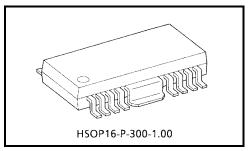
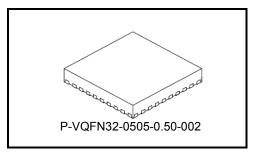
東芝 Bi-CMOS 集積回路 シリコン モノリシック

TB6641FG/FTG

DC モータ用フルブリッジドライバ IC

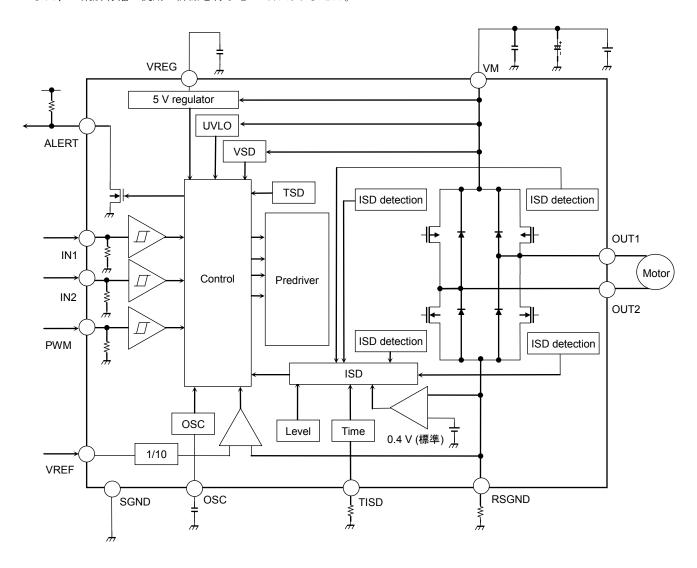

TB6641FG/FTG は、出力トランジスタに MOS 構造を採用した DC モータ駆動用フルブリッジドライバ IC になります。

低 ON 抵抗の MOS プロセス、および PWM 駆動方式の採用により高熱効率駆動が可能になります。


また、IN1, IN2 の 2 つの入力信号により、正転/逆転/ショートブレーキ/ストップの 4 モードを選択できます。

特長

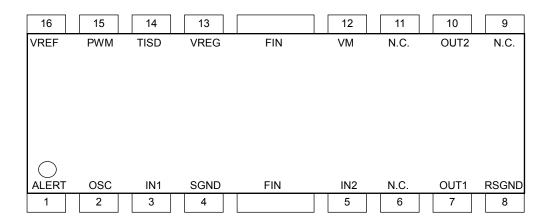
- 電源電圧 :50 V (最大)出力電流 :4.5 A (最大)
- PWM 制御可能
- 定電流 PWM 制御可能
- 正転/逆転/ショートブレーキ/ストップ機能
- 過電流検出回路 (ISD)
- 過電流検出時間設定可能
- 過電圧検出回路 (VSD)
- 熱遮断回路 (TSD)
- 低下電圧検出回路 (UVLO)
- 貫通電流防止時間内蔵


TB6641FG: 質量: 0.5 g (標準)

TB6641FTG:質量: 0.07 g (標準)

ブロック図 (応用回路例)

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。 応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。 また、工業所有権の使用の許諾を行うものではありません。


端子説明:TB6641FG

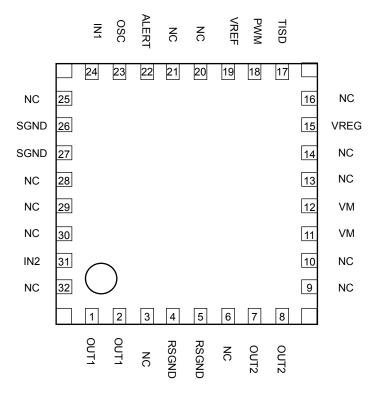
端子番号	名称	端子説明
1	ALERT	異常検出出力端子
2	osc	定電流 PWM 制御の発振周波数設定用のコンデンサ接続端子
3	IN1	制御信号入力 1 端子
4	SGND	小信号 GND 端子
5	IN2	制御信号入力 2 端子
6	N.C.	接続なし
7	OUT1	出力端子 1
8	RSGND	パワーGND 端子/定電流 PWM 用検出抵抗接続端子
9	N.C.	接続なし
10	OUT2	出力端子 2
11	N.C.	接続なし
12	VM	電源電圧印加端子
13	VREG	レギュレータ出力端子
14	TISD	過電流検出時間設定用の抵抗接続端子
15	PWM	PWM 入力端子
16	VREF	定電流 PWM 設定の電圧入力端子
_	FIN	フィン (注 1)

注 1: フィンは放熱の役割があるので、熱設計を考慮してパターン設計をしてください。 (フィンはチップ裏面と電気的に接続されているので、絶縁または GND に接続してください。)

注 2: N.C.pin は ESD 印加試験の対象外としているため、N.C.pin の ESD 印加試験は実施していません。

端子配置図 (top view):TB6641FG

端子説明: TB6641FTG


端子番号	名称	端子説明
1	OUT1	出力端子 1
2	OUT1	出力端子 1
3	N.C.	接続なし
4	RSGND	パワーGND 端子/定電流 PWM 用検出抵抗接続端子
5	RSGND	パワーGND 端子/定電流 PWM 用検出抵抗接続端子
6	N.C.	接続なし
7	OUT2	出力端子 2
8	OUT2	出力端子 2
9	N.C.	接続なし
10	N.C.	接続なし
11	VM	電源電圧印加端子
12	VM	電源電圧印加端子
13	N.C.	接続なし
14	N.C.	接続なし
15	VREG	レギュレータ出力端子
16	N.C.	接続なし
17	TISD	過電流検出時間設定用の抵抗接続端子
18	PWM	PWM 入力端子
19	VREF	定電流 PWM 設定の電圧入力端子
20	N.C.	接続なし
21	N.C.	接続なし
22	ALERT	異常検出出力端子
23	OSC	定電流 PWM 制御の発振周波数設定用のコンデンサ接続端子
24	IN1	制御信号入力 1 端子
25	N.C.	接続なし
26	SGND	小信号 GND 端子
27	SGND	小信号 GND 端子
28	N.C.	接続なし
29	N.C.	接続なし
30	N.C.	接続なし
31	IN2	制御信号入力2端子
32	N.C.	接続なし

注 1: IC 裏面の金属露出部分は放熱の役割があるので、熱設計を考慮してパターン設計をしてください。 (IC 裏面の金属露出部分はチップ裏面と電気的に接続されているので、絶縁または GND に接続してください。)

注 2: OUT1、RSGND、OUT2、VM、SGND は端子が 2 端子ありますが、2 端子を基板でショートして使用してください。

注 3: N.C.pin は ESD 印加試験の対象外としているため、N.C.pin の ESD 印加試験は実施していません。

端子配置図 (top view): TB6641FTG

絶対最大定格 (注) (Ta = 25°C)

	項		目		記号	定格	単位
電	源		電	圧	VM	50	V
出	カ		電	圧	VO	50 (注 1)	V
出	カ	電	流	1	I _O peak1	4.5 (注 2)	Α
出	カ	電	流	2	I _O peak2	4.0 (注 3)	Α
入	カ		電	圧	V_{IN}	-0.3~5.5	V
A L	E R T	端 子	出 力	電圧	V _{ALERT}	5.5	V
A L	ERT	端 子	出力	電 流	I _{ALERT}	5	mA
V R	REG	端子	出力	電 流	Ivreg	5	mA
許容	界損失(ТВ6	6 4 1 I	F G)	P _{D1}	0.89 (注 4)	W
許容	引損 失 (ТВ66	41F	TG)	P _{D2}	3 (注5)	W
動	作		温	度	T_{opr}	-40~85	°C
保	存		温	度	T _{stg}	-55~150	°C

注: 絶対最大定格は瞬時たりとも超えてはならない規格です。

絶対最大定格を超えると IC の破壊や劣化や損傷の原因となり、IC 以外にも破壊や損傷や劣化を与えるおそれがあります。いかなる動作条件でも必ず絶対最大定格を超えないように設計を行ってください。 ご使用に際しては、記載された動作範囲内でご使用ください。

注 1: OUT1, OUT2

注 2: VM = 36 V以下では、OUT1, OUT2 の絶対最大定格出力電流は 4.5 A以内でご使用ください。

注 3: VM = 36 V 超では OUT1, OUT2 の絶対最大定格出力電流は 4.0 A 以内でご使用ください。

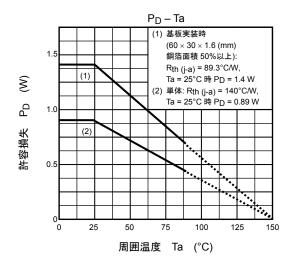
注 4: 単体

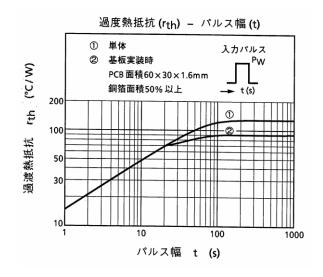
注 5: 基板実装時 (JEDEC 準拠 4 層基板)

動作範囲

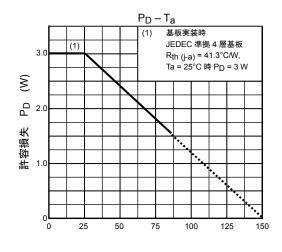
			項	目			記号	定格	単位
電			源	電		圧	VM _{opr}	10~45	٧
0		S	С	周	波	数	f _{osc}	~500	kHz
٧	R	Ε	F 端	子 入	力電	圧	VREF _{opr}	0~3.6	٧
Р		W	М	周	波	数	f _{PWM}	~100	kHz
出			カ	電		流	I _O (平均)	~1.5 (注 6) (参考値)	Α

注 6: 使用条件 (周囲温度や放熱板の有無や実装基盤方法など) によって、使用可能な平均出力電流は増減します。 T_j = 150°C を超えない範囲内で絶対最大定格出力電流 4.5 A、または 4.0A 以下の平均出力電流をご使用ください。


6


電気的特性 (特に指定のない限り、Ta = 25°C, VM = 24 V)

項	目		記号	測定条件	最小	標準	最大	単位	
			I _{CC1}	ストップモード	_	3	8		
電源	電	流	I _{CC2}	正転/逆転モード		3	8	mA	
			I _{CC3}	ショートブレーキモード		3	8		
	入 力 電	圧	V _{INH}		2	_	5.5		
制御入力		圧	V _{INL}		0	-	0.8	V	
IN1 端子 IN2 端子	ヒステリシス	電圧	V _{IN (HYS)}		-	0.4	_		
PWM 端子	入 力 電	流	I _{INH}	V _{IN} = 5 V	-	50	75	μA	
		ИL	I _{INL}	V _{IN} = 0 V	-	-	5	μΑ	
VREF	端子入力:	電 流	I _{INVREF}		-3	-	3	μΑ	
定電流制御	アンプオフセ	ット	V _{OFFSET}	RSGND = VREF	-	1	_	mV	
P W M	A 周 波	数	f _{PWM}	Duty: 50 %	-	100	_	kHz	
P W M 最	き 小 パ ル ニ	ス幅	f _{PWM (TW)}	(参考値)	1	-	_	μs	
	出カオン	抵 抗	R _{ON (U + L)}	I _O = 3 A	-	0.55	0.9	Ω	
0.174.44.7		雷 法	I _{L (U)}	VM = 50 V, V _{OUT} = 0 V	-2	-	_		
OUT1 端子 OUT2 端子		电机	I _{L (L)}	VM = V _{OUT} = 50 V	-	-	2	μA	
00.2 400	ダ イ オ -	- F	V _{F (U)}	I _O = 3 A	-	1.3	1.7	V	
	順方向電	1 圧	V _{F (L)}	I _O = -3 A	-	1.3	1.7	V	
ALERT 端子	出力 LOW	電圧	V _{AL (LO)}	I _{ALERT} = 1 mA			0.4	V	
ALEKI 垧十	出カリーク電流		I _{AL (LE)}	V _{ALERT} = 5.5 V			2	μΑ	
o s c	充 放 電 電	流	losc		0.3	0.5	0.7	mA	
VREG	端子出力:	電 圧	Vvreg	VREG=-5mA	4.5	5	5.5	V	


熱軽減特性

- TB6641FG

- TB6641FTG

周囲温度 Ta (°C)

入出力等価回路

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

名称 (ピン番号 /TB6641FG)	入出力信号	入出力内部回路
IN1 (3) IN2 (5)	デジタル入力 L: 0.8 V (最大) H: 2 V (最小)	IN1 (IN2) ○ 10 kΩ (標準) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
PWM (15)	デジタル入力 L: 0.8 V (最大) H: 2 V (最小)	PWM O W W W W W W W W W W W W W W W W W W
VREF (16)	アナログ入力 入力範囲: 0 V~3.6 V	VREFO
ALERT (1)	オープンドレイン出力 プルアップ抵抗を外部で接続し、High を出力 します。 H (ハイインピーダンス): 異常時 (UVLO, TSD, VSD, ISD 動作時) L: 通常動作時	ALERT
OSC (2)	定電流 PWM 制御の発振周波数設定用のコンデンサ接続端子 OSC 周波数の発振周波数は、以下の式で近似されます。 fosc = 0.42/ (Cosc [F] × 10 ³) = [Hz] (標準)	osc
VREG (13)	レギュレータ出力端子 5V (標準)	VREG

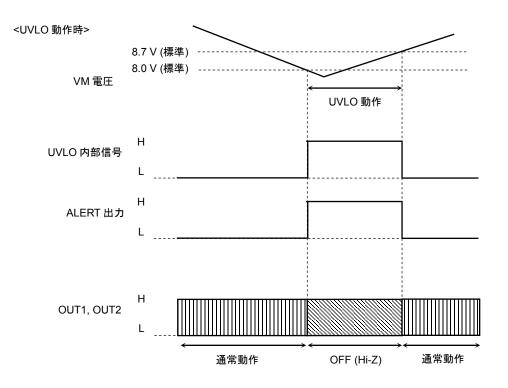
名称 (ピン番号 /TB6641FG)	入出力信号	入出力内部回路
TISD (14)	過電流検出時間設定用の抵抗接続端子	TISD
OUT1 (7) OUT2 (10) RSGND (8)	RSGND 端子には定電流 PWM 制御を使用する場合に検出抵抗を接続し、使用しない場合、GND に接続してください。 大電流が流れますので、パターン設計には注意をしてください。	OUT1 (OUT2) OUT1 (OUT2) RSGND

各部動作説明

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。 タイミングチャートは機能・動作を説明するため、単純化している場合があります。

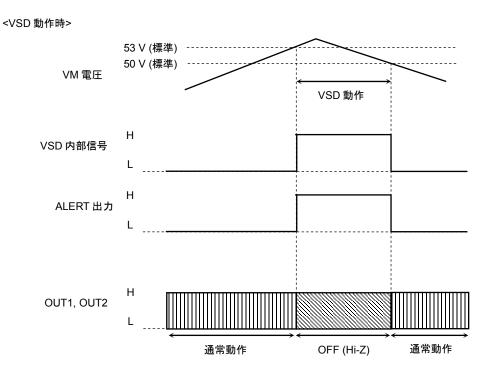
1. 入出力ファンクション表

入力			出力			
IN1	IN2	PWM	OUT1	OUT2	モード	
Н	Н	Н	L	L	ショートブレーキ	
.,	11	L	L	L	フョードブレー キ	
ı	Н	Н	L	Н	正転/逆転	
L		L	L	L	ショートブレーキ	
Н		Н	Н	L	逆転/正転	
"	_	L	L	L	ショートブレーキ	
	L	Н	OEE (DAA)	ンピーダンス)	ストップ (TSD, ISD 解除)	
L		L	OIT (7171))	ストツノ (TSD, ISD 解除)	


2. 異常検出出力 (ALERT 端子)

ALERT 端子はオープンドレイン出力となっており、プルアップ抵抗を外部で接続し、High を出力します。 通常動作時 (IN1 端子、IN2 端子で正転、逆転、ショートブレーキ、ストップ制御が可能な状態) は Low 出力します。通常動作時以外(熱遮断回路 (TSD)、過電流検出回路 (ISD)、過電圧検出回路 (VSD)、低下電圧検出回路 (UVLO) が動作している状態) は High 出力します。

TSD, ISD 動作時は IN1 = Low, IN2 = Low 入力することで通常動作に復帰し、Low 出力に戻ります。

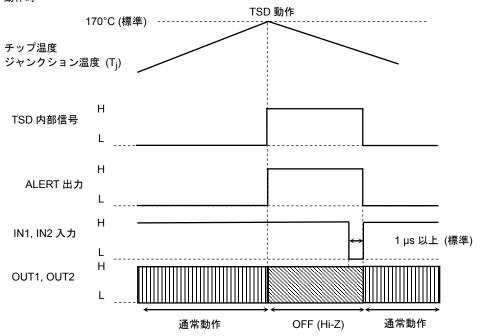

3. 低下電圧検出回路 (UVLO)

低下電圧検出回路を内蔵しており、VM = 8 V (標準)以下の場合、出力 OFF (ハイインピーダンス: Hi-Z)となります。0.7 V (標準)のヒステリシスを持っており、復帰は8.7 V (標準)となります。

4. 過電圧検出回路 (VSD)

過電圧検出回路を内蔵しており、VM = 53 V (標準) 以上の場合、出力 OFF (ハイインピーダンス: Hi-Z) となります。 3 V (標準) のヒステリシスを持っており、復帰は 50 V (標準) となります。

注: 動作した場合、絶対最大定格を超えています。あくまでも補助的な回路であり、いかなる場合でも IC を保護するというものではありません。


11

5. 熱遮断回路 (TSD)

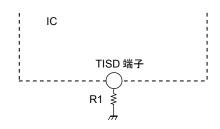
熱遮断回路を内蔵しており、ジャンクション温度 (T_j) が 170° C (標準) を超えると、出力を OFF (ハイインピーダンス: Hi-Z) となります。

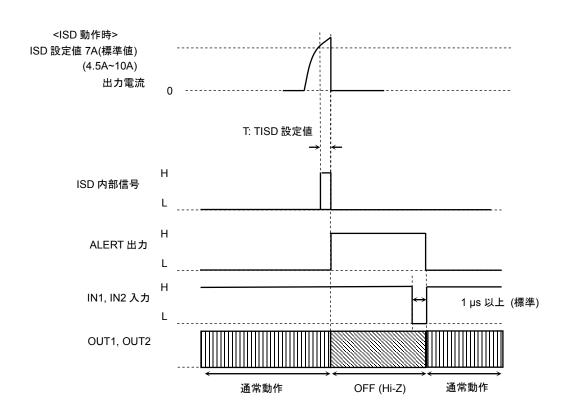
IN1 端子: L, IN2 端子: L にすることで解除して通常動作に復帰可能となります TSD = 170°C (標準)

<TSD 動作時>

注: 動作した場合、ジャンクション温度 (T_j) が 150°C を超えています。あくまでも補助的な回路であり、いかなる場合でも IC を保護するというものではありません。

6. 過電流検出回路 (ISD)


4個の各出力パワートランジスタに流れる電流に各検出機能を内蔵しております。 内部設定の検出電流値を 1 つでも検出設定時間 T を超えると、すべての出力を OFF (ハイインピーダンス: Hi-Z) します。

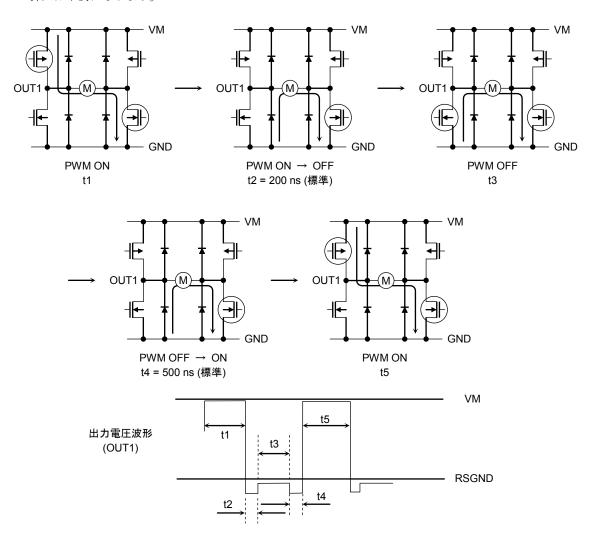

検出設定時間 T は TISD 端子の外付け抵抗により設定できます。

IN1 端子: L, IN2 端子: L にすることで解除して通常動作に復帰可能となります。

• TISD 端子の外付け抵抗値 R1 の検出設定時間

10 kΩ: 1.6 μs (標準) 20 kΩ: 2.8 μs (標準) 100 kΩ: 12.4 μs (標準)

注: 動作した場合、絶対最大定格電流を超えている可能性があります。あくまでも補助的な回路であります。 天絡、地絡、負荷短絡などの過電流からいかなる場合でもICを保護するというものではありません。

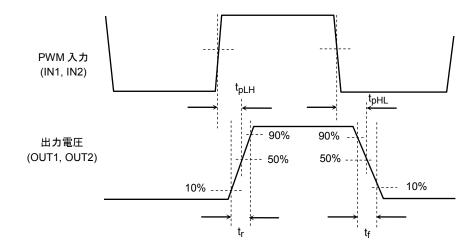

7. PWM 制御機能

PWM 端子に PWM 信号を入力することにより速度制御が可能になります。

(PWM 端子を使用しないで、IN1, IN2 端子に PWM 信号を入力して PWM 動作することもできます。) PWM 制御時は、通常動作とショートブレーキの繰り返しとなります。

出力回路での上下パワートランジスタの同時 ON による貫通電流を防止するために上下のパワートランジスタの ON \leftrightarrow OFF が切り替わるタイミングでデットタイムを IC 内部で生成しています。

このため、外部入力により OFF タイムを挿入することなく、同期整流方式による PWM 制御が可能となります。 なお、 $CW \leftrightarrow CCW$, CW (CCW) \leftrightarrow ショートブレーキ時にも、内部で生成されるデットタイムにより OFF タイムの挿入は不要になります。



8. 出力回路

OUT1 端子、OUT2 端子の出力トランジスタのスイッチング特性は以下となります。

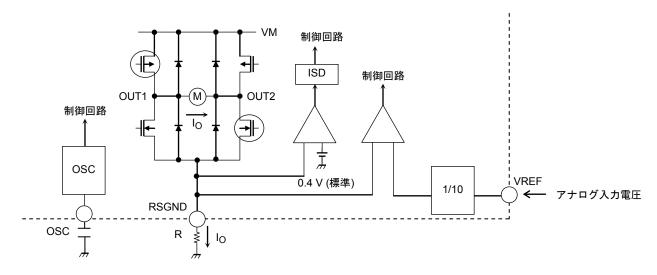
項目	値	単位
t _{pLH}	650 (標準)	
t _{pHL}	450 (標準)	
t _r	90 (標準)	ns
t _f	130 (標準)	

9. 定電流 PWM 制御

本回路は、VREF端子より一定の電圧を入力することにより出力電流を一定とするものであり、ピーク電流検出方式となっております。ディスチャージモード時はショートブレーキ動作となります。

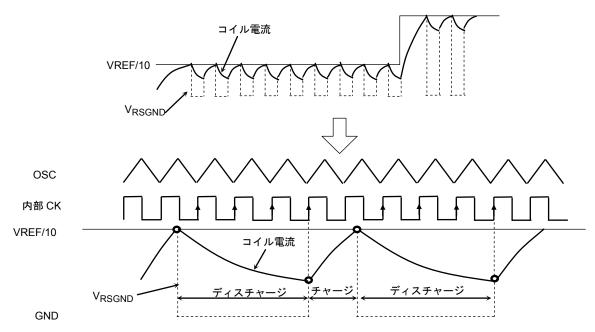
(1) 定電流 PWM 制御の設定

VREF 端子に電圧を入力することにより、定電流動作におけるピーク電流値を決定します。 ピーク電流値は、以下式により決定されます。


 $IO = VREF/R \times 1/10 [A]$

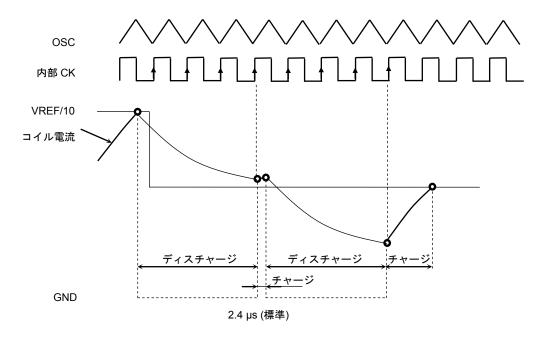
また、定電流 PWM の周波数は OSC 端子のコンデンサで設定することが可能であり、発振周波数は以下の式で近似されます。

fosc = 0.42/ (Cosc [F] × 103) = [Hz] (標準)

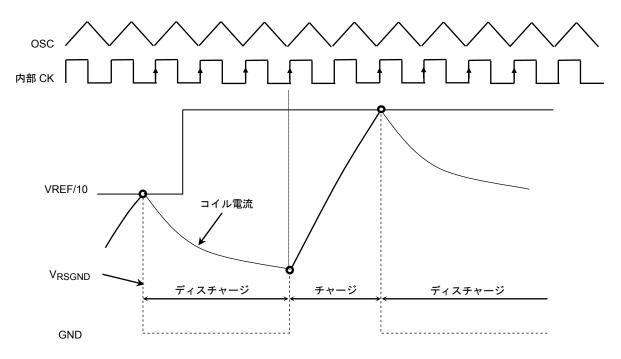

また、RSGND 端子は検出抵抗接続時の過電圧防止のため、0.4~V (標準) 以上の電圧で出力 OFF (ハイインピーダンス: Hi-Z) し、ISD と同様の制御となります。ALERT 端子も High になり、IN1 端子: L, IN2 端子: L にすることで解除して通常動作に復帰可能となります。

RSGND 端子の検出抵抗は 0.1 Ω以上を使用することを推奨します。

(2) 定電流チョッピング時


VRSGND が設定電圧 (VREF/10) に到達した時点でディスチャージモードへ移行します。 OSC より作成した内部 CK 信号の 4 カウント分のディスチャージモード挿入後、再度チャージモードへ移行します。

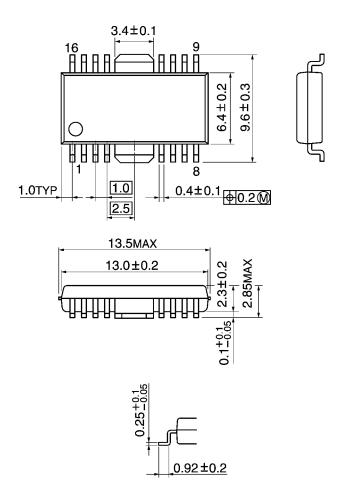
16


(3) 設定電流切り替わり時動作(減衰時)

 V_{RSGND} が設定電圧 (VREF/10) に到達した時点でディスチャージモードへ移行しますが、内部 CK: 4 パルス後にチャージモードへ移行した際、 $V_{RSGND} > V_{REF/10}$ であれば再度減衰モードへ移行します。その後さらに内部 CK: 4 パルス後に V_{RSGND} を VREF/10 と比較し $V_{RSGND} < V_{REF/10}$ の場合、 V_{RSGND} が $V_{REF/10}$ へ到達するまでチャージモードとなります。

(4) 設定電流切り替わり時動作(加速時)

VREF が上がった場合でも、ディスチャージモードは内部 CK: 4 カウント分継続し、その後チャージモードとなります。

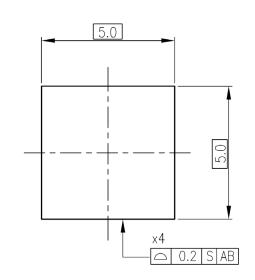

ピーク電流検出方式により、定電流動作による平均電流値は設定電流値に対し低くなります。モータコイル特性により変わりますので、設定の際には十分確認ください。

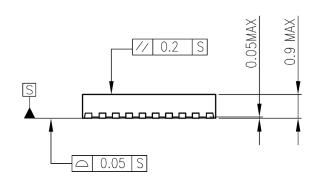
定電流 PWM 動作と PWM 動作 (PWM, IN1, IN2 端子からの PWM 入力) を両方使用した場合、ショートブレーキが優先的に選択されます。

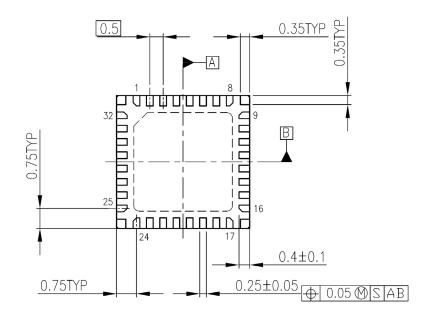
外形図

TB6641FG

HSOP16-P-300-1.00 Unit: mm




質量: 0.5 g (標準)


TB6641FTG

P-VQFN32-0505-0.50-002

Unit: mm

19

質量: 0.07g (標準)

記載内容の留意点

1. ブロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. 等価回路

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

3. タイミングチャート

タイミングチャートは機能・動作を説明するため、単純化している場合があります。

4. 応用回路例

応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。 また、工業所有権の使用の許諾を行うものではありません。

5. 測定回路図

測定回路内の部品は、特性確認のために使用しているものであり、応用機器の誤動作や故障が発生しないことを保証するものではありません。

使用上のご注意およびお願い事項

使用上の注意事項

- (1) 絶対最大定格は複数の定格の、どの一つの値も瞬時たりとも超えてはならない規格です。 複数の定格のいずれに対しても超えることができません。 絶対最大定格を超えると破壊、損傷および劣化の原因となり、破裂・燃焼による傷害を負うことがありま す。
- (2) 過電流の発生やICの故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。 IC は絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。破壊における大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設定が必要となります。
- (3) モータの駆動など、コイルのような誘導性負荷がある場合、ON 時の突入電流や OFF 時の逆起電力による 負極性の電流に起因するデバイスの誤動作あるいは破壊を防止するための保護回路を接続してください。 IC が破壊した場合、傷害を負ったり発煙・発火に至ることがあります。 保護機能が内蔵されている IC には、安定した電源を使用してください。電源が不安定な場合、保護機能が動作せず、IC が破壊することがあります。IC の破壊により、傷害を負ったり発煙・発火に至ることがあります。
- (4) デバイスの逆差し、差し違い、または電源のプラスとマイナスの逆接続はしないでください。電流や消費電力が絶対最大定格を超え、破壊、損傷および劣化の原因になるだけでなく、破裂・燃焼により傷害を負うことがあります。なお、逆差しおよび差し違いのままで通電したデバイスは使用しないでください。

使用上の留意点

(1) 過電流検出回路

過電流検出回路はどのような場合でも IC を保護するわけではありません。動作後は、速やかに過電流状態を解除するようお願いします。

絶対最大定格を超えた場合など、ご使用方法や状況により、過電流制限回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法や状況によっては、IC が発熱などにより破壊することがあります。

(2) 熱遮断回路

熱遮断回路 (通常: サーマルシャットダウン回路) は、どのような場合でも IC を保護するわけではありません。動作後は、速やかに発熱状態を解除するようお願いします。

絶対最大定格を超えて使用した場合など、ご使用法や状況により、熱遮断回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。

(3) 放熱設計

パワーアンプ、レギュレータ、ドライバなどの、大電流が流出入する IC の使用に際しては、適切な放熱を行い、規定接合温度 (T_j) 以下になるように設計してください。これらの IC は通常使用時でも、自己発熱をします。IC 放熱設計が不十分な場合、IC の寿命の低下・特性劣化・破壊が発生することがあります。また、IC の発熱に伴い、周辺に使用されている部品への影響も考慮して設計してください。

(4) 逆起電力

モータを逆転やストップ、急減速を行った場合に、モータの逆起電力の影響でモータからモータ側電源へ電流が流れ込みますので、電源の Sink 能力が小さい場合、IC のモータ側電源端子、出力端子が絶対最大定格以上に上昇する恐れがあります。

逆起電力によりモータ側電源端子、出力端子が絶対最大定格電圧を超えないように設計してください。

製品取り扱い上のお願い

- ◆ 本資料に掲載されているハードウエア、ソフトウエアおよびシステム(以下、本製品という)に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を 得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、電力機器、金融関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口までお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- ◆ 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して 当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。 本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用ある環境関連法令を 十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより 生じた損害に関して、当社は一切の責任を負いかねます。