TOSHIBA # Radio-Frequency Semiconductors Transistors, FETs, Cell Packs **TOSHIBA CORPORATION** **Semiconductor Company** The information contained herein is subject to change without notice. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk. The products described in this document may include products subject to the foreign exchange and foreign trade laws. The products described in this document may contain components made in the United States and subject to export control of the U.S. authorities. Diversion contrary to the U.S. law is prohibited. TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations. GaAs(Gallium Arsenide) is used in some of the products. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically. ## **Preface** Thank you for choosing Toshiba semiconductor products. This is the year 2006 edition of the databook entitled Radio-Frequency Semiconductor Devices – Transistors, FETs and Cell Packs. From this edition, the Radio-Frequency Semiconductor Devices is published in separate volumes: Radio-Frequency Semiconductor Devices – Diodes, Radio-Frequency Semiconductor Devices – Transistors, FETs and Cell Packs, and Radio-Frequency Semiconductor Devices – Power Devices. Please select the suitable databook for your application. This databook is designed to be easily understood by engineers who are designing Toshiba Radio-frequency small-signal devices into their products for the first time. No special knowledge of these devices is assumed - the contents includes basic information about the Radio-frequency small-signal devices and the application fields in which they are used. In addition, complete technical specifications facilitate selection of the most appropriate Radio-frequency small-signal device for any given application. Toshiba are continually updating technical publications. Any comments and suggestions regarding any Toshiba document are most welcome and will be taken into account when subsequent editions are prepared. To receive updates to the information in this databook, or for additional information about the products described in it, please contact your nearest Toshiba office or authorized Toshiba dealer. January 2006 TOSHIBA CORPORATION **Semiconductor Company** # Contents | [1] | Product Number Index | 7 | |-----|---|-----------------------------| | [2] | Selection Guide by Packages and Applications | 13 | | [3] | Main Characteristics | 21 | | [4] | Block Diagrams for Suggested Applications | 41 | | [5] | Maximum Ratings and Electrical Characteristics 1. Definition of Maximum Ratings | 57
59
65 | | [6] | Device Features in Detail 1. Radio-Frequency Transistor Parameter 2. Gain and Stability 3. Tape Packing Specifications 4. Reference Pad Dimensions | 73
75
89
93
134 | | [7] | Handling Precautions 1. Using Toshiba Semiconductors Safely 2. Safety Precautions 3. General Safety Precautions and Usage Considerations 4. Precautions and Usage Considerations Specific to Each Product Group | 143
145
146
148 | | [8] | Da | atasheets | 173 | |--------|-----|-----------------------------|-----| | | 1. | Transistors | 175 | | | 2. | FETs | 481 | | | 3. | Dual-chip Transistors | | | | 4. | Cell Packs | 859 | | [9] | Pa | ckage Dimensions | 977 | | | | | | | [10] | Lis | st of Final-Phase Products | 985 | | [11] | Lis | st of Discontinued Products | 989 | # [1] Part Number Index # [1] Part Number Index | Part Number | Marking | Page | |-------------|------------------|------| | 2SC1815 | | 176 | | 2SC1923 | C1923 | 179 | | 2SC2458 | | 185 | | 2SC2498 | C2498 | 188 | | 2SC2668 | C2668 | 192 | | 2SC2669 | C2669 | 198 | | 2SC2670 | C2670 | 204 | | 2SC2712 | L□ (□O, Y, G, L) | 208 | | 2SC2714 | Q□ (□···R, O, Y) | 212 | | 2SC2715 | R□ (□R, O, Y) | 219 | | 2SC2716 | F□ (□R, O, Y) | 226 | | 2SC2995 | C2995 | 230 | | 2SC2996 | G□ (□···R, O, Y) | 236 | | 2SC3120 | НВ | 242 | | 2SC3121 | HC | 246 | | 2SC3123 | HE | 249 | | 2SC3124 | HF | 253 | | 2SC3125 | НН | 256 | | 2SC3547A | HI | 259 | | 2SC380TM | C380TM | 262 | | 2SC3862 | HL | 268 | | 2SC4116 | L□ (□O, Y, G, L) | 271 | | 2SC4214 | HN | 274 | | 2SC4215 | Q□ (□R, O, Y) | 278 | | 2SC4244 | HN | 282 | | 2SC4245 | НВ | 286 | | 2SC4246 | HC | 290 | | 2SC4247 | НІ | 293 | | 2SC4250 | HE | 296 | | 2SC4251 | HF | 300 | | 2SC4252 | НО | 303 | | 2SC4253 | НН | 306 | | 2SC4915 | Q□ (□···R, O, Y) | 309 | | 2SC5064 | MA□ (□O, Y) | 313 | | 2SC5065 | MA□ (□O, Y) | 319 | | 2SC5066 | M1/M2 (···O/Y) | 325 | | 2SC5066FT | M1/M2 (···O/Y) | 331 | | 2SC5084 | MC□ (□O, Y) | 333 | | 2SC5085 | MC□ (□O, Y) | 339 | | 2SC5086 | M5/M6 (···O, Y) | 345 | | | | 1 | |-------------|-----------------|------| | Part Number | Marking | Page | | 2SC5086FT | M5/M6 (···O, Y) | 351 | | 2SC5087 | C□ (□O, Y) | 353 | | 2SC5087R | ZP | 359 | | 2SC5088 | MC□ (□···O, Y) | 361 | | 2SC5089 | MD□ (□R, O) | 367 | | 2SC5090 | MD□ (□R, O) | 373 | | 2SC5091 | M7/M8 (···R/O) | 379 | | 2SC5091FT | M7/M8 (···R/O) | 385 | | 2SC5092 | D□ (□···R, O) | 387 | | 2SC5093 | MD□ (□···R, O) | 393 | | 2SC5094 | ME□ (□···R, O) | 399 | | 2SC5095 | ME□ (□···R,O) | 405 | | 2SC5096 | M9/MA (···R/O) | 411 | | 2SC5096FT | M9/MA (···R/O) | 417 | | 2SC5097 | E□ (□···R, O) | 419 | | 2SC5098 | ME□ (□···R, O) | 425 | | 2SC5106 | MF□ (□···O, Y) | 431 | | 2SC5107 | MF□ (□···O, Y) | 435 | | 2SC5108 | MB/MC (···O/Y) | 440 | | 2SC5108FT | MB/MC (···O/Y) | 445 | | 2SC5109 | MG□ (□O,Y) | 446 | | 2SC5110 | MG□ (□O,Y) | 451 | | 2SC5111 | MD/ME (···O/Y) | 456 | | 2SC5111FT | MD/ME (···O/Y) | 461 | | 2SC5317FT | MT | 462 | | 2SC5319 | MT | 464 | | 2SC5463 | MX/MY (···O/Y) | 469 | | 2SC5464 | MX/MY (···O/Y) | 472 | | 2SC5464FT | MX/MY (···O/Y) | 474 | | 2SC941TM | C941TM | 476 | | 2SK161 | K161 | 482 | | 2SK1771 | UB | 487 | | 2SK1875 | RB□ (□G, L, V) | 492 | | 2SK192A | K192A | 496 | | 2SK210 | Y□ (□Y, G, B) | 501 | | 2SK211 | K□ (□O, Y, G) | 506 | | 2SK241 | K241 | 511 | | 2SK302 | T□ (□O, Y, G) | 517 | | 2SK709 | K709 | 523 | | 2SK710 | K710 | 526 | | | | | | Part Number | Marking | Page | |-------------|----------------|------| | 2SK711 | RB□ (□G, L, V) | 529 | | 2SK881 | K□ (□O, Y, G) | 533 | | 2SK882 | T□ (□···Y, G) | 538 | | 3SK195 | UJ | 543 | | 3SK199 | UM | 548 | | 3SK207 | UR | 553 | | 3SK225 | UT | 558 | | 3SK226 | UU | 563 | | 3SK232 | UO | 568 | | 3SK249 | UO | 571 | | 3SK256 | UR | 576 | | 3SK257 | UT | 581 | | 3SK258 | UU | 586 | | 3SK259 | UI | 591 | | 3SK260 | UH | 596 | | 3SK291 | UF | 601 | | 3SK292 | UV | 606 | | 3SK293 | UF | 610 | | 3SK294 | UV | 615 | | MT3S03A | MR | 620 | | MT3S03AFS | 00 | 622 | | MT3S03AS | MR | 624 | | MT3S03AT | MR | 626 | | MT3S03AU | MR | 631 | | MT3S04A | AE | 633 | | MT3S04AFS | 01 | 635 | | MT3S04AS | AE | 637 | | MT3S04AT | AE | 639 | | MT3S04AU | AE | 644 | | MT3S05FS | 02 | 646 | | MT3S05T | TK | 648 | | MT3S06FS | 03 | 650 | | MT3S06S | AC | 652 | | MT3S06T | AC | 654 | | MT3S06U | AC | 658 | | MT3S07FS | 04 | 660 | | MT3S07S | AD | 662 | | MT3S07T | AD | 664 | | MT3S07U | AD | 668 | | MT3S08FS | 05 | 670 | | MT3S08T | TH | 672 | | MT3S106FS | 41 | 674 | | MT3S107FS | 42 | 676 | | Part Number | Marking | Page | |-------------|---------|------| | MT3S108FS | 43 | 678 | | MT3S109FS | 44 | 680 | | MT3S110FS | 45 | 682 | | MT3S11FS | 08 | 684 | | MT3S11T | TR | 686 | | MT3S12T | TJ | 688 | | MT3S14FS | 0H | 690 | | MT3S14T | TX | 692 | | MT3S150P | MP | 694 | | MT3S16FS | 0K | 698 | | MT3S16T | T4 | 700 | | MT3S16U | T4 | 702 | | MT3S18FS | 0U | 704 | | MT3S18T | 0U | 706 | | MT3S35FS | 20 | 708 | | MT3S35T | Q2 | 711 | | MT3S36FS | 21 | 714 | | MT3S36T | Q3 | 717 | | MT3S37FS | 22 | 720 | | MT3S37T | Q4 | 723 | | MT3S41FS | 26 | 726 | | MT3S41T | Q7 | 729 | |
MT3S45FS | 29 | 732 | | MT3S45T | R4 | 735 | | MT4S03A | MR | 738 | | MT4S03AU | MR | 740 | | MT4S04A | AE | 742 | | MT4S04AU | AE | 744 | | MT4S06 | AC | 746 | | MT4S06U | AC | 748 | | MT4S07 | AD | 750 | | MT4S07U | AD | 752 | | MT4S100T | P6 | 754 | | MT4S100U | P6 | 758 | | MT4S101T | P7 | 761 | | MT4S101U | P7 | 765 | | MT4S102T | P8 | 768 | | MT4S102U | P8 | 772 | | MT4S104T | P1 | 776 | | MT4S104U | P1 | 780 | | MT4S200U | P2 | 784 | | MT4S32U | U4 | 789 | | MT6C03AE | АМ | 797 | | Part Number | Marking | Page | |-------------|-----------|------| | MT6C04AE | AL | 799 | | MT6L03AE | TA | 801 | | MT6L03AT | <u>TA</u> | 803 | | MT6L04AE | AV | 805 | | MT6L04AT | AV | 807 | | MT6L05FS | 32 | 809 | | MT6L11FS | 33 | 811 | | MT6L53E | WY | 813 | | MT6L54E | ZD | 815 | | MT6L55E | AR | 817 | | MT6L55FS | 12 | 819 | | MT6L56E | AS | 821 | | MT6L57AE | AW | 823 | | MT6L58AE | AX | 825 | | MT6L61AE | TE | 827 | | MT6L62AE | TF | 829 | | MT6L63FS | 18 | 831 | | MT6L64FS | 19 | 833 | | MT6L65FS | 1F | 835 | | MT6L66FS | 1H | 837 | | MT6L67FS | 1J | 839 | | MT6L68FS | 1K | 841 | | MT6L71FS | 1W | 843 | | MT6L72FS | 1X | 845 | | MT6L73FS | 50 | 847 | | MT6L74FS | 51 | 849 | | MT6L75FS | 52 | 851 | | MT6L76FS | 53 | 853 | | MT6L77FS | 54 | 855 | | Part Number | Marking | Page | |-------------|------------|------| | MT6L78FS | 55 | 857 | | TA4001F | U9 | 860 | | TA4002F | U8 | 863 | | TA4004F | U1 | 866 | | TA4011AFE | U3 | 871 | | TA4011FU | U3 | 873 | | TA4012AFE | U4 | 876 | | TA4012FU | U4 | 878 | | TA4014FC | | 881 | | TA4014FE | <u>UH</u> | 883 | | TA4014FT | <u>U6A</u> | 885 | | TA4015FE | UJ | 887 | | TA4015FT | <u>U6B</u> | 889 | | TA4016AFE | U1 | 891 | | TA4017FT | <u>U5</u> | 896 | | TA4018F | 4018F | 900 | | TA4019F | 4019F | 906 | | TA4020FT | U3 | 911 | | TA4107F | 4107F | 914 | | TA4205FC | | 919 | | TA4500F | MD | 922 | | TG2210FT | UL | 932 | | TG2211AFT | WU | 937 | | TG2213S | UP | 944 | | TG2214S | UQ | 950 | | TG2216TU | US | 956 | | TG2217CTB | 6T | 963 | | TG2403CT | 2403 | 970 | # [2] Selection Guide by Packages and Applications ## [2] Selection Guide by Packages and Applications #### 1. Transistors for TV Tuners | | | | | | Package Type | | | |------|----------|----------|----------|---------|--------------|---------|--------| | | | • | | 3 pin | | 4 | oin | | | | | S-MINI | USM | PW-MINI | SMQ | USQ | | | Applicat | tion | | | | | | | | | | | | | 3SK199 | | | | | MOS | | | | 3SK207 | 3SK256 | | | RF | IVIOS | | | | 3SK232 | 3SK249 | | | | | | | | 3SK291 | 3SK293 | | UHF | IHF MIX | Bipolar | | 2SC4244 | | 2SC4214 | | | Oili | MAIN | Dinalar | 2SC3120 | 2SC4245 | | | | | | IVIIA | Bipolar | 2SC3862 | | | | | | | MIX | | 2SC3120 | 2SC4245 | | | | | | osc | | 2SC3121 | 2SC4246 | | | | | | | | 2SC3547A | 2SC4247 | | | | | | | GaAs HBT | | | MT3S150P | | | | | | | | | | | 3SK259 | | | RF | | | | | 3SK195 | | | | Ni | MOS | | | | 3SK225 | 3SK257 | | VHF | | | | | | 3SK226 | 3SK258 | | VHF | | | | | | 3SK292 | 3K294 | | | MIX | Bipolar | 2SC3123 | 2SC4250 | | _ | | | | IVIIA | MOS | | | | | 3SK260 | | | osc | Bipolar | 2SC3124 | 2SC4251 | | | | | | | ыротат | | 2SC4252 | | | | #### 2. Transistors for the VHF-to-UHF Band | | | | | | | | Package Ty | ре | | | | |--------------------------------|--------|---------|----------|--|---|---|---|---|---|--|--| | | | | | | 3 pin | | | | • | 4 pin | | | Applica | ation | TO-92 | PW-MINI | S-MINI | USM | SSM | TESM | fSM | SMQ | USQ | TESQ | | | | | | | | | | | | | | | VHF-to-UHF
Low-Noise
Amp | NPN-TR | 2SC2498 | MT3S105P | 2SC5064
2SC5084
2SC5089
2SC5094 | 2SC5065
2SC5085
2SC5090
2SC5095
2SC5463
MT3S06U
MT3S07U
MT3S16U* | 2SC5066
2SC5086
2SC5091
2SC5096
2SC5464
MT3S06S
MT3S07S | 2SC5066FT 2SC5086FT 2SC5091FT 2SC5096FT 2SC5317FT 2SC5464FT MT3S06T MT3S07T MT3S14T* MT3S16T* MT3S35T MT3S36T MT3S37T MT3S41T MT3S41T MT3S45T | MT3S06FS MT3S07FS MT3S14FS* MT3S18FS* MT3S35FS MT3S36FS MT3S37FS MT3S41FS MT3S45FS | 2SC5087, 2SC5087R* 2SC5092 2SC5097 MT4S06 MT4S07 | 2SC5088
2SC5093
2SC5098
2SC5319
MT4S06U
MT4S07U*
MT4S100U
MT4S101U
MT4S101U
MT4S104U
MT4S104U
MT4S200U* | MT4S100T
MT4S101T
MT4S102T*
MT4S104T* | | VHF-to-UHF
OSC | NPN-TR | | | 2SC5106
2SC5109
MT3S03A* | 2SC4247
2SC5107
2SC5110
MT3S03AU
MT3S04AU | 2SC5108
2SC5111
MT3S03AS
MT3S04AS | 2SC5108FT
2SC5111FT
MT3S03AT
MT3S04AT
MT3S05T
MT3S08T
MT3S11T
MT3S12T | MT3S03AFS MT3S04AFS MT3S05FS MT3S08FS MT3S11FS* MT3S106FS* MT3S107FS* MT3S109FS* MT3S109FS* MT3S110FS* | MT4S03A
MT4S04A | MT4S03AU
MT4S04AU | | ^{*:} New product #### 3. Transistors for AM and FM Tuners | | | | | | | Package Type | • | | | |--------|-----------|--------------------------|----------|--------------------|--------------------|--------------|---------|--------------------------------------|----------------------------| | | | | | | 3 pin | | | 4 p | oin | | | | | TO-92 | MINI | S-MINI | USM | SSM | SMQ | USQ | | | Applicati | ion | | | | | | | | | | | Dual-
Gate
MOS | | | | | | 3SK195
3SK225
3SK226
3SK292 | 3SK257
3SK258
3SK294 | | | RF | Single-
Gate
MOS | | | | | | 2SK1771 | | | | Ni | Cascode
MOS | | 2SK241 | 2SK302 | 2SK882 | | | | | | | Cascade
J-FET | | 2SK161 | 2SK211 | 2SK881 | | | | | FM | | Single-
Gate
J-FET | | 2SK192A | 2SK210 | | | | | | | | Bipolar | 2SC1923 | 2SC2668 | 2SC2714 | 2SC4215 | 2SC4915 | | | | | MIX | Dual-
Gate
MOS | | | | | | | 3SK260 | | | | Bipolar | 2SC1923 | 2SC2668 | 2SC2714 | 2SC4215 | 2SC4915 | | | | | osc | Single-
Gate
J-FET | | 2SK192A | 2SK210 | | | | | | | | Bipolar | 2SC1923 | 2SC2668
2SC2995 | 2SC2714
2SC2996 | 2SC4215 | 2SC4915 | | | | | IF | Bipolar | 2SC380TM | 2SC2669
2SC2995 | 2SC2715
2SC2996 | | | | | | | RF | Single-
Gate
J-FET | 2SK709 | 2SK710 | 2SK711 | 2SK1875 | | | | | | | Bipolar | 2SC941TM | 2SC2670 | 2SC2716 | | | | | | AM | | | 2SC380TM | 2SC2669 | 2SC2715 | | | | | | - Alvi | CONV | Bipolar | 2SC941TM | 2SC2670 | 2SC2716 | | | | | | | | | 2SC1815 | 2SC2458 | 2SC2712 | 2SC4116 | | | | | | IE | Rinolar | 2SC380TM | 2SC2669 | 2SC2715 | | | | | | | IF | Bipolar | 2SC1815 | 2SC2458 | 2SC2712 | 2SC4116 | | | | #### 4. Dual-Chip Devices | | | Packaç | је Туре | | |------------------|---------|----------|----------|-----------| | | 5 pin | | 6 pin | | | | SMV | TU6 | ES6 | fS6 | | Application | | | | | | AM RF (with AGC) | HN3G01J | | | | | VHF-to-UHF | | | MT6C03AE | | | Low-Noise Amp | | | MT6C04AE | | | | | MT6L03AT | MT6L03AE | | | | | MT6L04AT | MT6L04AE | | | | | | | MT6L05FS | | | | | | MT6L11FS* | | | | | MT6L53E | | | | | | MT6L54E | | | | | | MT6L55E | MT6L55FS | | | | | MT6L56E | | | | | | MT6L57AE | | | | | | MT6L58AE | | | | | | | | | | | | MT6L61AE | | | | | | MT6L62AE | | | VHF-to-UHF | | | | MT6L63FS* | | Buffer + OSC | | | | MT6L64FS* | | | | | | MT6L65FS* | | | | | | MT6L66FS* | | | | | | MT6L67FS* | | | | | | MT6L68FS* | | | | | | MT6L71FS* | | | | | | MT6L72FS* | | | | | | MT6L73FS* | | | | | | MT6L74FS* | | | | | | MT6L75FS* | | | | | | MT6L76FS* | | | | | | MT6L77FS* | | | | | | MT6L78FS* | ^{*:} New product #### 5. Cell Packs | | | | | | | | | Package Typ | е | | | | | | | |--------------------------------|--------------------|-----------|---------|----------------------|-----|------------|--------------------------|----------------------|----------------------|------------------------|-----------|----------|--------------------|----------|-----------| | | 4 | pin | 5 | pin | | | | 6 pi | n | | | | 8 pin | 16 pin | 20 pin | | Application | SMQ | TESQ | SMV | usv | SM6 | CST6B | TU6 | ES6 | sES6 | ESV | UF6 | CS6 | SM8 | QS16 | CST20 | | | | | | | | | | | | | | | ####
| | | | VHF-to-UHF
Wide-Band
Amp | TA4001F
TA4002F | | TA4004F | TA4011FU
TA4012FU | | | | TA4016AFE | | TA4011AFE
TA4012AFE | | | | | | | VHF-to-UHF
DBM | | | | | | | | | | | | | TA4107F | | | | LNA | | TA4020FT* | | | | | | | | | | | | | | | SPDT
Switch | | | | | | | #TG2210FT
#TG2211AFT* | | #TG2213S
#TG2214S | | | | | | | | | | | | | | TG2217CTB* | | | | | #TG2216TU | | | | | | тсхо | | | | | | | TA4014FT
TA4015FT | TA4014FE
TA4015FE | | | | TA4014FC | | | | | VCO | | | | | | | | | | | | TA4205FC | | | | | CATV IF
Amp | | | | | | | TA4017FT | | | | | | TA4018F
TA4019F | | | | LNA + MIX | | | | | | | | | | | | | | TA4500F* | | | PA + Switch | | | | | | | | | | | | | | | TG2403CT* | #: GaAs *: New product # [3] Main Characteristics ## [3] Main Characteristics #### 1. Transistors for TV Tuners | | | Maxir | num Ra | atings | | | | | El | ectrical | Characte | eristics | | | | | | | |-------------|------------|------------------|--------|--------|---------------|------------------------|------------------------|-------|------------------------|------------------------|----------|------------------------|------------------------|-------------------------|------------|-----------------------------|------|-------------------| | Application | Part | V _{CEO} | Ic | PC | | hFE | | 1 | T (typ.) | | | Gp (G | C°)/NF (| typ.) | | C _{re} | Cob | Package | | | Number | (V) | (mA) | (mW) | | V _{CE}
(V) | I _C
(mA) | (MHz) | V _{CE}
(V) | I _C
(mA) | (dB/dB) | V _{CC}
(V) | I
_C
(mA) | V _{AGC}
(V) | f
(MHz) | (C _{rb} ♣)
(pF) | (pF) | Туре | | VHF RF | #MT3S150P* | 8 | 90 | 650 | 100 to
200 | 5 | 50 | 1700 | 5 | 50 | 10/0.95 | 5 | 10 | _ | 1000 | 0.85 | 1.15 | PW-MINI | | VHF MIX | 2SC3123 | 20 | 50 | 150 | 40 to
300 | 10 | 5 | 1400 | 10 | 5 | 23°/3.8 | 12 | 3 | _ | 200 | 0.4 | _ | S-MINI | | VIII WIIX | 2SC4250 | 20 | 50 | 100 | 40 to
300 | 10 | 5 | 1400 | 10 | 5 | 25°/4.3 | 12 | 3 | _ | 200 | 0.45 | _ | USM | | | 2SC3124 | 15 | 50 | 150 | 40 to
200 | 3 | 8 | 1100 | 10 | 8 | _ | _ | | | _ | | 0.9 | S-MINI | | VHF OSC | 2SC4251 | 15 | 50 | 100 | 40 to
200 | 3 | 8 | 1100 | 10 | 8 | | | | | _ | | 0.9 | USM | | | 2SC4252 | 12 | 30 | 100 | 40 to
250 | 10 | 5 | 2000 | 10 | 5 | _ | _ | | _ | _ | | 1.05 | USM | | UHF RF | 2SC4214 | 20 | 20 | 150 | 40 min. | 3 | 1 | 850 | 3 | 1 | 15/2.8 | 4.5 | _ | 2 | 800 | 0.3▲ | _ | SMQ | | OTIL TO | 2SC4244 | 20 | 20 | 100 | 40 min. | 3 | 1 | 850 | 3 | 1 | 17/4 | 4.5 | _ | 2 | 800 | 0.4▲ | _ | USM | | UHF MIX | 2SC3862 | 15 | 50 | 150 | 40 to
200 | 10 | 5 | 2400 | 10 | 2 | _ | _ | _ | _ | _ | 0.6 | _ | S-MINI
E.B.Rev | | UHF | 2SC3120 | 15 | 50 | 150 | 40 to
200 | 10 | 5 | 2400 | 10 | 2 | 17°/8 | 10 | 2 | _ | 800 | 0.6 | _ | S-MINI | | MIX/OSC | 2SC4245 | 15 | 50 | 100 | 40 to
200 | 10 | 5 | 2400 | 10 | 2 | 17°/8 | 10 | 2 | _ | 800 | 0.6 | _ | USM | | | 2SC3121 | 15 | 50 | 150 | 60 to
320 | 3 | 8 | 1500 | 10 | 8 | _ | _ | _ | _ | _ | _ | 0.9 | S-MINI | | UHF OSC | 2SC3547A | 12 | 30 | 150 | 35 to
130 | 10 | 5 | 4000 | 10 | 10 | _ | _ | | | _ | | 1.05 | S-MINI | | 0111 030 | 2SC4246 | 15 | 50 | 100 | 60 to
320 | 3 | 8 | 1500 | 10 | 8 | _ | _ | | _ | _ | | 0.9 | USM | | | 2SC4247 | 12 | 30 | 100 | 35 to
130 | 10 | 5 | 4000 | 10 | 10 | _ | _ | _ | _ | _ | _ | 1.05 | USM | | PIF AMP | 2SC3125 | 25 | 50 | 150 | 20 to
200 | 10 | 10 | 600 | 10 | 10 | _ | _ | _ | _ | _ | _ | 1.1 | S-MINI | | II AWIF | 2SC4253 | 25 | 50 | 100 | 20 to
200 | 10 | 10 | 600 | 10 | 10 | _ | _ | _ | _ | _ | _ | 1.1 | USM | #: GaAs *: New product #### 2. FETs for TV Tuners | | | Maxim | um Rat | tings | | | | | Ele | ctrical | Charac | teristics | | | | | | |-------------|--------|---------------------|--------|-------|-------------|-----------------|--|------|----------------------|---------|------------------|-------------------|---------------------|--------|------------------|-------|---------| | Annliestion | Part | V _{DS} | ID | PD | | IDSS | | Υ | ′ _{fs} @1 | kHz (t | yp.) | G _{PS} (| G _{CS} °)/ | NF (NF | CS°) (ty | p.) | Package | | Application | Number | (V _{GDO}) | | | | V _{DS} | V _{G1S} /
V _{G2S} | | V _{DS} | ΙD | V _{G2S} | | V _{DS} | ΙD | V _{G2S} | f | Type | | | | (V) | (mA) | (mW) | (mA) | (V) | (V) | (ms) | (V) | (mA) | (V) | (dB/dB) | (V) | (mA) | (V) | (MHz) | | | | 3SK195 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4 | 13 | 6 | 10 | 4 | 27/1.1 | 6 | 10 | 4 | 200 | SMQ | | | 3SK225 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 21 | 6 | 10 | 4.5 | 22/2.0 | 6 | 10 | 4.5 | 500 | SMQ | | | 3SK226 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 13 | 6 | 10 | 4.5 | 27/1.1 | 6 | 10 | 4.5 | 200 | SMQ | | VHF RF/MIX | 3SK257 | 13.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 21 | 6 | 10 | 4.5 | 22/2.0 | 6 | 10 | 4.5 | 500 | USQ | | VIII KENNIA | 3SK258 | 13.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 13 | 6 | 10 | 4.5 | 27/1.1 | 6 | 10 | 4.5 | 200 | USQ | | | 3SK260 | 15 | 30 | 100 | 3 to
14 | 6 | 0/3 | 27 | 6 | 10 | 3 | 24.5°/3.3° | 6 | _ | _ | 200 | USQ | | | 3SK292 | 12.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 23.5 | 6 | 10 | 4.5 | 21.5/1.8 | 6 | 10 | 4.5 | 500 | SMQ | | | 3SK294 | 12.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 23.5 | 6 | 10 | 4.5 | 21.5/1.8 | 6 | 10 | 4.5 | 500 | USQ | | | 3SK199 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4 | 21.5 | 6 | 10 | 4 | 19.5/1.9 | 6 | 10 | 4 | 800 | SMQ | | | 3SK207 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 21.5 | 6 | 10 | 4.5 | 19.5/1.9 | 6 | 10 | 4.5 | 800 | SMQ | | | 3SK232 | 12.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 21 | 6 | 10 | 4.5 | 20/1.5 | 6 | 10 | 4.5 | 800 | SMQ | | UHF RF/MIX | 3SK249 | 12.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 21 | 6 | 10 | 4.5 | 20/1.5 | 6 | 10 | 4.5 | 800 | USQ | | OF REVIVIE | 3SK256 | 13.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 21.5 | 6 | 10 | 4.5 | 19.5/1.9 | 6 | 10 | 4.5 | 800 | USQ | | | 3SK259 | 15 | 30 | 100 | 0 to
0.1 | 6 | 0/3 | 18.5 | 6 | 10 | 3 | 19/2.6 | 6 | 10 | 3 | 800 | USQ | | | 3SK291 | 12.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 27 | 6 | 10 | 4.5 | 23/1.5 | 6 | 10 | 4.5 | 800 | SMQ | | | 3SK293 | 12.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 27 | 6 | 10 | 4.5 | 23/1.5 | 6 | 10 | 4.5 | 800 | SMQ | #### 3. Transistors for the VHF-to-UHF Band | | | Maxir | num Ra | atings | | | | | Е | lectrica | l Chara | cteristi | cs | | | | | | |-------------|--------------|------------------|--------|--------|-----------------|-----------------|-------|------------------------|------------------------|----------|---------------------|---------------------|------------|------|---------------------|------------------------|------------|---------| | Application | Part Number | V _{CEO} | Ic | Pc | C _{ob} | C _{re} | 1 | f _T (typ.) | | | S _{21e} | ² (typ.) | | | NF (| (typ.) | | Package | | Application | T dit Number | (V) | (mA) | (mW) | (pF) | (pF) | (GHz) | V _{CE}
(V) | I _C
(mA) | (dB) | V _{CE} (V) | I _C (mA) | f
(GHz) | (dB) | V _{CE} (V) | I _C
(mA) | f
(GHz) | Туре | | | 2SC2498 | 20 | 50 | 300 | 1.15 | 0.75 | 3.5 | 10 | 10 | 14.5 | 10 | 10 | 0.5 | 2.5 | 10 | 5 | 0.5 | TO-92 | | | 2SC5064 | 12 | 30 | 150 | 0.7 | 0.45 | 7 | 5 | 10 | 12 | 5 | 10 | 1 | 1.1 | 5 | 3 | 1 | S-MINI | | | 2SC5065 | 12 | 30 | 100 | 0.7 | 0.45 | 7 | 5 | 10 | 12 | 5 | 10 | 1 | 1.1 | 5 | 3 | 1 | USM | | | 2SC5066 | 12 | 30 | 100 | 0.7 | 0.45 | 7 | 5 | 10 | 12 | 5 | 10 | 1 | 1.1 | 5 | 3 | 1 | SSM | | | 2SC5066FT | 12 | 30 | 100 | 0.7 | 0.45 | 7 | 5 | 10 | 12 | 5 | 10 | 1 | 1.1 | 5 | 3 | 1 | TESM | | | 2SC5084 | 12 | 80 | 150 | 1.1 | 0.7 | 7 | 10 | 20 | 11 | 10 | 20 | 1 | 1.1 | 10 | 5 | 1 | S-MINI | | | 2SC5085 | 12 | 80 | 100 | 1.0 | 0.7 | 7 | 10 | 20 | 11 | 10 | 20 | 1 | 1.1 | 10 | 5 | 1 | USM | | | 2SC5086 | 12 | 80 | 100 | 0.9 | 0.6 | 7 | 10 | 20 | 11 | 10 | 20 | 1 | 1.1 | 10 | 5 | 1 | SSM | | | 2SC5086FT | 12 | 80 | 100 | 0.9 | 0.6 | 7 | 10 | 20 | 11 | 10 | 20 | 1 | 1.1 | 10 | 5 | 1 | TESM | | | 2SC5087 | 12 | 80 | 150 | 1.1 | 0.65 | 7 | 10 | 20 | 13 | 10 | 20 | 1 | 1.1 | 10 | 5 | 1 | SMQ | | | 2SC5087R* | 12 | 80 | 150 | _ | 0.65 | 8 | 10 | 30 | 13.5 | 10 | 30 | 1 | 1.1 | 10 | 7 | 1 | SMQ (R) | | | 2SC5088 | 12 | 80 | 100 | 1.1 | 0.65 | 7 | 10 | 20 | 13 | 10 | 20 | 1 | 1.1 | 10 | 5 | 1 | USQ | | | 2SC5089 | 10 | 40 | 150 | 0.7 | 0.5 | 10 | 8 | 20 | 7.5 | 8 | 20 | 2 | 1.7 | 8 | 5 | 2 | S-MINI | | | 2SC5090 | 10 | 40 | 100 | 0.7 | 0.5 | 10 | 8 | 20 | 7.5 | 8 | 20 | 2 | 1.7 | 8 | 5 | 2 | USM | | | 2SC5091 | 10 | 40 | 100 | 0.7 | 0.5 | 10 | 8 | 20 | 7.5 | 8 | 20 | 2 | 1.7 | 8 | 5 | 2 | SSM | | | 2SC5091FT | 10 | 40 | 100 | 0.7 | 0.5 | 10 | 8 | 20 | 7.5 | 8 | 20 | 2 | 1.7 | 8 | 5 | 2 | TESM | | | 2SC5092 | 10 | 40 | 150 | 0.7 | 0.45 | 10 | 8 | 20 | 9.5 | 8 | 20 | 2 | 1.8 | 8 | 5 | 2 | SMQ | | | 2SC5093 | 10 | 40 | 100 | 0.65 | 0.45 | 10 | 8 | 20 | 9.5 | 8 | 20 | 2 | 1.8 | 8 | 5 | 2 | USQ | | | 2SC5094 | 10 | 15 | 150 | 0.55 | 0.4 | 10 | 6 | 7 | 7 | 6 | 7 | 2 | 1.8 | 6 | 3 | 2 | S-MINI | | VHF-to-UHF | 2SC5095 | 10 | 15 | 100 | 0.5 | 0.4 | 10 | 6 | 7 | 7.5 | 6 | 7 | 2 | 1.8 | 6 | 3 | 2 | USM | | AMP | 2SC5096 | 10 | 15 | 100 | 0.45 | 0.4 | 10 | 6 | 7 | 8 | 6 | 7 | 2 | 1.8 | 6 | 3 | 2 | SSM | | | 2SC5096FT | 10 | 15 | 100 | 0.45 | 0.4 | 10 | 6 | 7 | 8 | 6 | 7 | 2 | 1.8 | 6 | 3 | 2 | TESM | | | 2SC5097 | 10 | 15 | 150 | 0.5 | 0.35 | 10 | 6 | 7 | 10 | 6 | 7 | 2 | 1.8 | 6 | 3 | 2 | SMQ | | | 2SC5098 | 10 | 15 | 100 | 0.5 | 0.34 | 10 | 6 | 7 | 10 | 6 | 7 | 2 | 1.8 | 6 | 3 | 2 | USQ | | | 2SC5317FT | 5 | 20 | 100 | 0.6 | 0.4 | 13 | 3 | 15 | 9 | 3 | 15 | 2 | 1.3 | 3 | 5 | 2 | TESM | | | 2SC5319 | 5 | 20 | 100 | 0.6 | 0.4 | 16 | 3 | 15 | 11.5 | 3 | 15 | 2 | 1.3 | 3 | 5 | 2 | USQ | | | 2SC5463 | 12 | 60 | 100 | 0.8 | 0.55 | 7 | 8 | 15 | 12 | 8 | 15 | 1 | 1.1 | 8 | 5 | 1 | USM | | | 2SC5464 | 12 | 60 | 100 | 0.8 | 0.55 | 7 | 8 | 15 | 12 | 8 | 15 | 1 | 1.1 | 8 | 5 | 1 | SSM | | | 2SC5464FT | 12 | 60 | 100 | 0.8 | 0.55 | 7 | 8 | 15 | 12 | 8 | 15 | 1 | 1.1 | 8 | 5 | 1 | TESM | | | MT3S03A* | 5 | 40 | 150 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | S-MINI | | | MT3S03AFS | 5 | 40 | 50 | _ | 0.75 | 10 | 3 | 10 | 8.5 | 3 | 20 | 2 | 1.7 | 1 | 5 | 2 | fSM | | | MT3S03AS | 5 | 40 | 100 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | SSM | | | MT3S03AT | 5 | 40 | 100 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | TESM | | | MT3S03AU | 5 | 40 | 100 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | USM | | | MT3S04A* | 5 | 40 | 150 | _ | 0.75 | 7 | 3 | 7 | 13.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | SMQ | | | MT3S04AFS | 5 | 40 | 50 | _ | 0.8 | 7 | 3 | 7 | 13 | 3 | 20 | 1 | 1.3 | 1 | 5 | 1 | fSM | | | MT3S04AS | 5 | 40 | 100 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | SSM | | | MT3S04AT | 5 | 40 | 100 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | TESM | | | MT3S04AU | 5 | 40 | 100 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | USM | | | MT3S05FS | 5 | 40 | 50 | _ | 0.9 | 4.5 | 1 | 5 | 12 | 3 | 20 | 1 | 1.4 | 1 | 5 | 1 | fSM | ^{*:} New product | | | Maxir | num Ra | atings | | | | | F | lectrica | l Chara | cteristi | cs | | | | | | |-------------------|-------------|------------------|--------|--------|-----------------|-----------------|-------|-----------------------|----------------|----------|------------------------|---------------------|------------|------|-----------------|---------------------|------------|---------| | | | V _{CEO} | Ic | Pc | C _{ob} | C _{re} | | f _T (typ.) | | | | ² (typ.) | | | NF |
(typ.) | | Package | | Application | Part Number | (V) | (mA) | (mW) | (pF) | (pF) | (GHz) | V _{CE} | I _C | (dB) | V _{CE}
(V) | I _C (mA) | f
(GHz) | (dB) | V _{CE} | I _C (mA) | f
(GHz) | Туре | | | MT3S05T | 5 | 40 | 100 | _ | 0.9 | 4.5 | 1 | 5 | 11.5 | 3 | 20 | 1 | 1.4 | 1 | 5 | 1 | TESM | | | MT3S06FS | 5 | 15 | 50 | _ | 0.25 | 10 | 3 | 5 | 9.5 | 3 | 7 | 2 | 1.7 | 1 | 3 | 2 | fSM | | | MT3S06S | 5 | 15 | 60 | _ | 0.25 | 10 | 3 | 5 | 9.5 | 3 | 7 | 2 | 1.6 | 3 | 3 | 2 | SSM | | | MT3S06T | 5 | 15 | 60 | _ | 0.25 | 10 | 3 | 5 | 9.5 | 3 | 7 | 2 | 1.6 | 3 | 3 | 2 | TESM | | | MT3S06U | 5 | 15 | 60 | _ | 0.25 | 10 | 3 | 5 | 9.5 | 3 | 7 | 2 | 1.6 | 3 | 3 | 2 | USM | | | MT3S07FS | 5 | 25 | 50 | _ | 0.4 | 12 | 3 | 10 | 10 | 3 | 15 | 2 | 1.6 | 1 | 5 | 2 | fSM | | | MT3S07S | 5 | 25 | 100 | _ | 0.4 | 12 | 3 | 10 | 9.5 | 3 | 15 | 2 | 1.5 | 3 | 5 | 2 | SSM | | | MT3S07T | 5 | 25 | 100 | _ | 0.4 | 12 | 3 | 10 | 9.5 | 3 | 15 | 2 | 1.5 | 3 | 5 | 2 | TESM | | | MT3S07U | 5 | 25 | 100 | _ | 0.4 | 12 | 3 | 10 | 9.5 | 3 | 15 | 2 | 1.5 | 3 | 5 | 2 | USM | | | MT3S08T | 8 | 40 | 100 | _ | 0.55 | 4.5 | 1 | 5 | 13.5 | 3 | 20 | 1 | 1.4 | 1 | 5 | 1 | TESM | | | MT3S14FS | 2.5 | 30 | 50 | _ | 0.5 | 11 | 1 | 5 | 9 | 3 | 15 | 2 | 1.7 | 1 | 5 | 2 | fSM | | | MT3S14T | 2.5 | 30 | 70 | _ | 0.5 | 11 | 1 | 5 | 9 | 3 | 15 | 2 | 1.7 | 1 | 5 | 2 | TESM | | | MT3S16FS* | 5 | 60 | 50 | _ | 2.4 | 4 | 3 | 10 | 5.5 | 3 | 30 | 1 | 2.4 | 2 | 5 | 1 | fSM | | | MT3S16T* | 5 | 60 | 100 | _ | 2.4 | 4 | 3 | 10 | 5.5 | 3 | 30 | 1 | 2.4 | 2 | 5 | 1 | TESM | | | MT3S16U* | 5 | 60 | 100 | _ | 2.4 | 4 | 3 | 10 | 5.5 | 3 | 30 | 1 | 2.4 | 2 | 5 | 1 | USM | | | MT3S18T | 8 | 20 | 100 | _ | 0.4 | 6 | 1 | 5 | 14 | 3 | 15 | 1 | 1.4 | 1 | 5 | 1 | TESM | | | MT3S18FS* | 8 | 20 | 100 | _ | 0.4 | 6 | 1 | 5 | 14 | 3 | 15 | 1 | 1.4 | 1 | 5 | 1 | fSM | | | MT3S35FS | 4.5 | 24 | 100 | 0.30 | 0.15 | 20 | 3 | 10 | 13 | 3 | 10 | 2 | 1.4 | 3 | 2 | 2 | fSM | | i | MT3S35T | 4.5 | 24 | 100 | 0.46 | 0.21 | 20 | 3 | 10 | 13 | 3 | 10 | 2 | 1.4 | 3 | 3 | 2 | TESM | | | MT3S36FS | 4.5 | 36 | 100 | 0.37 | 0.21 | 19 | 3 | 15 | 12.5 | 3 | 15 | 2 | 1.3 | 3 | 3 | 2 | fSM | | | MT3S36T | 4.5 | 36 | 100 | 0.55 | 0.26 | 19 | 3 | 15 | 12.5 | 3 | 15 | 2 | 1.3 | 3 | 3 | 2 | TESM | | | MT3S37FS | 4.5 | 50 | 100 | 0.49 | 0.30 | 19 | 3 | 20 | 12 | 3 | 20 | 2 | 1.2 | 3 | 3 | 2 | fSM | | | MT3S37T | 4.5 | 50 | 100 | 0.66 | 0.35 | 19 | 3 | 20 | 12 | 3 | 20 | 2 | 1.2 | 3 | 3 | 2 | TESM | | VHF-to-UHF
AMP | MT3S41FS | 4.5 | 80 | 100 | 0.72 | 0.46 | 15 | 3 | 20 | 10 | 3 | 20 | 2 | 1.2 | 3 | 5 | 2 | fSM | | | MT3S41T | 4.5 | 80 | 100 | 0.90 | 0.55 | 15 | 3 | 20 | 10 | 3 | 20 | 2 | 1.2 | 3 | 5 | 2 | TESM | | | MT3S45FS | 4.5 | 30 | 100 | 0.53 | 0.28 | 18 | 3 | 20 | 12.5 | 3 | 20 | 2 | 1.1 | 3 | 6 | 2 | fSM | | i | MT3S45T | 4.5 | 30 | 100 | 0.66 | 0.33 | 18 | 3 | 20 | 12.5 | 3 | 20 | 2 | 1.1 | 3 | 6 | 2 | TESM | | i | MT3S106FS* | 13 | 80 | 100 | _ | 0.5 | 8.5 | 1 | 10 | 8 | 1 | 10 | 2 | 1.2 | 1 | 10 | 2 | fSM | | | MT3S107FS* | 8.5 | 20 | 100 | 0.44 | 0.19 | 16.5 | 1 | 10 | 13 | 3 | 10 | 2 | 0.85 | 1 | 5 | 1 | fSM | | | MT4S03A | 5 | 40 | 150 | _ | 0.7 | 10 | 3 | 10 | 9 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | SMQ | | | MT4S03AU | 5 | 40 | 100 | _ | 0.7 | 10 | 3 | 10 | 9 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | USQ | | | MT4S04A | 5 | 40 | 150 | _ | 0.75 | 7 | 3 | 7 | 13.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | SMQ | | | MT4S04AU | 5 | 40 | 100 | _ | 0.75 | 7 | 3 | 7 | 13.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | USQ | | | MT4S06 | 5 | 15 | 60 | _ | 0.23 | 10 | 3 | 5 | 11.5 | 3 | 7 | 2 | 1.6 | 3 | 3 | 2 | SMQ | | | MT4S06U | 5 | 15 | 60 | _ | 0.23 | 10 | 3 | 5 | 11.5 | 3 | 7 | 2 | 1.6 | 3 | 3 | 2 | USQ | | | MT4S07 | 5 | 25 | 150 | _ | 0.4 | 12 | 3 | 10 | 10.5 | 3 | 15 | 2 | 1.5 | 3 | 5 | 2 | SMQ | | | MT4S07U* | 5 | 25 | 100 | _ | 0.4 | 12 | 3 | 10 | 10.5 | 3 | 15 | 2 | 1.5 | 3 | 5 | 2 | USQ | | | MT4S100T | 3 | 15 | 45 | 0.41 | 0.14 | 23 | 2 | 10 | 17 | 2 | 10 | 2 | 0.72 | 2 | 5 | 2 | TESQ | | | MT4S100U | 3.0 | 15 | 45 | 0.41 | 0.14 | 22 | 2 | 10 | 16 | 2 | 10 | 2 | 0.72 | 2 | 5 | 2 | USQ | | | MT4S101T | 3 | 10 | 30 | 0.34 | 0.1 | 23 | 2 | 7 | 17 | 2 | 7 | 2 | 0.8 | 2 | 5 | 2 | TESQ | | | MT4S101U | 3.0 | 10 | 30 | 0.34 | 0.10 | 21 | 2 | 7 | 16 | 2 | 7 | 2 | 0.8 | 2 | 5 | 2 | USQ | | | MT4S102T | 3 | 20 | 60 | 0.43 | 0.17 | 25 | 2 | 15 | 16 | 2 | 15 | 2 | 0.58 | 2 | 10 | 2 | USQ | | | MT4S102U | 3 | 20 | 60 | 0.43 | 0.17 | 24 | 2 | 15 | 15 | 2 | 15 | 2 | 0.58 | 2 | 10 | 2 | TESQ | | | MT4S104T | 3 | 10 | 30 | 0.26 | 0.09 | 25 | 2 | 7 | 18 | 2 | 7 | 2 | 0.67 | 2 | 5 | 2 | USQ | | | MT4S104U | 3 | 10 | 30 | 0.26 | 0.09 | 23 | 2 | 7 | 17 | 2 | 7 | 2 | 0.67 | 2 | 5 | 5 | TESQ | | | MT4S200U* | 8 | 35 | 100 | 0.25 | 0.074 | 30 | 3 | 15 | 17.5 | 3 | 15 | 2 | 1.7 | 3 | 5 | 2 | USQ | | | MT4S32U | 4.5 | 15 | 67.5 | 0.4 | 0.2 | 16 | 3 | 10 | 13.5 | 3 | 10 | 2 | 1.4 | 3 | 3 | 5 | USQ | ^{*:} New product | | | Maxir | num Ra | atings | | | | | E | lectrica | l Chara | cteristi | cs | | | | | | |-------------|---------------|------------------|--------|--------|------|------|-------|------------------------|------------------------|----------|---------------------|------------------------|------------|------|---------------------|------------------------|------------|---------| | Application | Part Number | V _{CEO} | Ic | Pc | Cob | Cre | 1 | f _T (typ.) |) | | S _{21e} | ² (typ.) | | | NF (| (typ.) | | Package | | Аррисаціон | rait Nulliber | (V) | (mA) | (mW) | (pF) | (pF) | (GHz) | V _{CE}
(V) | I _C
(mA) | (dB) | V _{CE} (V) | I _C
(mA) | f
(GHz) | (dB) | V _{CE} (V) | I _C
(mA) | f
(GHz) | Туре | | | 2SC3547A | 12 | 30 | 150 | 1.05 | _ | 4 | 10 | 10 | _ | _ | _ | _ | _ | _ | _ | _ | S-MINI | | | 2SC4247 | 12 | 30 | 100 | 1.05 | _ | 4 | 10 | 10 | _ | _ | _ | _ | | _ | _ | _ | USM | | | 2SC5106 | 10 | 30 | 150 | 0.75 | 0.5 | 6 | 5 | 5 | 11 | 5 | 5 | 1 | _ | _ | _ | _ | S-MINI | | | 2SC5107 | 10 | 30 | 100 | 0.75 | 0.5 | 6 | 5 | 5 | 11 | 5 | 5 | 1 | _ | _ | _ | _ | USM | | | 2SC5108 | 10 | 30 | 100 | 0.7 | 0.5 | 6 | 5 | 5 | 11 | 5 | 5 | 1 | | _ | _ | _ | SSM | | | 2SC5108FT | 10 | 30 | 100 | 0.7 | 0.5 | 6 | 5 | 5 | 11 | 5 | 5 | 1 | | _ | _ | _ | TESM | | | 2SC5109 | 10 | 60 | 150 | 0.9 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 1 | _ | _ | _ | _ | S-MINI | | | 2SC5110 | 10 | 60 | 100 | 0.9 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 1 | | _ | _ | _ | USM | | | 2SC5111 | 10 | 60 | 100 | 0.9 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 1 | | _ | _ | _ | SSM | | | 2SC5111FT | 10 | 60 | 100 | 0.9 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 1 | | _ | _ | _ | TESM | | | MT3S03A* | 5 | 40 | 150 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | S-MINI | | | MT3S03AFS | 5 | 40 | 50 | _ | 0.75 | 10 | 3 | 10 | 8.5 | 3 | 20 | 2 | 1.7 | 1 | 5 | 2 | fSM | | | MT3S03AS* | 5 | 40 | 100 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | SSM | | | MT3S03AT* | 5 | 40 | 100 | _ | 0.75 | 10 | 3 | 10 | 8 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | TESM | | | MT3S03AU* | 5 | 40 | 100 | _ | 0.7 | 10 | 3 | 10 | 9 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | USQ | | | MT3S04A* | 5 | 40 | 150 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | S-MINI | | | MT3S04AFS | 5 | 40 | 50 | _ | 0.8 | 7 | 3 | 7 | 13 | 3 | 20 | 1 | 1.3 | 1 | 5 | 1 | fSM | | VHF-to-UHF | MT3S04AS* | 5 | 40 | 100 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | SSM | | osc | MT3S04AT* | 5 | 40 | 100 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | TESM | | | MT3S04AU* | 5 | 4 | 100 | _ | 0.8 | 7 | 3 | 7 | 12.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | USM | | | MT3S05FS | 5 | 40 | 50 | _ | 0.9 | 4.5 | 1 | 5 | 12 | 3 | 20 | 1 | 1.4 | 1 | 5 | 1 | fSM | | | MT3S05T* | 5 | 40 | 100 | _ | 0.9 | 4.5 | 1 | 5 | 8.5 | 1 | 5 | 1 | 1.4 | 1 | 5 | 1 | TESM | | | MT3S08FS | 8 | 40 | 50 | _ | 0.55 | 4.5 | 1 | 5 | 14 | 3 | 20 | 1 | 1.4 | 1 | 5 | 1 | fSM | | | MT3S08T* | 8 | 40 | 100 | _ | 0.55 | 4.5 | 1 | 5 | 10.5 | 1 | 5 | 1 | 1.4 | 1 | 5 | 1 | TESM | | | MT3S106FS* | 13 | 80 | 100 | _ | 0.5 | 8.5 | 1 | 10 | 8 | 1 | 10 | 2 | 1.2 | 1 | 10 | 2 | fSM | | | MT3S108FS* | 4.5 | 25 | 100 | 0.41 | 0.3 | 13 | 1 | 10 | 11 | 3 | 10 | 2 | 0.85 | 1 | 7 | 2 | fSM | | | MT3S109FS* | 13 | 80 | 100 | _ | 0.75 | 7.1 | 1 | 10 | 8.2 | 3 | 20 | 2 | 1.35 | 1 | 15 | 2 | fSM | | | MT3S110FS* | 13 | 80 | 100 | _ | 0.6 | 7.5 | 1 | 10 | 9 | 3 | 20 | 2 | 1.3 | 1 | 15 | 2 | fSM | | | MT3S11FS | 6 | 40 | 50 | _ | 0.65 | 6 | 1 | 5 | 6.5 | 3 | 20 | 2 | 2.4 | 1 | 5 | 2 | fSM | | | MT3S11T | 6 | 40 | 100 | _ | 0.65 | 6 | 1 | 5 | 6.5 | 3 | 20 | 2 | 2.4 | 1 | 5 | 2 | TESM | | | MT3S12T | 6 | 40 | 100 | | 0.7 | 7 | 1 | 5 | 7 | 3 | 20 | 2 | 1.7 | 1 | 5 | 2 | TESM | | | MT3S18T | 8 | 20 | 100 | _ | 0.4 | 6 | 1 | 5 | 14 | 3 | 15 | 1 | 1.4 | 1 | 5 | 1 | TESM | | | MT4S03A* | 5 | 40 | 150 | | 0.7 | 10 | 3 | 10 | 9 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | SMQ | | | MT4S03AU* | 5 | 40 | 100 | _ | 0.7 | 10 | 3 | 10 | 9 | 3 | 20 | 2 | 1.4 | 3 | 7 | 2 | USQ | | | MT4S04A* | 5 | 40 | 150 | _ | 0.75 | 7 | 3 | 7 | 13.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | SMQ | | | MT4S04AU* | 5 | 40 | 100 | _ | 0.75 | 7 | 3 | 7 | 13.5 | 3 | 20 | 1 | 1.2 | 3 | 7 | 1 | USQ | ^{*:} New product #### 4. Transistors for AM and FM Tuners | | | Maxir | num Ra | tings | | ı | Electrica | l Charact | teristics | | | | |----------------------|----------|------------------|--------|-------|--------------|------------------------|------------------------|----------------|------------------------|------------------------|----------------------------|---------| | Application | Part | V _{CEO} | Ic | Pc | | h _{FE} | | f _T | Typ. (mi | in) | C _{re} | Package | | | Number | (V) | (mA) | (mW) | | V _{CE}
(V) | I _C
(mA) | (MHz) | V _{CE}
(V) | I _C
(mA) | (C _{ob})
(pF) | Туре | | | 2SC1923 | 30 | 20 | 100 | 40 to
200 | 6 | 1 | 550 | 6 | 1 | 0.7 | TO-92 | | | 2SC2668 | 30 | 20 | 100 | 40 to
200 | 6 | 1 | 550 | 6 | 1 | 0.7 | MINI | | FM RF, MIX/OSC | 2SC2714 | 30 | 20 | 100 | 40 to
200 | 6 | 1 | 550 | 6 | 1 | 0.7 | S-MINI | | | 2SC4215 | 30 | 20 | 100 | 40
to
200 | 6 | 1 | 550 | 6 | 1 | 0.7 | USM | | | 2SC4915 | 30 | 20 | 100 | 40 to
200 | 6 | 1 | 550 | 6 | 1 | 0.7 | SSM | | FM OSC | 2SC2995 | 30 | 50 | 200 | 40 to
240 | 6 | 1 | 350 | 6 | 1 | 0.9 | MINI | | FINI OSC | 2SC2996 | 30 | 50 | 150 | 40 to
240 | 6 | 1 | 350 | 6 | 1 | 0.9 | S-MINI | | | 2SC380TM | 30 | 50 | 300 | 40 to
240 | 12 | 2 | (100) | 10 | 1 | (2.0) | TO-92 | | FM IF/AM CONV,
IF | 2SC2669 | 30 | 50 | 200 | 40 to
240 | 12 | 2 | (100) | 10 | 1 | (2.0) | MINI | | | 2SC2715 | 30 | 50 | 150 | 40 to
240 | 12 | 2 | (100) | 10 | 1 | (2.0) | S-MINI | | | 2SC941TM | 30 | 100 | 400 | 40 to
240 | 12 | 2 | (80) | 10 | 2 | 2.2 | TO-92 | | AM RF, CONV | 2SC2670 | 30 | 100 | 200 | 40 to
240 | 12 | 2 | (80) | 10 | 2 | 2.2 | MINI | | | 2SC2716 | 30 | 100 | 150 | 40 to
240 | 12 | 2 | (80) | 10 | 2 | 2.2 | S-MINI | | | 2SC1815 | 50 | 150 | 400 | 70 to
700 | 6 | 2 | (80) | 10 | 1 | (2.0) | TO-92 | | AM CONV, IF | 2SC2458 | 50 | 150 | 200 | 70 to
700 | 6 | 2 | (80) | 10 | 1 | (2.0) | MINI | | AIVI COINV, IF | 2SC2712 | 50 | 150 | 150 | 70 to
700 | 6 | 2 | (80) | 10 | 1 | (2.0) | S-MINI | | | 2SC4116 | 50 | 150 | 100 | 70 to
700 | 6 | 2 | (80) | 10 | 1 | (2.0) | USM | #### 5. FETs for AM and FM Tuners | | | Maxim | um Ra | tings | | | | | Ele | ctrical | Charac | teristics | | | | | | |-------------|---------|---|---------------------------|-------|--------------|------------------|---|------|--------------------|----------------|--|---------------|---------------------|----------------|---|------------|---------| | | Part | V _{DS} | ID | PD | | I _{DSS} | | Y | _{fs} @1 | kHz (1 | yp.) | Grs | (G _{CS°}) | /NF (NF | CS°) (ty | o.) | Package | | Application | Number | *V _{GDS}
(V _{GDO})
(V) | (I _C)
(mA) | (mW) | (mA) | V _{DS} | V _{G1S} /
V _{G2S}
(V) | (ms) | V _{DS} | I _D | V _{G2S}
V _{GS}
(V) | (dB/dB) | V _{DS} | I _D | V _{G2S}
(V _{GS})
(V) | f
(MHz) | Туре | | | 3SK195 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4 | 13 | 6 | 10 | 4 | 27/1.1 | 6 | _ | 4 | 200 | SMQ | | | 3SK225 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 21 | 6 | 10 | 4.5 | 22/2.0 | 6 | 10 | 4.5 | 500 | SMQ | | FM RF, MIX | 3SK226 | 13.5 | 30 | 150 | 0 to
0.1 | 6 | 0/4.5 | 13 | 6 | 10 | 4.5 | 27/1.1 | 6 | 10 | 4.5 | 200 | SMQ | | | 3SK257 | 13.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 21 | 6 | 10 | 4.5 | 22/2.0 | 6 | 10 | 4.5 | 500 | USQ | | | 3SK258 | 13.5 | 30 | 100 | 0 to
0.1 | 6 | 0/4.5 | 13 | 6 | 10 | 4.5 | 27/1.1 | 6 | 10 | 4.5 | 200 | USQ | | | 2SK241 | 20 | 30 | 200 | 1.5 to
14 | 10 | 0 | 10 | 10 | _ | (0) | 28/1.7 | 10 | _ | (0) | 100 | MINI | | | 2SK302 | 20 | 30 | 150 | 1.5 to
14 | 10 | 0 | 10 | 10 | _ | (0) | 28/1.7 | 10 | _ | (0) | 100 | S-MINI | | | 2SK882 | 20 | 30 | 100 | 3 to
14 | 10 | 0 | 10 | 10 | _ | (0) | 28/1.7 | 10 | _ | (0) | 100 | USM | | FM RF | 2SK161 | (-18) | (10) | 200 | 1 to
10 | 10 | 0 | 9 | 10 | _ | (0) | 18/2.5 | 10 | _ | (0) | 100 | MINI | | | 2SK211 | (-18) | (10) | 150 | 1 to
10 | 10 | 0 | 9 | 10 | _ | (0) | 18/2.5 | 10 | _ | (0) | 100 | S-MINI | | | 2SK881 | (-18) | (10) | 100 | 1 to
10 | 10 | 0 | 9 | 10 | _ | (0) | 18/2.5 | 10 | _ | (0) | 100 | USM | | | 2SK1771 | 12.5 | 30 | 150 | 0 to
0.1 | 8 | 0 | 15 | 8 | 10 | _ | 23/1.0 | 8 | 16 | _ | 100 | SMQ | | FM RF, OSC | 2SK192A | (-18) | (10) | 200 | 3 to
24 | 10 | 0 | 7 | 10 | _ | (0) | 24/1.8 | 10 | _ | (0) | 100 | MINI | | FM RF, OSC | 2SK210 | (-18) | (10) | 100 | 3 to
24 | 10 | 0 | 7 | 10 | _ | (0) | 24/1.8 | 10 | _ | (0) | 100 | S-MINI | | | 2SK709 | *-20 | (10) | 300 | 6 to
32 | 5 | 0 | 25 | 5 | _ | (0) | <i>—</i> /0.5 | 5 | 1 | Rg
1 kΩ | 1 kHz | TO-92 | | AM RF | 2SK710 | *-20 | (10) | 200 | 6 to
32 | 5 | 0 | 25 | 5 | _ | (0) | <i>—</i> /0.5 | 5 | 1 | Rg
1 kΩ | 1 kHz | MINI | | AIVI KE | 2SK711 | *-20 | (10) | 150 | 6 to
32 | 5 | 0 | 25 | 5 | _ | (0) | _ | | _ | _ | _ | S-MINI | | | 2SK1875 | *-20 | (10) | 100 | 6 to
32 | 5 | 0 | 25 | 5 | _ | (0) | _ | | | _ | _ | USM | #### 6. Dual-Chip Transistors for AM Tuners | | Part | V _{GDS} | IG | V _{CEO} | Ic | PT | | I _{DSS} | | Į, | /fs Ty | p. | | h _{FE} | | | Daakama | |-------------|---------|------------------|------|------------------|------|------|------------|------------------------|------------------------|------|------------------------|------------------------|------------------|------------------------|------------------------|---------------------|-----------------| | Application | Number | (V) | (mA) | (V) | (mA) | (mW) | (mA) | V _{DS}
(V) | V _{GS}
(V) | (ms) | V _{DS}
(V) | V _{GS}
(V) | | V _{CE}
(V) | I _C
(mA) | Contents | Package
Type | | AM RF | HN3G01J | -20 | 10 | 50 | 150 | 200 | 6 to
32 | 5 | 0 | 25 | 5 | 0 | 120
to
400 | 6 | 2 | 2SK711 +
2SC2712 | SMV | Package type: SMV (SSOP5-P-0.95) ### **TOSHIBA** #### 7. Dual-Chip Transistors for the VHF-to-UHF Band | | | | V _{CEO} | Ic | PC▲ | | h _{FE} | | | f _T Typ. | | | NF | Тур. | | Component | Package | |----------------------------|--------------|----|------------------|------|------|------------------|------------------------|------------------------|-------|------------------------|------------------------|------|------------------------|------------------------|------------|--------------|---------| | Application | Part Number | tr | (V) | (mA) | (mW) | | V _{CE}
(V) | I _C
(mA) | (GHz) | V _{CE}
(V) | I _C
(mA) | (dB) | V _{CE}
(V) | I _C
(mA) | f
(GHz) | Devices | Type | | | MT6L03AE | | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 10 | 3 | 10 | 1.4 | 3 | 7 | 2 | MT3S03AS × 2 | ES6 | | VHF-to-UHF | MT6L03AT | | 5 | 40 | 200 | 80 to
160 | 1 | 5 | 10 | 3 | 10 | 1.4 | 3 | 7 | 2 | MT3S03AS × 2 | TU6 | | Low-Noise Amp | MT6L04AE | | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 7 | 3 | 7 | 1.2 | 3 | 7 | 1 | MT3S04AS × 2 | ES6 | | | MT6L04AT | | 5 | 40 | 200 | 80 to
160 | 1 | 5 | 7 | 3 | 7 | 1.2 | 3 | 7 | 1 | MT3S04AS × 2 | TU6 | | | MT6C03AE | | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 10 | 3 | 10 | 1.4 | 3 | 7 | 2 | MT3S03AS × 2 | ES6 | | | MT6C04AE | | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 7 | 3 | 7 | 1.2 | 3 | 7 | 1 | MT3S04AS × 2 | ES6 | | | MT6L05FS* | | 5 | 40 | 100 | 80 to
140 | 1 | 5 | 4.5 | 1 | 5 | 1.4 | 1 | 5 | 1 | MT3S05FS × 2 | fSM | | | MT6L11FS* | | 6 | 40 | 100 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS × 2 | fSM | | | MT6L53E | Q1 | 5 | 15 | 100 | 70 to
140 | 1 | 5 | 10 | 3 | 5 | 1.6 | 3 | 3 | 2 | MT3S06S | ES6 | | | MIGLOSE | Q2 | 5 | 40 | 100 | 80 to
140 | 1 | 5 | 4.5 | 1 | 5 | 1.4 | 1 | 5 | 1 | MT3S05T | E30 | | | MT6L54E | Q1 | 5 | 15 | 100 | 70 to
140 | 1 | 5 | 10 | 3 | 5 | 1.6 | 3 | 3 | 2 | MT3S06S | ES6 | | | WITOL54E | Q2 | 8 | 40 | 100 | 80 to
140 | 1 | 5 | 4.5 | 1 | 5 | 1.4 | 1 | 5 | 1 | MT3S08T | E30 | | | MTOLESE | Q1 | 5 | 25 | 450 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 3 | 5 | 2 | MT3S07S | F00 | | MT6L5 | MIGLOSE | Q2 | 5 | 40 | 150 | 80 to
140 | 1 | 5 | 4.5 | 1 | 5 | 1.4 | 1 | 5 | 1 | MT3S05T | ES6 | | | MT6L55FS | Q1 | 5 | 25 | 50 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 1 | 5 | 2 | *MT3S07FS | fS6 | | | MIDLOOFS | Q2 | 5 | 40 | 50 | 80 to
140 | 1 | 5 | 4.5 | 1 | 5 | 1.4 | 1 | 5 | 1 | *MT3S05FS | 190 | | \/\!E += \\\!E | MTOLECE | Q1 | 5 | 25 | 150 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 3 | 5 | 2 | MT3S07S | ES6 | | VHF-to-UHF
Buffer + OSC | MT6L56E | Q2 | 8 | 40 | 150 | 80 to
140 | 1 | 5 | 4.5 | 1 | 5 | 1.4 | 1 | 5 | 1 | MT3S08T | E30 | | | NATCL 57A F | Q1 | 5 | 15 | 100 | 70 to
140 | 1 | 5 | 10 | 3 | 5 | 1.6 | 3 | 3 | 2 | MT3S06S | FOC | | | MT6L57AE | Q2 | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 7 | 3 | 7 | 1.2 | 3 | 7 | 1 | MT3S04AS | ES6 | | | MTCLEOAE | Q1 | 5 | 15 | 100 | 70 to
140 | 1 | 5 | 10 | 3 | 5 | 1.6 | 3 | 3 | 2 | MT3S06S | F00 | | | MT6L58AE | Q2 | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 10 | 3 | 10 | 1.4 | 3 | 7 | 2 | MT3S03AS | ES6 | | | NATCI CA A E | Q1 | 5 | 25 | 100 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 3 | 5 | 2 | MT3S07S | F00 | | | MT6L61AE | Q2 | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 7 | 3 | 7 | 1.2 | 3 | 7 | 1 | MT3S03AS | ES6 | | | MTCLCOAF | Q1 | 5 | 25 | 100 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 3 | 5 | 2 | MT3S07S | F00 | | MT6L6 | WITOLOZAE | Q2 | 5 | 40 | 100 | 80 to
160 | 1 | 5 | 10 | 3 | 10 | 1.4 | 3 | 7 | 2 | MT3S03AS | ES6 | | | | Q1 | 5 | 25 | | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 1 | 5 | 2 | MT3S07FS | | | | MT6L63FS | Q2 | 6 | 40 | 50 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS | fS6 | | | | Q1 | 4.5 | 24 | | 70 to
140 | 3 | 10 | 20 | 3 | 10 | 1.4 | 3 | 2 | 2 | MT3S35FS | | | | MT6L64FS | Q2 | 6 | 40 | 50 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS | fS6 | ▲: Total PC *: New product | | | | V _{CEO} | lc | PC▲ | | h _{FE} | | | f _T Typ. | | | NF | Тур. | | Component | Package | |----------------------------|-------------|----|------------------|------|------------------|------------------|------------------------|------------------------|-------|------------------------|------------------------|------|------------------------|------------------------|------------|-------------------|---------| | Application | Part Number | tr | (V) | (mA) | (mW) | | V _{CE}
(V) | I _C
(mA) | (GHz) | V _{CE}
(V) | I _C
(mA) | (dB) | V _{CE}
(V) | I _C
(mA) | f
(GHz) | Component Devices | Туре | | | | Q1 | 4.5 | 36 | | 70 to
140 | 3 | 10 | 20 | 3 | 10 | 1.3 | 3 | 2 | 2 | MT3S36FS | | | | MT6L65FS | Q2 | 6 | 40 | 50 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS | fS6 | | | | Q1 | 4.5 | 36 | | 70 to
140 | 3 | 10 | 20 | 3 | 10 | 1.3 | 3 | 2 | 2 | MT3S36FS | | | | MT6L66FS | Q2 | 6 | 40 | 50 | 100
to
160 | 1 | 5 | 7 | 1 | 5 | 1.7 | 1 | 5
| 2 | MT3S12FS | fS6 | | | | Q1 | 4.5 | 50 | | 70 to
140 | 3 | 20 | 19 | 3 | 20 | 1.2 | 3 | 3 | 2 | MT3S37FS | | | | MT6L67FS | Q2 | 6 | 40 | 50 | 100
to
160 | 1 | 5 | 7 | 1 | 5 | 1.7 | 1 | 5 | 2 | MT3S12FS | fS6 | | | | Q1 | 5 | 15 | | 70 to
140 | 1 | 5 | 10 | 3 | 5 | 1.7 | 1 | 3 | 2 | MT3S06FS | | | | MT6L68FS | Q2 | 6 | 40 | 50 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS | fS6 | | | | Q1 | 5 | 25 | | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 3 | 5 | 2 | MT3S07FS | | | MT6L71FS* | Q2 | 6 | 25 | 50 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11AFS | fS6 | | | | | Q1 | 4.5 | 36 | 50 | 70 to
140 | 3 | 10 | 19 | 3 | 15 | 1.3 | 3 | 3 | 2 | MT3S36FS | | | VHF-to-UHF
Buffer + OSC | MT6L72FS* | Q2 | 6 | 40 | | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11AFS | fS6 | | Bullet + 000 | MT6L73FS* | Q1 | 5 | 25 | 100 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 1 | 5 | 2 | MT3S07FS | fS6 | | | WITOL73F3 | Q2 | 6 | 50 | 100 | 75 to
125 | 1 | 5 | 7 | 1 | 10 | 1.35 | 1 | 15 | 2 | MT3S109FS | 150 | | | MT6L74FS* | Q1 | 5 | 25 | 100 | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 1 | 5 | 2 | MT3S07FS | - fS6 | | | | Q2 | 6 | 80 | 100 | 75 to
125 | 1 | 5 | 7.5 | 1 | 10 | 1.35 | 1 | 15 | 2 | MT3S110FS | 100 | | | | Q1 | 5 | 25 | | 70 to
140 | 1 | 5 | 12 | 3 | 10 | 1.5 | 1 | 5 | 2 | MT3S07FS | | | | MT6L75FS* | Q2 | 6 | 80 | 100 | 110
to
160 | 1 | 5 | 8.5 | 1 | 10 | 1.2 | 1 | 10 | 2 | MT3S106FS | fS6 | | | | Q1 | 5 | 15 | | 70 to
140 | 1 | 5 | 10 | 3 | 5 | 1.7 | 1 | 3 | 2 | MT3S06FS | | | | MT6L76FS* | Q2 | 6 | 80 | 100 | 110
to
160 | 1 | 5 | 8.5 | 1 | 10 | 1.2 | 1 | 10 | 2 | MT3S106FS | fS6 | | MT6L77FS* | Q1 | 6 | 40 | | 70 to
140 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS | | | | | MT6L77FS* | Q2 | 6 | 80 | 100 | 110
to
160 | 1 | 5 | 8.5 | 1 | 10 | 1.2 | 1 | 10 | 2 | MT3S106FS | fS6 | | | MT6L78FS* | Q1 | 6 | 40 | _ | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11FS | | | | | Q2 | 6 | 40 | 5 | 100
to
160 | 1 | 5 | 6 | 1 | 5 | 2.4 | 1 | 5 | 2 | MT3S11AFS | - fS6 | ▲: Total PC *: New product #### 8. Cell Packs for the VHF-to-UHF Band | | D. 4 | Ic | c | 5 | S ₂₁ ² - | Гур. | | NF Ty | p. | BW 1 | Гур. | P | О Тур | . (PoldE | 3) | D. J. | |-----------------------------|----------------|------|------------------------|------|----------------------------------|------------|------|------------------------|------------|-------|------------------------|--------|------------------------|------------|--------------|-----------------| | Application | Part
Number | (mA) | V _{CC}
(V) | (dB) | V _{CC}
(V) | f
(MHz) | (dB) | V _{CC}
(V) | f
(MHz) | (GHz) | V _{CC}
(V) | (dBmW) | V _{CC}
(V) | f
(MHz) | Pi
(dBmW) | Package
Type | | VHF-to-UHF wide-band amp | TA4001F | 18 | 5 | 12.5 | 5 | 500 | 5.2 | 5 | 500 | 2.4 | 5 | 2 | 5 | 500 | 0 | SMQ | | VHF-to-UHF
wide-band amp | TA4002F | 14 | 5 | 23 | 5 | 500 | 4.7 | 5 | 500 | 1.3 | 5 | 5 | 5 | 500 | 0 | SMQ | | VHF-to-UHF
wide-band amp | TA4004F | 3.1 | 2 | 10.5 | 2 | 500 | 4.2 | 2 | 500 | 1.2 | 2 | 0 | 2 | 500 | 0 | SMV | | UHF wide-band amp | TA4011FU | 3.5 | 2 | 10 | 2 | 1500 | 6.5 | 2 | 1500 | 2.4 | 2 | (-6) | 2 | 1500 | _ | USV | | UHF wide-band amp | TA4012FU | 6.5 | 2 | 12 | 2 | 1500 | 6 | 2 | 1500 | 2.0 | 2 | (0) | 2 | 1500 | _ | USV | | UHF wide-band amp | TA4011AFE | 3.5 | 2 | 10 | 2 | 1500 | 6.5 | 2 | 1500 | 2.4 | 2 | (-6) | 2 | 1500 | _ | ESV | | UHF wide-band amp | TA4012AFE | 6.5 | 2 | 12 | 2 | 1500 | 6 | 2 | 1500 | 2.0 | 2 | (0) | 2 | 1500 | _ | ESV | | UHF wide-band amp | TA4016AFE | 6 | 2 | 19 | 2 | 1500 | 4.5 | 2 | 1500 | 3.2 | 2 | (-7) | 2 | 1500 | _ | ES6 | | VHF wide-band amp | TA4017FT | 19 | 5 | 13 | 5 | 45 | 3 | 5 | 45 | 1 | 5 | 2 | 5 | 45 | -10 | TU6 | | VHF gain control amp | TA4018F | 28 | 5 | 11 | 5 | 45 | 11.5 | 5 | 45 | _ | _ | -9 | 5 | 45 | -20 | SM8 | | VHF wide-band amp | TA4019F | 35 | 5 | 30 | 5 | 45 | 8 | 5 | 45 | 0.3 | 5 | -5 | 5 | 45 | -35 | SM8 | | | Part | I _{CC} Typ. | PD | | G _{MIX} | /NF _{MIX} | | | Package | |----------------|---------|----------------------|------|----------|------------------------|--------------------------|--------------------------|--------------------------|---------| | Application | Number | (mA) | (mW) | (dB/dB) | V _{CC}
(V) | f _{RF}
(MHz) | f _{LO}
(MHz) | f _{IF}
(MHz) | Туре | | VHF-to-UHF DBM | TA4101F | 5.7 | 300* | -3.5/9.0 | 5 | 800 | 860 | 60 | SM8 | | VHF-to-UHF DBM | TA4107F | 29.5 | 370* | -0.5/12 | 4.5 | 1000 | 950 | 50 | SM8 | ^{*:} Mounted on a 2.5 $\text{cm}^2 \times 1.6 \text{ t glass epoxy board}$ Package type: SMV (SSOP5-P-0.95), SM6 (SSOP6-P-0.95), SM8 (SSOP8-P-0.65), USV (SSOP5-P-0.65) | Application | Part | Icc | Тур. | f | V _{OUT} | Fs | Package | |-------------|----------|------|---------------------|----------|------------------|--------|---------| | Application | Number | (mA) | V _{CC} (V) | (MHz)* | (Vpp)* | (ppm)* | Туре | | | TA4014FT | 1.2 | 3 | 10 to 30 | 1.2 | ±0.1 | TU6 | | | TA4014FE | 1.2 | 3 | 10 to 30 | 1.2 | ±0.1 | ES6 | | тсхо | TA4014FC | 1.2 | 3 | 10 to 30 | 1.2 | ±0.1 | CS6 | | | TA4015FT | 1.3 | 3 | 10 to 30 | 1.2 | ±0.1 | TU6 | | | TA4015FE | 1.3 | 3 | 10 to 30 | 1.2 | ±0.1 | ES6 | ^{*:} Reference values: $f = oscillating frequency range, F_S = supply voltage fluctuation$ #### 9. SiGe Cell Packs | Part Number | Package | Circuit | Application | Characteristics (Typ.) | |-------------|---------|--|-------------------------------|---| | TA4020FT | TESQ | Linear amp | GPS
UHF low-noise amp | $\left S_{21e}\right ^2$ = 15dB, NF = 0.95dB, IIP ₃ = -9.5dBmW $\left V_{CC}\right $ = 3 V, f = 1.5 GHz | | TA4500F | QS16 | Low-noise
amp +
down-con-
version MIX | PHS
Digital cordless phone | $\begin{aligned} G_{LNA} &= 17.5 \text{dB, } G_{MIX} = 5 \text{dB, } IIP_{LNA} = -7.5 \text{dBmW,} \\ IIP_{3MIX} &= 7.0 \text{dBmW, } 1/2 \text{ IFR}_{MIX} = 45 \text{dB} \\ @V_{CC} &= 3 \text{ V, } f = 1.9 \text{ GHz} \end{aligned}$ | #### 10. GaAs Cell Packs #### **Product List** | | TU6 | UF6 | sES6 | CST6B | |---------------------|------------------------|----------|--------------------|-----------| | Low-power switch | TG2210FT
TG2211AFT* | _ | TG2213S
TG2214S | TG2217CTB | | Medium-power switch | _ | TG2216TU | _ | _ | ^{*:} Built-in inverter #### **Main Characteristics** | Part Number | Package | Circuit | Application | Characteristics | |-------------|---------|---------|--------------------------------------|--| | TG2210FT | TU6 | SPDT | General-Purpose, Bluetooth Class 2/3 | Loss = 0.4dB, ISL = 30dB, Pi1dB > 18dBmW | | TG2211AFT* | TU6 | SPDT | General-Purpose, Bluetooth Class 2/3 | Loss = 0.5dB,ISL = 30dB, Pi1dB = 17dBmW | | TG2213S | sES6 | SPDT | General-Purpose, Bluetooth Class 2/3 | Loss = 0.35dB, ISL = 24dB, Pi1dB = 17dBmW | | TG2214S | sES6 | SPDT | General-Purpose, Bluetooth Class 2/3 | Loss = 0.35dB, ISL = 24dB, Pi1dB = 17dBmW
Opposite switch connection to the TG2213S | | TG2216TU | UF6 | SPDT | Wireless LAN, PHS, Bluetooth | Loss = 0.5dB, ISL = 25dB, Pi1dB = 28dBmW | | TG2217CTB | CST6B | SPDT | General-Purpose | Loss = 0.45dB, ISL = 22dB, Pi1dB = 14dBmW
@f = 2.5 GHz | ^{*:} Built-in inverter #### 1.9 GHz Band TX Front-End IC | Part Number | Package | Circuit | Application | Characteristics (Typ.) | |-------------|---------|--|-------------------------------|---| | TG2403CT | CST20 | GaAs linear
power amp
+ SPDT
switch | PHS
Digital cordless phone | $\begin{array}{l} \text{PA: } G_{P} \geq 36\text{dB, ltotal} \leq 180 \text{ mA } \textcircled{gf} = 1.92 \text{ GHz,} \\ P_{0} = 20.5\text{dBmW, V}_{gg} = \text{per rank (0 to 2 V)} \\ \text{SW: } Loss_{RX} = 0.5\text{dB} \\ \text{ISL}_{TX} = 25\text{dB} \\ \text{ISL}_{RX} = 15\text{dB} \\ \textcircled{gf} = 1.92 \text{ GHz, V}_{C} = 0 \text{ V/3 V} \end{array}$ | #### 11. Silicon Germanium Transistors - New silicon germanium transistor - Compact TESQ package in addition to the USQ package - Lower noise figure and higher transition frequency #### **High-Frequency Characteristics** | Characteristic | f _T (Typ.) | | | S _{21e} ² (Typ.) | | | | NF (Typ.) | | | | |----------------|-----------------------|---------------------|---------------------|--|---------------------|---------------------|---------|-----------|---------------------|---------------------|---------| | Part Number | (GHz) | V _{CE} (V) | I _C (mA) | (dB) | V _{CE} (V) | I _C (mA) | f (GHz) | (dB) | V _{CE} (V) | I _C (mA) | f (GHz) | | MT4S101U | 21 | 2 | 7 | 16 | 2 | 7 | 2 | 0.8 | 2 | 5 | 2 | | MT4S101T | 23 | | | 17 | | | | | | | | | MT4S100U | 22 | 2 | 10 | 16 | 2 | 10 | 2 | 0.72 | 2 | 5 | 2 | | MT4S100T | 23 | | | 17 | | | | | | | | | MT4S102U | 24 | 2 | 15 | 15 | 2 | 15 | 2 | 0.58 | 2 | 10 | 2 | | MT4S102T | 25 | | | 16 | | | | | | | | | MT4S104U | 23 | 2 | 7 | 17 | 2 | 7 | 2 | 0.67 | 2 | 5 | 5 | | MT4S104T | 25 | | | 18 | | | | | | | | | MT4S200U* | 30 | 3 | 20 | 17.5 | 3 | 20 | 2 | 0.8 | 3 | 5 | 20 | ^{*:} New product #### **Product List** | Package Type | USQ | TESQ | | | |---|-----------
----------|--|--| | $f_T = 21 \text{ GHz}$ low-voltage operating device | MT4S101U | MT4S101T | | | | f _T = 22 GHz
low-voltage operating device | MT4S100U | MT4S100T | | | | f _T = 25 GHz | MT4S102U | MT4S102T | | | | low-voltage operating device | MT4S104U | MT4S104T | | | | $f_T = 30 \; GHz$ low-voltage operating device | MT4S200U* | _ | | | ^{*:} New product # 12. Low-Frequency Noise Characteristics of Microwave Transistors #### **RF transistors** Comparative Data on Low-Frequency Noise Figure # 13. G_{PS}, NF – V_{DS} Characteristics of Dual-Gate FETs # 14. Noise Figure–Frequency Characteristics of Dual-Gate FETs # [4] Block Diagrams for Suggested Applications # [4] Block Diagrams for Suggested Applications # 1. Radio-Frequency Devices for AM Tuners | Application | Туре | | Package | Part Number | |-------------|-------------|--------|--------------------|--------------------------------| | | | Single | S-MINI | 1SV128 | | | | | USC | 1SV271
1SV307 | | AGC | PIN diode | | ESC | 1SV308
JDP2S01E
JDP2S04E | | 7.00 | T IIV diode | Dual | S-MINI | 1SV172 | | | | | SMQ | 1SV237 | | | | | USM | 1SV252 | | | - | USQ | 1SV312
JDP4P02U | | | Application | Туре | Package | Part Number | |-------------|----------------------|---------|-------------------------------| | | | MINI | 1SV102
1SV149-B | | Tuning | Tuning varicap diode | FM8 | HN1V01H
HN1V02H
HN2V02H | | Application | Туре | Package | Part Number | |-------------|--------------------|---------|-------------| | AGC | Bipolar transistor | MINI | 2SC2458 | | AGC | | S-MINI | 2SC2712 | | RF Amp | JFET | TO-92 | 2SK709 | | | | MINI | 2SK710 | | | | S-MINI | 2SK711 | | | | USM | 2SK1875 | | | Dual transistor | SMV | HN3G01J | | Application | Туре | Package | Part Number | |------------------|--------------------|---------|----------------------| | Mixer Bipolar tr | Bipolar transistor | TO-92 | 2SC380TM
2SC941TM | | | | MINI | 2SC2669
2SC2670 | | | | S-MINI | 2SC2715
2SC2716 | # 2. Radio-Frequency Devices for FM Tuners | Application | Туре | | Package | Part Number | |-------------|-------------------|--------|---------|--------------------------------| | | |
 | S-MINI | 1SV128 | | | | Single | USC | 1SV271
1SV307 | | | PIN diode | | ESC | 1SV308
JDP2S01E
JDP2S04E | | | | Dual | S-MINI | 1SV172 | | | | | SMQ | 1SV237 | | | | | USM | 1SV252 | | | | | USQ | 1SV312
JDP4P02U | | | Schottky
diode | Single | USC | 1SS315 | | | | | fSC | JDH2S01FS | | | | Dual | S-MINI | 1SS295 | | | | | SSM | JDH3D01S* | | | | | VESM | JDH3D01FV* | | *: New produ | ıct | |--------------|-----| |--------------|-----| | Application | Туре | Package | Part Number | |-------------|--------------------|---------|-------------------| | | | SMQ | 3SK195 | | | Dual-gate MOSFET | | 3SK225
3SK226 | | | | USQ | 3SK257
3SK258 | | | | MINI | 2SK241 | | | Single-gate MOSFET | S-MINI | 2SK302 | | | | USM | 2SK882 | | RF Amp | | SMQ | 2SK1771 | | | Bipolar transistor | MINI | 2SC2668 | | | | S-MINI | 2SC2714 | | | | USM | 2SC4215 | | | JFET | MINI | 2SK161
2SK192A | | | | S-MINI | 2SK211
2SK210 | | | | USM | 2SK881 | | Application | Туре | | Package | Part Number | |-------------|----------------------------|--------|---------|---| | | | | MINI | 1SV101 | | Tuning | Tuning
varicap
diode | Dual | S-MINI | 1SV225
1SV228
JDV3C11
JDV3C34* | | | AFC
varicap
diode | Single | S-MINI | 1SV160 | #### *: New product | Application | Туре | Package | Part Number | |-------------|--------------------|---------|-------------| | | Dual-gate MOSFET | SMQ | 3SK195 | | Mixer | Dual-gate MOSI LT | USQ | 3SK260 | | | Bipolar transistor | MINI | 2SC2668 | | | | S-MINI | 2SC2714 | | | | USM | 2SC4215 | | | | SSM | 2SC4915 | | Application | Туре | Package | Part Number | |-------------|--------------------|---------|--------------------| | | JFET | MINI | 2SK192A | | | 01 L 1 | S-MINI | 2SK210 | | OSC | Bipolar transistor | MINI | 2SC2668
2SC2995 | | | | S-MINI | 2SC2714
2SC2996 | | | | USM | 2SC4215 | | | | SSM | 2SC4915 | # 3. Radio-Frequency Devices for TV and VTR Tuners | Application | Туре | Band | Package | Part Number | |-------------|----------------------|------------------------------|--------------------|--| | | Wideband VHF | | USC | 1SV215
1SV262
1SV288
1SV231
1SV232
1SV269
1SV302 | | Tuning | Tuning varicap diode | | ESC | 1SV282
1SV290B
1SV283B
1SV303 | | | | | S-MINI (dual type) | 1SV242 | | | | UHF | USC | 1SV214 | | | | OTT | ESC | 1SV278B | | | AFC diode | VHF to UHF | USC | 1SV216 | | | | Wideband VHF al-gate FET UHF | SMQ | 3SK195
3SK225
3SK226
3SK292 | | RF Amp | Dual-gate FET | | USQ | 3SK259
3SK257
3SK258
3SK294 | | | | | SMQ | 3SK199
3SK207
3SK232
3SK291 | | | | | USQ | 3SK256
3SK249
3SK293 | | | Dual-gate FET | VHF and wideband VHF | USQ | 3SK260
3SK259 | | | | | S-MINI | 1SS295 (dual) | | Mixer | | | USC | 1SS315 | | | Schottky diode | UHF | SSM | JDH3D01S* (dual) | | | | | fSC | JDH2S01FS | | | | | VESM | JDH3D01FV* (dual) | #### *: New product | Application | Ту | ре | Band | Internal Connection | Package | Part Number | | |-------------|-------------|--------------------------------|------------------------|---------------------|----------------|-------------|--------| | | | ! | | | USC | 1SS314 | | | | | Single | | _ | ESC | 1SS381 | | | | | !
! | | | sESC | JDS2S03S | | | | | ld switch VHF and wideband VHF | VHE and widehand VHE | Common anode | S-MINI | 1SS269 | | | Tuning | Band switch | | | | | 1SS268 | | | Turning | Dana Switch | | VIII and Wideband VIII | | USM | 1SS313 | | | | Dual | | | USM | 1SS312 | | | | | |
 | | | Common cathode | SSM | 1SS364 | | Application | Туре | Band | Circuit Diagram | Package | Part Number | |------------------|--------------------|----------------|-----------------------------|---------|-------------------------------| | RF Amp | Bipolar transistor | UHF | | USM | 2SC4244 | | , | Dipolal transistor | | Common base | SMQ | 2SC4214 | | | | Wideband VHF | - | USM | 2SC4251
2SC4246
2SC4252 | | | | Wideballd VIII | ナ
の
Common collector | S-MINI | 2SC3124
2SC3121 | | OSC | Bipolar transistor | | | USM | 2SC4246 | | 000 | Dipolal transistor | | Common base | S-MINI | 2SC3121 | | | | UHF | Common collector | USM | 2SC4247 | | | | | | S-MINI | 2SC3547A | | | | | Common emitter Common base | USM | 2SC4250
2SC4245 | | | | Widehand VHE | | S-MINI | 2SC3123
2SC3120 | | | | Wideband VHF | | USM | 2SC4253
2SC4251
2SC4246 | | Mixer | Bipolar transistor | | | S-MINI | 2SC3125
2SC3124
2SC3121 | | Mixer Bipolar ti | Diporal translator | | | S-MINI | 2SC3120
2SC3862 | | | | UHF | Common emitter | S-MINI | 2SC3547A | | | | | | USM | 2SC4245 | | | | | Common base | USM | 2SC4247 | # **TOSHIBA** # 4. Radio-Frequency Devices for CATV Converters | Application | Туре | Package | Part Number | |-------------|--------------------|---------|--| | RF Amp Bip | Bipolar transistor | SMQ | 2SC5087
*2SC5087R
MT4S03A
MT4S04A | | | | USQ | MT4S03AU
MT4S04AU
MT4S100U
MT4S101U
*MT4S102U
*MT4S104U | | | | TESQ | MT4S100T
MT4S101T
*MT4S102T
*MT4S104T | | Application | Туре | | Package | Part Number | |-------------|-----------|------|--------------------------------|--------------------| | | | | S-MINI | 1SV128 | | | Sir | | USC | 1SV271
1SV307 | | | | | 1SV308
JDP2S01E
JDP2S04E | | | ATT | Pin diode | Dual | S-MINI | 1SV172 | | | | | SMQ | 1SV237 | | | | | USM | 1SV252 | | | | | USQ | 1SV312
JDP4P02U | | | | | TESQ | JDP4P02AT | | Application | Туре | | Package | Part Number | |-------------|-------------------|----------|-----------|-------------| | | Single | Cinalo | S-MINI | 1SS154 | | | | , Single | fSC | JDH2S01FS | | 1st Mixer | Schottky
diode | | S-MINI | 1SS271 | | | Dual | SSM | *JDH3D01S | | | | | ! | VESM | *JDH3D01FV | | Application | Туре | Package | Part Number | |-------------|---|---------|--| | 1st IF Amp | | S-MINI | MT3S03A
MT3S04A | | | Bipolar transistor Si dual-gate MOSFET | SMQ | MT4S03A
MT4S04A
MT4S06
MT4S07 | | | | USQ | MT4S03AU
MT4S04AU
MT4S06U
MT4S07U | | | | SMQ | 3SK199
3SK232
3SK291
3SK292 | | | | USQ | 3SK249
3SK293
3SK294 | | Application | Туре | Package | Part Number | |-------------|---------------------|---------|----------------------------------| | | Schottky diode | S-MINI | 1SS154 (single)
1SS271 (dual) | | 2nd Mixer | Si dual-gate MOSFET | SMQ | 3SK199
3SK232
3SK291 | | | | USQ | 3SK249
3SK293 | | | Cell pack | SM8 | TA4107F | | Application | Туре | Package | Part Number | |------------------------|--------------------|---------|--| | Buffer Amp Bipolar tra | | S-MINI | MT3S03A
MT3S04A | | | Bipolar transistor | SMQ | MT4S03A
MT4S04A
MT4S06
MT4S07 | | | | USQ | MT4S03AU
MT4S04AU
MT4S06U
MT4S07U | | Application | Туре | Package | Part Number | |----------------------------|--------------------|---------|-------------------------------| | 1st OSC Bipolar transistor | Bipolar transistor | S-MINI | 2SC5084
MT3S03A
MT3S04A | | | | USM | MT3S03AU
MT3S03AU | | Application | Туре | Package | Part Number | |-------------|----------------------|---------|------------------| | Tuning Tur | Tuning varicap diode | USC | 1SV214
1SV230 | | | | ESC | 1SV278B | | Application | Туре | Package | Part Number | |-------------|--------------------|---------|-------------| | 2nd OSC | Bipolar transistor | USM | 2SC4246 | | 2110 000 | | S-MINI | 2SC3121 | ^{*:} New product # **TOSHIBA** # 5. Radio-Frequency Devices for SHF 2nd Converters | Application | Туре |
Package | Part Number | |-------------|--------------------|---------|---| | | | SMQ | MT4S03A
MT4S04A
MT4S06
MT4S07
2SC5092 | | 1st IF Amp | Bipolar transistor | USQ | 2SC5088
2SC5093
2SC5319
MT4S06U
MT4S07U
MT4S100U
MT4S101U
*MT4S102U
*MT4S104U | | | | TESQ | MT4S100T
MT4S101T
*MT4S102T
*MT4S104T | | Application | Туре | Package | Part Number | |-------------|-----------------------------|---------|------------------------------| | т Р | Preselector and | USC | 1SV245
1SV287
JDV2S71E | | runnig | Tuning tuning varicap diode | ESC | 1SV309
1SV291
JDV2S71E | | Application | Туре | Package | Part Number | |-------------|--------------------|---------|-------------------------------------| | | Bipolar transistor | SMQ | 2SC5092 | | | | S-MINI | 1SS154
(single)
1SS271 (dual) | | Mixer | Schottky diode | SSM | *JDH3D01S
(dual) | | | | fSC | JDH2S01FS | | | | VESM | *JDH3D01FV
(dual) | | | Cell pack | SM8 | TA4107F | | Application | Туре | Package | Part Number | |------------------|-----------|---------|-------------| | 2nd IF Amp
#1 | Cell pack | SMQ | TA4002F | | Application | Туре | Package | Part Number | |------------------|-----------|---------|-------------| | 2nd IF Amp
#2 | | SM6 | TA4000F | | | Cell pack | TU6 | TA4017FT | | | | SM8 | TA4018F | | | | | TA4019F | | Application | Туре | Package | Part Number | |-------------|--------------------|---------|-------------------------------| | Buffer Amp | Bipolar transistor | USQ | 2SC5088
2SC5093
2SC5319 | | Application | Туре | Package | Part Number | |-------------|------------------------|---------|-------------| | 080 | DSC Bipolar transistor | S-MINI | 2SC5089 | | 030 | | USQ | *MT4S200U | *: New product # 6. Radio-Frequency Devices for 800-MHz Analog and Digital Cell Phones | Application | Туре | Package | Part Number | |-------------|------------|--------------|-------------| | Power Amp | Si MOSFET | PW-MINI | 2SK2854 | | i owei Amp | SI WOSI ET | i vv-ivilivi | 2SK2855 | | Application | Туре | Package | Part Number | |-------------|-------------|---------|-------------------------| | | | TU6 | TG2210FT
*TG2211AFT | | | GaAs MMIC | sES6 | TG2213S
TG2214S | | | | CST6B | *TG2217CTB | | Rx Switch | PIN diode | fSC | JDP2S02AFS
JDP2S05FS | | | | CST2 | JDP2S02ACT
JDP2S05CT | | | | SC2 | JDP2S08SC | | | Band switch | sESC | JDS2S03S | ^{*:} New product | Application | Туре | Package | Part Number | |-------------|--------------|---------|-------------| | Buff Amp | Si cell nack | ESV | TA4011AFE | | Bull Allip | Si cell pack | ESV | TA4012AFE | | | Package | USC | fSC | SSM | VESM | |-------------|---------|--------|-----------|----------|------------| | Application | Туре | USC | 100 | JOIVI | VLOW | | Detector | SBD | 1SS315 | JDH2S01FS | JDH3D01S | *JDH3D01FV | ^{*:} New product/Dual # **TOSHIBA** # Varicap Diode | | Package | USC | ESC | sESC | fSC | CST3 | SC2 | |-------------|---------|--|--|----------------------------------|---|--|--| | Application | Туре | 000 | 250 | 32.00 | 100 | 0013 | 302 | | vco | VCD | 1SV229
1SV270
1SV276
1SV304
1SV310 | 1SV279
1SV281
1SV284
1SV305
1SV311 | JDV2S06S
JDV2S08S
JDV2S09S | JDV2S06FS
JDV2S08FS
JDV2S09FS
*JDV2S26FS
*JDV2S27FS
*JDV2S28FS | *JDV3S26CT
*JDV3S27CT
*JDV3S28CT | *JDV2S26SC
*JDV2S27SC
*JDV2S28SC
JDV2S31SC | ^{:} New product | | Package | TECM | 6CM | CMO | LICO | 400 | CCT2 | CCTC | |------------------|-----------------------|---|--|---|---|---|-----------------------|---| | Application | Туре | TESM | fSM | SMQ | USQ | fS6 | CST3 | CST6 | | LNA,
Buff Amp | Bipolar
transistor | 2SC5066FT
2SC5086FT
2SC5091FT
2SC5096FT
MT3S03AT
MT3S06T
MT3S07T
MT3S18T
MT3S35T
MT3S35T
MT3S36T
MT3S37T
MT3S341T | MT3S03AFS
MT3S06FS
MT3S07FS
*MT3S14FS
*MT3S18FS
MT3S35FS
MT3S36FS
MT3S37FS
MT3S341FS | 2SC5087
2SC5092
2SC5097
MT4S06
MT4S07 | 2SC5088
2SC5093
2SC5098
MT4S06U
MT4S07U | | | | | Mixer | Bipolar
transistor | 2SC5066FT
2SC5086FT
2SC5108FT
2SC5111FT | | 2SC5087 | 2SC5088 | | | | | vco | Bipolar
transistor | 2SC5086FT
2SC5464FT
2SC5066FT
2SC5108FT
2SC5111FT
MT3S03AT
MT3S04AT
MT3S06T
MT3S07T
MT3S08T
MT3S11T
MT3S14T
MT3S14T
MT3S14T
MT3S35T
MT3S35T
MT3S35T
MT3S35T
MT3S35T
MT3S35T
MT3S35T | MT3S03AFS MT3S04AFS MT3S05FS MT3S06FS MT3S07FS MT3S08FS MT3S11FS MT3S14FS MT3S18FS MT3S35FS MT3S35FS MT3S37FS MT3S37FS MT3S41FS *MT3S406FS *MT3S106FS *MT3S107FS | | | MT6L63FS
MT6L64FS
MT6L65FS
*MT6L66FS
MT6L73FS
MT6L72FS
*MT6L73FS
*MT6L73FS
*MT6L75FS
*MT6L75FS
*MT6L75FS
*MT6L77FS
MT6L77FS | *MT3S11CT *MT3S106CT | *MT6L66CT
*MT6L67CT
*MT6L73CT
*MT6L74CT
*MT6L75CT
*MT6L75CT
MT6L77CT | ^{:} New product # 7. Radio-Frequency Devices for PDC Phone (1.5 GHz) | | Package | ESC | sESC | fSC | CST3 | SC2 | |-------------|---------|--|--|--|--|--| | Application | Туре | LSC | SLOC | 130 | 0313 | 302 | | vco | VCD | JDV2S05E
1SV285
1SV305
1SV311
1SV314
1SV329 | JDV2S05S
JDV2S07S
JDV2S08S
JDV2S09S
JDV2S10S
JDV2S13S | JDV2S05FS
JDV2S07FS
JDV2S08FS
JDV2S09FS
JDV2S10FS
JDV2S13FS
*JDV2S25FS
*JDV2S26FS
*JDV2S27FS
*JDV2S28FS | *JDV2S25CT
*JDV2S26CT
*JDV2S27CT
*JDV2S28CT | *JDV2S25SC
*JDV2S26SC
*JDV2S27SC
*JDV2S28SC
JDV2S31SC | ^{:} New product | | Package | ESV | |-------------|--------------|------------------------| | Application | Туре | ESV | | Buff Amp | Si cell pack | TA4011AFE
TA4012AFE | | | Package | USC | fSC | SSM | VESM | | |-------------|---------|--------|-----------|----------|------------|--| | Application | Туре | 050 | 250 | JOIN | | | | Detector | SBD | 1SS315 | JDH2S01FS | JDH3D01S | *JDH3D01FV | | ^{*:} New product/Dual | | Package | TESM | fSM | USQ | TESQ | fS6 | CST3 | CST6 | |----------------------|-----------------------|---|--|---|----------------------|---|-----------------------|---| | Application | Туре | IESIVI | 19101 | บรน | TESQ | 150 | CS13 | CS16 | | LNA, Buff
Amp | Bipolar
transistor | 2SC5317FT
MT3S03AT
MT3S06T
MT3S07T
*MT3S14T
*MT3S18T
MT3S35T
MT3S36T
MT3S36T
MT3S341T | MT3S06FS
MT3S07FS
*MT3S14FS
*MT3S18FS
MT3S35FS
MT3S36FS
MT3S37FS
MT3S41FS | 2SC5319
MT4S06U
MT4S07U
MT4S100U
MT4S101U | MT4S100T
MT4S101T | | | | | Mixer
(downconv.) | Bipolar
transistor | 2SC5317FT
2SC5086FT | | | | | | | | vco | Bipolar
transistor | MT3S03AT
MT3S04AT
MT3S05T
MT3S06T
MT3S07T
MT3S08T
MT3S11T
MT3S12T
MT3S14T
MT3S18T
MT3S35T
MT3S36T
MT3S37T
MT3S341T
MT3S41T
MT3S45T | MT3S03AFS MT3S04AFS MT3S05FS MT3S06FS MT3S07FS MT3S08FS MT3S11FS MT3S12FS MT3S12FS MT3S18FS MT3S35FS MT3S36FS MT3S37FS MT3S341FS MT3S41FS MT3S41FS MT3S41FS MT3S45FS *MT3S106FS *MT3S107FS | | | MT6L63FS
MT6L64FS
MT6L65FS
*MT6L66FS
*MT6L71FS
MT6L71FS
MT6L72FS
*MT6L74FS
*MT6L75FS
*MT6L75FS
*MT6L75FS
*MT6L77FS
MT6L77FS | *MT3S11CT *MT3S106CT | *MT6L66CT
*MT6L67CT
*MT6L73CT
*MT6L74CT
*MT6L75CT
*MT6L76CT
MT6L77CT | ^{:} New product # 8. Radio-Frequency Devices for 900-MHz, 2.4-GHz and 5.8-GHz Band Cordless Phones | | Package | USC | ESC | sESC | fSC | CST2 | SC2 | |-------------|---------|--|---|--|---|-------------------------|-------------| | Application | Туре | 030 | ESC | SESC | 130 | C312 | 302 | | | 900 MHz |
1SV271
1SV307
1SS314 | JDP2S04E
1SV308
1SS381 | JDP2S02AS
JDS2S03S | JDP2S02AFS | JDP2S02ACT | JDP2S08SC | | ANT Switch | 2.4 GHz | 1SV271
1SV307 | JDP2S04E
1SV308 | JDP2S02AS | JDP2S02AFS
JDP2S05FS | JDP2S02ACT
JDP2S05CT | 13D1 200000 | | | 5.8 GHz | | | | JDP2S05FS | JDP2S05CT | | | | 900 MHz | 1SV214
1SV229
1SV276
1SV304
1SV310
1SV313 | 1SV278B
1SV279
1SV284
1SV305
1SV311
1SV314 | JDV2S06S
JDV2S08S
JDV2S09S
JDV2S10S | JDV2S06FS
JDV2S08FS
JDV2S09FS
JDV2S10FS | | | | VCO & Diode | 2.4 GHz | | JDV2S01E
JDV2S02E
JDV2S05E | JDV2S01S
JDV2S02S
JDV2S05S
JDV2S16S
JDV2S19S | JDV2S01FS
JDV2S02FS
JDV2S05FS
JDV2S16FS
JDV2S19FS | | | | | 5.8 GHz | | JDV2S02E | JDV2S02S
*JDV2S17S
*JDV2S22S | JDV2S02FS
JDV2S22FS | | | ^{:} New product | | Package | USM | SSM | TESM | SMQ | USQ | TESQ | |---|---------|---|-------------------------------|---|-------------------|---|--| | Application | Туре | USIVI | SSIVI | I LOW | SIVIQ | 030 | ILSQ | | | 900 MHz | 2SC5065
2SC5085
MT3S06U
*MT3S16U | 2SC5066
2SC5086
MT3S06S | 2SC5066FT
2SC5086FT
MT3S06T
*MT3S16T
*MT3S18T | 2SC5087
MT4S06 | 2SC5088
MT4S06U | | | VCO
Buffer Amp
Mixer
Power Amp
Preamp | 2.4 GHz | MT3S06U | MT3S06S | 2SC5317FT
MT3S06T
*MT3S18T
MT3S35T
MT3S37T
MT3S45T | MT4S06 | 2SC5319
MT4S06U
MT4S101U
MT4S32U | MT4S101T | | LNA | 5.8 GHz | | | MT3S35T
MT3S37T | | MT4S100U
MT4S101U
MT4S102U
MT4S104U
*MT4S200U | MT4S100T
MT4S101T
MT4S102T
MT4S104T | ^{*:} New product #### 9. Radio-Frequency Devices for Global Positioning System (GPS) #### **GPS Antenna Section** | | Package | ES6 | USQ | TESQ | |-------------|-----------------------|-----------|---|--| | Application | Туре | L30 | 030 | TEGQ | | Amp #2 | Bipolar
transistor | | 2SC5319
MT4S32U
MT4S100U
MT4S101U
MT4S102U
MT4S104U
*TA4S200U | MT4S100T
MT4S101T
MT4S102T
MT4S104T | | | Si cell pack | TA4016AFE | | *TA4020FT | ^{*:} New product #### **Navigation Section** | Application | Package
Type | USQ | TESQ | |-------------|-----------------------|---|--| | Amp #3 | Bipolar
transistor | 2SC5319
MT4S06U
MT4S32U
MT4S100U
MT4S101U
*MT4S102U
*MT4S104U | MT4S100T
MT4S101T
*MT4S102T
*MT4S104T | | Mixer, OSC | Bipolar
transistor | 2SC5319
MT4S06U | | ^{*:} New product | | Package | ESC | sESC | fSC | |-------------|---------------|--|---|---| | Application | Туре | L30 | \$L30 | 150 | | osc | Varicap diode | 1SV314
1SV329
JDV2S01E
JDV2S02E
JDV2S05E | JDV2S10S
JDV2S13S
JDV2S01S
JDV2S02S
JDV2S05S
JDV2S16S
*JDV2S17S
JDV2S19S
*JDV2S2S | JDV2S10FS
JDV2S13FS
JDV2S01FS
JDV2S02FS
JDV2S05FS
JDV2S16FS
JDV2S19FS
JDV2S22FS | ^{:} New product # 10. 2.4-GHz Wireless LAN and Bluetooth[™] #### **ANT Switch** | Application | Туре | Package | Part Number | |---|-----------|---------|------------------------| | ANT Switch for 2.4G WLAN and Class-1 BT | | UF6 | TG2216TU | | | GaAs MMIC | TU6 | TG2210FT
*TG2211AFT | | ANT Switch for Class-2/3 BT | | sES6 | TG2213S
TG2214S | | | | CST6B | *TG2217CTB | ^{*:} New product | Application | Package
Type | USQ | TESQ | |-------------|-----------------------|--|--| | LNA | Bipolar
transistor | MT4S100U
MT4S101U
MT4S102U
MT4S104U | MT4S100T
MT4S101T
MT4S102T
MT4S104T | | | Package | ESC | sESC | fSC | |-------------|---------------|--|--|---| | Application | Туре | LSC | SEGO | 130 | | vco | Varicap diode | 1SV314
1SV329
JDV2S01E
JDV2S02E
JDV2S05E | JDV2S10S
JDV2S13S
JDV2S01S
JDV2S02S
JDV2S05S
JDV2S16S
JDV2S19S | JDV2S10FS
JDV2S13FS
JDV2S01FS
JDV2S02FS
JDV2S05FS
JDV2S16FS
JDV2S19FS | BluetoothTM is a trademark owned Bluetooth SIG, Inc. # 11. Radio-Frequency Devices for FRS and GMRS | | Package | USC | ESC | sESC | fSC | CST2 | CT2 | |-------------|---------|--------------------------------------|---|-----------------------|-------------------------|-------------------------|-----------| | Application | Туре | 000 | Loc | 3250 | 100 | 0012 | OTZ | | ANT Switch | FRS, | 1SS314
1SV271
1SV307 | 1SS381
JDP2S04E
1SV308 | JDS2S03S
JDP2S02AS | JDP2S02AFS
JDP2S05FS | JDP2S02ACT
JDP2S05CT | JDP2S08SC | | vco | GMRS | 1SV214
1SV229
1SV276
1SV304 | 1SV278B
1SV279
1SV284
1SV305
1SV282 | JDV2S06S
JDV2S08S | JDV2S06FS
JDV2S08FS | | | | | Package | USM | SSM | TESM | SMQ | USQ | |---|--------------|---|-------------------------------|---|-------------------|--------------------| | Application | Туре | OSIVI | JOIN | TLOW | Sivio | 3 | | VCO
Driver Amp
Buffer Amp
Mixer
LNA | FRS,
GMRS | 2SC5065
2SC5085
MT3S06U
*MT3S16U | 2SC5066
2SC5086
MT3S06S | 2SC5066FT
2SC5086FT
MT3S06T
*MT3S16T
*MT3S18T | 2SC5087
MT4S06 | 2SC5088
MT4S06U | ^{*:} New product | | Package | PW-MINI | PW-X | |-------------|---------|----------------------|----------------------| | Application | Туре | I VV-IVIIIVI | 1 77-7 | | Power Amp | FRS | 2SK3078A
*2SK3656 | | | 1 ower Amp | GMRS | | 2SK3079A
2SK3756 | ^{:} New product # [5] Maximum Ratings and Electrical Characteristics # [5] Maximum Ratings and Electrical Characteristics #### 1. Definition of Maximum Ratings #### 1.1 Maximum Ratings (for radio-frequency bipolar transistors) 1) Collector-base voltage (V_{CBO}) Maximum permissible value of voltage between collector and base with emitter open at the specified ambient temperature 2) Collector-emitter voltage (V_{CEO}) Maximum permissible value of voltage between collector and emitter with base open at the specified ambient temperature 3) Emitter-base voltage (V_{EBO}) Maximum permissible value of voltage between emitter and base with collector open at the specified ambient temperature 4) Collector current (I_C) Maximum permissible value of collector current at the specified ambient temperature. Regardless of the states of base and emitter, a current exceeding the rated value cannot flow through the collector. 5) Base current (I_B) Maximum permissible value of base current at the specified ambient temperature. Regardless of the states of collector and emitter, a current exceeding the rated value cannot flow through the base. 6) Collector power dissipation (PC) Collector power dissipation (PC) is the maximum rating for power consumed at the collector junction at room temperature. PC decreases with increase in ambient temperature. If a device dissipates power in excess of the PC rating, it may be damaged electrically or thermally due to the generation of heat. Note also that the specified PC value is the value for the device alone. If the device is mounted on a PCB, its PC value will differ substantially. 7) Junction temperature (T_i) Permissible junction temperature range for device operation. The maximum power consumption and operating temperature levels of the device must be set so that the junction temperature always remains within the T_j range. 8) Storage temperature (T_{stg}) #### 1.2 Maximum Ratings (for junction FETs, GaAs MESFETs and MODFETs) 1) Gate-drain voltage (VGDO, VGDS) Maximum permissible value of reverse voltage between gate and drain with source open (V_{GDO}) or with source and drain shorted (V_{GDS}) at the specified ambient temperature. 2) Gate-source voltage (VGS) Maximum permissible value of reverse voltage between gate and source under the specified condition of drain at the specified ambient temperature. 3) Gate current (IG) Maximum permissible value of forward current for conductive gate at the specified ambient temperature. Regardless of the states of source and drain, a current exceeding the rated value cannot flow through the gate. 4) Power dissipation (PD) Maximum permissible power dissipation at the specified ambient temperature. Normally, the value is specified for room temperature. PD decreases with increase in ambient temperature. If a device dissipates power in excess of the PD rating, it may be damaged electrically or thermally due to the generation of heat. Note also that the specified PD value is the value for the device alone. If the device is mounted on a PCB, its PD value will differ substantially. 5) Channel temperature (Tch) Permissible channel temperature range for device operation. The maximum power consumption and operating temperature levels of the device must be set so that the channel temperature always remains within the T_{ch} range. 6) Junction temperature (T_i) Permissible junction temperature range for device operation. The maximum
power consumption and operating temperature levels of the device must be set so that the junction temperature always remains within the T_i range. 7) Storage temperature (T_{stg}) #### 1.3 Maximum Ratings (for MOSFETs) 1) Drain-source voltage (VDS) Maximum permissible value of voltage between drain and source under the specified gate condition at the specified ambient temperature. When the gate is open, a floating voltage may be generated, causing excessive current (ID) flow and damage to the device. 2) Gate-source voltage (VGS) Maximum permissible value of voltage between gate and source under the specified condition of drain at the specified ambient temperature. The plus/minus (±) symbol before the value indicates that the voltage can be applied in both positive and negative directions. 3) Drain current (I_D) Maximum permissible value of current flowing to drain at the specified ambient temperature. 4) Power dissipation (PD) Maximum permissible power dissipation at the specified ambient temperature. Normally, the value is specified for room temperature. PD decreases with increase in ambient temperature. If a device dissipates power in excess of the PD rating, it may be damaged electrically or thermally due to the generation of heat. Note also that the specified PD value is the value for the device alone. If the device is mounted on a PCB, its PD value will differ substantially. 5) Channel temperature (Tch) Permissible channel temperature range for device operation. The maximum power consumption and operating temperature levels of the device must be set so that the channel temperature always remains within the T_{ch} range. 6) Junction temperature (Tj) Permissible junction temperature range for device operation. The maximum power consumption and operating temperature levels of the device must be set so that the junction temperature always remains within the T_i range. 7) Storage temperature (T_{stg}) #### 1.4 Maximum Ratings #### (for radio-frequency small-signal amplifier ICs, mixer ICs and oscillation ICs) 1) Power supply voltage (VCC) Absolute maximum voltage that can be applied between the $V_{\rm CC}$ pin and GND of a radio-frequency IC. 2) Power supply current (ICC) Absolute maximum current that can flow in the entire circuit when voltage is applied between the VCC/VDD pin and GND of a radio-frequency IC. 3) Power dissipation (PD) Maximum permissible power dissipation for one IC. Normally, the value is specified for room temperature. PD decreases with increase in ambient temperature. If a device dissipates power in excess of the PD rating, it may be damaged electrically or thermally due to the generation of heat. Note also that the specified PD value is the value for the device alone. If the device is mounted on a PCB, its PD value will differ substantially. 4) Operating temperature (Topr) Permissible ambient temperature range for IC operation. To shib a guarantees that the device will operate properly if it is used within this range. However, for devices whose electrical characteristics are specified for $T_a = 25$ °C, operation cannot be fully guaranteed over the entire range. 5) Junction temperature (T_i) Permissible junction temperature range for device operation. The maximum power consumption and operating temperature levels of the device must be set so that the junction temperature always remains within the T_j range. 6) Storage temperature (T_{stg}) #### 1.5 Maximum Ratings (for power amp ICs) 1) Power supply voltage (V_{DD}) Absolute maximum voltage that can be applied between the \ensuremath{VDD} pin and \ensuremath{GND} of a power amp IC. 2) Gate voltage (VGG) Absolute maximum voltage that can be applied between the VGG pin and GND of a power amp IC. 3) Input power (Pi) Maximum permissible value of power that can be input on the Pi pin of a power amp IC. 4) Power dissipation (PD) Maximum permissible power dissipation for one IC. Normally, the value is specified for room temperature. PD decreases with increase in ambient temperature. If a device dissipates power in excess of the PD rating, it may be damaged electrically or thermally due to the generation of heat. Note also that the specified PD value is the value for the device alone. If the device is mounted on a PCB, its PD value will differ substantially. 5) Operating temperature (Topr) Permissible ambient temperature range for IC operation. To shib a guarantees that the device will operate properly if it is used within this range. However, for devices whose electrical characteristics are specified for $T_a = 25$ °C, operation cannot be fully guaranteed over the entire range. 6) Storage temperature (T_{stg}) #### 1.6 Maximum Ratings (for switching ICs) 1) Power voltage (V_{DD}) Absolute maximum voltage that can be applied between the \ensuremath{VDD} pin and GND of a switching IC. 2) Control voltage (VC) or (VCON) Absolute maximum voltage that can be applied between the V_C or V_{CON} pin and GND of a switching IC. 3) Input power (Pi) Maximum permissible value of power that can be input on the Pi pin of a switching IC. 4) Power dissipation (PD) Maximum permissible power dissipation for one IC. Normally, the value is specified for room temperature. PD decreases with increase in ambient temperature. If a device dissipates power in excess of the PD rating, it may be damaged electrically or thermally due to the generation of heat. Note also that the specified PD value is the value for the device alone. If the device is mounted on a PCB, its PD value will differ substantially. 5) Operating temperature (Topr) Permissible ambient temperature range for IC operation. To shib a guarantees that the device will operate properly if it is used within this range. However, for devices whose electrical characteristics are specified for $T_a = 25$ °C, operation cannot be fully guaranteed over the entire range. 6) Storage temperature (T_{stg}) # 2. Definition of Electrical Characteristics # 2.1 Electrical Characteristics (for radio-frequency bipolar transistors) | Parameter | Symbol | Description | |-------------------------------------|-----------------------------------|--| | Collector cutoff current | I _{CBO} | Collector leakage current which flows when the specified reverse voltage is applied between collector and base with emitter open | | Emitter cutoff current | I _{EBO} | Emitter leakage current which flows when the specified reverse voltage is applied between emitter and base with collector open | | Collector–emitter breakdown voltage | V _(BR) CEO | Breakdown voltage between collector and emitter when the specified voltage is applied between collector and emitter with emitter grounded and base open | | DC current gain | hFE | Ratio of collector current to base current when the device is operating at the specified collector–emitter voltage and collector current and with emitter grounded | | Reverse transfer | C _{re} | Capacitance between collector and base at the specified collector–base voltage with emitter grounded | | Output capacitance | C _{ob} | Capacitance between collector and base at the specified collector–base voltage with base grounded | | Collector–base time constant | C _c ·r _{bb} ' | Product of $C_{\rm C}$ (capacitance between collector and base) and $r_{\rm bb}{}^{\rm t}$ (base-spreading resistance) when the device is operating at the specified collector–base voltage and emitter current with base grounded | | Collector-base saturation voltage | VCE (sat) | Voltage between collector and emitter when base—emitter and base—collector currents are forward-biased and the emitter is grounded. Collector current and base current must be specified. | | Base–emitter saturation voltage | V _{BE} (sat) | Voltage between base and emitter when base–emitter and base–collector currents are forward-biased and emitter is grounded. Collector current and base current must be specified. | | Transition frequency | fτ | Frequency when hfe < 1 and the device is operating at the specified collector-emitter voltage and the collector current with emitter is grounded | | Insertion gain | S _{21e} ² | Forward transfer coefficient at the specified temperature, with specified bias, specified signal source and impedance loading | | Power gain | G _{pe} | Small-signal power gain when the input and output circuits are gain-matched at the specified temperature and with the specified bias | | Noise figure | NF | Noise figure when the input circuit is noise-matched and output circuit is gain-matched at the specified temperature and with the specified bias | # 2.2 Electrical Characteristics (for junction FETs, GaAs MESFETs and MODFETs) | Parameter | Symbol | Description | |-------------------------------------|-----------------------|--| | Gate leakage current | I _{GSS} | Gate current when the specified gate voltage is applied with source common, and drain and source short-circuited | | Gate-drain breakdown voltage | V (BR) GDO | Breakdown voltage between gate and drain when the specified gate current flows with drain common and source open | | Drain current | I _{DSS} | Drain current when the specified drain voltage is applied with gate and source short-circuited and source common | | Gate-source cutoff voltage | V _{GS (OFF)} | Gate voltage at which the specified drain current flows when the specified drain voltage is applied with source common | | Forward transfer admittance | Y _{fS} | Admittance obtained at $\Delta I_D/\Delta V_{GS}$ when the device is operating at the specified frequency with source common and with the
specified drain current and drain voltages applied | | Input capacitance | C _{iss} | Equivalent capacitance between gate and source when the device is operating at the specified frequency with source common, drain and source common and with the specified drain current and drain voltages applied | | Reverse transfer capacitance | C _{rss} | Equivalent capacitance between gate and drain when the device is operating at the specified frequency with source common and with the specified drain current and drain voltages applied | | Power gain | G _{ps} | Small-signal power gain when the input and output circuits are gain-matched | | Associated power gain at minimum NF | Ga | Power gain when the input circuit is noise-matched and output circuit is gain-matched | | Noise figure | NF | Noise figure when the input circuit is noise-matched and output circuit is gain-matched | # 2.3 Electrical Characteristics (for MOSFETs) | Parameter | Symbol | Description | |--------------------------------|-----------------------|--| | Gate leakage current | I _{GSS} | Gate current when the specified gate voltage is applied with source common, and drain and source shorted | | Source-drain voltage | V _{DSX} | Source-drain voltage when the specified drain current flows with source common, and specified gate-off bias voltage applied | | Source–drain breakdown voltage | V (BR) DSX | Breakdown voltage between source and drain when the specified drain current flows with source common, and specified gate-off bias voltage applied | | Drain current | I _{DSS} | Drain current when the specified drain voltage is applied with gate and source short-circuited and source common | | Gate-source cutoff voltage | V _{GS} (OFF) | Gate voltage at which the specified drain current flows when the specified drain voltage is applied with source common | | Forward transfer admittance | Y _{fS} | Admittance obtained at $\Delta I_D/\Delta V_{GS}$ when the device is operating at the specified frequency with source common and with the specified drain current and drain voltages applied | | Input capacitance | C _{iss} | Equivalent capacitance between gate and source when the device is operating at the specified frequency with source common, drain and source short-circuited, and with the specified gate voltage and drain voltage applied | | Reverse transfer capacitance | C _{rss} | Equivalent capacitance between gate and drain when the device is operating at the specified frequency with source common, drain and source common, and with the specified gate voltage and drain voltage applied | | Power gain | G _{ps} | Small-signal power gain when the input and output circuits are gain-matched | | Noise figure | NF | Noise figure when the input circuit is noise-matched and the output circuit is gain-matched | # 2.4 Electrical Characteristics (for radio-frequency amplifier ICs) | Parameter | Symbol | Description | |----------------------|--------------------------------|---| | Power supply current | Icc | Current flowing in the entire circuit when the specified voltage is applied to the V _{CC} pin at the specified temperature | | Power gain | S ₂₁ ² | Forward transfer coefficient at the specified temperature, with specified bias, specified signal source and impedance loading | | Isolation | S ₁₂ ² | Reverse transfer coefficient at the specified temperature, with specified bias, specified signal source and impedance loading | | Input return loss | S ₁₁ ² | Input reflection coefficient at the specified temperature, with specified bias, specified signal source and impedance loading | | Output return loss | S ₂₂ ² | Output counter coefficient at the specified temperature, with specified bias, specified signal source and impedance loading | | Noise figure | NF | Noise figure at the specified temperature, with specified bias, specified signal source and impedance loading | | Bandwidth | BW | Frequencies at which power gain S21 ² is attenuated by 3dB relative to the specified frequency | | Output power | P _o 1dB | Power output for which power gain S21 ² is 1dB less than power gain for a small-signal input | | Maximum power | Po | Maximum output power of device at the specified temperature, with specified bias, specified signal source and impedance loading | # 2.5 Electrical Characteristics (for mixer ICs) | Parameter | Symbol | Description | |--|---|---| | Power supply current | lcc | Current flowing in the entire circuit when the specified voltage is applied to the V_{CC} pin at the specified temperature | | Conversion gain | G _{MIX} , G _C , C _{Gain} | Power ratio of frequency-converted output signal level to input signal level at the specified temperature, with specified bias, specified signal source and impedance loading | | Conversion noise figure | NF | Conversion noise figure at the specified temperature, with specified bias, specified signal source and impedance loading. This parameter is expressed as a DSB measurement unless otherwise specified | | 3rd intermodulation distortion | IM3 | Power ratio of frequency-converted desired power to 3rd intermodulation distorted power at the specified temperature, with specified bias, specified signal source and impedance loading | | 3rd intermodulation distortion intercept pointer | IIP3 | Calculated using conversion gain and IM3 as follows: IIP3 = Pin + IM3/2 | | Maximum power | Po | Maximum output power of device at the specified temperature, with specified bias, specified signal source and impedance loading | # 2.6 Electrical Characteristics (for oscillator ICs) | Parameter | Symbol | Description | |----------------------|-------------------|--| | Power supply current | lcc | Current flowing in the entire circuit when the specified voltage is applied to the V_{CC} pin at the specified temperature | | OSC B pin voltage | V _{OSCB} | VOSC B pin voltage when the specified voltage is applied to the V_{CC} pin at the specified temperature | | OSC E pin voltage | V _{OSCE} | VOSC E pin voltage when the specified voltage is applied to the V_{CC} pin at the specified temperature | | Buff B pin voltage | V_{BuffB} | VBuff B pin voltage when the specified voltage is applied to the V_{CC} pin at the specified temperature | | Fout pin voltage | V _{FOUT} | Fout pin voltage when the specified voltage is applied to the V_{CC} pin at the specified temperature | # 2.7 Electrical Characteristics (for power amp ICs) | Parameter | Symbol | Description | |--------------------------------------|---------------------|---| | Frequency range | fRANGE | Frequency range for which radio-frequency device characteristics are guaranteed | | Total current | I _t | Total power supply current when the specified power supply voltage is applied to each V _{dd} pin at the specified output power level | | Gate current | IG | Power supply current when the specified power supply voltage is applied to the V_G pin | | Output power | Po | Power output when the specified power is input | | Small-signal gain | G _P | Power gain when the specified power is input | | Adjacent-channel leakage power ratio | ACPR (ACLR) | Ratio of specified bandwidth power to power leaked to adjacent channels at the specified input power, power supply voltage and control voltage levels | | Harmonics | 2f0 | Secondary radio frequency when the specified power is input at the specified frequency and the specified power supply voltage and gate voltage are applied | | Hamonics | 3f0 | Tertiary frequency when the specified power is input at the specified frequency and the designated power supply voltage and gate voltage are applied | | Input VSWR | VSWR _{in} | Output side standing-wave ratio when the specified power is input and the specified power supply voltage and gate voltage are applied | | Output VSWR | VSWR _{out} | No abnormality during operation in any phase of the specified VSWR load when the specified power is input at the specified frequency and the specified power supply voltage and gate voltage are applied | | Load-resistance characteristics | _ | No abnormality during operation in any phase of the specified VSWR load when the specified power is input at the specified frequency and the specified power supply voltage and gate voltage are applied. | | Stability | _ | Operational stability (i.e., no abnormal oscillation) after operation in all phases of the specified VSWR load when the specified power is input at the specified frequency and the specified power supply voltage and gate voltage are applied | # 2.8 Electrical Characteristics (for switching ICs) | Parameter | Symbol | Description | | | |--------------------------------------|--------------------|--|--|--| | Insertion loss | L _{oss} | Level of attenuation when the specified power is input between the pins at switch-on | | | | Isolation | I _{SL} | Level of
attenuation when the specified power is input between the pins at switch-off | | | | Switching time | t _{sw} | Time required after switching for the radio-frequency power level to rise from 10% to 90% of level prior to switching | | | | Power supply current | I _{DD} | Power supply current when the specified power supply voltage is applied to the V _{DD} pin | | | | Control current | I _C | Control current when the specified power supply voltage is applied to the V _{con} pin | | | | Output power 1dB compression point | P _o 1dB | Power output at the specified control voltage when the actual output power is attenuated by 1dB relative to the ideal output level on an increase in the input power | | | | Input power 1dB compression point | P _i 1dB | Power input at the specified control voltage when the actual output power is attenuated by 1dB relative to the ideal output level on an increase in the input power | | | | Adjacent-channel leakage power ratio | ACPR | Ratio of specified bandwidth power to power leaked to adjacent channels at the specified input power, power supply voltage and control voltage levels | | | # [6] Device Features in Detail # [6] Device Features in Detail #### 1. Radio-Frequency Transistor Parameter The main design parameters of a transistor include the device parameters, which are closely related to the internal operating mechanism of the transistor, and the circuit parameters, which compose a matrix obtained by regarding the transistor as a terminal circuit network. The circuit parameters are divided into small-signal equivalent circuits (analog circuits) and large-signal equivalent circuits (digital circuits), the two groups being differentiated by the amplitude of the signals they handle. Equivalent circuits have undergone very rapid development recently. In selecting an appropriate equivalent circuit, circuit designers pay close attention to the application ranges and operating limits of the device being simulated. Table 1.1 lists equivalent circuits at present employed in small-signal applications. Although Table 1.1 lists the frequency used equivalent circuits, this section gives only descriptions of generic small-signal equivalent circuits. Table 1.1 List of Transistor Equivalent Circuits Early T-type equivalent circuits (common base circuits) Device parameters Giacoletto's π -type equivalent circuits Small-signal equivalent (emitter and collector common circuits) circuits Matrices showing the relations between inputs (general linear circuits for and outputs by voltage and current amplification, oscillation, a, b matrices; modulation, and g, h matrices (low frequency): demodulation) Circuit parameters y, z matrices (radio frequency) Transistor equivalent Matrices showing the relations between inputs circuits and outputs by power s matrices (radio frequency) Current control model by Evers-Moll; Large-signal equivalent circuits (nonlinear circuits Current control model by Beaufoy-Sparkes; Current control model by Linville; such as pulse, digital, and switching circuits) Other nonlinear models #### 1.1 Device Parameters #### 1.1.1 Early T-Type Equivalent Circuits Figure 1.1 shows an Early T-type equivalent circuit. In this circuit, re is emitter resistance. The forward-biased resistance associated with the base-to-emitter junction is represented by the following equation: Figure 1.1 Early T-Type Equivalent Circuit $$r_e = \frac{kT}{qI_{\rm E}}\left(\Omega\right) \eqno(1)$$ where k: Boltzman's constant $(1.38 \times 10^{-23} \text{ J/K})$, T: absolute temperature (K), Q: electric charge of electron $(1.60 \times 10^{-19} \text{ C})$, IE: emitter current (A). Equation (1) is changed as follows at normal temperature (300 K) if the emitter current is represented by mA in: $$r_e = \frac{26}{I_E(mA)} (\Omega) \qquad (2)$$ C_e is emitter capacitance ($C_{T_e} + C_{D_e}$). The emitter capacitance is represented as a sum of the depletion layer capacitance and the diffusion capacitance. Because the depletion layer capacitance in an emitter to base junction is normally far smaller than the diffusion capacitance, it can in most cases be ignored. The depletion layer capacitance C_{Te} and the diffusion capacitance C_{De} are represented as $$C_{T_e} = A_e \sqrt{\frac{\frac{1}{2} \epsilon_{qn} n_N}{\frac{1}{\phi_0} - V_{b'o}}} (F) \qquad (3)$$ where, A_e: emitter junction area (m²), ε: permittivity, ⁿN: majority carrier density (m⁻³) on the side of the higher specific resistance side (NPN in this case), $\phi 0 \dot{\cdot}$ contact potential difference (potential fault ck. term when balanced) (V), V_{b'e}: potential applied to both ends of the base-to-emitter junction (1). $$C_{De} = \frac{qI_EW^2}{2kTD} (F) \qquad (4)$$ where, W: base width (m), D: diffusion coefficient of minority carrier in the base region (m²/s), μ is voltage feedback ratio (early constant). This constant, measuring what is known as the Early effect, is a base-width modulation parameter, $$\mu = \frac{kTd_c}{3qW(\phi_0 - V_{b'e})} \qquad (5)$$ where, dc: width of collector depletion lay (m), r_c is collector resistance. This is a kind of base-width modulation parameter, represented as follows: $$\mathbf{r}_{c} = \frac{1}{I_{E} \left(\frac{\partial \alpha}{\partial V_{b'c}} \right)} (\Omega) \qquad (6)$$ The value of rc is usually 1 to 2 $M\Omega$ or so. Cc is collector capacitance. Calculated similarly to emitter capacitance, this is shown as the sum of depletion layer capacitance and diffusion capacitance of the collector-to-base junction. However, since the diffusion capacitance of the collector-to-base junction is far smaller than the depletion layer capacitance, it can be ignored. The depletion layer capacitance is represented as $$C_{TC} = A_C \sqrt[3]{\frac{\epsilon^2 qa}{12} \over \phi_0 - V_{b'c}} (F)$$(7) where, Ac: collector junction area (m²), a: impurity concentration gradient (m⁻⁴), V_{b'e}: potential applied to both ends of the base-to-collector junction (V). Usually the value of Cc is one to ten pF. α is DC forward current transfer ratio. This is the only parameter that depends on frequency, among the several related to an Early T-type equivalent circuit, and is represented by the following equations: $$\alpha = \frac{\alpha_0}{1 + j\omega C_e r_e} \,,$$ $$f_{\alpha} = \frac{1}{2\pi C_{e} r_{e}}$$ therefore, $$\alpha = \frac{\alpha_0}{1 + j\frac{f}{f_{\alpha}}} \tag{8}$$ where, α_0 : value of α at low frequency f_{α} : α -interrupting frequency (frequency at which α is reduced to a level 3 dB less than α 0) Figure 1.2 shows the frequency locus of α . During actual measurement of α , the difference between theoretical and measured values increases as the frequency approaches f_{α} . This is because the Early equivalent circuit is based on a first approximation of physical phenomena. To correct this difference, Thomas-Moll introduced excess phase m and provided the following equation: $$\alpha = \frac{\alpha_0}{1 + j\frac{f}{f_{\alpha}}} \exp\left(-jm\frac{f}{f_{\alpha}}\right) \dots (9)$$ Figure 1.2 Frequency Locus of α The above equation agrees well with measured values in frequencies less than $f_{\alpha}. \label{eq:continuous}$ ^rbb' is base diffusion resistance. This is resistance from the center of the base area to the external base terminal, which actually contributes to transistor action. It is determined according to the shape and dimensions of the transistor, and the base specific resistance. $$\mathbf{r}_{bb'} \simeq \frac{\mathbf{q}_{B}}{8\pi W} (\Omega)$$(10) where, qB: specific resistance of base area $(\Omega \cdot m)$. DC current gain (β) at the common emitter is represented as follows: $$\beta = \frac{\alpha_0}{1-\alpha_0} \frac{1}{1+j\omega C_{b'e}r_{b'e}} = \frac{\beta_0}{1+j\omega C_{b'e}r_{b'e}} \ . \label{eq:beta}$$ The β -interrupting frequency f_β is defined as the frequency at which the absolute value of β becomes $~\beta_0/\sqrt{2}$. In a similar manner to $f_\alpha,~f_\beta$ is expressed as $$f_{\beta} = \frac{1}{2 \; \pi C_{b'e} r_{b'e}} \; , \label{eq:fbeta}$$ therefore, $$\beta = \frac{\beta_0}{1 + j\frac{f}{f_{\beta}}} \tag{11}$$ #### 1.1.2 Giacoletto's π -Type Equivalent Circuit Figure 1.3 shows a π -type equivalent circuit. This equivalent circuit is in itself the same as the Early T-type equivalent circuit mentioned above. The only thing distinguishing the π -type circuit from the Early T-type equivalent circuit is that, in principle, each parameter has no frequency response. Table 1.2 Relationship between Parameters of the π -Type and T-Type Equivalent Circuits | π-Type Equivalent
Circuit Parameters | T-Type Equivalent
Circuit Parameters | |---|---| | C _{b'e} | C _e | | r _{be'} | $\frac{r_{e}}{1-\alpha_{0}}$ | | C _{b'c} | C _c | | 1
r _{b'c} | C_{c} $\frac{1}{r_{c}} - \frac{\mu(1-\alpha_{0})}{r_{e}}$ | | r _{ce} | <u>re</u>
μ | | 9m | $\frac{\alpha_0}{r_e}$ | | r _{bb'} | r _{bb'} | Figure 1.3 π -Type Equivalent Circuit Parameters of the T-type equivalent circuit and those of the π -type have the correlation shown in Table 1.2. Because the physical meaning of each parameter is easy to understand, this circuit is very commonly employed. When the circuit is actually being employed for circuit calculation, it will prove convenient if the basic style shown in Figure 1.3 is slightly simplified by restricting the frequency range to that which is anticipated for performance of the device actually being simulated. #### 1.1.3 Types and Structures of Field Effect Transistors (FETs) Field Effect Transistors (FETs) can be classified into the following two types according to their gates: - Junction FET (junction gate) - MOSFET (insulated gate) Figure 1.4 shows the structures of both types. A junction FET is one
whose gate-to-channel portion is composed of a PN junction; but a FET whose gate-to-channel portion is composed of Metal, Oxide, and a Semiconductor is termed a MOSFET. FETs are also classified into P-channel and N-channel types, according to the type (P or N) of the semiconductor layer through which drain current flows. The structural drawings shown in Figure 1.4 are all N-channel type. Both junction and MOSFETs have their merits and disadvantages. A MOSFET is much more easily damaged by static electricity. Extreme care must be exercised, and suitable protective measures taken, when handling a MOSFET. #### (1) Junction FET - *: The substrate gate is usually connected to the source. - *: The substrate gate is usually connected to the source. Figure 1.4 Structures and Symbols of Field Effect Transistors (FETs) However, almost all MOSFETs incorporate a protective diode at the gate to prevent such breakdowns, and it is very rare for them to degenerate when handled in a careful manner. Nevertheless, junction FETs are considerably more robust, and are usually not damaged even if handled in the same manner as bipolar transistors. Almost all MOSFETs are used for radio-frequency circuits and chopper circuits. This is because, compared with the junction type, the MOS type is superior in cross-modulation and inter-modulation characteristics; and, when used in a chopper circuit, the MOS type exhibits less spike and a higher switching speed. When using FETs for a radio-frequency circuit, it is necessary to reduce the internal feedback capacitance to as low a level as possible, so that stable gain can be obtained. FETs with a cascode connection are employed for this purpose. In recent years, this reduced internal feedback has been achieved in two different ways: by producing a cascode FET in which two FETs are internally cascode-connected, and by development of dual-gate MOSFETs. Figure 1.5 illustrates the structure of a cascode FET and provides a drawing of an equivalent connection for it. A cascode FET has two junction gates, the one near the drain being connected to the substrate gate. Thereby two FETs are produced: a common source FET and a common gate FET. This structure causes feedback from the drain to be grounded as alternate current, producing a FET with small reverse transfer capacitance. Figure 1.5 Structure and Equivalent Connection Drawing of a Cascode FET Figure 1.6 shows the structure and equivalent connection drawings of a dual-gate MOSFET. As far as the operating principle is concerned, this FET is identical with a cascode FET. In the dual-gate MOSFET, Gate 2 is led out to be grounded for AC, and supplied with positive bias voltage for DC, when the FET is used in a radio-frequency amplifier circuit. It is possible to use Gate 2 as an injection terminal when using the MOSFET in a mixing circuit. Figure 1.6 Structure and Equivalent Connection Drawings of a Dual-Gate MOSFET The symbols used for a junction cascode FET and for a dual-gate MOSFET are illustrated in Figure 1.7. Figure 1.7 Symbols Used for Junction Cascode FET and Dual-Gate MOSFET Other available FETs, in addition to those already described, include a power FET and a GaAs FET. #### 1.1.4 FET Equivalent Circuits As in the case of bipolar transistors, a FET can be simulated by means of an equivalent circuit. Figure 1.8 is a schematic diagram of the structure of this equivalent circuit. This diagram appears in a more schematic form in the equivalent circuit in Figure 1.9 (a), and is further modified into a practical, simplified equivalent circuit in Figure 1.9 (b). C_{GD}, C_{GS}, and C_{DS} shown here are parasitic capacitances. Since their values are relatively small, it is possible to ignore them unless this circuit is used in VHF regions. However, these capacitances must be fully taken into account when transistors with large interelectrode capacitances, such as power FETs and high-g_m FETs, are used in low-frequency regions. For a FET to be used in chopper circuits, it is necessary to keep the difference between C_{GD} and C_{GS} small to prevent spikes. Figure 1.8 Equivalent Circuit in Relation to the Structure of a FET #### (a) Equivalent circuit (b) Simplified equivalent circuit Figure 1.9 Equivalent Circuit The simplified equivalent circuit can describe the main characteristics of a FET very clearly since it is related to the structure of the FET and is portrayed with basic parameters that do not depend on frequency. For example, here it is understood that DC input resistance (which is infinity) can be in practice ignored and that CD (internal feedback capacitance) is an unstable factor at high frequency. Because capacitance can be ignored at low frequency, input resistance $\to \infty$, and output resistance \simeq RDS. With these simplifications this is almost an equivalent circuit of a vacuum tube. #### 1.2 Circuit Parameters #### 1.2.1 Matrices Showing the Relations among Inputs and Outputs by Voltage and Current This is a method used to describe a transistor by regarding it as a four-terminal circuit network, and by using the electrical characteristic of terminals irrespective of the physical characteristics of the transistor. The resulting matrices are of six types, as shown in Table 1.1: the a, b, g, h, y and z matrices. Among these, the "h" and "y" matrices are used comparatively often. Figure 1.10 and Figure 1.11 show the definitions of "h" and "y" matrices. The common emitter and the common base are differentiated by the use of the suffix e or b after i, r, f, or o. Figure 1.10 Circuit Network Depicted by the "h" Matrix Figure 1.11 Circuit Network Depicted by the "y" Matrix The physical meanings of each parameter in Figure 1.10 and Figure 1.11 are as follows: hi: input impedance hr: voltage feedback ratio hf: current gain h₀: output admittance yi: input admittance yr: reverse transfer admittance yf: forward transfer admittance yo: output admittance The "h" matrix is often used for low-frequency regions, and the "y" matrix for radio-frequency regions. #### 1.2.2 Matrix Showing the Relations among Inputs and Outputs by Power Such phenomena as the reflection and transfer of waves in a microwave circuit (for example, in waveguides and cavity resonators) are usually indicated by an "S" matrix (scattering matrix). As the frequency limits for semiconductor products expand, the "S" matrix itself is occasionally used as a circuit parameter. The definition of the "S" matrix is shown in Figure 1.12; the physical meanings of each parameter are as follows: S_{11} : input reflection coefficient S_{12} : reverse transfer coefficient S21: forward transfer coefficientS22: output reflection coefficient $\binom{b_1}{b_2} \! = \! \binom{S_{11} \; S_{12}}{S_{21} \; S_{22}} \binom{a_1}{a_2} \! = \! \binom{S_i \; S_r}{S_f \; S_o} \binom{a_1}{a_2}$ The suffix e or b is used to indicate the common emitter or the common base in the same way as for the "h" and "y" parameters. Figure 1.12 Circuit Network Depicted by "S" Matrix **Table 1.3 Conversion of Parameters** | | 1 | нј | [| Y] | | [S] | |-----|---|---|---|---|---|--| | [Н] | h _i | h _r | <u>1</u>
y _i | - <mark>Y</mark> r
Yi | $\frac{(1+S_{i})(1+S_{o})-S_{i}}{(1-S_{i})(1+S_{o})+S_{f}}$ | $ \frac{2S_{f}}{(1-S_{i})(1+S_{o})+S_{r}S_{f}} $ | | , | h _f | h _o | y _f
y _i | y _i y _o – y _r y _f
Yi | $\frac{-2S_{f}}{(1-S_{i})(1+S_{o})+S_{r}}$ | $\frac{S_f}{(1-S_o)(1-S_i)-S_rS_f}$
$\frac{(1-S_i)(1+S_o)+S_rS_f}{(1-S_i)(1+S_o)+S_rS_f}$ | | [Y] | $\frac{1}{h_i}$ | $-\frac{h_{\Gamma}}{h_{i}}$ | Уî | Уг | $\frac{(1+S_0)(1-S_i)+S_r}{(1+S_i)(1+S_0)-S_r}$ | $\frac{S_{f}}{S_{f}}$ $\frac{-2S_{r}}{(1+S_{i})(1+S_{o})-S_{r}S_{f}}$ | | [1] | h _f
h _i | $\frac{h_ih_0 - h_rh_f}{h_i}$ | Уf | Уо | $\frac{-2S_{f}}{(1+S_{i})(1+S_{o})-S_{f}}$ | $\frac{S_f}{(1+S_i)(1-S_0)+S_rS_f}$
$\frac{(1+S_i)(1+S_0)-S_rS_f}{(1+S_i)(1+S_0)-S_rS_f}$ | | | $\frac{\left(h_{i}-1\right)\left(h_{O}+1\right)-h_{r}h_{f}}{\left(h_{i}+1\right)\left(h_{O}+1\right)-h_{r}h_{f}}$ | $\frac{2h_r}{(h_i+1)(h_0+1)-h_rh_f}$ | $\frac{(1-y_i)(1+y_o)+y_ry_f}{(1+y_i)(1+y_o)-y_ry_f}$ | $\frac{-2y_{f}}{(1+y_{i})(1+y_{o})-y_{f}y_{f}}$ | Si | Sr | | [S] | $\frac{-2h_{f}}{\left(h_{i}+1\right)\left(h_{o}+1\right)-h_{r}h_{f}}$ | $\frac{(1+h_i)(1-h_o)+h_rh_f}{(h_i+1)(h_o+1)-h_rh_f}$ | $\frac{-2y_{f}}{(1+y_{i})(1+y_{o})-y_{r}y_{f}}$ | $\frac{(1+y_i)(1-y_o)+y_ry_f}{(1+y_i)(1+y_o)-y_ry_f}$ | S _f | S _o | | | | | | Converted "h | " Parameters | | | |------------|-----------------------|---------------------------------------|--|----------------------------|--|---------------------------|---------------------------| | | | Common Base | | Commor | n Emitter | Common Collector | | | | Common
Base | | | $\frac{h_{ib}}{1+h_{fb}}$ | $\frac{\Delta h_b - h_{rb}}{1 + h_{fb}}$ | $\frac{h_{ib}}{1+h_{fb}}$ | 1 | | ers | Com | | | $\frac{-h_{fb}}{1+h_{fb}}$ | $\frac{h_{Oh}}{1+h_{fb}}$ | $\frac{-1}{1+h_{fb}}$ | $\frac{h_{ob}}{1+h_{fb}}$ | | Parameters | Common
Emitter | $\frac{h_{ie}}{1+h_{fe}}$ | $\frac{\Delta h_{e} - h_{re}}{1 + h_{fe}}$ | | | h _{ie} | 1 – h _{re} | | Known "h" | Com | −h _{fe}
1+h _{fe} | $\frac{h_{0e}}{1+h_{fe}}$ | | | - (1 + h _{fe}) | h _{oe} | | K | Common | −h _{ic}
h _{fc} | $\frac{-\Delta h_{C}}{h_{fC}} - 1$ | h _{ic} | 1 – h _{rc} | | | | | E CO
CO
CO
E | $\frac{-(1+h_{fc})}{h_{fc}}$ | h _{oc}
h _{fc} | – (1 + h _{fc}) | h _{oc} | | | Table 1.4 Conversion Formulas for "h" Parameters $\Delta h_e =
h_{ie} \cdot h_{0e} - h_{re} \cdot h_{fe}, \ \Delta h_b = h_{ib} \cdot h_{0b} - h_{rb} \cdot h_{fb}, \ \Delta h_c = h_{ic} \cdot h_{oc} - h_{rc} \cdot h_{fe}$ Table 1.5 Conversion Formulas for "y" Parameters | | | | Converted "y" Parameters | | | | | | | |----------------------|-------------------|--|---|---|--|---|--|--|--| | | | Common Base | | Common Emitter | | Common Collector | | | | | eters | Common
Base | | | $\Sigma_{ extsf{yb}} - (extsf{y}_{ extsf{fb}} + extsf{y}_{ extsf{ob}})$ | – (у _{гb} + у _{оb})
Уоb | $\frac{\sum_{yb}}{-\left(y_{ib}+y_{rb}\right)}$ | – (у _{ib} + у _{ob})
Уib | | | | Known "y" Parameters | Common
Emitter | Σ_{ye} – (y _{fe} + y _{oe}) | - (y _{re} + y _{oe})
y _{oe} | | | y _{ie}
- (y _{ie} + y _{fe}) | $-$ (y _{ie} + y _{re}) Σ_{ye} | | | | Know | Common | Уос
- (у _{гс} + у _{ос}) | $-$ (yfc + yoc) $\Sigma_{ extsf{yc}}$ | Уіс
- (у _{іс} + у _{гс}) | $-$ (y _{ic} + y _{rc}) Σ_{yc} | | | | | $\Sigma y_e = y_{ie} + y_{re} + y_{fe} + y_{oe}$ $\sum y_b = y_{ib} + y_{rb} + y_{fb} + y_{ob}$ $\Sigma y_c = y_{ic} + y_{rc} + y_{fc} + y_{oc}$ | | Common Base | | Common Emitter | |-----------------|---|-----------------|--| | h _{ib} | $\frac{r_{e} + r_{bb'}\left((1 - \alpha_{0}) + j\frac{f}{f_{\alpha}}\right)}{1 + j\left(f/f_{\alpha}\right)}$ | h _{ie} | $r_{bb'} + \frac{r_e}{(1-\alpha_0)+j(f/f_\alpha)}$ | | h _{rb} | j2πfC _c r _{bb} · | h _{re} | $2\pi f_{\alpha}C_{c}r_{e}\frac{j\frac{f}{f_{\alpha}}}{(1-\alpha_{0})+j(f/f_{\alpha})}$ | | h _{fb} | $\frac{-\alpha_0}{1+j(f/f_\alpha)}$ | h _{fe} | $\frac{\alpha_0}{(1-\alpha_0)+j(f/f_\alpha)}$ | | h _{ob} | j2πfC _C | h _{oe} | $2\pi f_{\alpha}C_{c}\frac{j\frac{f}{f_{\alpha}}\left(1+j\frac{f}{f_{\alpha}}\right)}{(1-\alpha_{0})+j(f/f_{\alpha})}$ | Table 1.6 "h" Parameters Converted by Early T-Type Device Parameters Table 1.7 "y" Parameters Converted by Early T-Type Device Parameters | | Common Base | | Common Emitter | |-----|---|------|---| | Уів | $\frac{1+j\frac{f}{f_{\alpha}}}{r_{e}+jr_{bb'}\frac{f}{f_{\alpha}}}$ | Уіе | $\frac{(1-\alpha_0)+j\frac{f}{f_{\alpha}}}{r_e+jr_{bb},\frac{f}{f_{\alpha}}}$ | | Уrb | $-2\pi f_{\alpha}C_{c}\frac{j\frac{f}{f_{\alpha}}\left(1+j\frac{f}{f_{\alpha}}\right)}{\frac{r_{e}}{r_{bb'}}+j\frac{f}{f_{\alpha}}}$ | Уге | $-2\pi f_{\alpha}C_{c}\frac{r_{e}}{r_{bb'}}\frac{j\frac{f}{f_{\alpha}}}{\frac{r_{e}}{r_{bb'}}+j\frac{f}{f_{\alpha}}}$ | | Уfb | $-\frac{\alpha_0}{r_e+jr_{bb'}\frac{f}{f_\alpha}}$ | У́fе | $\frac{\alpha_0}{r_e + jr_{bb'} \frac{f}{f_{\alpha}}}$ | | Уоь | $2\pi f_{\alpha}C_{c}\frac{j\frac{f}{f_{\alpha}}\left(1+\frac{r_{e}}{r_{bb'}}+j\frac{f}{f_{\alpha}}\right)}{\frac{r_{e}}{r_{bb'}}+j\frac{f}{f_{\alpha}}}$ | Уое | $2\pi f_{\alpha}C_{c}\frac{j\frac{f}{f_{\alpha}}\left(1+\frac{r_{e}}{r_{bb'}}+j\frac{f}{f_{\alpha}}\right)}{\frac{r_{e}}{r_{bb'}}+j\frac{f}{f_{\alpha}}}$ | Note: The common base parameter y_{ob} and the common emitter parameter y_{oe} are identical. Figure 1.13 Frequency Locus of "h" Parameters Figure 1.14 Frequency Locus of "y" Parameters Refer to Table 1.3, Table 1.4, and Table 1.5 for the correlation and conversion among circuit parameters of the common base and common emitter. Figure 1.13 and Figure 1.14 show the frequency locuses of "h" and "y" parameters obtained from Table 1.6 and Table 1.7. The above parameters vary according to the operating points and temperature, and circuit designers should allow for such variations. #### 2. Gain and Stability Figure 2.1 shows the basic radio-frequency amplification circuit of a transistor/FET and the FET's equivalent circuit. When this amplification circuit is tuned to the center frequency, the capacitance is removed and only the conductance remains, as shown in the equivalent circuit in Figure 2.2. In this circuit, if both the capacitance and the conductance are neutralized, it can be assumed that $|yr| \simeq 0$. The same assumption that $|yr| \simeq 0$ can also be made for active devices with small reverse transfer capacitance, such as cascaded FETs. Also, when the unloaded Q in the I/O coil is large, and when the loss conductances g1 and g2 are ignored, a circuit of simple configuration can be constructed as shown in Figure 2.3. is: constant signal current source gs, Cs: signal source conductance, capacitance gi, Ci: input conductance, capacitance L₁, L₂: I/O tuning inductance go, Co: output conductance, capacitance g₁, g₂: power loss conductance of an I/O coil gL, CL: load conductance, capacitance C₁, C₂: load conductance in external I/O Figure 2.1 Basic Radio-Frequency Amplifier Circuit and its Equivalent Circuit We now find the power gain of the equivalent circuit. $$G_{p} = \frac{P_{0}}{P_{i} \text{ (max)}} = \frac{|\nu_{2}|^{2} g_{L}}{|i_{s}|^{2} / 4g_{s}}$$ (1) Combining this with $$v_2 = \frac{yf v_1}{g_0 + g_1}, i_s = -v_1(g_s + g_1)$$ we obtain $$G_{p} = \frac{4|y_{f}|^{2}g_{s}g_{L}}{(g_{s} + g_{i})^{2}(g_{0} + g_{L})^{2}}...$$ (2) When $g_S = g_i$ and $g_L = g_0$, the power gain becomes maximum; these conditions are met when the input and the output are matched. $$G_{p}(max) = \frac{|y_{fs}|^2}{4g_{i}g_{0}}$$ (3) Gp (max) is the Maximum Available Gain (MAG) that can be achieved when the circuit and device impedance are matched at both the input and output interfaces, while input-to-output signal transfer is unidirectional. Therefore, in practice, stability gain must be considered as well as power gain. The active device stability coefficient s is $$S = \frac{2g_i \cdot g_o}{1 + \cos(\phi_r + \phi_f)|y_r| \cdot |y_f|}$$ (4) Where ϕ is the phase angle of the "y" parameter, $$\begin{cases} \phi_r = \tan^{-1} \left(b_r / g_r \right) \\ \phi_f = \tan^{-1} \left(b_f / g_f \right). \end{cases}$$ Figure 2.4 Phase Angle Diagram The stability coefficient is calculated from the "y" parameter of the device; and, if s > 1, the device can be deemed stable without the I/O circuit being taken into account. However, when $s \le 1$, there is a danger that the I/O circuit may cause oscillation. In a radio-frequency amplifier circuit, total stability S is expressed in terms of Gi and Go. $$S = \frac{2}{1 + \cos(\phi_r + \phi_f)} \cdot \frac{G_i \cdot G_o}{|y_r||y_f|} \qquad (5)$$ Where $G_i = g_s + g_1 + g_i$ $$G_0 = g_0 + g_2 + g_L$$ The relationship between S and the stability coefficient of a device (s) can be expressed as follows: $$S = \frac{G_i G_o}{g_i g_o} \cdot s$$ $$= \left(1 + \frac{g_S + g_1}{g_1}\right) \left(1 + \frac{g_L + g_2}{g_0}\right) \cdot s \tag{6}$$ $$S \ge s$$ In other words, the circuit stability can be increased by selecting a larger g_S, g_L, g₁, or g₂. When the input and output are matched, even though the loss conductance of the coil is $(g_1, g_2) = 0$, $$\begin{cases} G_i = g_S + g_i = 2g_i \\ G_0 = g_0 + g_L = 2g_0 \end{cases}$$ $$S = 4.6$$ and total circuit stability four times greater than that of the device alone can be attained. Power gain G_p can be expressed as a function of S: $$G_{p} = \frac{1}{S} \cdot \frac{2}{1 + \cos(\phi_{r} + \phi_{f})} \cdot \frac{|y_{f}|}{|y_{f}|} \dots$$ (7) This formula can be changed to $$G_{p} = \frac{4}{S} \cdot \frac{2}{1 + \cos(\phi_{r} + \phi_{f})} \cdot \frac{g_{i} \cdot g_{o}}{|y_{r}||y_{f}|} \cdot \frac{|y_{f}|^{2}}{4g_{i}g_{o}}$$ (8) $$= \frac{4s}{s} \cdot G_p(max) \tag{9}$$ An S value of at least 4 ($S \ge 4$) indicates good circuit stability. $$G_{p} \leq s \cdot G_{p} \text{ (max)} \tag{10}$$ If $S \le 1$, indicating poor device stability, the MAG of the device is the upper limit of the power gain which can be attained in the circuit. Table 2.1 shows MAG and the G_p of a radio-frequency transistor/FET when S=4. Table 2.1 Gain and Stability (example) f = 100 MHz | | | MAG (dB) | s | G _{ps} (dB) | |--------|---------|----------|-------|----------------------| | TR | 2SC1923 | 34.9 | 0.030 | 19.6 | | J-FET | 2SK192A | 26.9 | 0.023 | 10.5 | | J-FE1 | 2SK161 | 26.4 | 0.265 | 20.7 | | MOSFET | 2SK241 | 34.0 | 0.120 | 24.8 | Several methods are available for achieving stable gain in radio-frequency circuits. The most popular circuit-design-based method is to avoid feedback by installing a neutralized circuit. Figure 2.5 shows an example. Figure 2.5 2SC380TM 10.7 MHz Amplifier Circuit Another method is to lower the feedback capacitance by means of a cascode connection. Figure 2.6 shows a typical example of a cascode-connected circuit. Figure 2.6 TV Tuner VHF Mixer Circuit The Faraday shield (electrostatic screen) method is used to protect transistors from interference generated by other active devices. In the case of FETs, the construction of devices with internal cascode connections, such as cascode FETs and dual MOSFETs, is equivalent to the Faraday shield method. # 3. Tape Packing Specifications ## 3.1 Tape Specifications by Type of Device Package - 3.1.1 Super-Mini Package Group: S-MINI, SMQ, SMV (SSOP5-P-0.95) and SM6 (SSOP6-P-0.95) - o Ultra-Super-Mini Package Group: USM, USQ, USV US6 - Small Super-Mini (SSM) - Thin Extreme-Super-Mini Package (TESM) - o Thin Ultra-Super-Mini 6 pin Package (TU6) | Packing
Type | Tape Type
Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Packing
Quantity | |------------------|---|----------------------------|-----------------|---------------------------| | | TE85L | 4 4 | | 3000 per reel
(Note 1) | | Embossed
tape | TE85L2
(only for s-mini,
SMV and USM) | | | 10000 per reel | Note 1: TESM: 4000 per reel. ## 3.1.2 Super-Mini Package for Varicap Diode | Packing
Type | Tape Type
Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Pair | Packing
Quantity | |-----------------|---------------------|----------------------------|-----------------|------|-------------------------| | | TPH2 | | | 0 | | | | TPH3 | 4 4 | | × | 3000 per reel | | Embossed | TPH4 | 1000000 | | 0 | | | tape | TPH6 | | | 0 | 600 to 3000
per reel | | | TPH7 | Y \ | | 0 | 3000 per reel | ## 3.1.3 Ultra-Super-Mini Coaxial Package (USC) | Packing
Type | Tape Type
Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Pair | Packing
Quantity | |------------------|---------------------|----------------------------|-----------------|------|--------------------------| | | TPH2 | | | 0 | 2400 to 3000
per reel | | Cush sees d | TPH3 | 4 4 Cathode | | × | 3000 per reel | | Embossed
tape | TPH4 | | | 0 | 2400 to 3000
per reel | # 3.1.4 Extreme-Super-Mini Coaxial Package (ESC) Thin Extreme-Super-Mini Coaxial Package (TESC) | Packing
Type | Tape Type
Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Pair | Packing
Quantity | |------------------|---------------------|----------------------------|-----------------|------|--------------------------| | Embossed
tape | TPH2 | Cathode | | 0 | 3200 to 4000
per reel | | | TPH3 | | | × | 4000 per reel | | | TPL2 | 2 | | 0 | 6400 to 8000
per reel | | | TPL3 | 2 | | × | 8000 per reel | # 3.1.5 Flat-Mini Package (FM8) | Packing
Type | Tape Type Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Packing
Quantity | |------------------|------------------|---|-----------------|---------------------| | Embossed
tape | TE12L | 4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1000 per reel | # 3.1.6 Flat-Super-Mini Package (SM8) (SSOP8-P-0.65) | Packing
Type | Tape Type Suffix Tape Dimensions (Unit: mm) | | Reel Appearance | Packing
Quantity | |------------------|---|--|-----------------|---------------------| | Embossed
tape | TE12L | | | 3000 per reel | # 3.1.7 Mini Package (MINI) | Packing
Type | Tape Type Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Packing
Quantity | |-----------------|------------------|--|-----------------|---------------------| | Ammo pack | TPE4 | Feed-out direction 12.7 direction 12.7 | TOSHIBA | 5000 per
carton | # 3.1.8 Extreme-Super-Mini 6 pin Package (ES6) Small Extreme-Super-Mini 6 pin Package (sES6) | Packing
Type | Tape Type Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Packing
Quantity | |------------------|------------------|--|-----------------|---------------------| | Embossed
tape | TE85L | 4 © FIELD FIELD FIELD FIELD FIELD A | | 4000 per reel | # 3.1.9 Small Extreme-Super-Mini Coaxial Package (sESC) | Packing
Type | Tape Type
Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | | Packing
Quantity | |------------------|---------------------|----------------------------|-----------------|---|---------------------| | Embossed
tape | ТРН3 | Cathode | | × | 5000 per reel | | | TPL3 | Cathode | | × | 10000 per
reel | # 3.1.10 PW-X Package | Packing
Type | Tape Type
Suffix | Tape Dimensions (Unit: mm) | Reel Appearance | Packing
Quantity | |------------------|---------------------|----------------------------|-----------------|---------------------| | Embossed
tape | TE12L | 12 | | 1000 per reel | # 3.1.11 Power Mini Transistor Package (PW-MINI) | Packing Type | | Tape Type Suffix Tape Dimensions (Unit: mm) Ree | | Reel Appearance | Packing
Quantity | |--------------|------------|---|-------|--|---------------------| | Tape | Pack type | TE12L | 8 | | 1000 per reel | | Magazine | Stick type | _ | 178.2 | TOBUBA MARIE AND | 25 per
magazine | # 3.1.12 TO-92/Mini Devices | Tape Type Suffix | Applied Package
Type | Packing Type | Packing
Quantity | Reel Appearance | |------------------|-------------------------|--------------|---------------------|-----------------| | TPE2 | TO-92 (2-5F) | Ammo pack | 3000 pcs | TOSHIBA | | TPE4 | MINI (2-4E) | Ammo pack | 5000 pcs | | ## 3.2 Lead Formed TO-92 and Mini Transistor Package Dimensions Snap forming: center lead Figure 3.1 Lead-Formed TO-92 Transistor Package Dimensions Snap forming: center lead Figure 3.2 Lead-Formed Mini Transistor Package Dimensions ## 3.3 Tape Dimensions # 3.3.1 Tape Layout for Chip Scale Package Thin Type 2 Pin...(CST2) #### Device orientation # 3.3.2 Tape Layout for Extreme-Super-Mini Coaxial...(ESC) Tape Layout for Thin Extreme-Super-Mini Coaxial...(TESC) # 2 mm Pitch Type # 4 mm Pitch Type # **TOSHIBA** # 3.3.3 Tape Layout for Fine Pitch Super-Mini Coaxial...(fSC) # 3.3.4 Tape Layout for Small Chip Scale Package 2 Pin...(SC2) Device orientation # 3.3.5 Tape Layout for Small-Extreme-Super-Mini Coaxial...(sESC) # 3.3.6 Tape Layout for Ultra-Super-Mini Coaxial...(USC) Unit: mm #### Device orientation # 3.3.7 Tape Layout for Chip-Scale Package Thin Type 3 Pin...(CST3) #### Device orientation # 3.3.8 Tape Layout for Fine Pitch Super-Mini Mold...(fSM) #### Device Features in Detail [6] #### Tape Layout for Power Mini...(PW-MINI) 3.3.9 #### Device orientation # 3.3.10 Tape Layout for Super-Mini...(S-MINI) # 3.3.11 Tape Layout for Small-Super-Mini...(SSM) # 3.3.12 Tape Layout for Thin-Extreme-Super-Mini...(TESM) # 3.3.13 Tape Layout for Ultra-Super-Mini...(USM) # 3.3.14 Tape Layout for Very Thin Extreme-Super-Mini...(VESM) # 3.3.15 Tape Layout for Power X...(PW-X) # 3.3.16 Tape Layout for Super-Mini Quad...(SMQ) # 3.3.17 Tape Layout for Thin Extreme-Super-Mini Quad...(TESQ) Unit: mm 0.2 2.0 ± 0.04 4.0 ± 0.08 $\phi 1.5 \pm 0.1$ ---**>** B В $\mathbf{3.5} \pm 0.04$ 1.35 À B' В' 0.65 ----> B' φ0.5 ### Device orientation 1.35 # 3.3.18 Tape Layout for Ultra-Super-Mini Quad...(USQ) # 3.3.19 Tape Layout for Extreme-Super-Mini V...(ESV) # 3.3.20 Tape Layout for Super-Mini V...(SMV) # 3.3.21 Tape Layout for Ultra-Super-Mini V...(USV) # 3.3.22 Tape Layout for Chip Scale 6...(CS6) #### [6] Device Features in Detail #### Tape Layout for Chip Scale Package Thin Type 6 Pin...(CST6B) 3.3.23 # **TOSHIBA** ### 3.3.24 Tape Layout for Extreme-Super-Mini 6 Pin...(ES6) # 3.3.25 Tape Layout for Fine Pitch Extreme-Super-Mini 6 Pin...(fS6) # 3.3.26 Tape Layout for Small Extreme-Super-Mini 6 Pin...(sES6) # **TOSHIBA** # 3.3.27 Tape Layout for Thin Ultra-Super-Mini 6 Pin...(TU6) # 3.3.28 Tape Layout for Ultra-Flatlead 6 Pin...(UF6) # 3.3.29 Tape Layout for Flat Mini 8 Pin...(FM8) Unit: mm Pin 1 is on the lower left of the marking. Example: Top View # 3.3.30 Tape Layout for Super-Mini 8 Pin...(SM8) # 3.3.31 Tape Layout for Quad Small 16 Pin...(QS16) # 3.3.32 Tape Layout for Chip Scale Package Thin Type 20 Pin...(CST20) Example: Top View # 3.3.33 Radial Tape Layout for TO-92 and Mini Package | Measurement | Symbol | Dimensions | | | Unit: mm | | |--|--------------------------------|-------------------------------|-------------------------------|--|---|--| | | | TO-92
(SC-43) | MINI | TO-92MOD | MSTM | Remarks | | Product width | A ₁ | 6.0 max | 4.5 max | 5.1 max | 7.1 max | | | Product height | Α | 9.0 max | 3.5 max | 8.2 max | 4.7 max | Refer to each technical datasheet for more | | Product thickness | Т | 6.0 max | 2.6 max | 4.1 max | 2.7 max | details | | Lead width | d | 0.45 [□] typ. | 0.4 [□] typ. | 0.67 [□] max | 0.45 [□] typ. | | | Attached lead length | ℓ ₁ | 2.5 min 3.5 min | | 2.6 min | | | | Pitch between products | Р | 12.7 ± 1.0 | | | 12.7 ± 0.5 | | | Feed hole pitch | P ₀ | 12.7 ± 0.3 | | 12.7 ± 0.2 | Cumulative pitch error rate: ±1 mm/20 pitches | | | Feed hole center to lead center | P ₂ | 6.35 ± 0.4 | | | | | | Lead spacing | F ₁ /F ₂ | 2.5 ⁺ 0.6
- 0.3 | | 2.54 ^{+ 0.3} _{- 0.2} | | | | Vertical skew | Δh | 0 ± 2.0 | | 0 ± 1.0 | | | | Tape width | W | 18.0 + 1.0 | | | | | | Sealing tape width | W ₀ | 6.0 ± 0.3 | | | | | | Tape edge to feed hole center | W ₁ | 9.0 + 0.75 9.0 2 | | ± 0.5 | | | | Carrier tape edge to sealing tape edge | W ₃ | 0.5 max | | | | | | Package to feed hole center | Н | 20 max | 20 ⁺ 0.75
- 0.5 | 20 max | 19 ± 0.5 | | | Lead clinch to feed hole center | H ₀ | 16.0 ± 0.5 | | | | | | Product protrusion from feed hole center | H ₁ | 32.25 max | | 25.0 max | | | | Feed hole diameter | D ₀ | 4.0 ± 0.2 | | | | | | Tape thickness | t | 0.6 ± 0.2 | | | | | | Length of shipped lead | L ₁ | 11.0 max | | | | | | Horizontal skew | ΔP | 0 ± 1.0 | | | | | ### Ammo Pack and Ammo Pack Dimensions Unit: mm | Package Type | w | н | D | |---------------|-----------|-----------|--------| | TO-92 (SC-43) | 336 ± 3 | 250 ± 3 | 47 ± 3 | | MINI | 336 ± 3 | 260 ± 3 | 47 ± 3 | | TO-92MOD | 336 ± 3 | 190 ± 3 | 47 ± 3 | | MSTM | 336 ± 3 | 230 ± 3 | 47 ± 3 | *: Indicates the first electrode of a lead. Example: E: Emitter B: Base # 4. Reference Pad Dimensions The following shows the reference pad dimensions for when a device is mounted on a board. Unit: mm (1) CST2 (2) ESC (3) fSC (4) SC2 (5) sESC (7) CST3 (6) USC (8) fSM (9) PW-MINI (10) S-MINI (11) SSM (12) TESM (13) USM (14) VESM (15) PW-X (16) SMQ (17) TESQ (19) ESV (18) USQ (20) SMV (21) USV (22) CS6
(23) CST6B (24) ES6 (25) fS6 (27) TU6 (26) sES6 (28) UF6 (30) SM8 (32) CST20 # [7] Handling Precautions # [7] Handling Precautions #### 1. Using Toshiba Semiconductors Safely TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. #### 2. Safety Precautions This section lists important precautions which users of semiconductor devices (and anyone else) should observe in order to avoid injury and damage to property, and to ensure safe and correct use of devices. Please be sure that you understand the meanings of the labels and the graphic symbol described below before you move on to the detailed descriptions of the precautions. #### [Explanation of Labels] Indicates an imminently hazardous situation which will result in death or serious injury if you do not follow instructions. Indicates a potentially hazardous situation which could result in death or serious injury if you do not follow instructions. Indicates a potentially hazardous situation which if not avoided, may result in minor injury or moderate injury. #### 2.1 General Precautions Regarding Semiconductor Devices ## **ACAUTION** Do not use devices under conditions exceeding their absolute maximum ratings (e.g. current, voltage, power dissipation or temperature). This may cause the device to break down, degrade its performance, or cause it to catch fire or explode resulting in injury. Do not insert devices in the wrong orientation. Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise the rated maximum current or power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it to catch fire or explode and resulting in injury. When power to a device is on, do not touch the device's heat sink. Heat sinks become hot, so you may burn your hand. Do not touch the tips of device leads. Because some types of device have leads with pointed tips, you may prick your finger. When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment's electrodes or probes to the pins of the device under test before powering it on. Otherwise, you may receive an electric shock causing injury. Before grounding an item of measuring equipment or a soldering iron, check that there is no electrical leakage from it. Electrical leakage may cause the device which you are testing or soldering to break down, or could give you an electric shock. Always wear protective glasses when cutting the leads of a device with clippers or a similar tool. If you do not, small bits of metal flying off the cut ends may damage your eyes. #### 2.2 Bipolar ICs (for use in automobiles) # **ACAUTION** If your design includes an inductive load such as a motor coil, incorporate diodes or similar devices into the design to prevent negative current from flowing in. The load current generated by powering the device on and off may cause it to function erratically or to break down, which could in turn cause injury. Ensure that the power supply to any device which incorporates protective functions is stable. If the power supply is unstable, the device may operate erratically, preventing the protective functions from working correctly. If protective functions fail, the device may break down causing injury to the user. #### 3. General Safety Precautions and Usage Considerations This section is designed to help you gain a better understanding of semiconductor devices, so as to ensure the safety, quality and reliability of the devices which you incorporate into your designs. #### 3.1 From Incoming to Shipping #### 3.1.1 Electrostatic Discharge (ESD) When handling individual devices (which are not yet mounted on a printed circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects which come into direct contact with devices should be made of anti-static materials and should be grounded to earth via an 0.5° to 1.0° M Ω protective resistor. Please follow the precautions described below; this is particularly important for devices which are marked "Be careful of static.". #### (1) Work environment - When humidity in the working environment decreases, the human body and other insulators can easily become charged with static electricity due to friction. Maintain the recommended humidity of 40% to 60% in the work environment, while also taking into account the fact that moisture proof-packed products may absorb moisture after unpacking. - Be sure that all equipment, jigs and tools in the working area are grounded to earth. - Place a conductive mat over the floor of the work area, or take other appropriate measures, so that the floor surface is protected against static electricity and is grounded to earth. The surface resistivity should be 10^4 to 10^8 Ω /sq and the resistance between surface and ground, 7.5×10^5 to 10^8 Ω - Cover the workbench surface also with a conductive mat (with a surface resistivity of 10⁴ to 10⁸ Ω/sq, for a resistance between surface and ground of 7.5 × 10⁵ to 10⁸ Ω). The purpose of this is to disperse static electricity on the surface (through resistive components) and ground it to earth. Workbench surfaces must not be constructed of low resistance metallic materials that allow rapid static discharge when a charged device touches them directly. - Pay attention to the following points when using automatic equipment in your workplace: - (a) When picking up ICs with a vacuum unit, use a conductive rubber fitting on the end of the pick-up wand to protect against electrostatic charge. - (b) Minimize friction on IC package surfaces. If some rubbing is unavoidable due to the device's mechanical structure, minimize the friction plane or use material with a small friction coefficient and low electrical resistance. Also, consider the use of an ionizer. - (c) In sections which come into contact with device lead terminals, use a material which dissipates static electricity. - (d) Ensure that no statically charged bodies (such as work clothes or the human body) touch the devices. - (e) Make sure that sections of the tape carrier which come into contact with installation devices or other electrical machinery are made of a low-resistance material. - (f) Make sure that jigs and tools used in the assembly process do not touch devices. - (g) In processes in which packages may retain an electrostatic charge, use an ionizer to neutralize the ions. - Make sure that CRT displays in the working area are protected against static charge, for example by a VDT filter. As much as possible, avoid turning displays on and off. Doing so can cause electrostatic induction in devices. - Keep track of charged potential in the working area by taking periodic measurements. - Ensure that work chairs are protected by an anti-static textile cover and are grounded to the floor surface by a grounding chain. (suggested resistance between the seat surface and grounding chain is 7.5×10^5 to $10^{12} \Omega$.) - Install anti-static mats on storage shelf surfaces. (suggested surface resistivity is 10^4 to 10^8 Ω/sq ; suggested resistance between surface and ground is 7.5×10^5 to 10^8 Ω .) - For transport and temporary storage of devices, use containers (boxes, jigs or bags) that are made of anti-static materials or materials which dissipate electrostatic charge. - Make sure that cart surfaces which come into contact with device packaging are made of materials which will conduct static electricity, and verify that they are grounded to the floor surface via a grounding chain. - In any location where the level of static electricity is to be closely controlled, the ground resistance level should be Class 3 or above. Use different ground wires for all items of equipment which may come into physical contact with devices. #### (2) Operating environment - Operators must wear anti-static clothing and conductive shoes (or a leg or heel strap). - Operators must wear a wrist strap grounded to earth via a resistor of about $1 \text{ M}\Omega$. - Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages (6 V to 24 V). - If the tweezers you use are likely to touch the
device terminals, use anti-static tweezers and in particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip, and connect it to a dedicated ground used especially for anti-static purposes (suggested resistance value: 10^4 to 10^8 Ω). - Do not place devices or their containers near sources of strong electrical fields (such as above a CRT). - When storing printed circuit boards which have devices mounted on them, use a board container or bag that is protected against static charge. To avoid the occurrence of static charge or discharge due to friction, keep the boards separate from one other and do not stack them directly on top of one another. - Ensure, if possible, that any articles (such as clipboards) which are brought to any location where the level of static electricity must be closely controlled are constructed of anti-static materials. - In cases where the human body comes into direct contact with a device, be sure to wear anti-static finger covers or gloves (suggested resistance value: $10^8\,\Omega$ or less). - Equipment safety covers installed near devices should have resistance ratings of $10^9 \Omega$ or - If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to devices, use an ionizer. - The transport film used in TCP products is manufactured from materials in which static charges tend to build up. When using these products, install an ionizer to prevent the film from being charged with static electricity. Also, ensure that no static electricity will be applied to the product's copper foils by taking measures to prevent static occurring in the peripheral equipment. #### 3.1.2 Vibration, Impact and Stress Handle devices and packaging materials with care. To avoid damage to devices, do not toss or drop packages. Ensure that devices are not subjected to mechanical vibration or shock during transportation. Ceramic package devices and devices in canister-type packages which have empty space inside them are subject to damage from vibration and shock because the bonding wires are secured only at their ends. Plastic molded devices, on the other hand, have a relatively high level of resistance to vibration and mechanical shock because their bonding wires are enveloped and fixed in resin. However, when any device or package type is installed in target equipment, it is to some extent susceptible to wiring disconnections and other damage from vibration, shock and stressed solder junctions. Therefore when devices are incorporated into the design of equipment which will be subject to vibration, the structural design of the equipment must be thought out carefully. If a device is subjected to especially strong vibration, mechanical shock or stress, the package or the chip itself may crack. In products such as CCDs which incorporate window glass, this could cause surface flaws in the glass or cause the connection between the glass and the ceramic to separate. Furthermore, it is known that stress applied to a semiconductor device through the package changes the resistance characteristics of the chip because of piezoelectric effects. In analog circuit design attention must be paid to the problem of package stress as well as to the dangers of vibration and shock as described above. Temperature: ∕5°~35°C Humidity: #### 3.2 Storage #### 3.2.1 General Storage - Avoid storage locations where devices will be exposed to moisture or direct sunlight. - Follow the instructions printed on the device cartons regarding transportation and storage. - The storage area temperature should be kept within a temperature range of 5°C to 35°C, and relative humidity should be maintained at between 45% and 75%. - When repacking devices, use anti-static containers. - Do not allow external forces or loads to be applied to devices while they are in storage. - If devices have been stored for more than two years, their electrical characteristics should be tested and their leads should be tested for ease of soldering before they are used. #### 3.2.2 Moisture-Proof Packing Moisture-proof packing should be handled with care. The handling procedure specified for each packing type should be followed scrupulously. If the proper procedures are not followed, the quality and reliability of devices may be degraded. This section describes general precautions for handling moisture-proof packing. Since the details may differ from device to device, refer also to the relevant individual datasheets or databook. #### (1) General precautions Follow the instructions printed on the device cartons regarding transportation and storage. - Do not drop or toss device packing. The laminated aluminum material in it can be rendered ineffective by rough handling. - The storage area temperature should be kept within a temperature range of 5°C to 30°C, and relative humidity should be maintained at 90% (max). Use devices within 12 months of the date marked on the package seal. • If the 12-month storage period has expired, or if the 30% humidity indicator shown in Figure 3.1 is pink when the packing is opened, it may be advisable, depending on the device and packing type, to back the devices at high temperature to remove any moisture. Please refer to the table below. After the pack has been opened, use the devices in a 5°C to 30°C. 60% RH environment and within the effective usage period listed on the moisture-proof package. If the effective usage period has expired, or if the packing has been stored in a high-humidity environment, back the devices at high temperature. | Packing | Moisture Removal | |---------|---| | Tray | If the packing bears the "Heatproof" marking or indicates the maximum temperature which it can withstand, bake at 125°C for 20 hours. (some devices require a different procedure.) | | Tube | Transfer devices to trays bearing the "Heatproof" marking or indicating the temperature which they can withstand, or to aluminum tubes before baking at 125°C for 20 hours. | | Таре | Deviced packed on tape cannot be baked and must be used within the effective usage period after unpacking, as specified on the packing. | - When baking devices, protect the devices from static electricity. - Moisture indicators can detect the approximate humidity level at a standard temperature of 25°C. 6-point indicators and 3-point indicators are currently in use, but eventually all indicators will be 3-point indicators. Figure 3.1 Humidity Indicator #### 3.3 Design Care must be exercised in the design of electronic equipment to achieve the desired reliability. It is important not only to adhere to specifications concerning absolute maximum ratings and recommended operating conditions, it is also important to consider the overall environment in which equipment will be used, including factors such as the ambient temperature, transient noise and voltage and current surges, as well as mounting conditions which affect device reliability. This section describes some general precautions which you should observe when designing circuits and when mounting devices on printed circuit boards. For more detailed information about each product family, refer to the relevant individual technical datasheets available from Toshiba. #### 3.3.1 Absolute Maximum Ratings ### **ACAUTION** Do not use devices under conditions in which their absolute maximum ratings (e.g. current, voltage, power dissipation or temperature) will be exceeded. A device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Although absolute maximum ratings differ from product to product, they essentially concern the voltage and current at each pin, the allowable power dissipation, and the junction and storage temperatures. If the voltage or current on any pin exceeds the absolute maximum rating, the device's internal circuitry can become degraded. In the worst case, heat generated in internal circuitry can fuse wiring or cause the semiconductor chip to break down. If storage or operating temperatures exceed rated values, the package seal can deteriorate or the wires can become disconnected due to the differences between the thermal expansion coefficients of the materials from which the device is constructed. #### 3.3.2 Recommended Operating Conditions The recommended operating conditions for each device are those necessary to guarantee that the device will operate as specified in the datasheet. If greater reliability is required, derate the device's absolute maximum ratings for voltage, current, power and temperature before using it. #### 3.3.3 Derating When incorporating a device into your design, reduce its rated absolute maximum voltage, current, power dissipation and operating temperature in order to ensure high reliability. Since derating differs from application to application, refer to the technical datasheets available for the various devices used in your design. #### 3.3.4 Unused Pins **COSHIBA** If unused pins are left open, some devices can exhibit input instability problems, resulting in malfunctions such as abrupt increase in current flow. Similarly, if the unused output pins on a device are connected to the power supply pin, the ground pin or to other output pins, the IC may malfunction or break down. Since the details regarding the handling of unused pins differ from device to device and from pin to pin, please follow the instructions given in the relevant individual datasheets or databook. CMOS logic IC inputs, for example, have extremely high impedance. If an input pin is left open, it can
easily pick up extraneous noise and become unstable. In this case, if the input voltage level reaches an intermediate level, it is possible that both the P-channel and N-channel transistors will be turned on, allowing unwanted supply current to flow. Therefore, ensure that the unused input pins of a device are connected to the power supply (VCC) pin or ground (GND) pin of the same device. For details of what to do with the pins of heat sinks, refer to the relevant technical datasheet and databook. #### 3.3.5 Latch-Up Latch-up is an abnormal condition inherent in CMOS devices, in which V_{CC} gets shorted to ground. This happens when a parasitic PN-PN junction (thyristor structure) internal to the CMOS chip is turned on, causing a large current of the order of several hundred mA or more to flow between V_{CC} and GND, eventually causing the device to break down. Latch-up occurs when the input or output voltage exceeds the rated value, causing a large current to flow in the internal chip, or when the voltage on the V_{CC} (V_{DD}) pin exceeds its rated value, forcing the internal chip into a breakdown condition. Once the chip falls into the latch-up state, even though the excess voltage may have been applied only for an instant, the large current continues to flow between V_{CC} (V_{DD}) and GND (V_{SS}). This causes the device to heat up and, in extreme cases, to emit gas fumes as well. To avoid this problem, observe the following precautions: - (1) Do not allow voltage levels on the input and output pins either to rise above V_{CC} (V_{DD}) or to fall below GND (V_{SS}). Also, follow any prescribed power on sequence, so that power is applied gradually or in steps rather than abruptly. - (2) Do not allow any abnormal noise signals to be applied to the device. - (3) Set the voltage levels of unused input pins to VCC (VDD) or GND (VSS). - (4) Do not connect output pins to one another. #### 3.3.6 Input/Output Protection Wired-AND configurations, in which outputs are connected together, cannot be used, since this short-circuits the outputs. Outputs should, of course, never be connected to V_{CC} (V_{DD}) or GND (V_{SS}). Furthermore, ICs with tri-state outputs can undergo performance degradation if a shorted output current is allowed to flow for an extended period of time. Therefore, when designing circuits, make sure that tri-state outputs will not be enabled simultaneously. #### 3.3.7 Load Capacitance Some devices display increased delay times if the load capacitance is large. Also, large charging and discharging currents will flow in the device, causing noise. Furthermore, since outputs are shorted for a relatively long time, wiring can become fused. Consult the technical information for the device being used to determine the recommended load capacitance. #### 3.3.8 Thermal Design The failure rate of semiconductor devices is greatly increased as operating temperatures increase. As shown in, Figure 3.2 the internal thermal stress on a device is the sum of the ambient temperature and the temperature rise due to power dissipation in the device. Therefore, to achieve optimum reliability, observe the following precautions concerning thermal design: - (1) Keep the ambient temperature (Ta) as low as possible. - (2) If the device's dynamic power dissipation is relatively large, select the most appropriate circuit board material, and consider the use of heat sinks or of forced air cooling. Such measures will help lower the thermal resistance of the package. - (3) Derate the device's absolute maximum ratings to minimize thermal stress from power dissipation. $\theta ja = \theta jc + \theta ca$ $\theta ja = (Tj - Ta)/P$ $\theta jc = (Tj - Tc)/P$ $\theta ca = (Tc - Ta)/P$ in which θ ja = thermal resistance between junction and surrounding air (°C/W) θjc = thermal resistance between junction and package surface, or internal thermal resistance (°C/W) θ ca = thermal resistance between package surface and surrounding air, or external thermal resistance (°C/W) Tj = junction temperature or chip temperature (°C) Tc = package surface temperature or case temperature (°C) Ta = ambient temperature (°C) P = power dissipation (W) Figure 3.2 Thermal Resistance of Package #### 3.3.9 Interfacing When connecting inputs and outputs between devices, make sure input voltage (VII/VIH) and output voltage (VOI/VOH) levels are matched. Otherwise, the devices may malfunction. When connecting devices operating at different supply voltages, such as in a dual-power-supply system, be aware that erroneous power-on and power-off sequences can result in device breakdown. For details of how to interface particular devices, consult the relevant technical datasheets and databooks. If you have any questions or doubts about interfacing, contact your nearest Toshiba office or distributor. #### 3.3.10 Decoupling Spike currents generated during switching can cause V_{CC} (V_{DD}) and GND (V_{SS}) voltage levels to fluctuate, causing ringing in the output waveform or a delay in response speed. (the power supply and GND wiring impedance is normally 50 Ω to 100 Ω .) For this reason, the impedance of power supply lines with respect to high frequencies must be kept low. This can be accomplished by using thick and short wiring for the V_{CC} (V_{DD}) and GND (V_{SS}) lines and by installing decoupling capacitors (of approximately 0.01 μ F to 1 μ F capacitance) as high-frequency filters between V_{CC} (V_{DD}) and GND (V_{SS}) at strategic locations on the printed circuit board. For low-frequency filtering, it is a good idea to install a 10° to $100^{\circ}\mu F$ capacitor on the printed circuit board (one capacitor will suffice). If the capacitance is excessively large, however, (e.g. several thousand μF) latch-up can be a problem. Be sure to choose an appropriate capacitance value. An important point about wiring is that, in the case of high-speed logic ICs, noise is caused mainly by reflection and crosstalk, or by the power supply impedance. Reflections cause increased signal delay, ringing, overshoot and undershoot, thereby reducing the device's safety margins with respect to noise. To prevent reflections, reduce the wiring length by increasing the device mounting density so as to lower the inductance (L) and capacitance (C) in the wiring. Extreme care must be taken, however, when taking this corrective measure, since it tends to cause crosstalk between the wires. In practice, there must be a trade-off between these two factors. #### 3.3.11 External Noise Printed circuit boards with long I/O or signal pattern lines are vulnerable to induced noise or surges from outside sources. Consequently, malfunctions or breakdowns can result from overcurrent or overvoltage, depending on the types of device used. To protect against noise, lower the impedance of the pattern line or insert a noise-canceling circuit. Protective measures must also be taken against surges. For details of the appropriate protective measures for a particular device, consult the relevant databook. #### 3.3.12 Electromagnetic Interference Widespread use of electrical and electronic equipment in recent years has brought with it radio and TV reception problems due to electromagnetic interference. To use the radio spectrum effectively and to maintain radio communications quality, each country has formulated regulations limiting the amount of electromagnetic interference which can be generated by individual products. Electromagnetic interference includes conduction noise propagated through power supply and telephone lines, and noise from direct electromagnetic waves radiated by equipment. Different measurement methods and corrective measures are used to assess and counteract each specific type of noise. Difficulties in controlling electromagnetic interference derive from the fact that there is no method available which allows designers to calculate, at the design stage, the strength of the electromagnetic waves which will emanate from each component in a piece of equipment. For this reason, it is only after the prototype equipment has been completed that the designer can take measurements using a dedicated instrument to determine the strength of electromagnetic interference waves. Yet it is possible during system design to incorporate some measures for the prevention of electromagnetic interference, which can facilitate taking corrective measures once the design has been completed. These include installing shields and noise filters, and increasing the thickness of the power supply wiring patterns on the printed circuit board. One effective method, for example, is to devise several shielding options during design, and then select the most suitable shielding method based on the results of measurements taken after the prototype has been completed. #### 3.3.13 Peripheral Circuits In most cases semiconductor devices are used with peripheral circuits and components. The input and output signal voltages and currents in these circuits must be chosen to match the semiconductor device's specifications. The following factors must be taken into account. - (1) Inappropriate voltages or currents applied to a device's input pins may cause it to operate erratically. Some devices contain pull-up or pull-down resistors. When designing your system, remember to take the effect of this on the voltage and current levels into account. - (2) The output pins on a device have a predetermined external circuit drive capability. If this drive capability is greater than that required, either incorporate a compensating circuit into your design or carefully select suitable components for use in external circuits. #### 3.3.14 Safety Standards Each country has safety standards which must be observed. These safety standards include requirements for quality assurance systems and design of device insulation. Such requirements must be fully taken into
account to ensure that your design conforms to the applicable safety standards. #### 3.3.15 Other Precautions - (1) When designing a system, be sure to incorporate fail-safe and other appropriate measures according to the intended purpose of your system. Also, be sure to debug your system under actual board-mounted conditions. - (2) If a plastic-package device is placed in a strong electric field, surface leakage may occur due to the charge-up phenomenon, resulting in device malfunction. In such cases take appropriate measures to prevent this problem, for example by protecting the package surface with a conductive shield. - (3) With some microcomputers and MOS memory devices, caution is required when powering on or resetting the device. To ensure that your design does not violate device specifications, consult the relevant databook for each constituent device. - (4) Ensure that no conductive material or object (such as a metal pin) can drop onto and short the leads of a device mounted on a printed circuit board. #### 3.4 Inspection, Testing and Evaluation #### 3.4.1 Grounding ## **ACAUTION** Ground all measuring instruments, jigs, tools and soldering irons to earth. Electrical leakage may cause a device to break down or may result in electric shock. #### 3.4.2 Inspection Sequence # **ACAUTION** - 1) Do not insert devices in the wrong orientation. Make sure that the positive and negative electrodes of the power supply are correctly connected. Otherwise, the rated maximum current or maximum power dissipation may be exc0eeded and the device may break down or undergo performance degradation, causing it to catch fire or explode, resulting in injury to the user. - 2) When conducting any kind of evaluation, inspection or testing using AC power with a peak voltage of 42.4 V or DC power exceeding 60 V, be sure to connect the electrodes or probes of the testing equipment to the device under test before powering it on. Connecting the electrodes or probes of testing equipment to a device while it is powered on may result in electric shock, causing injury. - (1) Apply voltage to the test jig only after inserting the device securely into it. When applying or removing power, observe the relevant precautions, if any. - (2) Make sure that the voltage applied to the device is off before removing the device from the test jig. Otherwise, the device may undergo performance degradation or be destroyed. - (3) Make sure that no surge voltages from the measuring equipment are applied to the device. (4) The chips housed in tape carrier packages (TCPs) are bare chips and are therefore exposed. During inspection take care not to crack the chip or cause any flaws in it. Electrical contact may also cause a chip to become faulty. Therefore make sure that nothing comes into electrical contact with the chip. #### 3.5 Mounting There are essentially two main types of semiconductor device package: lead insertion and surface mount. During mounting on printed circuit boards, devices can become contaminated by flux or damaged by thermal stress from the soldering process. With surface mount devices in particular, the most significant problem is thermal stress from solder reflow, when the entire package is subjected to heat. This section describes a recommended temperature profile for each mounting method, as well as general precautions which you should take when mounting devices on printed circuit boards. Note, however, that even for devices with the same package type, the appropriate mounting method varies according to the size of the chip and the size and shape of the lead frame. Therefore, please consult the relevant technical datasheet and databook. #### 3.5.1 Lead Forming # **ACAUTION** - Always wear protective glasses when cutting the leads of a device with clippers or a similar tool. If you do not, small bits of metal flying off the cut ends may damage your eyes. - Do not touch the tips of device leads. Because some types of device have leads with pointed tips, you oay prick your finger. Semiconductor devices must undergo a process in which the leads are cut and formed before the devices can be mounted on a printed circuit board. If undue stress is applied to the interior of a device during this process, mechanical breakdown or performance degradation can result. This is attributable primarily to differences between the stress on the device's external leads and the stress on the internal leads. If the relative difference is great enough, the device's internal leads, adhesive properties or sealant can be damaged. Observe these precautions during the lead-forming process (this does not apply to surface-mount devices): - (1) Lead insertion hole intervals on the printed circuit board should match the lead pitch of the device precisely. - (2) If lead insertion hole intervals on the printed circuit board do not precisely match the lead pitch of the device, do not attempt to forcibly insert devices by pressing on them or by pulling on their leads. - (3) For the minimum clearance specification between a device and a printed circuit board, refer to the relevant device's datasheet and databook. If necessary, achieve the required clearance by forming the device's leads appropriately. Do not use the spacers which are used to raise devices above the surface of the printed circuit board during soldering to achieve clearance. These spacers normally continue to expand due to heat, even after the solder has begun to solidify; this applies severe stress to the device. - (4) Observe the following precautions when forming the leads of a device prior to mounting. - Use a tool or jig to secure the lead at its base (where the lead meets the device package) while bending so as to avoid mechanical stress to the device. Also avoid bending or stretching device leads repeatedly. - Be careful not to damage the lead during lead forming. - Follow any other precautions described in the individual datasheets and databooks for each device and package type. #### 3.5.2 Mounting on Printed Circuit Board When soldering the leads on the printed circuit board, be careful not to leave stress on the leads. Leads must be shaped and aligned to the hole size, and space must be left between the device and the board (Figure 3.6). If leads are not shaped but forced into holes or stress is applied by a tool, corrosion or whiskers may occur where stress is applied, resulting in cutout or shorting of leads. Thus, hole size must be aligned to the lead interval. Figure 3.3 How to Bend Leads Figure 3.4 How to Bend Leads Using Metal Mold Figure 3.5 How to Bend Leads Figure 3.6 Example of Mounting on Printed-Circuit Board #### 3.5.3 Socket Mounting - (1) When socket mounting devices on a printed circuit board, use sockets which match the inserted device's package. - (2) Use sockets whose contacts have the appropriate contact pressure. If the contact pressure is insufficient, the socket may not make a perfect contact when the device is repeatedly inserted and removed; if the pressure is excessively high, the device leads may be bent or damaged when they are inserted into or removed from the socket. - (3) When soldering sockets to the printed circuit board, use sockets whose construction prevents flux from penetrating into the contacts or which allows flux to be completely cleaned off. - (4) Make sure the coating agent applied to the printed circuit board for moisture proofing purposes does not stick to the socket contacts. - (5) If the device leads are severely bent by a socket as it is inserted or removed and you wish to repair the leads so as to continue using the device, make sure that this lead correction is only performed once. Do not use devices whose leads have been corrected more than once. - (6) If the printed circuit board with the devices mounted on it will be subjected to vibration from external sources, use sockets which have a strong contact pressure so as to prevent the sockets and devices from vibrating relative to one another. #### 3.5.4 Soldering Temperature Profile The soldering temperature and heating time vary from device to device. Therefore, when specifying the mounting conditions, refer to the individual datasheets and databooks for the devices used. (1) Using a soldering iron Complete soldering within ten seconds for lead temperatures of up to 260° C, or within three seconds for lead temperatures of up to 350° C. #### (2) Using medium infrared ray reflow Heating top and bottom with long or medium infrared rays is recommended (see Figure 3.7). Figure 3.7 Heating Top and Bottom with Long or Medium Infrared Rays - Complete the infrared ray reflow process within 30 seconds at a package surface temperature of between 210°C and 240°C. - Refer to Figure 3.8 for an example of a good temperature profile for infrared or hot air reflow. Figure 3.8 Sample Temperature Profile for Infrared or Hot Air Reflow - (3) Using hot air reflow - Complete hot air reflow within 30 seconds at a package surface temperature of between 210°C and 240°C. - For an example of a recommended temperature profile, refer to Figure 3.8 above. - (4) Using solder flow - Apply preheating for 60 to 120 seconds at a temperature of 150°C. - For lead insertion type packages, complete solder flow within 10 seconds with the temperature at the stopper (or, if there is no stopper, at a location more than 1.5 mm from the body) which does not exceed 260°C. - For surface-mount packages, complete soldering within 5 seconds at a temperature of 250°C or less in order to prevent thermal stress in the device. Figure 3.9 shows an example of a recommended temperature profile for surface-mount packages using solder flow. Figure 3.9 Sample Temperature Profile for Solder Flow #### 3.5.5 Flux Cleaning and Ultrasonic Cleaning - (1) When cleaning circuit boards to remove flux, make sure that no residual reactive ions such as Na or Cl remain. Note that organic solvents react with water to generate hydrogen chloride and
other corrosive gases which can degrade device performance. - (2) Washing devices with water will not cause any problems. However, make sure that no reactive ions such as sodium and chlorine are left as a residue. Also, be sure to dry devices sufficiently after washing. - (3) Do not rub device markings with a brush or with your hand during cleaning or while the devices are still wet from the cleaning agent. Doing so can rub off the markings. - (4) The dip cleaning, shower cleaning and steam cleaning processes all involve the chemical action of a solvent. Use only recommended solvents for these cleaning methods. When immersing devices in a solvent or steam bath, make sure that the temperature of the liquid is 50°C or below, and that the circuit board is removed from the bath within one minute. - (5) Ultrasonic cleaning should not be used with hermetically-sealed ceramic packages such as a leadless chip carrier (LCC), pin grid array (PGA) or charge-coupled device (CCD), because the bonding wires can become disconnected due to resonance during the cleaning process. Even if a device package allows ultrasonic cleaning, limit the duration of ultrasonic cleaning to as short a time as possible, since long hours of ultrasonic cleaning degrade the adhesion between the mold resin and the frame material. The following ultrasonic cleaning conditions are recommended: Frequency: 27 kHz to 29 kHz Ultrasonic output power: 300 W or less (0.25 W/cm² or less) Cleaning time: 30 seconds or less Suspend the circuit board in the solvent bath during ultrasonic cleaning in such a way that the ultrasonic vibrator does not come into direct contact with the circuit board or the device. #### 3.5.6 No Cleaning If analog devices or high-speed devices are used without being cleaned, flux residues may cause minute amounts of leakage between pins. Similarly, dew condensation, which occurs in environments containing residual chlorine when power to the device is on, may cause between-lead leakage or migration. Therefore, Toshiba recommends that these devices be cleaned. However, if the flux used contains only a small amount of halogen (0.05 W% or less), the devices may be used without cleaning without any problems. #### 3.5.7 Mounting Tape Carrier Packages (TCPs) - (1) When tape carrier packages (TCPs) are mounted, measures must be taken to prevent electrostatic breakdown of the devices. - (2) If devices are being picked up from tape, or outer lead bonding (OLB) mounting is being carried out, consult the manufacturer of the insertion machine which is being used, in order to establish the optimum mounting conditions in advance and to avoid any possible hazards. - (3) The base film, which is made of polyimide, is hard and thin. Be careful not to cut or scratch your hands or any objects while handling the tape. - (4) When punching tape, try not to scatter broken pieces of tape too much. - (5) Treat the extra film, reels and spacers left after punching as industrial waste, taking care not to destroy or pollute the environment. - (6) Chips housed in tape carrier packages (TCPs) are bare chips and therefore have their reverse side exposed. To ensure that the chip will not be cracked during mounting, ensure that no mechanical shock is applied to the reverse side of the chip. Electrical contact may also cause a chip to fail. Therefore, when mounting devices, make sure that nothing comes into electrical contact with the reverse side of the chip. If your design requires connecting the reverse side of the chip to the circuit board, please consult Toshiba or a Toshiba distributor beforehand. #### 3.5.8 Mounting Chips Devices delivered in chip form tend to degrade or break under external forces much more easily than plastic packaged devices. Therefore, caution is required when handling this type of device. - (1) Mount devices in a properly prepared environment so that chip surfaces will not be exposed to polluted ambient air or other polluted substances. - (2) When handling chips, be careful not to expose them to static electricity. In particular, measures must be taken to prevent static damage during the mounting of chips. With this in mind, Toshiba recommend mounting all peripheral parts first and then mounting chips last (after all other components have been mounted). - (3) Make sure that PCBs (or any other kind of circuit board) on which chips are being mounted do not have any chemical residues on them (such as the chemicals which were used for etching the PCBs). - (4) When mounting chips on a board, use the method of assembly that is most suitable for maintaining the appropriate electrical, thermal and mechanical properties of the semiconductor devices used. - *: For details of devices in chip form, refer to the relevant device's individual datasheets. #### 3.5.9 Circuit Board Coating When devices are to be used in equipment requiring a high degree of reliability or in extreme environments (where moisture, corrosive gas or dust is present), circuit boards may be coated for protection. However, before doing so, you must carefully consider the possible stress and contamination effects that may result and then choose the coating resin which results in the minimum level of stress to the device. #### 3.5.10 Heat Sinks - (1) When attaching a heat sink to a device, be careful not to apply excessive force to the device in the process. - (2) When attaching a device to a heat sink by fixing it at two or more locations, evenly tighten all the screws in stages (i.e. do not fully tighten one screw while the rest are still only loosely tightened). Finally, fully tighten all the screws up to the specified torque. - (3) Drill holes for screws in the heat sink exactly as specified. Smooth the surface by removing burrs and protrusions or indentations which might interfere with the installation of any part of the device. - (4) A coating of silicone compound can be applied between the heat sink and the device to improve heat conductivity. Be sure to apply the coating thinly and evenly; do not use too much. Also, be sure to use a non-volatile compound, as volatile compounds can crack after a time, causing the heat radiation properties of the heat sink to deteriorate. - (5) If the device is housed in a plastic package, use caution when selecting the type of silicone compound to be applied between the heat sink and the device. With some types, the base oil separates and penetrates the plastic package, significantly reducing the useful life of the device. Two recommended silicone compounds in which base oil separation is not a problem are YG6260 from Toshiba Silicone. - (6) Heat-sink-equipped devices can become very hot during operation. Do not touch them, or you may sustain a burn. #### 3.5.11 Tightening Torque - (1) Make sure the screws are tightened with fastening torques not exceeding the torque values stipulated in individual datasheets and databooks for the devices used. - (2) Do not allow a power screwdriver (electrical or air-driven) to touch devices. #### 3.5.12 Repeated Device Mounting and Usage Do not remount or re-use devices which fall into the categories listed below; these devices may cause significant problems relating to performance and reliability. - (1) Devices which have been removed from the board after soldering - (2) Devices which have been inserted in the wrong orientation or which have had reverse current applied - (3) Devices which have undergone lead forming more than once #### 3.6 Protecting Devices in the Field #### 3.6.1 Temperature Semiconductor devices are generally more sensitive to temperature than are other electronic components. The various electrical characteristics of a semiconductor device are dependent on the ambient temperature at which the device is used. It is therefore necessary to understand the temperature characteristics of a device and to incorporate device derating into circuit design. Note also that if a device is used above its maximum temperature rating, device deterioration is more rapid and it will reach the end of its usable life sooner than expected. #### 3.6.2 Humidity Resin-molded devices are sometimes improperly sealed. When these devices are used for an extended period of time in a high-humidity environment, moisture can penetrate into the device and cause chip degradation or malfunction. Furthermore, when devices are mounted on a regular printed circuit board, the impedance between wiring components can decrease under high-humidity conditions. In systems which require a high signal-source impedance, circuit board leakage or leakage between device lead pins can cause malfunctions. The application of a moisture-proof treatment to the device surface should be considered in this case. On the other hand, operation under low-humidity conditions can damage a device due to the occurrence of electrostatic discharge. Unless damp-proofing measures have been specifically taken, use devices only in environments with appropriate ambient moisture levels (i.e. within a relative humidity range of 40% to 60%). #### 3.6.3 Corrosive Gases Corrosive gases can cause chemical reactions in devices, degrading device characteristics. For example, sulphur-bearing corrosive gases emanating from rubber placed near a device (accompanied by condensation under high-humidity conditions) can corrode a device's leads. The resulting chemical reaction between leads forms foreign particles which can cause electrical leakage. #### 3.6.4 Radioactive and Cosmic Rays Most industrial and consumer semiconductor devices are not designed with protection against radioactive and cosmic rays. Devices used in aerospace equipment or in radioactive environments must therefore be shielded. #### 3.6.5 Strong Electrical and Magnetic Fields Devices exposed to strong magnetic fields can undergo a polarization phenomenon in their plastic material, or within the chip, which gives rise to abnormal symptoms such as impedance changes or increased leakage current. Failures have
been reported in LSIs mounted near malfunctioning deflection yokes in TV sets. In such cases the device's installation location must be changed or the device must be shielded against the electrical or magnetic field. Shielding against magnetism is especially necessary for devices used in an alternating magnetic field because of the electromotive forces generated in this type of environment. #### 3.6.6 Interference from Light #### (ultraviolet rays, sunlight, fluorescent lamps and incandescent lamps) Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases the device can malfunction. This is especially true for devices in which the internal chip is exposed. When designing circuits, make sure that devices are protected against incident light from external sources. This problem is not limited to optical semiconductors and EPROMs. All types of device can be affected by light. #### 3.6.7 Dust and Oil Just like corrosive gases, dust and oil can cause chemical reactions in devices, which will adversely affect a device's electrical characteristics. To avoid this problem, do not use devices in dusty or oily environments. This is especially important for optical devices because dust and oil can affect a device's optical characteristics as well as its physical integrity and the electrical performance factors mentioned above. #### 3.6.8 Fire Semiconductor devices are combustible; they can emit smoke and catch fire if heated sufficiently. When this happens, some devices may generate poisonous gases. Devices should therefore never be used in close proximity to an open flame or a heat-generating body, or near flammable or combustible materials. #### 3.7 Disposal of Devices and Packing Materials When discarding unused devices and packing materials, follow all procedures specified by local regulations in order to protect the environment against contamination. #### 4. Precautions and Usage Considerations Specific to Each Product Group This section describes matters specific to each product group which need to be taken into consideration when using devices. #### 4.1 Bipolar lcs #### 4.1.1 ICs for Use in Automobiles #### (1) Design # **ACAUTION** - 1) If your design includes an inductive load such as a motor coil, incorporate diodes into your design to prevent negative current from flowing in. Otherwise the device may malfunction or break down due to rush currents or counter electromotive force generated when the device is powered on and off. For information on how to connect the diodes, refer to the relevant individual datasheets for automobile ICs. Breakdown of the devices may result in injury. - 2) Ensure that the power supply to any device which incorporates protective functions is stable. If the power supply is unstable, the device may operate erratically, preventing the protective functions from working correctly. If protective functions fail, the device may break down, causing the device to explode and resulting in injury to the user. #### Heat radiation System power supply and driver ICs generate heat. When using these devices, refer to the technical databooks entitled Bipolar ICs for Use in Automobiles and General-Purpose Bipolar IC Databook, and incorporate sufficient heat radiation for the devices used into your design, so that the heat generated will not exceed the stipulated junction temperature (Tj) at which the ICs' internal heat-isolating protective circuits are activated. #### • Power supply fuses These ICs contain various protective circuits to prevent them from breaking down due to faulty wiring or when pulses of noise are input to the power supply. However, should the IC break down, a large current may continue to flow. To prevent this, use a fuse of the appropriate capacity for the power supply. For information about the various types of protective circuit incorporated into the ICs, refer to the individual datasheets for the devices used. #### Power supply Do not abruptly increase or decrease the power supply to a device. #### (2) Mounting #### Heat sinks Depending on the type of package used (e.g. an HSIP7-P-2.54), a device's characteristics may be degraded if the package is attached to a heat sink using screws. In such cases please consult Toshiba or a Toshiba distributor. #### 4.1.2 Communication Equipment ICs #### (1) Design When using these devices in power amps or system power supplies, be aware that since the effective current capacity of the output pins is 100 mA or higher, a device's DC output current may increase if there is any problem caused by an external component (in particular, leak current from a feedback resistor or a negative feedback capacitor). In some cases this will cause the product to generate heat or to catch fire. Take this into account when designing your product and choosing which components to use. For more detailed information, please refer to the individual datasheets or databooks. #### (2) Mounting Trends toward lightweight and compact design in mobile communications have resulted in the device-mounting board becoming vulnerable to distortion or deformation due to a lack of strength. This causes the devices to be imperfectly connected when mounted on the board. Therefore, carefully examine the board design and mounting methods to ensure that device pins are firmly connected to the board. #### 4.1.3 Audio/Video Equipment ICs These devices are designed for use in consumer electronics, typically in television and audio equipment. When using these devices in low-frequency audio amps, system power supply ICs, driver ICs or power ICs, pay attention to the following points: #### (1) Design #### Circuit design Large leakage current in input or negative feedback capacitors causes the DC output voltage of power ICs to increase. In this case, if the speaker's DC input withstand voltage is low, the speaker may emit smoke or catch fire. This must be fully taken into account when selecting the types of capacitor and speaker to use, especially in the case of power ICs of the BTL (bridge-tied load) connection type, in which the DC output voltage is input directly to the speaker. #### Heat radiation Power ICs, system power supply ICs and driver ICs generate heat. When using these devices, and incorporate sufficient heat radiation for the devices used into your design, so that the heat generated will not exceed the stipulated junction temperature (Tj = 150° C) at which the ICs' internal thermal shutdown protective circuits are activated. For more detailed information, refer to the individual product datasheets and to the general audio/car audio LSI databooks. Also, take into account the operating temperature ranges and characteristics of the peripheral components used with power ICs. #### Power supply fuses These ICs contain various protective circuits to prevent them from breaking down due to faulty wiring or noise pulses on the power supply input. However, should the IC break down, a large current may continue to flow. To prevent this, use a fuse of the appropriate capacity for the power supply. #### 4.1.4 ICs for Motors #### (1) Design - When designing a circuit incorporating a motor, be sure to incorporate a diode to act as a current-limiting resistance and to absorb any counter electromotive force so that the starting current or counter electromotive force does not cause any malfunction or breakdown in the IC. For detailed information concerning this type of design, refer to the relevant individual datasheets or databooks for ICs for motors. - Circuits which are used to protect ICs from excessive current do not always work. If an IC is used outside its absolute maximum ratings, the IC may break down before the protective circuit is activated. - Be sure to use a stable power supply for the IC. If the power supply is unstable, the internal circuits of the IC may function erratically, possibly causing the IC to break down. #### (2) Heat radiation - When using a driver IC, be sure to incorporate heat radiation so that the junction temperature (Tj) will never exceed 150°C. Since ICs generate considerable heat, ICs may break down if adequate heat radiation is not provided. - Circuits which are used to protect devices from excessive heat do not always work. If an IC is used outside its absolute maximum ratings, it may break down before the protective circuit is activated. - When attaching a heat sink to the driver IC, avoid excessive mechanical stress. Also note that some ICs inhibit the action of silicone rubber. - When incorporating heat radiation or attaching heat sinks, refer to the relevant individual datasheets or databooks for ICs for motors. #### (3) Power supply fuses In order to prevent excessive current from flowing continuously when the IC breaks down, use a power supply fuse of an appropriate capacity. An IC may break down when used outside its absolute maximum ratings, or when wires or loads induce unusual pulse noise. The fuse capacity must be carefully determined in order to minimize any negative effect in the case of an IC breakdown and the resulting large current flow. #### 4.1.5 Cautions about Power Dissipation (Constant State) A transistor by itself will often differ from a board-mounted transistor in its power dissipation characteristics. Changes in power dissipation for representative package types, due to board mounting, are described below. Each representative package type and the power dissipation change is explained below. #### 4.1.5.1 Super-Mini Transistors Allowable power dissipation of a supermini transistor is 100 to 150 mW as a single unit. However, when it is mounted on a ceramic board, this value increases depending on the board size. this is shown in Figure 4.1 (transistors used: 2SA1162 and 2SC2712). #### 4.1.5.2 Power-Mini Transistors Since power-mini transistors are of compact size, Pc_{max} is only 500 mW; however, when they are mounted on a circuit board, thermal diffusion from a drain fin to
the board will be high. The drain power dissipation will then range from 1.0 W to 2.0 W, and a circuit design capability equivalent to that of the TO-92MOD (800 to 900 mW) or TO-126 (1.0 to 1.2 W) is possible. Figure 4.2 shows the drain power dissipation for a typical case of circuit-board mounting of a 2SC2873 or 2SA1213. #### 4.1.5.3 Power-Mold Transistors For straight-type power-mold transistors, the power dissipation (Pc) = 1 W However, when LB-type transistors have a drain-fin, their installed power dissipation increases significantly. When a power-mold transistor is soldered to an alumina-ceramic board, Pc (1) (1,000) Figure 4.1 Pc (max) when Mounted on Alumi-Ceramic Board Ta Characteristic (2SA1162, 2SC2712) Figure 4.2 Pc (max) when Mounted on Alumi-Ceramic Board Ta Characteristic (2SC2873, 2SA1213) mm^2) = 2 W, Pc (2) (2,500 mm²) = 3 W Figure 4.3 show the relationship between drain power dissipation Pc and ambient temperature Ta for the transistors 2SC3074 and 2SA1244. Figure 4.3 Power Dissipation Pc and Ambient Temperature Ta when Transistors are Mounted on Alumina-Ceramic Boards (for 2SC3074 and 2SA1244 devices) # [9] Package Dimensions # [9] Package Dimensions # [10] List of Final-Phase Products # [10] List of Final-Phase Products The following listed products will soon be discontinued. Refer to the recommended replacement devices in the adjacent column. #### **Final-Phase Products** | Part Number | Recommended
Replacement | Part Number | Recommended
Replacement | Part Number | Recommended
Replacement | |-------------|----------------------------|-------------|----------------------------|-------------|----------------------------| | 1S2186 | 1SS341 | 2SC5313 | _ | MT6P03AE | _ | | 1S2236 | 1SV160 | 2SC5317 | MT3S07T | MT6P03AT | _ | | 1SS238 | 1SS312, 1SS314 | 2SK3179 | _ | MT6P04AE | _ | | 1SS239 | 1SS154, 1SS271 | 3SK240 | _ | MT6P04AT | _ | | 1SS241 | 1SS314, 1SS381 | 3SK250 | _ | S-AU26 | _ | | 1SS242 | 1SS315, 1SS295 | 3SK274 | _ | S-AU27AL | S-AU83L | | 1SV149 | _ | 3SK283 | _ | S-AU27AM | S-AU83H | | 1SV153 | 1SV214 | 3SK284 | _ | S-AU27AH | S-AU83H | | 1SV153A | _ | 3SK320 | _ | S-AU35AH | _ | | 1SV161 | 1SV215 | 3SK59 | 3SK126 | S-AV6 | S-AV35 | | 1SV186 | 1SV245 | HN3C07F | _ | S-AV7 | S-AV33 | | 1SV204 | 1SV216 | HN3C08F | _ | S-AV10L | S-AV33 | | 1SV211 | 1SV262 | HN3C10F | _ | S-AV10H | S-AV33 | | 1SV212 | 1SV229 | HN3C13FU | _ | S-AV17 | S-AV36 | | 1SV217 | 1SV262 | HN3C14FT | _ | S-AV22A | _ | | 1SV224 | 1SV230 | HN9C02FT | | TA4006F | _ | | JDV2S10T | JDV2S10S | HN9C03FT | | TA4007F | _ | | 2SC2348 | _ | HN9C07FT | _ | TA4008F | TA4011FU, TA4011AFE | | 2SC2509 | _ | HN9C10FT | _ | TA4009F | TA4012FU, TA4012AFE | | 2SC2548 | _ | HN9C13FT | _ | TA4011F | TA4011FU, TA4011AFE | | 2SC2644 | _ | HN9C16FT | _ | TA4012F | TA4012FU, TA4012AFE | | 2SC3011 | _ | HN9C18FT | | TA4013FU | | | 2SC3122 | _ | HN9C19FT | _ | TA4102F | _ | | 2SC3602 | _ | HN9C21FT | _ | TA4103F | _ | | 2SC3662 | _ | HN9C22FT | _ | TA4300F | _ | | 2SC3745 | _ | MT3S01T | MT3S11T | TA4301F | | | 2SC3828 | _ | MT3S02T | MT3S11T | TG2000F | | | 2SC4200 | _ | MT3S31T | _ | TG2003V | _ | | 2SC4201 | _ | MT3S46T | _ | TG2202F | _ | | 2SC4249 | _ | MT3S46FS | _ | TG2205F | TG2216TU | | 2SC4255 | 2SC4252 | MT4S34U | _ | TG2206F | TG2216TU | | 2SC4392 | 2SC5107 | MT6L69FS | _ | | | | 2SC5312 | _ | MT6L70FS | _ | | | # [11] List of Discontinued Products # [11] List of Discontinued Products The following listed products have been discontinued. Refer to the recommended replacement devices in the adjacent column. #### **Discontinued Products** | Part Number | Recommended
Replacement | Part Number | Recommended
Replacement | Part Number | Recommended
Replacement | |----------------|----------------------------|-------------|----------------------------|-------------|----------------------------| | 1S2094 | _ | 2SC389A | 2SC1923 | 2SC2783 | _ | | 1S2187 | 1SS315 | 2SC390 | 2SC2347 | 2SC2805 | 2SC3121 | | 1SS42 | _ | 2SC391 | 2SC2347 | 2SC2876 | 2SC5087 | | 1SS148 | _ | 2SC391A | 2SC2347 | 2SC3006 | _ | | 1SS155 | 1SS314 | 2SC392 | 2SC2498 | 2SC3147 | _ | | 1SS240 | _ | 2SC392A | 2SC2347 | 2SC3301 | 2SC3607 | | 1SV100 | _ | 2SC393 | _ | 2SC3302 | 2SC5087 | | 1SV123 | 1SV214 | 2SC396 | 2SC1923 | 2SC3445 | 2SC5084 | | 1SV158 | 1SV215 | 2SC397 | 2SC2347 | 2SC3608 | MT4S04 | | 1SV226 | 1SV288 | 2SC784 | 2SC1923 | 2SC4316 | 2SC5089 | | 1SV238 | 1SV269 | 2SC784TM | 2SC1923 | 2SC4318 | _ | | 1SV255 | _ | 2SC784TMA | 2SC1923 | 2SC4319 | MT4S03 | | 1SV256 | 1SV216 | 2SC785 | 2SC1923 | 2SC4323 | 2SC5097 | | 1SV257 | 1SV279 | 2SC786 | 2SC1923 | 2SK19 | 2SK192A | | 1SV258 | _ | 2SC787 | _ | 2SK19TM | 2SK192A | | 1SV260 | 1SV280 | 2SC864 | 2SC383TM | 2SK61 | 2SK161 | | 1SV261 | 1SV309 | 2SC941 | 2SC941TM | 2SK61LV | 2SK161 | | 1SV274 | 1SV282 | 2SC1236 | 2SC5084 | 2SK192 | 2SK192A | | 1SV275 | 1SV283 | 2SC1558 | 2SC5087 | 2SK1028 | _ | | 2SC381TM | 2SC1923 | 2SC1559 | 2SC5087 | 2SK1310 | 2SK1310A | | 2SC381TMA | 2SC1923 | 2SC1743 | 2SC5087 | 2SK1739 | 2SK1739A | | 2SC382 | _ | 2SC2099 | _ | 2SK2496 | _ | | 2SC382TM | _ | 2SC2114 | _ | 2SK2497 | _ | | 2SC384 | 2SC1923 | 2SC2115 | _ | 2SK2856 | _ | | 2SC385 | 2SC2349 | 2SC2328 | _ | 2SK3276 | _ | | 2SC385A | 2SC2349 | 2SC2395 | _ | 3SK22 | _ | | 2SC385ATM | 2SC2349 | 2SC2531 | _ | 3SK23 | 2SK192A | | 2SC386 | 2SC2349 | 2SC2638 | _ | 3SK28 | 2SK192A | | 2SC386A | 2SC2349 | 2SC2639 | _ | 3SK73 | 3SK195 | | 2SC387 | 2SC2347 | 2SC2640 | _ | 3SK77 | _ | | 2SC387A | 2SC2347 | 2SC2641 | _ | 3SK78 | 3SK195 | | 2SC387A (G) | 2SC2347 | 2SC2642 | _ | 3SK90 | _ | | 2SC387A (G) TM | 2SC2347 | 2SC2643 | _ | 3SK101 | 3SK195 | | 2SC387ATM | 2SC2347 | 2SC2652 | _ | 3SK102 | _ | | 2SC389 | 2SC1923 | 2SC2663 | 2SC5087 | 3SK112 | _ | # **TOSHIBA** | Part Number | Recommended
Replacement | Part Number | Recommended
Replacement | Part Number | Recommended
Replacement | |-------------|----------------------------|-------------|----------------------------|-------------|----------------------------| | 3SK114 | 3SK126 | S1255 | 2SC2644 | S-AV24 | _ | | 3SK115 | 3SK291 | S1256 | 2SC2644 | S-AV26H | _ | | 3SK121 | _ | S1297 | 2SC2498 | S-AV28 | _ | | 3SK140 | _ | S2531 | 2SC2498 | S-AV29H | _ | | 3SK145 | 3SK291 | S2676 | _ | S-AV30H | _ | | 3SK146 | 3SK232 | S9A61 | _ | TG2002V | _ | | 3SK152 | 3SK292 | S-AU6L | _ | TG2005F | TG2006F | | 3SK159 | 3SK292 | S-AU6VL | _ | TG2200AF | TG2216TU | | 3SK160 | 3SK225 | S-AU39 | _ | TG2200F | TG2216TU | | 3SK198 | 3SK291 | S-AU64 | _ | TG2203F | TG2210FT | | DLP238 | 1SS314 | S-AU80 | _ | TG2204F | TG2216TU |