in PPG mode.

When reset, it will be initialized to $\langle TRODE \rangle / \langle TR2DE \rangle = 0$ to disable the double buffer. To use the double buffer, write data in the timer register, set $\langle TRDDE \rangle / \langle TR2DE \rangle$ to 1, and write the following data in the register buffer.

Figure 3.8 (3) Configuration of Timer Register 0/2

Note: Timer register and the register buffer are allocated to the same memory address. When < TRODE > / < TR2DE > = 0, the same value is written in the register buffer as well as the timer register, while when < TRODE > / < TR2DE > = 1 only the register buffer is written.

The memory address of each timer register is as follows.

TREG0: 000022H

TREG1: 000023H

TREG2: 000026H

TREG3: 000027H

All the registers are write-only and cannot be read.

The initial value is indeterminate; when using the 8-bit timer, always write data to the timer register.

Figure 3.8 (5) Timer 2/3 Mode Register (T23MOD)

Figure 3.8 (6) 8-bit Timer Flip-flop Control Register (TFFCR)

Figure 3.8 (7) Timer Operation Control Register (TRUN)

Figure 3.8 (8) Timer Register Double Buffer Control Register (TRDC)

(d) Comparator

A comparator compares the value in the up-counter with the values to which the timer register is set. When they match, the up-counter is cleared to zero and an interrupt signal (INTTO to 3) is generated. If the timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

5 Timer flip-flop (timer F/F)

The status of the timer flip-flop is inverted by the match detect signal (comparator output) of each interval timer and the value can be output to the timer output pins TO1 (also used as PA2) and TO3 (also used as PA3).

The timer F/F are provided for a pair of timer 0/1 and Timer 2/3. The outputs of timer F/F are TFF1 and TFF3, and output signals through the TO1 and TO3.

The operation of 8-bit timers will be described below:

(1) 8-bit timer mode

Four interval timers 0, 1, 2, 3, can be used independently as 8-bit interval timer. All interval timers operate in the same manner, and thus only the operation of timer 1 will be explained below.

① Generating interrupts in a fixed cycle

To generate timer 1 interrupt at constant intervals using timer 1 (INTT1), first stop timer 1 then set the operation mode, input clock, and a cycle to T01MOD and TREG1 register, respectively. Then, enable interrupt INTT1 and start the counting of timer 1.

Example : To generate timer 1 interrupt every 32 μ s at fc=25 MHz, set each register in the following manner.

7 6 5 4 3 2 1 0 TRUN ← - X 0 - Stop timer 1, and clear it to "0". T01MOD ← 0 0 X X 0 1 Set the 8-bit timer mode, and select $\&T1$ (0.32 µs @ fc = 25 MHz)				MS	SB						LSB	
				7	6	5	4	3	2	1	0	
T01MOD \leftarrow 0 0 X X 0 1 Set the 8-bit timer mode, and select $\&T1$ (0.32 μ s @ fc = 25 MHz)	Γ	TRUN	←	-	Х	-	-	-	-	0	-	Stop timer 1, and clear it to "0".
		T01MOD	←	0	0	Х	Х	0	1	-	-	Set the 8-bit timer mode, and select ϕ T1 (0.32 μ s @ fc = 25 MHz)
as the input clock.												as the input clock.
TREG1 \leftarrow 0 1 1 0 0 1 0 0 Set the timer register 32 μ s $\div \phi$ T1 = 100 = 64H		TREG1	←	0	1	1	0	0	1	0	0 (Set the timer register 32 μ s ÷ ϕ T1 = 100 = 64H
INTET01 ← 1 1 0 1 Enable INTT1, and set it to "Level 5".		INTET01	←	1	1	0	1	-	-	-	-	Enable INTT1, and set it to "Level 5".
TRUN ← 1 X 1 - Start timer 1 counting.	L	TRUN	←	1	Х	-	-	-	-	1	- 7	Start timer 1 counting.

Note : X; Don't care -; No change

Use the table 3.8 (1) for selecting the input clock.

Table 3.8 (1) Setting the interrupt period and input clock for 8 bit Timer

(Input clock	Interrupt period (at fc = 25 MHz)	resolution
$\langle \langle \rangle$	∳T1 (8/fc)	0,32 µs to 81.92 µs	0.32 μs
	φT4 (32/fc)	1.28 μs to 327.7 μs	1.28 μs
	¢T16 (128/fc)	5.12 μ s to 1.311 ms	5.12 μs
\searrow	φ T256 (2048/fc)	81.92 µs to 20.97 ms	81.92 μs

2 Generating a 50 % duty square wave pulse

The timer flip-flop is inverted at constant intervals, and its status is output to timer output pin (TO1).

Example : To output a 1.92 μ s square wave pulse through TO1 pin at fc=25 MHz, set each register in the following procedures. Either timer 0 or timer 1 may be used, but this example uses timer 1.

Figure 3.8 (9) Square Wave (50 % Duty) Output Timing Chart

3 Making timer 1 count up by match signal from timer 0 comparator

Set the 8-bit timer mode, and set the comparator output of timer 0 as the input clock to timer 1.

operation.

Writing 00 to TFFCR < FF1C1, 0> inverts the value of TFF1. Writing 00 to TFFCR < FF3C1,0> inverts the value of TFF3.

5 Initial setting of timer flip-flop (TFF)

The value of TFF can be initialized to "0" or "1", independent of timer operation. For example, write "10" in TFFCR<FF1C1,0> to clear TFF1 to "0", while write "01" in TFFCR<TFF1C1,0> to set TFF1 to "1".

Note: The value of timer register and tiner Flip-flop cannot be read.

(2) 16-bit timer mode

A 16-bit interval timer is configured by using the pair of timer 0/1 and timer 2/3. Timer 2/3 operate as Timer 0/1, so described have about Timer 0/1.

To make a 16-bit interval timer by cascade connecting timer 0 and timer 1, set timer $0/timer 1 \mod to = 0/timer 1 \mod to = 0/timer 1$.

When set in 16-bit timer mode, the overflow output of timer 0 will become the input clock of timer 1, regardless of the set value of clock control Register TCLK.

The lower 8 bits of the timer (interrupt) cycle are set by the timer register TREGO, and the upper 8 bits are set by TREG1. Note that TREGO always must be set first. (Writing data into TREGO disables the comparator temporarily, and the comparator is restarted by writing data into TREG1.)

φ T1 (8/fc) 0.32 μs to	20.071 mc	0.22
φT4 (32/fc) 1.28 μs to	83.885 ms 335.539 ms	0.32 μs 1.28 μs 5.12 μs

Table 3.8 (2) The interrupt period and input clock in 16 bit timer mode

Setting example: To generate an interrupt INTT1 every 0.32 seconds at fc=25 MHz, set the following values for timer registers TREG0 and TREG1.

When counting with input clock of ϕ T16 (5.12 μ s @ 25 MHz) 0.32 s÷5.12 μ s=62500=F424H Therefore, set TREG1=F4H and TREG0=24H, respectively.

The comparator match signal is output from timer 0 each time the up-counter UC0 matches TREG0, where the up-counter UC0 is not cleared. And then the interrupt INTTO is not generated.

With the timer 1 comparator, the match detect signal is output at each comparator timing when up-counter UC1 and TREG1 values match. When the match detect signal is output simultaneously from both comparators of timer 0 and timer 1, the up-counters UC0 and UC1 are cleared to "0", and the interrupt INTT1 is generated. If inversion is enabled, the value of the timer flip-flop TFF1 is inverted.

		Timer0			Timer1	
	INT TO	то1	Compared Value	INT T1	TO1	Compared Value
16 bit Timer mode (Input overflow of Timer 0 to Timer 1)	not generate the interrupt	output disable	TREG0 Continued to count up after match	generate the interrupt	output enable	TREG1*2 ⁸ + TREG0
8 bit Timer mode (input match of Timer 0 to Timer 1	generate the interrupt	output enable Timer 0 or Timer 1	TREG0 (Cleared after match)	generate the interrupt	output enable (Timer 0 or Timer 1	TREG1* TREG0
	$(\land \land$	\bigcirc				

Example : When TREG1 = 04H and TREG0 = 80H

Figure 3.8 (11) Timer output by 16-bit timer mode

(3) 8-bit PPG (Programmable Pulse Generation) Output mode

Square wave pulse can be generated at any frequency and duty by timer 0 and timer 2. The output pulse may be either low-active or high-active. In this mode, timer 1 and Timer 3 cannot be used.

Timer 0 outputs pulse through TO1 pin (also used as PA2). Timer 2 outputs pulse TO3 (also used as PA3).

Here shows the operation of Timer 0. Timer 2 provides the same operation as Timer .

When the double buffer of TREGO is enabled in this mode, the value of register buffer will be shifted in TREGO each time TREG1 matches UCO.

Use of the double buffer makes easy the handling of low duty waves (when duty is varied).

(4) 8-bit PWM Output mode (Pulse Width Modulation)

This mode is valid only for timer 0/2. In this mode, 2-8 bit resolution of PWM pulse can be output. PWM pulse is output through TO1 pin when using Timer 0. When using Timer 2, the pulse is through TO3 pin. Timer 1 and Timer 3 are valid for 8-bit timers.

Here shows the PWM mode operation of Timer 0. Timer 2 provide the same operation as Timer 0.

Timer output is inverted when up-counter (UC0) matches the set value of timer register TREGO or when 2n-1 (n=6, 7, or 8; specified by T01MOD<PWM01,0>) counter overflow occurs. Up-counter UC0 is cleared when 2n-1 counter overflow occurs. For example, when n=6, 6-bit PWM will be outputted, while when n=7, 7-bit PWM will be outputted.

To use this PWM mode, the following conditions must be satisfied.

Figure 3.8 (13) shows the block diagram of this mode.

In this mode, the value of register buffer will be shifted in TREG0 if $2^n - 1$ overflow is detected when the double buffer of TREG0 is enabled.

Use of the double buffer makes easy the handling of small duty waves.

	F	WM cycle (@ fc = 25 MHz)	\sim
	φ Τ1	φ Τ4	øT16
2 ⁶ – 1	20.2 μs (49.6 kHz)	80.6 µs (12.4 kHz)	322.6 ⊭s (3.1 kHz)
2 ⁷ – 1	40.6 µs (24.6 kHz)	162.6 μs (6.2 kHz)	650.2 μs (1.5 kHz)
2 ⁸ – 1	81.6 μs (12.3 kHz)	326.4 μs (3.1 kHz)	1.31 ms (0.8 kHz)

Table 3.8 (3)	PWM Cy	cle and setting) of 2 ⁿ – '	l counter
---------------	--------	-----------------	-------------------------	-----------

(5) Table 3.8 (4) shows the settings for all 8-bit timer modes.

Table 3.8 (4)	Selection of 8 bit time	mode	and	control reg	gister	
						1

Timer Mode (8 bit timer × 2ch)	Mode T01M (T23M)	PWM0 (PWM2)	Upper clock input T1CLK (T3CLK)	Lower clock input T0CLK (T2CLK)	Selection of Inversion FF1IS (FF3IS)
16 bit timer (16 bit) × 1ch	01	-	-	External clock, ϕ T1, 4, 16	-
8 bit timer (Input of upper timer is output of power one)	00		00	$\left(\begin{array}{c} \text{External clock,} \\ \phi \text{T1, 4, 16} \end{array}\right)$	0: Lower timer 1: Upper timer
8 bit timer x 2ch	00	$\bigcirc)$	(øT1, 16, 256)	$\left(\begin{array}{c} External\ clock, \\ \phiT1, 4, 16 \end{array} ight)$	0: Lower timer 1: Upper timer
8 bit PPG x 1ch	10) -		$\left(\begin{array}{c} External clock, \\ \phi T1, 4, 16 \end{array} \right)$	-
8 bit PWM × 1ch (Lower) 8 bit timer × 1ch (Upper)	11	PWM cycle	(øT1, 16, 256)	$\left(\begin{array}{c} External clock, \\ \phiT1, 4, 16 \end{array}\right)$	-
3.9 16-bit Timer

TMP95C061B contains two (timer 4 and timer 5) multifunctional 16-bit timer / event counter with the following operation modes.

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) mode
- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode

Timer / event counter consists of 16-bit up-counter, two 16-bit timer registers (One of them applies double-buffer), two 16-bit capture registers, two comparators, capture input controller, and timer flip-flop and the control circuit.

Timer / event counter is controlled by 4 control registers: T4MOD / T5MOD, T4FFCR / T5FFCR, TRUN and T45CR.

Figure 3.9 (1), (2) shows the block diagram of 16-bit timer / event counter (timer 4 and timer 5).

EQ5T5 : Invert when the up-counter matches TREG5

Figure 3.9 (4) 16-Bit Timer Controller Register (T4MOD) (2/2)

① Up-counter

UC4 is a 16-bit binary counter which counts up according to the input clock specified by T4MOD < T4CLK1,0 > register or T5MOD < T5CLK1.0 > register.

As the input clock, one of the internal clocks $\phi T1$, $\phi T4$, and $\phi T16$ from 9-bit prescaler (also used for 8-bit timer), and external clock from TI4 pin (also used as PB0 / INT4 pin) and TI67 pin (also used as PB4 / INT6 pin) can be selected. When reset, it will be initialized to <T4CLK1,0> / <T5CLK1,0> =00 to select TI4, TI6 input mode. Counting or stop & clear of the counter is controlled by timer operation control register TRUN <T4RUN>, <T5RUN>.

When clearing is enabled, up-counter UC4/UC5 will be cleared to zero each time it coincides matches the timer register TREG5, TREG7. The "clear enable/disable" is set by T4MOD < CLE > and T5MOD < CLE >.

If clearing is disabled, the counter operates as a free-running counter.

2 Timer Registers

These two 16-bit registers are used to set the interval time. When the value of up-counter UC4 / UC5 matches the set value of this timer register, the comparator match detect signal will be active.

Setting data for timer register (TREG4, TREG5 / TREG6 and TREG7) is executed using 2 byte date load instruction or using 1 byte date load instruction twice for lower 8 bits and upper 1 bits in order.

The timer register TREG4/TREG6 make double buffer structure, which are paired with register buffer. The timer control register T45CR<DB4EN, DB6EN> controls whether the double buffer structure should be enabled or disabled. : disabled when <DB4EN, DB6EN>=0, while enabled when <DB4EN, DB6EN>=1.

When the double buffer is enabled, the timing to transfer data from the register buffer to the timer register is at the match between the up-counter (UC4 and UC5) and timer register TREG5 and TREG7.

When reset, it will be initialized to <DB4EN, DB6EN>=0, whereby the double buffer is disabled. To use the double buffer, write data in the timer register, set <DB4E, DB6EN>=1, and then write the following data in the register buffer.

TREG4, TREG6 and register buffer are allocated to the same memory addresses 000030H / 000031H and 000040H / 000041H. When <DB4EN, DB6EN>=0, same value will be written in both the timer register and register buffer. When <DB4EN, DB6EN>=1, the value is written into only the register buffer.

Since the timer register is indeterminate after a reset, always write data to higher and lower bits.

③ Capture Register

These 16-bit registers are used to hold the values of the up-counter.

Data in the capture registers should be read by a 2-byte data load instruction or two 1-byte data load instruction, from the lower 8 bits followed by the upper 8 bits.

(4) Capture Input Control

This circuit controls the timing to latch the value of up-counter UC4 / UC5 into (CAP1, CAP2 / CAP3, CAP4). The latch timing of capture register is controlled by register T4MOD < CAP12M 1, 0 > / T5MOD < CAP34M 1, 0 >.

- When T4MOD < CAP12M 1, 0 > / T5MOD < CAP34M1, 0 > = 00 Capture function is disabled. Disable is the default on reset.
- When T4MOD < CAP12M1, 0 > / T5MOD < CAP34M1, 0 > = 01
 - Data is loaded to CAP1 / CAP3 at the rise edge of TI4 pin (also used as PB0 / INT4) and TI6 pin (also used as PB4 / INT7) input, while data is loaded to CAP2 / CAP4 at the rise edge of TI5 pin (also used as P81 / INT5) and TI7 pin (also used as PB5 / INT7) input. (Time difference measurement)
- When T4MOD < CAP12M1, 0 > / T5MOD < CAP34M1, 0 > = 10

Data is loaded to CAP1 / CAP3 at the rise edge of TI4 pin / TI6 pin input, while to CAP2 / CAP4 at the fall edge. Only in this setting, interrupt INT4/INT6 occurs at fall edge. (Pulse width measurement)

• When T4MOD<CAP12M1, 0>/T5MOD<CAP34M1, 0>=11 Data is loaded to CAP1 / CAP3 at the rise edge of timer flip-flop TFF1, while to CAP2 / CAP4 at the fall edge.

Besides, the value of up-counter can be loaded to capture registers by software. Whenever "0" is written in T4MOD<CAPIN>/T5MOD<CAP3IN> the current value of up-counter will be loaded to capture register CAP1/CAP3. It is necessary to keep the prescaler in RUN mode (TRUN<PRRUN> to be "1").

5 Comparator

These are 16-bit comparators which compare the up-counter UC4 / UC5 value with the set value of (TREG4, TREG5 / TREG6, TREG7) to detect the match. When a match is detected, the comparators generate an interrupt (INTTR4, INTTR5 / INTTR6, INTTR7) respectively. The up-counter UC4 / UC5 is cleared only when UC4 / UC5 matches TREG5 / TREG7. (The clearing of up-counter UC4 / UC5 can be disabled by setting T4MOD <CLE > / T5MOD <CLE > = 0.)

6 Timer Flip-flop (TFF4 / TFF6)

This flip-flop is inverted by the match detect signal from the comparators and the latch signals to the capture registers. Disable / enable of inversion can be set for each element by T4FFCR<CAP2T4, CAP1T4, EQ5T4, EQ4T4> / T5FFCR<CAP4T6, CAP3T6, EQ7T6, EQ6T6>. TFF4 / TFF6 will be inverted when "00" is written in T4FFCR<TFF4C1,0>/ T5FFCR<TFF6C1,0>. Also it is set to "1" when "10" is written, and cleared to "0" when "10" is written. The value of TFF4 can be output to the timer output pin TO4 (also used as PB2) / TO6 (also used as PB6).

⑦ Timer Flip-flop (TFF5)

This flip-flop is inverted by the match detect signal from the comparator and the latch signal to the capture register CAP2. TFF5 will be inverted when "00" is written in T4FFCR<TFF5C1,0>. Also it is set to "1" when "10" is written, and cleared to "0" when "10" is written. The value of TFF5 can be output to the timer output pin TO5 (also used as P82).

Note : This flip-flop (TFF5) is contained only in the 16-bit timer 4

(1) 16-bit Timer Mode

Timer 4 and Timer 5 can be operated independently. Both can be operated all the same, so have shows Timer 4 only.

Generating interrupts at fixed intervals, the interval time is set in the timer register TREG5 to generate the interrupt INTTR5.

Stop timer 4. Enable INTTR5 and sets interrupt level 4. Disable INTTR4. Disable trigger. Select internal clock for input and disable the capture function. Set the interval time (16 bits).

(2) 16-bit Event Counter Mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TI4 pin / TI6 pin input) as the input clock. To read the value of the counter, first perform "software capture" once and read the captured value.

The counter counts at the rise edge of TI4 pin / TI6 pin input.

TI4 pin / TI6 pin can also be used as PB0 / INT4 and PB4 / INT6.

Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

76	5 4 3 2 1	0	\wedge
TRUN ← - X	- 0()-)	-	Stop timer 4.
PBCR ←		0	Set P80 to input mode
INTET45 ← 1 1	0 0 1 0 0	0	Enable INTTR5 and sets interrupt level 4, while
		. (0	disables INTTR4.
TAFFER + 1 1	00001	1	Disable trigger.
T4MOD ← 0 0	10010	0	Select TI4 as the input clock.
TREG5 ← * *	* * * * *	*	Set the number of counts (16 bits).
**	* * * * *	*	
TRUN - 1 X	- 1	- ~	Start timer 4.
\sim	- ((

Note : When used as an event counter, set the prescaler in RUN mode.

(3) 16-bit Programmable Pulse Generation (PPG) Output Mode

Timer 4 and Timer 5 can be operated all the same, here shows Timer 4 only.

The PPG mode is obtained by inversion of the timer flip-flop TFF4 that is to be enabled by the match of the up-counter UC4 with the timer register TREG4 or 5 and to be output to TO4 (also used as P82). In this mode, the following conditions must be satisfied.

(Set value of TREG4) < (Set value of TREG5)

Figure 3.9 (11) Programmable Pulse Generation (PPG) Output Waveforms

When the double buffer of TREG4 is enabled in this mode, the value of register buffer 4 will be shifted in TREG4 at match with TREG5. This feature makes easy the handling of low duty waves.

Figure 3.9 (12) Operation of Register Buffer

Shows the block diagram of this mode.

Figure 3.9 (13) Block Diagram of 16-Bit PPG Mode

(4) Application Examples of Capture Function

Timer 4 and Timer 5 can be operated all the same. Here shows Timer 4 only.

The loading of up-counter (UC4) values into the capture registers CAP1 and CAP2, the timer flip-flop TFF4 inversion due to the match detection by comparators CP4 and CP5, and the output of the TFF4 status to TO4 pin can be enabled or disabled. Combined with interrupt function, they can be applied in many ways, for example:

- ① One-shot pulse output from external trigger pulse
- ② Frequency measurement
- ③ Pulse width measurement
- (1) Time difference measurement

① One-shot Pulse Output from External Trigger Pulse

Set the up-counter UC4 in free-running mode with the internal input clock, input the external trigger pulse from TI4 pin, and load the value of up-counter into capture register CAP1 at the rise edge of the TI4 pin. Then set to T4MOD < CAP12M1, 0>=01.

When the interrupt INT4 is generated at the rise edge of TI4 input, set the CAP1 value (c) plus a delay time (d) to TREG4 (= c+d), and set the above set value (c+d) plus a one-shot pulse width (p) to TREG5 (= c+d+p). When the interrupt INT4 occurs the T4FFCR<EQ5T4, EQ4T4>register should be set that the TFF4 inversion is enabled only when the up-counter value matches TREG4 or TREG5. When interrupt INTTR5 occurs, this inversion will be disabled.

Keep counting (Free-runnig) Main setting Count with ϕ T1. T4MOD 1 0 1 0 0 1Load the up-counter value into CAP1 at the rise edge T4FFCR ← 1 1 0 0 0 0 1 0 of TI4 pin input. Clear TFF4 to zero. Disable TFF4 inversion. PBCR - 1 - -PBFC X - X X - 1 X X Select PB2 as the TO4 pin INTE45 ← - - - - 1 1 0 0 Enable INT4, and disable INTTR4 and INTTR5. INTET45← 1 0 0 0 1 0 0 0 ← 1 X - 1 - - - -TRUN Start timer 4 Setting of INT4 TREG4 ← CAP1+3ms/_{\$\$\$}T1 TREG5 ← TREG4+2ms/øT1 T4FFCR ← Enable TFF4 inversion when the up-counter value matches TREG4 or 5. INTET45← 1 1 0 0 -Enable INTTR5. Setting of INTTR5 T4FFCR Disable TFF4 inversion when the up-counter value matches TREG4 or 5. INTET45← 1 0 0 0 Disable INTTR5. Note: X; Don't care -; No change

When delay time is unnecessary, invert timer flip-flop TFF4 when the upcounter value is loaded into capture register 1 (CAP1), and set the CAP1 value (c) plus the one-shot pulse width (p) to TREG5 when the interrupt INT4 occurs. The TFF4 inversion should be enabled when the up-counter (UC4) value matches TREG5, and disabled when generating the interrupt INTTR5.

Figure 3.9 (15) One-Shot Pulse Output (without Delay)

2 Frequency Measurement

The frequency of the external clock can be measured in this mode. The clock is input through the TI4 pin, and its frequency is measured by the 8-bit timers (Timer 0 and Timer 1) and the 16-bit timer/event counter (Timer 4).

The TI4 pin input should be selected for the input clock of Timer 4. The value of the up-counter is loaded into the capture register CAP1 at the rise edge of the timer flip-flop TFF1 of 8-bit timers (Timer 0 and Timer 1), and into CAP2 at its fall edge.

The frequency is calculated by the difference between the loaded values in CAP1 and CAP2 when the interrupt (INTTO or INTT1) is generated by either 8-bit timer.

Figure 3.9 (16) Frequency Measurement

For example, if the value for the level "1" width of TFF1 of the 8-bit timer is set to 0.5 s. and the difference between CAP1 and CAP2 is 100, the frequency will be 100 / 0.5 [s] = 200 [Hz].

3 Pulse Width Measurement

This mode allows to measure the "H" level width of an external pulse. While keeping the 16-bit timer / event counter counting (free-running) with the internal clock input, the external pulse is input through the TI4 pin. Then the capture function is used to load the UC4 values into CAP1 and CAP2 at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT4 occurs at the falling edge of TI4.

The pulse width is obtained from the difference between the values of CAP1 and CAP2 and the internal clock cycle.

For example, if the internal clock is 0.8 microseconds and the difference between CAP1 and CAP2 is 100, the pulse width will be $100 \times 0.8 \ \mu s = 80 \ \mu s$.

Figure 3.9 (17) Pulse Width Measurement

Note: Only in this pulse width measuring mode (T4MOD<CAP12M1, 0>=10), external interrupt INT4 occurs at the falling edge of TI4 pin input. In other modes, it occurs at the rising edge.

The width of "L" level can be measured from the difference between the first C2 and the second C1 at the second INT4 interrupt.

(1) Time Difference Measurement

This mode is used to measure the difference in time between the rising edges of external pulses input through TI4 and TI5.

Keep the 16-bit timer / event counter (Timer 4) counting (free-running) with the internal clock, and load the UC4 value into CAP1 at the rising edge of the input pulse to TI4. Then the interrupt INT4 is generated.

Similarly, the UC4 value is loaded into CAP2 at the rising edge of the input pulse to TI5, generating the interrupt INT5.

The time difference between these pulses can be obtained from the difference between the time counts at which loading the up-counter value into CAP1 and CAP2 has been done.

>	20 MHz	25 MHz
φ Τ1	26.214 ms	20.97 ms
φ Τ4	104.856 ms	83.88 ms
φT16	419.424 ms	335.54 ms

3.10 Stepping Motor Control / Pattern Generation Port

TMP95C061B contains 2 channels (PG0 and PG1) of 4-bit hardware stepping motor control/pattern generation (herein after called PG) which actuate in synchronization with the (8-bit / 16-bit) timers. The PG (PG0 and PG1) are shared in 8-bit I/O ports 7.

Channel 0 (PG0) is synchronous with 8-bit timer 2 or timer 3, 16-bit timer 5, to update the output.

The PG ports are controlled by control registers (PG01CR) and can select either stepping motor control mode or pattern generation mode. Each bit of the P7 can be used as the PG port.

PG0 and PG1 can be used independently.

All PG operate in the same manner except the following points, and thus only the operation of PG0 will be explained below.

Figure 3.10 (1) PG Block Diagram

Figure 3.10 (2 a) Pattern Generation Control Register (PG01CR)

Figure 3.10 (2 b) Pattern Generation Control Register (PG01CR)

		7	6	5	4	3	2	1	0
PGOREG	bit Symbol	PG03	PG02	PG01	PG00	SA03	SA02	S A01	S A00
(004CH)	Read/Write		v	v	•		: R/	w	:
	After reset	0	0	0	0		Unde	fined	
	Function	Pattern Generation 0 (PG0) output latch register (Reading the P7 that is set to the PG port allows to read-out.)) register	
	nibit Read lify write		/)	
						ion 0 Reg) (
	\sim	7	6	5	4	3	2(7/	(<u>)</u>	0
PG1REG	bit Symbol	PG13	PG12	PG11	PG10	SA13	SA12	SA11	SA10
(004DH)	Read/Write		V	v	$\overline{}$			W	
	After reset	0	0	0	0		Unde	fined	
	Function	Pattern Generation 1 (PG1) output latch register (Reading the P7 that is set to the PG port allows to read-out.) Shift alternate register 1 For the PG mode (4-bit write) register							
	hibit Read dify write))			
		Figure	3.10 (4)	Pattern	Generati	ion 1 Reg	jister (PG	i1REG)	
					~				

Figure 3.10 (6) Connection of Timer and Pattern Generator

(1) Pattern Generation Mode

PG functions as a pattern generation according to the setting of PG01CR <PAT1>. In this mode, writing from CPU is executed only on the shifter alternate register. Writing a new data should be done during the interrupt operation of the timer for shift trigger and a pattern can be output, synchronous with the timer.

In this mode, set PG01CR < PG0M > to 1, and PG01CR < CCW0 > to 0.

The output of this pattern generator is output to port 7; since port and functions can be switched on a bit basis using port 7 function control register P7FC, any port pin can be assigned to pattern generator output.

Figure 3.10 (7) shows the block diagram of this mode.

In this pattern generation mode, only writing the output latch is disabled by hardware, but other functions do the same operation as 1-2 excitation in stepping motor control port mode. Accordingly, the data shifted by trigger signal from a timer must be written before the next trigger signal is output.

(2) Stepping Motor Control Mode

① 4-phase 1or 2 Excitation

Figure 3.10 (8) and Figure 3.10 (9) show the output waveforms of 4-phase 1 excitation and 4-phase 2 excitation, respectively when channel 0 (PG0) is selected.

The operation when channel 0 is selected is explained below.

The output latch of PG0 (also used as P7) is shifted at the rising edge of the trigger signal from the timer to be output to the port.

The direction of shift is specified by PG01CR < CCW0 >: Normal rotation $(PG00 \rightarrow PG01 \rightarrow PG02 \rightarrow PG03)$ when < CCW0 > is set to "0"; reverse rotation $(PG00 \leftarrow PG01 \leftarrow PG02 \leftarrow PG03)$ when "1". 4-phase 1 excitation will be selected when only one bit is set to "1" during the initialization of PG, while 4-phase 2 excitation will be selected when two consecutive bits are set to "1".

The value in the shift alternate registers are ignored when the 4-phase 1 or 2 excitation mode is selected.

Figure 3.10 (10) shows the block diagram.

2 4-Phase 1-2 Excitation

Figure 3.10 (11) shows the output waveforms of 4-phase 1-2 excitation when channel 0 is selected.

The initialization for 4-phase 1-2 excitation is as follows.

By rearranging the initial value "b7 b6 b5 b4 b3 b2 b1 b0" to "b7 b3 b6 b2 b5 b1 b4 b0", the consecutive 3 bits are set to "1" and other bits are set to "0" (positive logic).

For example, if b7, b3, and b6 are set to "1", the initial value becomes "11001000", obtaining the output waveforms as shown in Figure 3.10 (11).

To get an output waveform of negative logic, set values 1's and 0's of the initial value should be inverted. For example, to change the output waveform shown in Figure 3.10 (11) into negative logic, change the initial value to "00110111".

The operation will be explained below for channel 0.

The output latch of PG0 (shared by P7) and the shifter alternate register (SA0) for Pattern Generation are shifted at the rising edge of trigger signal from the timer to be output to the port. The direction of shift is set by PG01CR < CCW0 >.

Figure 3.10(12) shows the block diagram.

Figure 3.10 (12) Block Diagram of 4-Phase 1-2 Excitation (Normal Rotation)

Setting example: To drive channel 0 (PG0) by 4-phase 1-2 excitation (normal rotation) when timer 0 is selected, set each register as follows.

```
7 6 5 4 3 2 1 0
        ← - X - - - - 0
TRUN
                                   Stop timer 0, and clear it to zero.
                                   Set 8-bit timer mode and select \phiT1 as the input clock of timer 0.
TMOD
        ← 0 0 X X - - 0 1
TFFCR
       ← X X X 0 1 0 1 0
                                   Clear TFF1 to zero and enable the inversion trigger by timer 0.
TREG0
                                   Set the cycle in timer register.
P7CR
                                   Set P70 to P73 bits to the output mode.
        ← - - - - 1 1 1 1
P7FC
        ← - - - - 1 1 1 1
                                   Set P70 to P73 bits to the PG output.
PG01CR ← - - - 0 0 1 1
                                   Select PG0 4-phase 1-2 excitation mode and normal rotation .
PGOREG ← 1 1 0 0 1 0 0 0
                                   Set an initial value.
TRUN
       ← 1 X - - - - 1
                                   Start timer 0.
    Note: X; Don't care -; No change
```

(3) Trigger Signal From Timer

The trigger signal from the timer which is used by PG is not equal to the trigger signal of timer flip-flop (TFF1, TFF3, TFF4, TFF5, and TFF6) and differs as shown in Table 3.10 (1) depending on the operation mode of the timer. Table 3.10 (1) Select of Trigger Signal

	TFF1 inversion	PG shift
8-bit timer mode	Selected by TFFCR <ff1is> when the up- counter value matches TREG0 or TREG1 value.</ff1is>	-
16-bit timer mode	When the up-counter value matches with both TREG0 and TREG1 values (The value of up-counter = TREG1*28 + TREG0)	
PPG output mode	When the up-counter value matches with both TREG0 and TREG1	When the up-counter value matches TREG1 value (PPG cycle)
PWM output mode	When the up-counter value matches TREG0 value and PWM cycle.	Trigger signal for PG is not generated.

Note : To shift PG, TFFCR < FF1IE > must be set to "1" to enable TFF1 inversion.

Channel 1 of PG can be synchronized with the 16-bit timer Timer4 / Timer5. In this case, the PG shift trigger signal from the 16-bit timer is output only when the upcounter UC4 / UC5value matches TREG5 / TREG7.

When using a trigger signal from Timer4, set either T4FFCR<EQ5T4> or T4MOD <EQ5T5> to "1" and a trigger is generated when the value in UC4 and the value in TREG5 match. When using a trigger signal from Timer5, set T5FFCR<EQ7T6>to 1. Generates a trigger when the value in UC5 and the value in TREG7 match.

(4) Application of PG and Timer Output

As explained "Trigger signal from timer", the timing to shift PG and invert TFF differs depending on the mode of timer. An application to operate PG while operating an 8-bit timer in PPG mode will be explained below.

To drive a stepping motor, in addition to the value of each phase (PG output), synchronizing signal is often required at the timing when excitation is changed over. In this application, port 7 is used as a stepping motor control port to output a synchronizing signal to the TO1 pin (shared by PA2).

3.11 Serial Channel

TMP95C061B contains 2 serial Input/Output channels. The serial channel has the following operation modes.

└ ● I/O interface mode ───	——— Mode 0: To transmit and receive I/O data as
	well as the synchronizing signal
	SCLK for extending I/O.
	Mode 1: 7-bit data
└─ ● Asynchronous	—— Mode 2: 8-bit data
transmission (UART) mode	Mode 3: 9-bit data

In mode 1 and mode 2, a parity bit can be added. Mode 3 has wake-up function for making the master controller start slave controllers in serial link (multi-controller system).

Figure 3.11 (1) shows the data format (for one frame) in each mode.

The serial channel has a buffer register for transmitting and receiving operations, in order to temporarily store transmitted or received data, so that transmitting and receiving operations can be done independently (full duplex).

However, in I/O interface mode, SCLK (serial clock) pin is used for both transmission and receiving, the channel becomes half-duplex.

The receiving data register is of a double buffer structure to prevent the occurrence of overrun error and provides one frame of margin before CPU reads the received data. The receiving data register stores the already received data while the buffer register receives the next frame data.

By using $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ (there is no $\overline{\text{RTS}}$ pin, so any 1 port must be controlled by software), it is possible to halt data send until the CPU finishes reading receive data every time a frame is received. (Handshake function)

In the UART mode, a check function is added not to start the receiving operation by error start bits due to noise. The channel starts receiving data only when the start bit is detected to be normal at least twice in three samplings.

When the transmission buffer becomes empty and requests the CPU to send the next transmission data, or when data is stored in the receiving data register and the CPU is requested to read the data, INTTX or INTRX interrupt occurs. Besides, if an overrun error, parity error, or framing error occurs during receiving operation, flag SCOCR / SC1CR < OERR, PERR, FERR > will be set.

The serial channel 0/1 includes a special baud rate generator, which can set any baud rate by dividing the frequency of 4 clocks (ϕ T0, ϕ T2, ϕ T8, and ϕ T32) from the internal prescaler (shared by 8-bit/16-bit timer) by the value 1 to 16 (2 to 16 in the channel 1).

In addition to the clock from the internal baud rate generator, an arbitrary baud rate can be obtained from the external input clock (SCLK0) in the serial channel 0. Moreover, in I/O interface mode, a sync signal (SCLK) can be input and data transfer performed using this external clock.

3.11.1 Control Registers

The serial channel is controlled by 3 control registers SCOCR, SCOMOD and BROCR. Transmitted and received data are stored in register SCOBUF.

Note: There is SC1MOD (56H) in Channel1 Figure 3.11 (2) Serial Mode Control Register (channel 0, SC0MOD)

 Note: Serial control register for channel 1 is SC1CR (55H).
 Note: As all error flags are cleared after reading do not test only a single bit with a bittesting instruction.

Figure 3.11 (3) Serial Control Register (channel 0, SCOCR)

Figure 3.11 (6) Serial Mode Control Register (Channel 1, SC1MOD)

Figure 3.11 (7) Serial Control Register (Channel 1, SC1CR)

Figure 3.11 (11) Port 8 Open Drain Enable Register (ODE)

3.11.2 Configuration

Figure 3.11 (12) shows the block diagram of the serial channel 0.

Figure 3.11 (12) Block Diagram of the Serial Channel 0

Figure 3.11 (13) shows the block diagram of the serial channel 1.

 $\div 16$

① Baud Rate Generator

Baud rate generator comprises a circuit that generates transmission and receiving clocks to determine the transfer rate of the serial channel.

The input clock to the baud rate generator, $\phi T0$ (4/fc), $\phi T2$ (16/fc), $\phi T8$ (64/fc), or $\phi T32$ (256/fc) are generated by the 9-bit prescaler which is shared by the timers. One of these input clocks is selected by the baud rate generator control register bit $\langle BR0CK1/0 \rangle / \langle BR1CK1.0 \rangle$ of BR0CR / BR1CR.

The baud rate generator includes a 4-bit frequency divider, which divides frequency by 1 to 16 values (2 to 16 in the channel 1) to determine the transfer rate.

How to calculate a transfer rate when the baud rate generator is used is explained below.

• UART mode

• I/O interface mode

Therelation of source clock and input clock is as below,

$$\phi T0 = 4/1c$$

 $\phi T2 = 16/fc$
 $\phi T8 = 64/fc$
 $\phi T32 = 256/fc$

Accordingly, when source clock fc is 12.288 MHz, input clock is ϕ T2 (16/fc), and frequency divisor is 5, the transfer rate in UART mode becomes as follows:

Baud rate =
$$\frac{\text{fc/16}}{5}$$
 ÷ 16
= 12.288×10⁶/16/5/16=9600 (bps)

Table 3.11 (1) shows an example of the transfer rate in UART mode.

Also with 8-bit timer 2, the serial channel can get a transfer rate. Table 3.11 (2) shows an example of baud rate using timer 2.

Moreover, the external clock input can also be used as the serial clock. The baud rate in this case is determined as follows.

Baud Rate = external clock input
$$\div$$
 16

	(1)				Unit (Kbps)
fc [MHz]	Input clock Frequency divisor	φT0 (4/fc)	φT2 (16/fc)	¢Τ8 (64/fc)	φT32 (256/fc)
9.830400	2	76.800	19.200	4.800	1.200
↑	4	38.400	9.600	2.400	0.600
↑	8	19.200	4.800	1.200	0.300
↑	16	9.600	2.400	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
↑	А	19.200	4.800	1.200	0.300
14.745600	3	76.800	19.200	4.800	1.200
1	6	38.400	9.600	2.400	0.600
↑	с	19.200	4.800	1.200	0.300

Table 3.11 (1)	Selection of Transfer Rate (1) (When Baud Rate Generator Is Us	sed)
• • •		

Note1: Transfer rate in I/O interface mode is 8 times as fast as the values given in the above table.

Table 3.11 (2)Selection of Transfer Rate (1) (When timer 2 (input Clock ϕ T1) is used) Unit (Kbps)

fc TREG2	12.288 MHz	12 MHz	9.8304 MHz	8 MHz	6.144 MHz
1H	96	\bigcirc	76.8	62.5	48
2H	48		38.4	31.25	24
3Н	32	31.25			16
4H		~ (19.2		12
5Н	19.2	\sim (7)	75		9.6
8н	12		9.6		6
АН	9.6				4.8
10H/	6		4.8		3
14H	4.8	\rightarrow			2.4

How to calculate the transfer rate (when timer 2 is used):

Transfer rate =
$$fc$$

TREG2 × 8 × 16
(When Timer 2 (input clock ϕ T1) is used)
Input clock of Timer 2
 ϕ T1 = 8/fc
 ϕ T4 = 32/fc

 ϕ T16 = 128/fc

٦r

Note1: Timer 2 match detect signal cannot be used as the transfer clock in I/O interface mode.

2 Serial Clock Generation Circuit

This circuit generates the basic clock for transmitting and receiving data.

1) In I/O interface mode

When in SCLK output mode with the setting of SCOCR/SC1CR<IOC>="0", the basic clock will be generated by dividing by 2 the output of the baud rate generator described before. When in SCLK input mode with the setting of SCOCR/SC1CR<IOC>= "1", the rising edge or falling edge will be detected according to the setting of SCOCR/SC1CR<SCLKS> register to generate the basic clock.

2) In universal asynchronous receiver transmitter (UART) mode

Basic clock SIOCLK is selected from one of the following depending on the setting of the < SC1, 0>bits of the SC0MOD or SC1MOD register: the clock from the baud rate generator, internal clock $\phi 1$ (500Kbps at fc=16 MHz), a match detect signal from timer 2 or an external clock (channel 0 only).

③ Receiving Counter

The receiving counter is a 4-bit binary counter used in asynchronous communication (UART) mode and counts up by SIOCLK clock. 16 pulses of SIOCLK are used for receiving 1 bit of data, and the data bit is sampled three times at 7th, 8th and 9th clock.

With the three samples, the received data is evaluated by the rule of majority.

For example, if the sampled data bit is "1", "0" and "1" at 7th, 8th and 9th clock respectively, the received data is evaluated as "1". The sampled data "0", "0" and "1" is evaluated that the received data is "0".

- (4) Receiving Control
 - 1) I/O interface mode

When in SCLK output mode with the setting of SC0CR/SC1CR<IOC>="0", RxD0/1 signal will be sampled at the rising edge of shift clock which is output to SCLK0/1 pin.

When in SCLK input mode with the setting SC0CR/SC1CR < IOC > = "1"RxD0/1 signal will be sampled at the rising edge or falling edge of SCLK input according to the setting of SC0CR/SC1CR < SCLKS > register.

2) Asynchronous communication (UART) mode

The receiving control has a circuit for detecting the start bit by the rule of majority. When two or more "0" are detected during 3 samples, it is recognized as start bit and the receiving operation is started.

Data being received are also evaluated by the rule of majority.

(5) Receiving Buffer

To prevent overrun error, the receiving buffer has a double buffer structure.

Received data are stored one bit by one bit in the receiving buffer 1 (shift register type). When 7 bits or 8 bits of data is stored in the receiving buffer 1, the stored data are transferred to another receiving buffer 2 (SC0BUF / SC1BUF), generating an interrupt INTRX0 / INTRX1. The CPU reads only receiving buffer 2 (SC0BUF / SC1BUF). Even before the CPU reads the receiving buffer 2 (SC0BUF / SC1BUF), the received data can be stored in the receiving buffer 1. However, unless the receiving buffer 2 (SC0BUF / SC1BUF) is read before all bits of the next data are received by the receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of the receiving buffer 1 will be lost, although the contents of the receiving buffer 2 and SC0CR < RB8 >/ SC1CR < RB8 > is still preserved. Reading data from receive data buffer 2 (SC0BUF / SC1BUF) clears interrupt request flags INTRX0 < IRX0C > and INTRX1 < IRX1C >.

The parity bit added in 8-bit UART mode and the most significant bit (MSB) in 9-bit UART mode are stored in SCOCR<RB8>/SC1CR<RB8>.

When in 9-bit UART mode, the wake-up function of the slave controllers is enabled by setting COMOD < WU > / SC1MOD < WU > to "1", and interrupt INTRX0/INTRX1 occurs only when SCOCR < RB8 > / SC1CR < RB8 > is set to "1".

6 Transmission Counter

Transmission counter is a 4-bit binary counter which is used in asynchronous communication (UART) mode and, like a receiving counter, counts by SIOCLK clock, generating TxDCLK every 16 clock pulses.

Figure 3.11 (14) Generation of Transmission Clock

⑦ Transmission Controller

1) I/O interface mode

In SCLK output mode with the setting of SC0CR/SC1CR<IOC>="0", the data in the transmission buffer are output bit by bit to TxD0/1 pin at the rising edge of shift clock which is output from SCLK0/1 pin.

In SCLK input mode with the setting of SC0CR/SC1CR < IOC > = "1", the data in the transmission buffer are output bit by bit to TxD0/1 pin at the rising edge or falling edge of SCLK input according to the setting of SC0CR/SC1CR < SCLKS > register.

2) Asynchronous communication (UART) mode

When transmission data are written in the transmission buffer sent from the CPU, transmission starts at the rising edge of the next TxDCLK, generating a transmission shift clock TxDSFT.

Handshake function

Serial channel 0 has a $\overline{\text{CTS0}}$ pin. Using this pin, data can be sent in units of one frame ; thus, overrun errors can be avoided. The handshake function is enabled/disabled by SC0MOD<CTSE>.

When the $\overline{\text{CTS0}}$ pin goes high, after completion of the current data send, data send is halted until the $\overline{\text{CTS0}}$ pin goes low again. The INTTX0 Interrupts are generated, requests the next send data to the CPU.

Though there is no $\overline{\text{RTS}}$ pin, a handshake function can be easily configured by setting any port assigned to the $\overline{\text{RTS}}$ function. The $\overline{\text{RTS}}$ should be output "High" to request data send halt after data receive is completed by a software in the RXD interrupt routine.

Note 1: If the CTS signal rises during transmission, the next data is not sent after the completion of the current transmission.

Figure 3.11 (16) Timing of CTS (Clear to send)

(8) Transmission Buffer

Transmission buffer (SC0BUF / SC1BUF) shifts out and sends the transmission data written from the CPU from the least significant bit (LSB) in order, using transmission shift clock TxDSFT which is generated by the transmission control. When all bits are shifted out, the transmission buffer becomes empty and generates INTTX0 / INTTX1 interrupt.

9 Parity Control Circuit

When serial channel control register SCOCR < PE >/ SC1CR < PE > is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART or 8-bit UART mode. With SCOCR < EVEN >/ SC1CR <EVEN > register, even (odd) parity can be selected.

For transmission, parity is automatically generated according to the data written in the transmission buffer (SC0BUF/SC1BUF), and data are transmitted after being stored in SC0BUF<TB7>/ SC1BUF<TB7> when in 7-bit UART mode while in SC0MOD <TB8>/ SC1BUF<TB8> when in 8 -bit UART mode. <PE> and <EVEN> must be set before transmission data are written in the transmission buffer.

For receiving, data are shifted in the receiving buffer 1, and parity is added after the data are transferred in the receiving buffer 2 (SC0BUF / SC1BUF), and then compared with SC0BUF < RB7 >/ SC1BUF when in 7-bit UART mode and with SC0CR < RB8 >/ SC1CR when in 8-bit UART mode. If they are not equal, a parity error occurs, and SC0CR < PERR >/ SC1CR < PERR >/ SC1CR < PERR > flag is set.

10 Error Flag

Three error flags are provided to increase the reliability of receiving data.

1. Overrun error <OERR>

If all bits of the next data are received in receiving buffer 1 while valid data are stored in receiving buffer 2 (SCBUF0/1), an overrun error will occur.

2. Parity error < PERR>

The parity generated for the data shifted in receiving buffer 2 (SCBUF0/1) is compared with the parity bit received from RxD0/1 pin. If they are not equal, a parity error occurs.

3. Framing error <FERR>

The stop bit of received data is sampled three times around the center. If the majority is "0", a framing error occurs.

① Generating Timing

1) UART mode

Receiving

Receiving			
Mode	9 Bit	8 Bit + parity	8 Bit, 7 Bit + parity, 7 Bit
Interrupt timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing	_	Center of last bit (parity bit)	
Overrun error timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit

Transmitting

Mode	9 Bit	8 Bit + parity	8 Bit, 7 Bit + parity, 7 Bit
Interrupt timing	Just before stop bit is transmitted.	÷	←

2) I/O interface mode

Transmission	SCLK output mode	Immediately after rise of last SCLK signal. (See figure 3.11 (19).)
Interrupt timing	SCLK input mode	Immediately after rise of last SCLK signal (rising mode), or immediatel after fall in falling mode. (See figure 3.11 (20).)
Receiving Interrupt	SCLK output mode	Timing used to transfer received data to data receive buffer 2 (SC0BUF/SC1BUF) (that is, immediately after last SCLK). (See figure 3.11 (21).)
timing	SCLK input mode	Timing used to transfer received data to data receive buffer 2 (SC0BUF/SC1BUF) (that is, immediately after last SCLK). (See figure 3.11 (22).)
	$\langle \chi \bigcirc$	

3.11.3 Operational Description

(1) Mode 0 (I/O interface mode)

This mode is used to increase the number of I/O pins of for transmitting or receiving data to or from the external shifter register.

This mode includes SCLK output mode to output synchronous clock (SCLK) and SCLK input mode to input external synchronous clock SCLK.

1 Transmission

In SCLK output mode, 8-bit data and synchronous clock are output from TxD0/1 pin and SCLK0/1 pin, respectively, each time the CPU writes data in the transmission buffer. When all data is output, INTES0 < ITX0C > / INTES1 < ITX1C > will be set to generate INTTX0/1 interrupt.

Figure 3.11 (19) Transmitting Operation in I/O Interface Mode (SCLK Output Mode)

In SCLK input mode, 8-bit data are output from TxD0/1 pin when SCLK input becomes active while data are written in the transmission buffer by CPU. When all data are output, INTES0<ITX0C>/INTES1<ITX1C> will be set to

generate INTTX0/1 interrupt.

Figure 3.11 (20) Transmitting Operation in I/O Interface Mode (SCLK Input Mode)

2 Receiving

In SCLK output mode, synchronous clock is outputted from SCLK0/1 pin and the data are shifted in the receiving buffer 1 whenever the receive interrupt flag INTES0<IRX0C>/INTES1<IRX1C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred in the receiving buffer 2 (SC0BUF/SC1BUF) at the timing shown below, and INTES0<IRX0C> / INTES1<IRX1C> will be set again to generate INTRX0/1 interrupt.

In SCLK input mode, the data is shifted in the receiving buffer 1 when SCLK input becomes active while the receive interrupt flag INTES0<IRX0C>/INTES1<IRX1C> is cleared by reading the received data. When 8-bit data is received, the data will be shifted in the receiving buffer 2 (SC0BUF/SC1BUF) at the timing shown below, and INTES0<IRX0C> / INTES1<IRX1C> will be set again to generate INTRX0/1 interrupt.

(2) Mode 1 (7-bit UART Mode)

7-bit mode can be set by setting serial channel mode register SC0MOD <SM1,0>/SC1MOD <SM1,0> to "01".

In this mode, a parity bit can be added, and the addition of a parity bit can be enabled or disabled by serial channel control register SCOCR < PE > / SCICR < PE >, and even parity or odd parity is selected by SCOCR < EVEN > / SCICR < EVEN > when < PE > is set to "1" (enable).

Setting example: When transmitting data with the following format, the control registers should be set as described below. Channel 0 is explained here.

(3) Mode 2 (8-bit UART Mode)

8-bit UART mode can be specified by setting SC0MOD < SM1,0 > / SC1MOD < SM1,0 > to "10". In this mode, parity bit can be added, the addition of a parity bit is enabled or disabled by SC0CR < PE > / SC1CR < PE >, and even parity or odd parity is selected by SC0CR < EVEN > / SC1CR < EVEN > when < PE > is set to "1" (enable).

Setting example: When receiving data with the following format, the control register should be set as described below.

Direction of transmission (transmission rate: 9600 bps at fc = 12.288 MHz)

Main setting

```
76543210
                                         Select P81 (RxD0) as the input pin.
             ← X X - - - - 0 -
     P8CR
     SCOMOD \leftarrow - 0 1 X 1 0 0 1
                                         Enable receiving in 8-bit UART mode.
                                         Add an odd parity.
     SCOCR \leftarrow X 0 1 X X X 0 0
                                         Set transfer rate at 9600 bps.
     BROCR ← 0 X 0 1 0 1 0 1
                                         Start the prescaler for the baud rate generator.
     TRUN
             ← 1 X - - - - - -
                                         Enable INTRX0 interrupt and set interrupt level 4.
     INTES0 ← - - - 1 1 0 0
Interrupt processing
     Acc ← SCOCR AND 00011100
                                         Check for error.
     if Acc \neq 0 then ERROR
     Acc ← SCOBUF
```

Read the received data.

Note: X; Don't care

-; No change

Mode 3 (9-bit UART Mode) (4)

> 9-bit UART mode can be specified by setting SC0MOD<SM1,0> /SC1MOD<SM1,0> to "11". In this mode, parity bit cannot be added.

> For transmission, the MSB (9th bit) is written in SC0MOD <TB8>/SC1MOD <TB8>, while in receiving it is stored in SC0CR<RB8>/SC1CR<RB8>. For writing and reading the buffer, the MSB is read or written first then SC0BUF / SC1BUF.

Wake-up function

In 9-bit UART mode, the wake-up function of slave controllers is enabled by setting SC0MOD<WU>/ SC1MOD<WU> to "1". The interrupt INTRX0 / INTRX1 occurs only when $\langle RB8 \rangle = 1$.

Note: TxD pin of the slave controllers must be in open drain output mode.

Figure 3.11 (23) Serial Link Using Wake-Up Function

Protocol

- ① Select the 9-bit UART mode for the master and slave controllers.
- ② Set SC0MOD<WU>/ SC1MOD<WU> bit of each slave controller to "1" to enable data receiving.
- 3 The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (bit 8) < TB8 > is set to "1".

- (1) Each slave controller receives the above frame, and clears WU bit to "0" if the above select code matches its own select code.
- 5 The master controller transmits data to the specified slave controller whose SC0MOD<WU>/SC1MOD<WU> bit is cleared to "0". The MSB (bit 8)<TB8> is cleared to "0".

6 The other slave controllers (with the <WU> bit remaining at "1") ignore the receiving data because their MSBs (bit 8 or <RB8>) are set to "0" to disable the interrupt INTRX0/INTRX1.

The slave controllers (WU=0) can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

Setting example: To link two slave controllers serially with the master controller, and use the internal clock $\phi 1$ as the transfer clock.

Since serial channels 0 and 1 operate in exactly the same way, channel 0 is used for the purposes of explanation.

```
• Setting the master controller
```

```
Main
   P8CR
           ← X X - - - - 0 1
                                      Select P80 as TxD0 pin and P81 as RxD0 pin.
           ← X X - X - X X 1
   P8FC
   INTES0 ← 1 1 0 0 1 1 0 1
                                      Enable INTTX0 and set the interrupt level 4.
                                      Enable INTTX0 and set the interrupt level 5.
                                      Set \phi1 as the transmission clock in 9-bit UART mode.
   SCOMOD ← 1 0 1 0 1 1 1 0
   SCOBUF ← 0 0 0 0 0 0 1
                                      Set the select code for slave controller 1.
   INTTX0 interrupt
   SCOMOD \leftarrow 0
                                      Sets TB8 to "0".
   SCOBUF ← *
                                      Set data for transmission.
• Setting the slave controller 2
   Main
                                      Select P81 as RxD0 pin and P80 as TxD0 pin (open drain
   P8CR
                X - - - 0 1
           ← X X - X - X X 1
   P8FC
                                      output).
          ← X X X X X X - 1
   ODE
                                      Enable INTRX0 and INTTX0.
   INTESO ← 1 1 0 1 1 1 1 0
   SCOMOD \leftarrow 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0
                                      Set <WU> to "1" in the 9-bit UART transmission mode
                                      with transfer clock \phi1 (fc/2).
   INTRX0 interrupt
   Acc ← SCOBUF
   if Acc = Select code
   Then SCOMOD \leftarrow - - - 0 - - -
                                        Clear < WU> to "0".
```

3.12 Analog / Digital Converter

TMP95C061B contains an analog / digital converter (A/D converter) with 4-channel analog input that features 10-bit successive approximation.

Figure 3.12(1) shows the block diagram of the A/D converter. 4-channel analog input pins (AN3 to AN0) are shared by input-only port P9 and so can be used as input port.

- Note1 : This A/D converter does not have a built-in sample and hold circuit. Therefore, when A/D converting high-frequency signals, connect a sample and hold circuit externally.
- Note2: To lower the power supply current in IDLE or STOP mode, depending on the timing, standby mode can be entered with the internal comparator in enable state. Thus, stop A/D conversion before executing the HALT instruction. ADMOD < ADCS > set the "0".
 - The ladder resister between V_{REF} (V_{REFH})-AGND (V_{REFL}) cannot be disconnected internally.

Figure 3.12 (2) A/D Control Register

3.12.1 Operation

(1) Analog Reference Voltage

High analog reference voltage is applied to the VREF (V_{REFH}) pin, and the low analog reference voltage is applied to AGND (V_{REFL}) pin.

The reference voltage between VREF $(V_{\rm REFH})$ and AGND $(V_{\rm REFL})\,$ is divided by 1024 using ladder resistance, and compared with the analog input voltage for A/D conversion.

(2) Analog Input Channels

Analog input channel is selected by ADMOD<ADCH1,0>. However, which channel to select depends on the operation mode of the A/D converter.

In fixed analog input mode, one channel is selected by < ADCH1,0 > among four pins: AN0 to AN3.

In analog input channel scan mode, the number of channels to be scanned from AN0 is specified by $\langle ADCH1, 0 \rangle$, such as $AN0 \rightarrow AN1$, $AN0 \rightarrow AN1 \rightarrow AN2$, $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$.

When reset, A/D conversion channel register will be initialized to ADMOD < ADCH1,0 > = 00, so that AN0 pin will be selected.

The pins which are not used as analog input channel can be used as ordinary input port P9.

(3) Starting A/D Conversion

A/D conversion starts when A/D conversion register ADMOD<ADS> is written "1". When conversion starts, conversion busy flag ADMOD<ADBF> which indicates "conversion is in progress" will be set to "1".

Don't set ADMOD < ADS > to "1" during a conversion. When ADMOD < ADS > is written "1" during A/D conversion, the conversion is finished halfway and new A/D conversion is started. In the case of conversion channel scan mode, the conversion channel returns to channel 0 and new conversion is started.

(4) A/D Conversion Mode

Both fixed A/D conversion channel mode and conversion channel scan mode have two conversion modes, i.e., single and repeat conversion modes.

In fixed channel repeat mode, conversion of specified one channel is executed repeatedly.

In scan repeat mode, scanning from AN0, $\cdots \rightarrow$ AN3 is executed repeatedly.

A/D conversion mode is selected by ADMOD<REPET, SCAN>.

(5) A/D Conversion Speed Selection

There are four A/D conversion speed modes. The selection is executed by ADMOD < SPEED1:0 > register.

When reset, ADMOD<ADCS> will be initialized to "0", so that high speed conversion mode will be selected.

- (6) A/D Conversion End and Interrupt
 - A/D conversion single mode

ADMOD<EOCF> for A/D conversion end will be set to "1", ADMOD1 <ADBF> flag will be reset to "0", and INTAD interrupt will be enabled when A/D conversion of specified channel ends in fixed conversion channel mode or when A/D conversion of the last channel ends in channel scan mode.

• A/D conversion repeat mode

For both fixed conversion channel mode and conversion channel scan mode, INTAD should be disabled when in repeat mode. Always set the INTEOAD at "000", that disables the interrupt request.

Write "0" to ADMOD < REPET > to end the repeat mode. Then, the repeat mode will be exited as soon as the conversion in progress is completed.

When A/D conversion changes to the halt state of IDLE and STOP mode, even if in A/D converting state, A/D converter immediately stops the operation. After releasing the halt, the conversion does not restart.

(7) Storing the A/D Conversion Result

The results of A/D conversion are stored in ADREG 0 to 3 register for each channel. In repeat mode, the registers are up dated when ever conversion ends.

ADREG 0 to 3 are read-only registers.

(8) Reading the A/D Conversion Result

The results of A/D conversion are stored in ADREG 0 to 3 registers.

Reading data from the register of the upper 8 bits (ADREG0H, ADREG1H, ADREG2H, ADREG3H) for one of the channels clears interrupt request flag INTE0AD<IADC> and ADMOD<EOCF>.

Sample : ① When the analog input voltage of the AN3 pin is A/D converted in high speed mode (160 states) and the results is stored in the memory address 0100H by A/D interrupt INTAD routine.

Main setting

 $\begin{bmatrix} \text{INTEOAD} & \leftarrow 1 & 1 & 0 & 0 & - & - & - \\ \text{ADMOD} & \leftarrow X & X & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

Enable INTAD and set interrupt level 4. Specify AN3 pin as an analog input channel and starts A/D conversion in 160 states speed mode.

INTAD routine

WA	← ADREG3	Read ADREG3L and ADREG3H values and write to
		WA (16 bit)
WA	>> 6	Right-shifts WA six times and writes 0 in upper
		bits.
(00FF1	.0H)← WA	Writes contents of WA in memory at 0FF10H

2 When the analog input voltage of AN0 to AN2 pins is A/D converted in high speed / channel scan mode.

INTEOAD \leftarrow 1 0 0 0 - - - -ADMOD \leftarrow X X 1 1 0 1 1 0

Disable INTAD

specify ANO to AN2 as an analog input channel and start A/D conversion in high speed / channel scan mode.

Note: X; Don't care (-; No change sca

3.13 Watchdog Timer (Runaway Detection Timer)

TMP95C061B contains a watchdog timer to detect a runaway CPU condition.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt to notify the CPU of the malfunction, and outputs 0 externally from watchdog timer out pin WDTOUT to notify the peripheral devices of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

3.13.1 Configuration

Figure 3.13 (1) shows the block diagram of the watchdog timer (WDT).

Figuer 3.13 (1) Block Diagram of Watchdog Timer

The watchdog timer is a 22-stage binary counter which uses $\phi(2/\text{fc})$ as the input clock. There are four outputs from the binary counter: $2^{16}/\text{fc}$, $2^{18}/\text{fc}$, $2^{20}/\text{fc}$, and $2^{22}/\text{fc}$. Selecting one of the outputs with the WDMOD<WDTD1, 0> register generates a watchdog interrupt, and outputs watchdog timer out when an overflow occurs.

Since the watchdog timer out pin (WDTOUT) outputs "0" due to a watchdog timer overflow, the peripheral devices can be reset. The watchdog timer out pin is set to "1" after first disabling and then clearing the watchdog timer (by writing a clear code 4EH in the WDCR register).

(Example)

LDW	(WDMOD), B100H
LD	(WDCR), 4EH
SET	7, (WDMOD)

disable write clear code enable again

In other words, the WDTOUT keeps outputting "0" until the clear code is written.

The watchdog timer out pin can also be connected to the reset pin internally. In this case, the watchdog timer out pin (\overline{WDTOUT}) outputs 0 at 8 to 20 states (640 ns to 1.6 μ s @ fc = 25 MHz) and resets itself.

Figure 3.13 (3) Reset Mode

3.13.2 Control Registers

Watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- Watchdog Timer Mode Register (WDMOD) (1)
 - 1 Setting the detecting time of watchdog timer <WDTP>

This 2-bit register is used to set the watchdog timer interrupt time for detecting the runaway. This register is initialized to WDMOD < WDTP1, 0>=00 when reset, and therefore 2¹⁶/f_{SYS} is set. (The number of states is approx. 32,768.)

(2)Watchdog timer enable/disable control register < WDTE >

When reset, WDMOD<WDTE> is initialized to "1" enable the watchdog timer. To disable, it is necessary to clear this bit to "0" and write the disable code (B1H) in the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return from the disable state to enable state by merely setting <WDTE > to "1".

3 Watchdog timer out reset connection < RESCR>

> This register is used to connect the output of the watchdog timer with $\overline{\text{RESET}}$ terminal, internally. Since WDMOD<RESCR>is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

Watchdog Timer Control Register (WDCR) (2)

> This register is used to disable and clear of binary counter the watchdog timer function.

• Disable control

By writting the disable code (B1H) in this WDCR register after clearing WDMOD<WDTE> to "0", the watchdog timer can be disabled. However, the binary counter continues its operation also after the watchdog timer was disabled.

WDMOD $\leftarrow 0 \rightarrow - - - X X$ WDCR + 1 0 1 1 0 0 0 1 Write the disable code (B1H).

Clear WDMOD<WDTE>to "0".

```
Enable control
```

Set WDMOD<WDTE>to "1".

Clear the binary counter before setting the watchdog timer enable. The binary counter continues to count up also after setting the watchdog timer disable, so if the watchdog timer is set enable without clearing the binary counter, the watchdog timer out (WDTOUT) signal is output at a different timing from the detecting time which is selected by WDMOD<WDTP1, 0> register.

• Watchdog timer clear control

The binary counter can be cleared and resume counting by writing clear code (4EH) into the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

The binary counter is cleared when the clear code is written, when reset, and when the device enters standby state in IDLE or STOP mode by execution of the HALT instruction.

In the case of using the watchdog timer as an interval timer, clear the binary counter in the watchdog timer interrupt sequence. If the binary counter is not cleared in the interrupt sequence, it is cleared by an overflow after it counted up until 22-stage.

Figure 3.13 (4) Watchdog Timer Mode Register

3.13.3 Operation

The watchdog timer generates interrupt INTWD after the detecting time set in the WDMOD<WDTP1, 0> register and outputs a low level signal. The watchdog timer must be zero-cleared by software before an INTWD interrupt is generated. If the CPU malfunctions (runaway) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter overflows and an INTWD interrupt is generated. The CPU detects malfunction (runaway) due to the INTWD Interrupt and it is possible to return to normal operation by an anti-mulfunction program. By connecting the watchdog timer out pin to peripheral devices' resets, a CPU malfunction can also be acknowledged to other devices.

The watchdog timer restarts operation immediately after resetting is released.

The watchdog timer stops its operation in the IDLE and STOP modes. In the RUN mode, the watchdog timer is enabled. When the bus is released ($\overline{BUSAK} = L'$), WDT continues counting up.

However, the function can be disabled when entering the RUN mode.

Example : ① Clear the binary counter

WDCR $\leftarrow 0 1 0 0 1 1 1 0$ Write clear code (4EH).(2) Set the watchdog timer detecting time to $2^{18}/fc$ WDMOD $\leftarrow 1 0 1 - - X X$ (3) Disable the watchdog timer.WDMOD $\leftarrow 0 - - - X X$ WDMOD $\leftarrow 0 - - - X X$ Clear WDTE to "0".WDCR $\leftarrow 1 0 1 1 0 0 0 1$ WITE disable code (B1H).(4) Set IDLE mode.

(5) Set the STOP mode (warming up time: $2^{16}/\text{fc}$)

WDMOD \leftarrow - - - 1 0 1 X X Executes HALT command.

Set the STOP mode. Execute HALT instruction. Set the standby mode.

Note: X ; Don't care - ; No change
3.14 Bus Release Function

The TMP95C061B supports a bus request pin (\overline{BUSRQ} : also used as P53) and a bus acknowledge pin (\overline{BUSAK} : also used as P54). Set these pins using P5CR and P5FC.

3.14.1 Operation description

When 0 is input to the $\overline{\text{BUSRQ}}$ pin, the TMP95C061B acknowledges a bus request. When the current bus cycle ends, the TMP95C061B sets the address bus (A23 to A0) and bus control signals ($\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{HWR}}$, $\overline{\text{R/W}}$, $\overline{\text{CS0}}$ to $\overline{3}$) to high, then sets these signals and the data bus (D15 to D0) output buffer to off, and sets the $\overline{\text{BUSAK}}$ pin to low to indicate the bus is released. For bus release timing and DRAM dedicated pin state when the DRAM controller is in use, see 3.7 (5) Bus release mode.

During bus release, the TMP95C061B cannot access internal I/Os and internal I/Os keep functioning. Therefore, the watchdog timer continues counting. To use the bus release function, set runaway detect time with bus release time in consideration.

3.14.2 Pin states as bus release

Table 3.14 shows pin states at bis release.

Pin name	PIN status	s as bus release
Finitianie	Port mode	Function mode
D0 to D7		Becomes high impedance.
P10 to P17 (D8 to 15)	No status change.	Becomes high impedance.
P20 to P27 (A16 to A23)	No status change.	First sets all bits to high, then sets them to high impedance.
A0 to A15 RD WR		First sets all bits to high, then sets them to high impedance.
P52 (HW/R) P55 (R/W)	No status change.	First sets all bits to high, then sets output buffer to off. Internal pull-up is added regardless of output latch value.
P60 (CS0) P61 (CS1) P62 (CS2) P63 (CS3)	No status change.	First sets all bits to high, then sets them to high impedance.

Table 3	.14 P	in states	as bus	release
Tuble 5		111 344463	42 P 42	cicase

For P63 (CAS), P64 (RAS), P65 (REFOUT), see the description of "3.7 (5) Bus release mode".

 \land

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

5						
Parameter	Symbol	Rating	Unit			
Power Supply Voltage	V cc	– 0.5 to 6.5	V ⁴ (
Input Voltage	VIN	– 0.5 to Vcc + 0.5	v			
Output Current (total)	ΣΙΟΙ	120 ((//))	mA			
Output Current (total)	ΣΙΟΗ	- 120	mA			
Power Dissipation (Ta = 70°C)	P D	600	mW			
Soldering Temperature (10 s)	T SOLDER	260	°C			
Storage Temperature	T STG	– 65 to 150	°C			
Operation Temperature	T OPR	– 20 to 70	30			

Note : The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC characteristics

$Vcc = 5 V \pm 10\%$, TA = -20 to 70°C (8 to 25 MHz)

(Typical values are for $Ta = 25^{\circ}C$ and $Vcc = 5^{\circ}V$ unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (D0 to 15) P5, P7, P8, P9, PA, PB RESET,NMI,INT0 (PB7) EA, AM8 / 16 X1	V IL V IL1 V IL2 V IL3 V IL4		-0.3 -0.3 -0.3 -0.3 -0.3	0.8 0.3Vcc 0.25Vcc 0.3 0.2Vcc	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Input High Voltage (D0 to 15) <u>P5, P7, P8, P9, PA, PB</u> <u>RESET, NMI, INTO (PB7)</u> EA, AM8 / 16 X1	VIH VIH1 VIH2 VIH3 VIH4		2.2 0.7Vcc 0.75Vcc Vcc – 0.3 0.8Vcc	Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3	> > > > >
Output Low Voltage	VOL	I OL = 1.6 mA		0.45	V
Output High Voltage	V OH V OH1 V OH2	+OH = - 400 μA \OH = - 100 μA \OH = - 20 μA	2.4 0.75Vcc 0.9Vcc		V V V
Darlington Drive Current (8 Output Pins max.)	IDAR	V EXT = 1.5 V R EXT = 1.1 kΩ	- 1.0	- 3.5	mA
Input Leakage Current Output Leakage Current	TH THO	$\begin{array}{l} 0.0 \leq Vin \leq Vcc \\ 0.2 \leq Vin \leq Vcc - 0.2 \end{array}$	0.02 (Typ) 0.05 (Typ)	±5 ±10	μΑ μΑ
Operating Current (RUN) IDLE STOP (Ta = - 20 to 70°C) STOP (Ta = 0 to 50°C)		fc = 25 MHz 0.2≦ Vin≦ Vcc - 0.2 0.2≦ Vin≦ Vcc - 0.2	37 (Typ) 3.5 (Typ) 0.5 (Typ)	50 10 50 10	mA mA μA μA
Power Down Voltage (at STOP)	V STOP	V IL2 = 0.2 Vcc, V IH2 = 0.8 Vcc	2.0	6.0	V
RESET Pull Up Resistance	R RST		50	150	kΩ
Pin Capacitance	CIO	fc = 1 MHz		10	pF
<u>Schmitt_Wi</u> dth RESET, NMI, INTO (PB7)	VTH		0.4	1.0 (Typ)	V
Pull Up Resistance	RK		50	150	kΩ

Note: I_{DAR} is guaranteed for total of up to 8 ports.

4.3 AC Electrical Characteristics

					<		(8 MHZ	z to 25 l	VIHZ)
No.	Parameter	Parameter Symbol Variable		able	20 1	٧Hz	25 MHz		Unit
NO.	Farameter	Symbol	Min	Max	Min	Max	Min	Max	
1	Osc. Period (= x)	tosc	40	125	50	\bigcirc	/ 40		ns
2	CLK width	tclk	2x – 40		60	$\sum_{i=1}^{n}$	40		ns
3	A0 to 23 Valid \rightarrow CLK Hold	t _{AK}	0.5x – 20	\sim	(5)	()	0		ns
4	CLK Valid \rightarrow A0 to 23 Hold	t _{KA}	1.5x – 60		5	Ľ	0		ns
	A0 to 23 Valid $\rightarrow \overline{RD} / \overline{WR}$ fall	t _{AC}	1.0x – 20	((30		20		ns
	$\overline{RD} / \overline{WR}$ rise $\rightarrow A0$ to 23 Hold	tcA	0.5x – 20)5		0		ns
	A0 to 23 Valid \rightarrow D0 to 15 input	t _{AD}		3.5x - 35	\bigcirc	140	\bigcirc	105	ns
8		t _{RD}		2.5x-40	2	85		60	ns
9	RD Low width	t _{RR}	2.5x – 40		85		60	\sim	ns
10	\overline{RD} rise \rightarrow D0 to 15 Hold	t _{HR}	0 /		0	1	0	>	ns
	WR Low width	tww	2.5x – 40	$\sqrt{5}$	85) 60	(ns
	D0 to 15 Valid $\rightarrow \overline{WR}$ rise	t _{DW}	2.0x - 40		60	\sim	Z 40))	ns
	$\overline{\text{WR}}$ rise \rightarrow D0 to 15 Hold	t _{WD}	0.5x + 10		15	//	740/		ns
	A0 to 23 Valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{pmatrix} 1 \text{ WAIT} \\ + n \text{ mode} \end{pmatrix}$	t _{AW}	6	3.5x – 90	6	85	\sim	50	ns
	$\overline{\text{RD}} / \overline{\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ Hold } \begin{pmatrix} 1 & \text{WAIT} \\ + n & \text{mode} \end{pmatrix}$	tcw	2.5x+0	>	125	$\langle \rangle$	100		ns
	A0 to 23 Valid \rightarrow PORT input	tAPH		2.5x – 90		235		10	ns
	A0 to 23 Valid \rightarrow PORT Hold	t _{APH2}	2.5x + 50	(175		150		ns
	\overline{WR} rise \rightarrow PORT Valid	tcp	\sim	200	\mathbb{N}	200		200	ns
		40	\diamond	$\langle \rangle$	\sim				
		\sim		$\langle \rangle$	γ				
	((()				
					(
			~	\sim					
		/	$\langle c \rangle$	Δ					
				\sim					
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\geq$					
			$(\Omega \wedge )$	~					
		$\sim$	$(\vee / ))$						
	$\sim$								
		$\sim$	7						
		~							
$\Box$									
	$\sim$								
		1		i	1		1	1	1

 $Vcc = 5 V \pm 10\%$ , TA = -20 to 70°C

AC Measuring Conditions

- Output Level : High 2.2 V / Low 0.8 V , CL = 50 pF (However, D0 to D15, A0 to A23, ALE, RD, WR, HWR, CLK, CS0 to CS3, CL = 100 pF)
  Input Level : High 2.4 V / Low 0.45 V (D0 to D15)

High 0.8 Vcc / Low 0.2 Vcc (exsept for D0 to D15)

# TOSHIBA

### (1) Read Cycle



### TOSHIBA

### (2) Write Cycle



#### 4.4 DRAM Controller AC Electrical Characteristics

# Vcc = 5 V ± 10%, TA = - 20 to 70°C (8 MHz to 25 MHz)

			Vari	able	20 1	ИНZ	25 MHz		
No.	Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	RAS cycle time	t _{RC}	4X		200	$\langle \bigcirc$	160		ns
2	RAS access time	t _{RAC}		3X-40	$\left( \right)$	110	ſ	80	ns
3	CAS access time	t _{CAC}		1.5X-35		40		25	ns
4	column address access time	t _{AA}		2.5X-55	7	/70		45	ns
5	Input data hold time	t _{OFF}	0	((	9		0		ns
	RAS precharge time	t _{RP}	1.5X-10		65		50		ns
7	RAS low pulse width	t _{RAS}	2.5X-30		95		70		ns
8	RAS hold time	t _{RSH}	1X-15	$ \downarrow ( ) $	35		25		ns
9	CAS hold time	t _{сsн}	3X-35		<u> </u>	~	85	>	ns
	CAS low pulse width	t _{CAS}	1.5X-15	$\overline{\gamma}$	65	14	45	>	ns
	RAS – CAS delay time	t _{RCD}	1.5X-40	1,5X	35	75	) 20	60	ns
12	RAS column address delay time	t _{RAD}	0.5X-5	0.5X + 20	20	45	/15	40	ns
13	CAS – RAS precharge time	t _{CRP}	1X-35		15		705/		ns
14	CAS precharge time	t _{CPD}	2.5X-35	$\sim$	90	$\langle \rangle$	65		ns
	Low address setup time	t _{ASR} <	0.5X-15		10	()	5		ns
	Low address hold time	tRAH	0.5X-5		20		15		ns
	Column address setup time	tASC	1X-25	(	<u>25</u>		15		ns
18	Column address hold time	tCAH.	2X-35		65		45		ns
19	Column address RAS read time	TRAL	2X-30	$\langle \rangle$	70		50		ns
20	Write command CAS read time	tcwL	2.5X-35	$\langle \rangle$	90		65		ns
21	Data output setup time	t _{DS}	0.5X-15		/ 10		5		ns
22	Data output hold time	t _{DH}	2X-35		65		45		ns
	Write command setup time	twcs	1X-30	$\sim$	20		10		ns
	CAS hold time	t _{CHR*1}	2X-50		50		30		ns
25	RAS precharge CAS active time	t _{RPC*}	1.5X-30		45		30		ns
	CAS setup time	t _{CSR*}	0.5X-10	$\sum$	15		10		ns
	RAS precharge time	t _{RPS*2}	4X-20		180		140		ns
	CAS hold time	t _{CHS*2}	770 ~		0		0		ns
	refresh setup time	t _{CEL*}	1X-5		45		35		ns
	refresh hold time	t _{CFH} *	1X-10		40		30		ns

*1 CAS before RAS interval refresh mode

*2 CAS before RAS self-refresh mode

* Both refresh/modes

AC Measuring Conditions

- Output Level : High 2.2 V /Low 0.8 V , CL = 50 pF (However CL = 100pF for D0 to D15, A0 to A23, RD, WR, HWR, R/W, RAS)
   Input Level : High 2.4 V /Low 0.45 V (D0 to D15)

High 0.8 Vcc / Low 0.2 Vcc (Except for D0 to D15)

#### (1) Read/Write Access Cycle



### TOSHIBA



### 4.5 A/D Conversion Characteristics

			Vcc = 5\	/ ± 10%, TA = -	20 to 70°C (8 to	25 MHz)
Par	rameter	Symbol	Min	Тур.	Max	Unit
Analog reference vo	oltage	V _{REF} (V _{REFH} )	Vcc - 1.5		Vcc	
Analog reference voltage		A _{GND} (V _{REFL} )	Vss		Vss	v
Analog input voltage range		V _{AIN}	Vss		Vcc	
Anlog current for ar	halog reference voltage	IREF		0.5	1.5	mA
4≦ fc≦ 16 MHz	slow mode		$\bigcirc$	± 1.5	± 4.0	
	fast mode	Error (Quantize		± 3.0	± 6.0	LSB
16 <fc≦25 mhz<="" td=""><td>slow mode</td><td>LSB not</td><td>7</td><td>± 1.5</td><td>± 4.0</td><td></td></fc≦25>	slow mode	LSB not	7	± 1.5	± 4.0	
	fast mode	included)		± 4.0	± 8.0	

### 4.6 Serial Channel Timing

(1)	SCLK Input Mode (I/O Interface Mode)
-----	--------------------------------------

1) SCLK Input Mode (I/O Interface Mode) Vcc = 5 V			/ ± 10%	± 10%, TA = – 20 to 70°C (8 to 25 MHz)					
Parameter	Sumphal	Varia	Variable		MHz	25	MHz	11.24	
rarameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
SCLK cycle	t _{SCY}	16X		0.8		0.64	)7	$\mu$ s	
Output Data $\rightarrow$ Rising edge of SCLK	t _{OSS}	t _{SCY} /2 – 5X – 50		100	$\left( \begin{array}{c} \end{array} \right)$	70		ns	
SCLK rising edge $\rightarrow$ Output Data hold	t _{OHS}	5X – 100	4	150	(//	100		ns	
SCLK rising edge $\rightarrow$ Input Data hold	t _{HSR}	0		6	$\mathcal{Y}$	0		ns	
SCLK rising edge $\rightarrow$ effective data input	t _{SRD}		t _{SCY} – 5X – 100		450		340	ns	
(2) SCLK Output Mode (I/O Interface Mode) Vcc = 5 V ± 10%, TA = -20 to 70°C (8 to 25 MHz)									

			vcc_s	VCC = 3 V = 10/0, TA = -20 to 70 C (0 to 23 Wi12)					
Devemeter	Sumphal	Varia	ble	20	ИНz	25 MHz			
Parameter	Symbol	Min	Max	Min	Max	Min Max	Unit		
SCLK cycle (programmable)	t _{SCY}	16X	8192X	0.8	409.6	0.64 327.6	μs		
Output Data $\rightarrow$ SCLK rising edge	t _{OSS}	t _{SCY} – 2X – 150		550	$\Diamond$	410	ns		
SCLK rising edge $\rightarrow$ Output Data hold	t _{OHS}	2X – 80	$\sim$	20	4	P YC	ns		
SCLK rising edge→Input Data hold	t _{HSR}	0		0	6		ns		
SCLK rising edge→ effective data input	t _{SRD}	20	t _{SCY} – 2X – 150		550	) 410	ns		
(2) CCLI/O La nut Marila /LLA DT M	l - \	$\sim$							

SCLK0 Input Mode (UART Mode) (3)

Vcc =  $5 V \pm 10\%$ , TA =  $-20 \text{ to } 70^{\circ}\text{C}$  (8 to 25 MHz)

Parameter	6. mahal	Varia	ble	20 MHz	) 25	MHz	Unit
	Symbol	Min	Max	Min Ma	x Min	Max	Unit
SCLK cycle	t _{SCY}	4X + 20		220	180		ns
SCLK Low level Pulse width	t _{SCYL}	2X + 5		105	85		ns
SCLK High level Pulse width	t _{SCYH}	2X + 5		105	85		ns
SCLK High level Pulse width	t _{SCYH}	2X + 5	_	105	85		

#### Timer / Counter Input Clock (TI0, TI4, TI5, TI6, TI7) 4.7

 $\wedge$ 

 $Vcc = 5 V \pm 10\%$ , TA = - 20 to 70°C (8 to 25 MHz)

Parameter	Symbol	Variable	201	ИНz	25 ľ	ИНz	Unit
	Symbol	Min Max	Min	Max	Min	Max	Unit
Clock Cycle	t _{VCK}	8X + 100	500		420		ns
Low level clock Pulse width	t _{VCKL}	4X + 40	240		200		ns
High level clock Pulse width	t _{VCKH}	4X + 40	240		200		ns

## 4.8 Interrupt Operation

 $Vcc = 5 V \pm 10\%$ , TA = - 20 to 70°C (8 to 25 MHz)

(Parameter	C. mahai	Varia	ble	20 1	ИНz	25 M	ИНz	Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
NMI, INTO Low level Pulse width	<b>t</b> INTAL	4X		200		160		ns	
NMI, INTO High level Pulse width	<b>LINTAH</b>	4X		200		160		ns	
INT4 to INT7 Low level Pulse width	t _{INTBL}	8X + 100		500		420		ns	
INT4 to INT7 High level Pulse width	t _{INTBH}	8X + 100		500		420		ns	





CLK	(Note)		3	X		$\langle C \rangle$	X	-	
BUSRQ		t _{CBAL}	- <del>\</del> \			tbrc tce	зан≯		
BUSAK					$\bigcirc$	>	(	Ł	← t _{BAA}
D0 to D15				076	~ 	((	3		
A0 to A23			<u>+</u> <u>-</u>					<i>?</i> ) <b>\</b>	
$\overline{RD},\overline{WR}$		<u> }</u>	<del>35</del> -	<u>&gt;</u>	$\overline{7}$	<u>-2)</u> N	)	7	
CSO to CS3, R/W, RAS, CAS		$\langle \rangle$						4	 
	Parameter	Symbol	<u>(</u>	/ariable	20 M	ЛНz	25 M	ЛНz	Unit
		Symbol	Min	Max	Min	Max	Min	Max	onne
BUSQR set-up	o time for CLK	t _{BRC}	120		120		120		ns
CLK→BUSAK	falling edge	t _{CBAL}	2	2.0x + 120		220		200	ns
CLK→BUSAK	rising edge	tсван	Ŋ	0.5x + 40		65		60	ns
Floating time	to BUSAK fall	t _{ABA}	0	80	0	80	0	80	ns
<b>Floating time</b>	to BUSAK rise	t _{BAA}	0	80	0	80	0	80	ns

### 4.10 Timing Chart for Bus Request (BUSRQ) / Bus Acknowledge (BUSAK)

Note : The bus will be released after the WAIT request is inactive, when the BUSRQ is set to "0" during "wait"



#### 4.11 Typical Characteristics

 $V_{CC}$  = 5V, Ta = 25°C, unless otherwise noted.



### 5. Table of Special Function Registers (SFRs)

(SFR ; Special Function Register)

The special function registers (SFRs) include the I/O ports and peripheral control registers allocated to the 128-byte addresses from 000000H to 00007FH.

- (1) I/O port
- (2) I/O port control
- (3) Timer control
- (4) Pattern Generator control
- (5) Watch Dog Timer control
- (6) Serial Channel control
- (7) A/D converter control
- (8) Interrupt control
- (9) Chip Select / Wait control
- (10) DRAM Control

#### Configuration of the table

Symbol	Name	Address	7 6		O	
		6			→bit Symbol	
					→Read / Write	
		$\mathcal{C}$			→Initial value	e after rese
		$+((\cdot))$	↓	_X <u></u>	→ Remarks	
	/			$\mathbb{C}$		
		(/ 5)		$\rightarrow$		
			< ( <i>7</i> /3			
				/		
~	$\sim$					
$\sim$	$\langle \rangle$		$\searrow$			
		.(7				
		41				
~ ((						
	))					
		$\square$				

 $\wedge$ 

Address	Name	Address	Name	Address	Name	Address	Name
000000H		20H	TRUN	40H	TREG6L	60H	ADREGOL
1H	P1	21H		41H	TREG6H	61H	ADREGOH
2H		22H	TREG0	42H	TREG7L	7/62H	ADREG1L
3H		23H	TREG1	43H	TREG7H	63H	ADREG1H
4H	P1CR	24H	T01MOD	44H	CAP3L	64H	ADREG2L
5H		25H	TFFCR	45H	САРЗН	65H	ADREG2H
6H	P2	26H	TREG2	46H	CAP4L	)) 66н	ADREG3L
7H		27H	TREG3	47H	CAP4H	67H	ADREG3H
8H		28H	T23MOD	48H	T5MOD	68H	BOCS
9H	P2FC	29H	TRDC	49H	T5FFCR	69H	B1CS
AH		2AH		4AH	$ \rightarrow $	6AH	B2CS
BH		2BH		4BH	$// \leq$	6B(H)	B3CS
СН		2CH	PACR	4CH	PGOREG	6CH	BEXCS
DH	P5	2DH	PAFC	4DH	PG1REG	6DH	ADMOD
EH		2EH	PBCR	(4EH	PG01CR	6EH	WDMOD
FH		2FH	PBFC	4FH		6EH	WDCR
10H	P5CR	30H	TREG4L	50H	SCOBUF		INTE0AD
11H	P5FC	31H	TREG4H	51H	SCOCR	∕_ <b>`71</b> H	INTE45
12H	P6	32H	TREG5L	52H	SCOMOD	) 72H	INTE67
13H	P7	33H	TREG5H	53H	BROCR	/ 73н	INTET10
14H		34H	CAP1L	🗸 54H	SC1BUF	74H	INTET32
15H	P6FC	35H	CAP1H	55H	SCICR	75H	INTET54
16H	P7CR	36H	CAP2L	56H	SC1MOD	76H	INTET76
17H	P7FC	37H	CAP2H	57H	BR1CR	77H	INTES0
18H	P8	38H	T4MOD	58H	ODE	78H	INTES1
19H	P9	39H	T4FFCR	59H		79H	INTETC01
1AH	P8CR	ЗАН	T45CR	5AH	DREFCR	7AH	INTETC23
	P8FC	ЗВН		5BH		7BH	IIMC
1CH	$\frown$	$( \vee / )$	MSAR0		MSAR2	7CH	DMA0V
1DH		́́3DH	MAMRO	5DH	MAMR2	7DH	DMA1V
1EH	PA // )]		MSAR1	5ен	MSAR3		DMA2V
1FH	РВ	3FH	MAMR1	5FH	MAMR3	7FH	DMA3V

Table5 I/O register address map

### TOSHIBA

#### (1) I/O Port

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P17	P16	P15	P14	P13	P12	P11	P10
P1	PORT1	01H			•	R/\	N			
						Input r	node		) [	
			0	0	0	0	0		0	0
			P27	P26	P25	P24	_P23 (	P22	P21	P20
P2	PORT2	06H				R/\	N // N	$\mathcal{C}$		
						Output	mode	$\smile$		
			1	1	1	1	(1)	1	1	1
					P55	P54	P53	₹/ P52		RDE
P5	PORT5	0DH				(	*	R/W		
						Input mode	(Pulled-up)		$\langle \rangle$	>
					1	1	1	1		1
			/		P65	P64	P63	P62	P61	P60
P6	PORT6	12H					)) R	$\mathcal{M}$		
							Outpu	t mode	$(\mathcal{U})$	
					1		1	0	74/	1
			P77	P76	P75	P74	P73	P72	<b>P71</b>	P70
P7	PORT7	13H			2(	* R	/W	$(\bigcirc)$		
				•		Input mode	(Pulled-up)			
			1	1		> 1	1(0		1	1
					P85	P84	P83 🗸	<u> </u>	P81	P80
P8	PORT8	18H						R/W		
					$\sim$			e (Pulled-up)	,	
							1)	1	1	1
							P93	P92	P91	P90
P9	PORT9	19H			2)				R	
									mode	
							PA3	PA2	PA1	PA0
PA	PORTA	1EH				$\langle \rangle$			R/W	
			$-(\alpha)$						<u>eุ (Pulled-up)</u>	
			$ \langle V \rangle $	))		$\searrow$	1	1	1	1
			PBZ	PB6	PB5	PB4	PB3	PB2	PB1	PB0
РВ	PORTB	1/F/A			$\sim \sqrt{2}$	<u>) * R</u>				
				,		Input mode			,	
			< 1	1		1	1	1	1	1

Note : Clearing "RDE" to "0" outputs the RD strobe form RD pin (for PSRAM), even when the internal address is accessed.

If "RDE" remains "1", the  $\overline{RD}$  strobe is output only when the external address is accessed.

Read/Write R/W

R

W

; Either read or write possible

- ; Only read is possible
- ; Only write is possible
- Prohibit RMW; Prohibit Read Modify Write (Prohibit RES / SET / TSET / CHG / STCF / EX / ADD / ADC / SUB / SBC / INC / DEC / RLC / RRC / RL / RR / SLA / SRA / SLL / SRL / RLD / RRD / AND / OR / XOR Instruction)
  - * R/W; RMW instructions are prohibited for controlling ON/OFF of the pull-up resistor.

### (2) I/O Port Control (1/2)

)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	PORT1	04H				1	N			
	Control	(Prohibit	0	0	0	0	0	0	) ) 0	0
		RMW)				0 : IN	1 : OUT			
			P27F	P26F	P25F	P24F	. P23F (	( P22F	P21F	P20F
P2FC	PORT2	09H				١	v // `	$\langle \mathcal{O} \rangle$		
	Function	(Prohibit	1	1	1	1			1	1
		RMW)		_	0	: PORT	1 : A23 to A1	6		
					P55C	P54C	P53C	ノ)P52C		
P5CR	PORT5	10H					Ŵ	/		
	Control	(Prohibit			0	0 (		0	$\lambda( )$	<u> </u>
		RMW)				0 : IN	<u>1:0UT</u>			¥
					P55F	P54F	P53F	P52F	5	
P5FC	PORT5	11H					( (w	(	$)) \frown$	
	Function				0		0		10/11	
		(Prohibit				0 : PORT	0 : PORT	0 : PORT	$\mathcal{N}$	
		RMW)	_		1 : R/W		1 : BUSRQ	1 HWR		
					P65F	P64F	P63F	( P62F	P61F	P60F
P6FC	PORT6	15H				<u> </u>		w /		•
	Function	(Prohibit			0	0	0		0	0
		RMW)			20	0 : PC		CAS, RAS, R		<u> </u>
			P77C	P76C	P756	P74C	P73C	<u>.</u> Р72С	P71C	P70C
P7CR	PORT7	16H					Ŵ			•
	Control	(Prohibit	0	. 9	0	0	0)	0	0	0
		RMW)		(		<u>0 : IN</u>	1:OUT			-
			P77F	P76F	<u></u>	P74F	<u> </u>	P72F	P71F	P70F
P7FC	PORT7	17H		$\overline{A}$			Ņ	•		•
	Function	(Prohibit	0	: 0	0	<u> </u>	0	: 0	0	: 0
		RMW)	(	PORT	<u>1 : PG1-OU</u>			) : PORT	1 : PG0-OL	
			$\neg \uparrow \neg$		P85C	P84C	P83C	P82C	P81C	P80C
P8CR	PORT8	1AH	$\sim 10/$	<u>))</u>		$\rightarrow$		Ŵ.		
	Control	(Prohibit			0	$\sim 10^{10}$	0	. •	0	0
		RMW)					0:IN	<u>1:0UT</u>		•
					P85F		P83F	P82F		P80F
P8FC	PORT8	1BH			W		W	W		W
	Function		$\rightarrow$		0		0	0		0
	~	(Prohibit	~		0 : PORT		0 : PORT	0 : PORT		0 : PORT
		(ŔMW)		<u>:</u>	1 : SCLK1		1 : TxD1	1 : SCLK0		1 : TxD0

### I/O Port Control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
							PA3C	PA2C	PA1C	PA0C
PACR	PORTA	2CH							V	
	Control	(Prohibit					0	0	) > 0	0
		RMW)						0:4N	1 : OUT	
			/				PA3F (	PA2F		/
PAFC	PORTA	2DH					$\sim$	$\langle \rangle$		
	Function						0	0		
		(Prohibit					0 : PORT	0 : PORT		
		RMW)					1 : TO3	1): TO1		
			PB7C	PB6C	PB5C	PB4C	РВЗС	PB2C	PB1C	PB0C
PBCR	PORTB	2EH				$\sim$	v N			
	Control	(Prohibit	0	0	0	0	0	0	0	0
		RMW)				0:IN			$\langle \rangle \rangle$	
			/	PB6F		$\neg \downarrow \downarrow \downarrow$	PB3F			/
PBFC	PORTB	2FH		W			ł∕w	i w 🖄	$(\mathcal{J}\mathcal{N})$	
	Function			0	(	$\langle \rangle$	0	0	40/	
		(Prohibit		0 : PORT	G	$\langle \ \rangle$	0 : PORT	0 : PORT	$\sum$	
		RMW)		1 : TO6	A(		1 : TO5	1:704		

95C061B-190

### (3) Timer Control (1/3)

Symbol	Name	Address	7	6	5	4	3	$\pm$	: 1	0
Symbol	Nume	Address	PRRUN	Ś	T5RUN	T4RUN	T3RUN	T2RUN	· ·	TORUN
			R/W				•	R/W		·····
	Timer		0		0	0	0	. 0	0 10	0
TRUN	Control	20H				er & Timer F			9 °	· •
	Control				Prescal	0 : Stop &				
						1 : Run (Co		$(\vee / ))$		
		22H						$\leftarrow$		
TREG0	8 bit Timer	(Prohibit					- w (()	$\overline{}$		
INEGO	Register 0	RMW)					ifined			
		23H				Unu		9	$\frown$	
TREG1	8 bit Timer	(Prohibit					$\overline{\mathbf{k}}$	,		
INEGI	Register 1	RMW)					ifined		~~~()	7
			T01M1	T01M0	PWM01		T1CLK1	T1CLK0	TOCLK1	TOCLKO
	8 bit Timer			1011010			/W			TUCERU
	0,1		0	0	0		· 0		$\langle \cdot \rangle_{0}$	0
T01	Source	24H	· · ·	oit Timer			-	TOOTRG		<u>: 0</u> 0 INPUT
MOD	CLK &	2411		bit Timer	00:-	-1 PWM	00:	$\sim$	00:11 01:¢1	
	MODE	(Prohibit	10:8		10 27	- 1 Cycle		ыт <b>16</b>	10:¢	
	WIGBE	RMW)		oit PWM	11.28			6T256	) 11:¢	
		(((((((((((((((((((((((((((((((((((((((	TFF3C1	TFF3C0	TFF3IE	TFF3IS	TEE1C1	TFF1C0	TFF1IE	TFF1IS
			W		R			W)		
	8 bit Timer					0		<u> </u>	0	0
TFFCR	Flip-Flop	25H		ert TFF3		1: Inversion		nvert TFF1	1 : TFF1	1: Inversion
	Control		00 : 110		Invert	of Timer	· • • • • •	Set TFF1	Invert	of Timer
	Control	(Prohibit	10 : Cle		Enable	3		Clear TFF1	Enable	1
		RMW)	11 : Do	n't care		5	11/:	Don't care	Enable	
	8 bit	26H			<u> </u>					
TREG2	Timer	(Prohibit	(	$( \land )$			W			
	Register 2	RMW)		$\bigtriangledown$		$\sim$	ifined			
	8 bit	27H			~		2			
TREG3	Timer	(Prohibit_				$\leq 1/2$	N			
	Register 3	RMW)	$\sum f$		6		ifined			
			T23M1	T23M0/	E PWM21	PWM20	T3CLK1	T3CLK0	T2CLK1	T2CLK0
						. / /	/W			•
	8 bit Timer		0	0	0	0	0	0	0	0
T23	2,3		00 · 8	oit Timer	00		00 ·	TO2TRG	00: -	
MOD	Source	28H		oit Timer		⁶ – 1 PWM		φT1	00: 01:ø1	
		2	10:81			⁷ – 1 Cycle		_φ T16	10 : ø⊺	
	MODE	(Prohibit	11:81	oit PWM	11: 2	⁸ – 1	11 :	φT <b>256</b>	11:ø	16
		RMW		$\sim$						
~		$\mathcal{A}$	$\sim$	4	$\sim$			/	TR2DE	TRODE
$\leq$	Timer Reg.	$\mathcal{I}$		$\sim$					R	Ŵ
	Double		$\land$ ((						0	0
TRDC	Buffer	29H	$( \land \land$	$\mathcal{I}$	:				0: Double	Buffer
	Control		$ \Sigma \langle \rangle$						Disable	
	Reg.								1: Double	e Buffer
									Enable	

#### Timer Control (2/3)

Symbol	Name	Address	7 6		5	4	3	÷ 2	1	0
Jymbol	16 bit	30H	/ . 0	•		. т		·		
TREG4L		(Prohibit					W			
1112042	Register4L	RMW)					efined		) 🗸 🚽	
	16 bit	31H				Unu	enneu	$\sim$	)	
TREG4H		(Prohibit					-	$(\overline{\alpha})$		
INEG4H	Register4H	•					W	$(\vee / ))$		
	16 bit					Una	efined	$\sim$		
TRECE		32H					$\overline{-}$			
TREG5L	_	(Prohibit					<u>w ((</u>	-) Y		
	Register5L	RMW)				Und	efined	9		
	16 bit	33H					f		-	
TREG5H		(Prohibit					$\sim$		$\langle   h \rangle$	>
	Register5H	RMW)				Und	efined	(		*
	Capture					-(Q)			$\rightarrow \rightarrow$	
CAP1L	Register1L	34H					<u>R))</u>	0 10		
	Registeritz					Und	efined		(//)	
	Capture				(	$\frown$	-		70	
CAP1H	Register1H	35H			6		R	$\mathcal{C}$	$\mathbf{i}$	
	Register III				$\mathcal{A}($	Und	efined	$(\bigcirc)$		
	Conturo				$\sim$		-			
CAP2L	Capture Register2L	36H		(		$\searrow$	R ((	77^		
	Registerz			7	$\left( \right)$	Und	efined 🗸 🗸	/ ))		
	<u> </u>			10			$\sim$ $\sim$ $\sim$			
CAP2H	Capture	37H		$\langle \langle$			R			
	Register2H				$\sum$	Und	efined			
			CAP2T5 EQ5T5	) C	AP1IN		CAP12M0	CLE	T4CLK1	T4CLK0
	16 bit		R/W	97	W			R/W		
	Timer 4		0 0		1	_∕0	0	0	0	0
T4MOD	Source	38H	TFF5 INV TRG			Capture	Timming		Source	Clock
	CLK &		0 : TRG Disable	0 :	Soft-	00 : Dis			00 : TI4	CIOCK
	MODE		1 : TRG Enable	•	Capture		^ TI5 ↑	1:UC4	01:φT1	
		(Prohibit_			Don't	10: 114		Clear	10: øT4	
		RMW)	$\land$		care	11:TFF	1 ↑ TFF1 J	Enable	11: φT16	
			TFF5C1 TFF5C0	- c	AP2T4	CAP1T4	EQ5T4	EQ4T4	TFF4C1	TFF4C0
			W	Ż		· / /	<u>: 20014</u> VW	:	W V	
	16 bit				0	0	0	0		
	Timer 4				~ >				:	
T4FFCR	Flip-Flop	39H	00 : Invert TFF5				ert Trigger		00 : Inver	
	Control	$\square$	01 : Set TFF5 10 : Clear TFF5				ger Disable ger Enable		01 : Set TI 10 : Clear	
	Control	(Prohibit	11 : Don't care		$\overline{}$	r. mgg	jer Lilable		11 : Don't	
		RMW)								cure
	6	$\rightarrow$	dl-			<u> </u>	: 0047	: DCOT	DOCEN	DDAEN
$\sim$				-			PG1T	PG0T	DB6EN	DB4EN
	$\langle / \rangle \rangle$	-	R/W						W	
	T4, T5		0 ( [ ] )				0	0	0	0
T45CR	Control	3AH	Fix at				PG1 shift	PG0 shift	1: Dou	
			"0"				trigger	trigger	Buff	
							0 : timer2, 3	0 : timer0, 1	Ena	bie
	$\sim$		N N				1 : timer5	1 : timer4		

### Timer Control (3/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	16bit	40H		-	-		-			
TREG6L	Timer	(Prohibit					W			
	Register6L	RMW)				Und	lifined		) //	
	16 bit	41H					-	0	/	
TREG6H	Timer	(Prohibit					W ^	$\left( \frac{1}{2} \right)$		
	Register6H	RMW)				Unc	lifined			
	16 bit	42H					- 2	$\sim$		
TREG7L	Timer	(Prohibit					w ((	12		
	Register7L	RMW)				Unc	lifined	$\mathcal{I}$		
	16 bit	43H					f			
TREG7H	Timer	(Prohibit					$\sim W$		$\langle \rangle$	>
	Register7H	RMW)				Und	lifined	(		/
	Capture					$( \cap$	2		5 >	
CAP3L	Register3L	44H					R))	$ \land ( ($		
	Registerst					Und	lifined		(U/)	
	Capture					$( \land )$	_		40	
САРЗН	Register3H	45H				$\frac{1}{\sqrt{2}}$	R	R	$\geq$	
	Registersi				2(	Unc	lifined			
	Capture					<u> </u>	-			
CAP4L	Register4L	46H			$(\bigcirc$	$\searrow$	<u>R</u>	7/		
	negister+L				20	Vnc Unc	lifined 🗸 🗸	<u>())</u>		
	Capture				$\frac{1}{2}$			$\subseteq$		
CAP4H	Register4H	47H			$\overline{// }$		R			
							lifined			
				. ((	CAP3IN	CAP34M1	CAP34M0		T5CLK1	T5CLK0
	16 bit				<u> </u>			R/W	· - ·	
	Timer 5				1	0	Ö	0	0	0
T5MOD	Source	48H		( ( ) )			Timming		Source	Clock
	CLK &			$\sim$	0 : Soft-	00 : Dis 01 : T16		1 :UC5	00 : TI6	
	MODE	(Prohibit	$\left( \Omega \right)$		Capture 1 : Don't	10: 16	י∱ 17 ↑ רדוה ו	Clear	01 : φT1 10 : φT4	
		RMW)	$ \setminus \vee $	))	care	11:TFF	1↑ TFF1 ↓	Enable	11:φT16	
		-/			<u> </u>					
				<u> </u>	CAP4T6	//	EQ7T6	EQ6T6	TFF6C1	TFF6C0
	16 bit		$\langle - \rangle$				<u>x/w</u>		W	
	Timer 5	49H	$ \rightarrow $		0	0	0	0		
T5FFCR	Flip-Flop		$\sim$			TFF6 Inv	/ert Trigger		00 : Inver	
	Control	(Prohibit					ger Disable ger Enable		01 : Set T 10 : Cleai	
	$\rightarrow$	RMW)				r: mg	gerenable		10 : Clear	
	4	( ) )		: 0	:				:	
	((	$\mathcal{N}_{\mathcal{I}}$		41						
$\sim$	/ / /	))		/ /						

#### (4) Pattern Generator

TOSHIBA

Symbol	Name	Address	7	6	5	4	3	2	1	0
	PG0	4CH	PG03	PG02	PG01	PG00	SA03	SA02	SA01	SA00
PGOREG	Register	(Prohibit		v	V	-		R/	w	
	Register	RMW)	0	0	0	0		Unde	fined	
	PG1	4DH	PG13	PG12	PG11	PG10	SA13	SA12	SA11	<b>S</b> A10
PG1REG	Register	(Prohibit		v	v		$\wedge$ (	(// ^ R/	w	
	Register	RMW)	0	0	0	0		Unde	fined	
			PAT1	CCW1	PG1M	PG1TE	PATO	ccwo	PG0M	PG0TE
						R/\	w (( )	$\langle \rangle$		
	PG0, 1		0	0	0	0	0	/ o	0	0
PG01CR	Contorol	4EH	0: 8-bit	0: Normal	0: 4-bit	PG1 trigger	0:8-bit	0: Normal	0: 4-bit	PG0
	Contorol		write	Rotation	Step	input 🔿	write	Rotation	Step	trigger
			1: 4-bit	1: Reverse	1: <b>8</b> -bit	enable	1:4-bit	1: Reverse	1: 8-bit	input
			write	Rotation	Step	1: Enable	write	Rotation	Step	enable
							))	$\diamond$ ((		1: Enable

## (5) Watch Dog Timer

Symbol	Name	Address	7	6	5	4	3 ( / 2	1	0
			WDTE	WDTP1	WDTP0	WARM	HALTM1 HALTM0	RESCR	DRVE
				$\langle$	$\langle \ \rangle$	RA	N		
	Watch		1	0	0		0 1 0	0	0
WD-	Dog	6EH		00: 2 ¹⁶	/fc	Warming	Standby Mode	1: Connect	1: Drive
MOD	Timer		1: WDT	01; 2 ¹⁸	/fc	up Time	00: RUN Mode	internally	the pin
	Mode		Enable	10: 220	/fc	0: 2 ¹⁴ /fc	01: STOP Mode	WDT out	in STOP
				11: 222	/fc	1: 2 ¹⁶ /fc	10: IDLE Mode	pin to	mode
							11: Don't care	Reset Pin	
	Watch					$\langle C_{2} \rangle$			
	Dog Timer	6FH	$(\mathcal{O})$	$\langle \wedge \rangle$	4	N I	1		
WDCR	Control	(Prohibit	$\sim \vee$		6	$\sim$ -			
	Register	RMW			B1H: WDT	Disable Code	4EH: WDT Clear Code		

#### (6) Serial Channel

	1												
Symbol	Name	Address	7	6	5	4	3	2	1	0			
	Serial		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0			
<b>SCOBUF</b>	Channel 0	50H	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0			
	Buffer		R (Receiving) /W (Transmission) Undefined										
			RB8	EVEN	PE	OERR	PERR	FERR	SCLK	юс			
			R	•		•	•			<u>. 100</u> /W			
	Serial		N	<u> </u>	W		red to 0 by re		<u>к</u>	0			
<b>SCOCR</b>	Channel 0	51H	Receiving	· · ·	1:	0	: 0 1: Error		0: SCLK0	1: Input			
JCUCK	Control	5111			Parity	Overrun	Parity	Framing		SCLK0 pin			
	Control			1: Even	Enable	:	rainty			JELKOPIII			
				I. LVell	LIADIE			9					
			TB8	CTSE	RXE	wu	SM1	SM0	Í SC1	sco			
						 R/			41	>			
	Serial		Undefined	0	0	0	0	0	2 0	0			
SCO-	Channel 0	52H			1:	1: (7/	00: I/O Inte	rface mode	00: TO2 Tric	ager			
MOD	Mode				Receive	Wala	01: UART 7	bit	01. Baud ra	te generator			
			data bit 8	Enable		Enable	10: UART 8	bit 🦯	10: Internal	clock ∉1			
							TI: UART 9		$\sim$ $\sim$ $\sim$	I clock (SCLK0)			
			-		BR0CK1	BROCKO		BR0S2	V BR0S1	BR0S0			
		aud Rate Control	R/W			<u> </u>	. R/	//	•				
	Baud Rate		0		0	0	0	. 0	0	: 0			
BROCR	Control		Fix at		00: ¢T0			Set freque	ency divisor				
			"0"		01: φT2		$\sim$	) Ot	o F				
				<	10: φT8 11: φT3	(64/fc) 2 (256/fc)							
			RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO			
	Serial		TB7	TB6	TB5	TB4	твз	TB2	TB1	TBO			
SC1BUF	Channel 1	54H		· ((	• • • •	Receiving) /M	$\leftarrow$		•	<u>.</u>			
	Buffen			N	9	Unde							
	Serial	55H	RB8	EVEN	PE	ÓERR	PERR	FERR	SCLKS	IOC			
			R	R/	W	R (Clea	red to 0 by re	ading)	R	Ŵ			
				, o	0		0	0	0	0			
SC1CR	Channel 1		Receiving	Parity	1: <	>	1: Error		0: SCLK1	1: Input			
	Control	6	data bit 8	0: Odd	Parity	Overrun	Parity	Framing		SCLK1 pin			
				1: Even 🔨	Enable	$\left\{ S \right\}$			1; <u>SC</u> LKĮ				
						$\mathcal{D}$							
			ТВ8	-	RXE	WU	SM1	SM0	SC1	SC0			
				. < =		. R/							
	Serial	~	Undefined		0	0	0	0	0	0			
SC1-	Channel 1	Z56H	Trans-	Fix at		1:		Interface	00: TO2 1				
MOD	Mode	$\sim$	mission	<i>"</i> 0"	Receive	Wake up		RT 7bit	01: Baud				
			data bit 8	$\sim$	Enable	Enable	10: UA 11: UA		gene	rator nal clock ø1			
~				$\leq$			11. UA		11: Don'i				
	> +	$\mathcal{Y}$	- (	$\rightarrow$	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0			
			RW		BRICKI	BRICKO		. <u>BR152</u> W	. 51(151	. 51(150			
	$ \rightarrow $		$\bigcirc$	$\bigcirc$	0	0	0	0	0	0			
BR1CR	Baud Rate	57H	Fix at		00: φT0	(4/fc)		•	•	<u>:</u>			
	Control		"0"		01: φT2	(16/fc)		-	ency divisor				
	$\sim$			<i>y</i>	10: _φ T8	(64/fc)			to F				
					11: φT3			("1" pro	phibited)				
	Seriel								ODE1	ODE0			
	Serial								R	<u>/W</u>			
ODE	Open	58H							0	0			
	Drain								1:P83	1:P80			
	Enable								Open- drain	Open- drain			

#### (7) A/D Converter Control

Symbol	Name	Address	7	6	5	4	3	2	1	0		
*1)	AD Result		ADR01	ADR00				$\sum$				
AD	Reg 0 low	60H		R								
REG0L	Reg 010W		Unde	efined	1	1	1		) / 1	1		
AD	AD Result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02		
REGOH	Reg 0 high	61H					R(	$(// \land$				
	Neg o nign					Und	efined		_	_		
*1)	AD Result		ADR11	ADR10								
AD	Reg 1 low	62H					R ((	$\searrow$				
REG1L REG 110	Reg 110W	ow	Unde	fined	1	1		<u> </u>	1	1		
	AD AD Result REG1H Reg 1 high	I 6⊀H I	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12		
						Und	efined			~		
*1)	AD Result		ADR21	ADR20					$\overline{5}$			
AD	Reg 2 low	64H					R)	(				
REG2L	1.cg 2 10W		Unde	fined	1		少 1		$\left( \mathcal{J} \right)$	1		
AD	AD Result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22		
REG2H	Reg 2 high	65H	R									
						Und	efined					
*1)	AD Result		ADR31	ADR30								
AD	Reg 3 low	66H				$\searrow$	R	7				
REG3L	Neg 5 low		Unde	efined		1	1	( ))1	1	1		
AD	AD Result		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32		
REG3H	Reg 3 high	67H	R									
NE COM	iteg 5 mgri					Und	efined					
			EOCF	ADBF	REPET	SCAN	ADCS	ADS	ADCH1	ADCH0		
	A/D			R	$\mathbb{D}$		R/					
ADMOD	Converter	6DH	0		0	0	0	0	0	0		
	Mode reg		1: End	1: Busy	1: Repeat mode	1: Scan mode	1: Slow mode	1: START	Analog Channe	g Input I Select		

*1) Data to be stored in A/D Result Reg Low are the lower 2 bits of the conversion result. The contents of the lower 6 bits of this register are always read as "1".

#### (8) Interrupt Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	INTerrupt	7011					100	IN	T0	10140
INTE- 0AD	Enable	70H (Prohibit	IADC	IADM2	IADM1	IADM0	10C		I0M1	10M0
UAD	0 & A/D	(Pronibit RMW)	R/W 0	0	0	0	R/W 0	6	W 0	0
		KIVIVV)	0	· · ·	<u> </u>	: 0		· (*	14 14	: 0
	INTerrupt	71H	15C	IN 15M2	15 15M1	I5M0	14C	14M2	14 I4M1	I4M0
INTE45	Enable 4/5	(Prohibit	R/W		W		R/W	141012	<u>: 141011</u> W	: 141010
		RMW)	0	0	0	0	0		0	0
		(((((((((((((((((((((((((((((((((((((((		: <u> </u>	-	. 0			-	. 0
	INTerrupt	72H	17C	17M2	17 17M1	I7M0	16C	:) M6M2	16M1	16M0
INTE67	Enable	(Prohibit	R/W	171012	W	: 171010	R/W		W	
	6/7	RMW)	0	0	0	0	0	0	0	0
				INTT1 (T	_					
	INTerrupt	73H	IT1C	IT1M2	IT1M1	IT1M0	пос		TTOM1	ITOMO
INTET01	Enable	(Prohibit	R/W	1111112	W	<u>: 111010</u>	R/W	1101012	W	
	Timer 1/0	RMW)	0	0	0	: 0	) 0			: 0
				INTT3 (T				· · · · ·	Timer 2)	. 0
	INTerrupt	74H	IT3C	IT3M2		IT3M0	IT2C	. IT2M2		IT2M0
INTET23	Enable	(Prohibit	R/W	1131012	W		R/W		W	1121010
	Timer 3/2	RMW)	0	0	0	: 0	0	$\left( \begin{array}{c} 0 \end{array} \right)$	0	: 0
			0				0	INTTR4	•	: 0
	INTerrupt	75H	IT5C	INTTR5 ( IT5M2	IT5M1	. 1т5м0	IT4C	(1T4M2	IT4M1	IT4M0
INTET45	Enable Treg 5/4	(Prohibit	R/W		W		R/W		<u> </u>	1141010
		RMW)	0	0		0		<b>D</b> ₀	0	0
			0			: 0//	0			: 0
INTET67	INTerrupt	76H	IT7C	INTTR7 (	IT7M1	IT7M0	IT6¢	INTTR6 IT6M2	IT6M1	IT6M0
	Enable	/on (Prohibit	R/W			: 1171010	R/W	: 1101V12		
	Treg 7/6	RMW)	0	_ 0	) w 0	0		0	<u> </u>	:
			0					<u>: v</u> INT		:
	INTerrupt	77H	ітхос	ITX0M2	ITX0M1		IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	Enable	(Prohibit	R/W		W		R/W		<u>: III.X0IVIT</u> W	
	Serial 0	RMW)	0		0 4		0	0		0
		(((((((((((((((((((((((((((((((((((((((						<u>:</u> INT		. 0
	INTerrupt	78H	ITX16	ITX1M2	ITX1M1	/ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	Enable	(Prohibit	R/W		W		R/W		W	
	Serial 1	RMW)	0	0		0	0	0		0
								. <u>v</u> INT		. 0
INTETC	INTerrupt	79H	NC1C	ITC1M2	ITC1M1	ITC1M0	ітсос	ITC0M2	ITC0M1	ІТСОМО
01	Enable	(Prohibit	R/W	II CIIVIZ	W	. Henno	R/W	11 COIVI2	W	. IT CONTO
01	тс 0/1 <	RMW)	0	0	0	: 0	0	: 0		: 0
	<	$\sim$						•	TC2	. •
INTETC	INTerrupt	ZAH	ITC3C		ITC3M1	ІТСЗМ0	ITC2C		•	ITC2M0
23	Enable	(Prohibit	R/W		W		R/W		W	
	TC 2/3	RMW)	0	0	0	0	0	0	0	0
						• •		j		· · ·
		,	$( \land \land$	$\rightarrow$						
	IxxM2	2 IxxIV	11 IxxM	10	Fur	ction (Write	)			
		0	0	Prohit	oit interrupt	request.	-			
			<u> </u>	Set in	terrupt requ	est level to "	1″			
				Set in	terrupt requ	est level to " est level to "	∠ 3″			
	1									
	1	1 0 1 Set interrupt request level to			est level to "	5″				
	1	1	0			est level to "	6″			
	1	1	1	Prohit	oit interrupt	request.				
	→ IxxC		Functior				ion (Write)			
	0	Inc	dicate no inte	errupt reques rupt request.	st.	Clear interr	upt request on't care			

### Interrupt Control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
					/			i iqie	IOLE	NMIREE	
								Ŵ	w	W	
	Interrupt							0	) > 0	0	
	Input							1: INTO	0: INT0	1: Operate	
IIMC	Mode	7BH					$\wedge$ (	( input	edge	even at	
	Contorol							enable	mode	NMI rise	
	Contoror								1: INT0	edge	
		(Prohibit						$\mathbb{N}$	level		
		RMW)						)	mode		
	DMA 0					(		DMA0 Start		-	
DMA0V	request	request ,	7CH				DMA0V8	DMA0V7	DMA0V6	DMA0V5	DMA0V4
		(Prohibit									
		RMW)				077	0	: 0	0	: 0	
	DMA 1						. / /	DMA1 Start			
DMA1V	request	7DH				DMA1V8	DMA1V7	DMA1V6	DMA1V5	DMA1V4	
	Vector	(Prohibit		:				Ŵ			
		RMW)	<u> </u>	<hr/>	<u> </u>	0	: 0		V U	0	
	DMA 2	7EH			- <del>C</del>	DMA2V8	DMA2V7	DMA2 Start DMA2V6		DMA2V4	
DMA2V	request	(Prohibit				DIVIAZVO	DIVIAZVI	W	DIVIAZVS	DIVIAZV4	
	Vector	RMW)				0	0	i no	0	0	
	DMA 3		$\sim$				Micro	DMA3 Start	vector		
		7FH		<	$\langle \bigtriangledown \rangle$	DMA3V8	DMA3V7	DMA3V6	DMA3V5	DMA3V4	
DMA3V		(Prohibit						W			
	Vector	RMW)				0	0/	0	0	0	

### (9) Chip Select/Wait Control (1/2)

Name	Address	7	6	5	4	3	<u>^2</u>	1	0								
					BOE	-	BOBUS	B0C1	B0C0								
Block 0					W	-	W	w	W								
					0		0	0	0								
	68H				0: B0CS	-	$\sim$	🕖 00: 2WA	IT								
					1: master	- /	1:8 BIT	01: 1WA	IT								
register	(Prohibit				bit	$\langle \langle \rangle$	(//))	10: 1WA	IT + n								
	RMW)							11: 0WA	IT								
					B1E		B1BUS	B1W1	B1W0								
Plack 1					w		) 🖓 W	W	W								
					0		<b>D</b> 0	0	0								
	69H				0: B1CS		0: 16 BIT	00: 2WA	IT								
					1: master		1:8 BIT	01: 1WA	<u>ن</u>								
register	(Prohibit				bit		(	10: 1WA	IT + n								
	RMW)				$(\alpha)$	$\sim$	G	11: 0WA	Т								
					B2E	:)) B2M	B2BUS		B2W0								
					Ŵ	2 w	- AV		W								
					$\langle \rangle$	0	0		0								
	6AH			(	0: B2CS	0: 16M	0; 16 BIT	💛 00: 2WA	IT								
				20	1: master	area	1:8 BIT)	01: 1WA	Т								
register	(Prohibit				bit	1: MREG		10: 1WA	IT + n								
	RMW)				$\geq$	setting		÷									
		/			ВЗЕ		B3BUS	B3W1	B3W0								
			7	$( \ )$	w	W	w	w	W								
					0	0	0	0	0								
	6BH				0: B3C5	0: CS3	0: 16 BIT	00: 2WA	IT								
					1: master	· //	:	01: 1WA	т								
register	(Prohibit			2)	bit			:									
	•		$\bigcirc$			•		•									
External CS / WAIT control register	,		( )		~ //	_	BEXBUS		BEXW0								
					$\langle \mathcal{A} \rangle$	_	w		v								
		$(\alpha)$	~	5		_	0	0	0								
	6CH		()		$\sim$	-	0: 16 BIT	00: 2WA	IT								
			/	$(\alpha)$	~~~~~		1: 8 BIT										
	(Prohibit	)	$\sim$				-										
					$\mathcal{D}$			•									
		<b>S23</b>	\$22	521	<b>S</b> 20	S19	S18		S16								
-		$\sim$	$\langle -$			w											
	3CH	1	1	1	1	1	1	1	1								
	Υ		•	$\sim$	A23 to	o A16	•		•								
кед. 0 🗸	$\sim >$		$\wedge$	M			ng										
Memory	$\sim$	V20	V19				V15	V14~9	V8								
Start	))		$\mathcal{I}$						•								
			$\sim$	1	1	÷ 1	1	1	1								
	зон																
Address	зрн	$^{1}(($			0 : Compari	son is valid		0 : Comparison is valid									
Address Mask	зDн		))														
Address Mask Reg. 0	здн	$ \langle \rangle $	))	\$21	1 : Comparis	on is invalid	518	S17	<u>\$16</u>								
Address Mask Reg. 0 Memory	зон	1 523	522	<b>S2</b> 1	1 : Comparis S20	on is invalid 519	518	S17	S16								
Address Mask Reg. 0 Memory Start		523	S22		1 : Comparis S20 R/	on is invalid 519	518 1	•	•								
Address Mask Reg. 0 Memory Start Address	зрн	$ \langle \rangle $	))	521 1	1 : Comparis 520 R/ 1	on is invalid 519 W 1	•	<b>S17</b>	S16								
Address Mask Reg. 0 Memory Start		523	S22	1	1 : Comparis 520 R/ 1 A23 to	on is invalid 519 W 1 o A16	1	•	•								
Address Mask Reg. 0 Memory Start Address Reg. 1		<u>523</u>	<u>522</u>	1 M	1 : Comparis S20 R/ 1 A23 to emory start a	on is invalid S19 W 1 o A16 address settir	1 ng	1	1								
Address Mask Reg. 0 Memory Start Address Reg. 1 Memory		523	S22	1	1 : Comparis S20 R/ 1 A23 to emory start a V18	on is invalid S19 W o A16 address settir V17	1 ng	1	•								
Address Mask Reg. 0 Memory Start Address Reg. 1 Memory Start	ЗЕН	523 1 V21	522 1 V20	1 Mi V19	1 : Comparis S20 R/ A23 to Emory start a V18 R/	on is invalid S19 W o A16 oddress settir V17 W	1 ng V16	1 V15~9	1 								
Address Mask Reg. 0 Memory Start Address Reg. 1 Memory		<u>523</u>	<u>522</u>	1 M	1 : Comparis S20 R/ 1 A23 to emory start a V18	on is invalid S19 W o A16 oddress settir V17 W 1	1 ng V16	1	1								
	Block 0 CS / WAIT control register Block 1 CS / WAIT control register Block 2 CS / WAIT control register Block 3 CS / WAIT control register External CS / WAIT control register External CS / WAIT control register Memory Start Address Reg. 0 Memory	Block 0 CS / WAIT control register Block 1 CS / WAIT control register Block 2 CS / WAIT control register Block 3 CS / WAIT control register Block 3 CS / WAIT control register CS / WAIT control register Block 3 CS / WAIT control register CS / WAIT CS / WAIT control register CS / WAIT control CS / WAIT control CS / WAIT control CS / WAIT control CS / WAIT control CS / WAIT CS / WAIT C	Block 0 CS / WAIT control register Block 1 CS / WAIT control register Block 2 CS / WAIT control register Block 2 CS / WAIT control register Block 3 CS / WAIT control register Block 3 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) Start Address Reg. 0 V20 V20	Block 0 CS / WAIT control register Block 1 CS / WAIT CS / WAIT control register Block 1 CS / WAIT control register Block 2 CS / WAIT control register Block 2 CS / WAIT control register Block 3 CS / WAIT control CS / WAIT control CS / WAIT CS /	Block 0 CS / WAIT control register (Prohibit RMW) Block 1 CS / WAIT control register (Prohibit RMW) Block 2 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) Block 3 CS / WAIT control register (Prohibit RMW) S23 S22 S21 Start Address Reg. 0 Memory V20 V19 V18	Block 0 CS / WAIT control register         B0E W           (Prohibit RMW)         0: B0CS 1: master bit           Block 1 CS / WAIT control register         81E W           Block 1 CS / WAIT control register         0: B1CS W           (Prohibit RMW)         0: B1CS W           Block 2 CS / WAIT control register         0: B2E W           Block 3 CS / WAIT control register         6AH (Prohibit RMW)           Block 3 CS / WAIT control register         6BH (Prohibit RMW)           Block 3 CS / WAIT control register         0: B2CS 1: master bit           Block 3 CS / WAIT control register         0: B3E V           Block 3 CS / WAIT control register         0           CS / WAIT control register         6BH (Prohibit RMW)           6CH (Prohibit RMW)         0           6CH (Prohibit RMW)         523           6CH (Prohibit RMW)         523           6CH (Prohibit RMW)         22           6CH (Prohibit RMW)         23           6CH (Prohibit RMW)         1           6CH (Prohibit RMW)         23           3CH         1           1         1           3CH         1           1         1           3CH         1           3CH         1	Block 0 CS / WAIT control register         B0E         -           (Prohibit RMW)         0         -           Block 1 CS / WAIT control register         (Prohibit RMW)         B1E         -           Block 1 CS / WAIT control register         69H         0         -           (Prohibit RMW)         69H         0         -           Block 2 CS / WAIT control register         69H         0         -           (Prohibit RMW)         B2E         B2M         W           Block 2 CS / WAIT control register         6AH         0         B2E         B2M           Block 3 CS / WAIT control register         6AH         0         B3E         0         0           (Prohibit RMW)         B3E         0         0         0         0         0         0           External CS / WAIT control register         6BH         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Block 0 CS / WAIT control register         BOE         -         BOBUS           (Prohibit register         0         -         0         -         0           Block 1 CS / WAIT control register         (Prohibit RMW)         BIE         -         0:16 BIT 1: master bit         -         0           Block 1 CS / WAIT control register         69H         0         -         0         0         -         0           Block 2 CS / WAIT control register         64H         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Block 0 CS/WAIT register         B0E          B0BUS         B0C1           Block 0 CS/WAIT control register         68H (Prohibit RMW)         0         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td>	Block 0 CS/WAIT register         B0E          B0BUS         B0C1           Block 0 CS/WAIT control register         68H (Prohibit RMW)         0         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0								

Symbol	Name	Address	7		6		5	4		3	<u>~2</u>	1	0				
Maman	Maman		S23		S22		<b>S</b> 21	<b>S2</b> 0		S19	<b>S18</b>	<b>S</b> 17	S16				
	Memory	Γ						F	z/W								
MSAR2	Start Address	5CH	1		1	÷	1	1		1	÷ ({	1 > 1	1				
		Γ						A23	to A1	6		77					
	Reg. 2							Memory start	addre	ess settir	1977		1 V15 1 S16 V15 1				
MAMR2 MAMR2 Mask Reg. 2	Memory		V22		V21		V20	V19	1	V18	V17	V16	V15				
							F	w.	//								
	Address	5DH	1		1		1	1		(1)	1	1	1				
								0 : Compa	rison i	is valid	) 🖓						
	Reg. 2							1 : Compar	ison is	invalid	<u> </u>		V15 1 516 1 V15				
	Memory		S23		S22		S21	<b>S20</b>	(:(	\$19	<b>S18</b>	<b>S17</b>	S16				
	Start							4	W.	$\sim$		12	>				
MSAR3	Address Reg. 3	5EH	1		1		1	1		7	1	$\wedge$	1				
								A23	to A1	6	6	$ \rightarrow $					
	Neg. 5		Memory start address setting														
	Memory		V22		V21		V20	V19	2	V18	<u> </u>	V16	V15				
	Start							L( F	w.		$\sim$						
VIAMR3	Address	5FH	1		1		1 (			1	(C)	<u> </u>	1				
	Mask						$\sim$	0 : Compa			$(\bigcirc)$	)					
	Reg. 3						$\frown$	1 : Compar	ison is	invalid	$\$						
10) D	RAM Co	ntual				2	$\frac{1}{2}$				5						

#### (9) Chip Select / Wait Controller (2/2)

### (10) DRAM Control

Symbol	Name	Address	7	6	) 5	4	3	2	1	0					
			DMI	RŞ2	RS1	RS0	RW2	RW1	RW0	RC					
				RW											
			0		0	0	0	0	0	0					
			Dummy	Refresh	cycle insertio	n interval	Ref	fresh cycle w	ridth	Refresh					
	Refresh		cycle	/ 000:	31 states	7.	000:	2 states		cycle					
DREFCR		ontrol 5AH	0: Prohibit	001;	62 states	$\left( \right)$	001:	3 states		0: Not					
DREFCR			1: Execute	010:	78 states	9	010:	4 states		inserted					
	Reg.			/011:-	97 states		011:	5 states		1: inserted					
			$\searrow$	100:	109 states		100:	6 states							
	$\sim$			101:	124 states		101:	7 states							
	2			110:	154 states		110:	8 states							
				((111:	195 states		111:	9 states							
~		$(\bigcirc)$	SRFC	$\mathcal{A}$	BRM	МАСМ	MUXE	MUXW1	MUXW0	MAC					
$\langle \rangle$	$\nearrow$		W	$\searrow$			R/	W							
	Management		2 1((	) +	0	0	0	0	0	0					
$\langle \langle \langle \rangle \rangle$	Access	emory ccess 5BH	Self	$\mathcal{D}$	DRAM pin	0: Normal	Address	Multiplexed	address length	Memory					
DMEMCR	Control		refresh		Bus	access	multiplex	00:	8 bit	access control					
			0: Execute	_	Release	1: Slow	0: Disable	01:	9 bit	0: Disable					
	Reg.	(Prohibit	1: Release		0: Release	access	1: Enable	10:	10 bit	1: Enable					
		(Prohibit RMW)			1: Not			11:	11 bit						
		KIVIVV)			release										

## 6. Port Section Equivalent Circuit Diagram

• Reading The Circuit Diagram

Basically, the gate symbols written are the same as those used for the standard COMS logic IC [74HCXX] series.

The dedicated signal is described below.

- The input protection resistans ranges form several tens of ohms to several hundreds of ohms.







RESET vçc **100 k**Ω typ. Input ∝∩ Reset 🔫 Schmitt WDTOUT **Reset Enable** ■ X1, X2 Clock Oscillator  $\bigcirc$ P-ch N-ch Oscillation enable > ×1 The oscillation enable signal becomes nonactive "0" by execution of HALT Note : instruction (STOP mode). VREF (V_{REFH}), AGND (V_{REFL}) VREF (V_{REFH}) Ladder Resistor A/D Converter GND AGND (V_{REFL})

7.	Care Points a	and Restrictio	n								
(1)	Special Expression	on		$\sim$							
	① Explanation of a built-in I/O register : Register Symbol <bit symbol=""> ex) TRUN<t0run>… Bit T0RUN of Register TRUN</t0run></bit>										
	② Read-modify	-write Instruction	S	$\sim$ $(75)$							
	1. CPU re 2. CPU m 3. CPU w ex1) SET	ction which CPU e ads data of the me odifies the data. rites the data to th 3, (TRUN) … set 1, (100H) … inc	emory. ne same mo bit3 of TF	RUN							
	<ul> <li>The Read- Exchange EX</li> </ul>	-modify-write Inst (mem), R	tructions i	n the TLCS-900							
	Arithmeti ADD SUB INC	c Operations (mem), R/# (mem), R/# #3, (mem)	ADC SBC DEC	(mem), R/# (mem), R/# #3, (mem)							
	Logical O _l AND XOR	(mem), R/# (mem), R/#	OR	(mem), R/#							
	Bit Operat STCF SET TSET	tions #3/A, (mem) #3, (mem) #3, (mem)	RES CHG	#3, (mem) #3, (mem)							
	Rotate and			>							
	RLC	(mem)	RRC	(mem)							
	RL	(mem)	RŘ	(mem)							
$\langle$	SLA SLI RLD	(mem) (mem) (mem)	SRA SRL RRD	(mem) (mem) (mem)							
	3 1 State										
				requency is called 1 state.							
		case of oscillation 2/25 MHz=80 ns=		15 20 MHZ							

- (2) Points of Note and Restrictions
  - $\textcircled{1} \overline{EA}$  pin, AM8/ $\overline{16}$  pin

This pin is connected to the VCC or the GND pin. Do not alter the level while the pin is active.

2 Warm-up counter

When releasing STOP mode (by interrupt, for example) in a system that uses an external oscillator, a warm-up time is required until the system clock is output. The warm-up counter operates during the warm-up time.

③ Programmable pull-up resistor

The pull-up resistor of a port can only be set to programmable or non-programmable in input port mode. When using a port as an output port, its pull-up resistor cannot be set to programmable.

④ Watchdog timer

As the watchdog timer is enabled after a reset, disable the watchdog timer when it is not required.

Note that during bus release, the I/O block, including the watchdog timer, still operate.

5 CPU (Micro DMA)

Only "LDC cr, r" and "LDC r, cr" can write or read data to or from control registers (eg, transfer source register DMASx) in the CPU.

- 6 As this device does not support minimum mode, do not use the MIN instruction.
- 7 POP SR instruction

Please execute POP SR instruction during DI condition.

[®] Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts =  $(\overline{NMI}, INTO)$ , which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.