概述：

本文档说明了功率 MOSFET 发生寄生振荡和振铃的原因及解决方案。
目录
概述： ... 1
目录 .. 2
1. 单管 MOSFET 的寄生振荡和振铃 ... 3
2. 形成振荡网络 .. 3
 2.1. 振荡现象 ... 3
 2.1.1. 反馈电路（正反馈和负反馈） ... 4
 2.1.2. 振荡条件 .. 4
 2.2. MOSFET 振荡 ... 5
 2.2.1. MOSFET 反馈环路 .. 5
 2.2.2. 科尔皮兹振荡器 ... 6
 2.2.3. 哈特利振荡器 ... 7
 2.3. 用于开关应用的 MOSFET（MOSFET 独立运行）的寄生振荡 ... 7
 2.3.1. 寄生振荡电路（寄生振荡环路） .. 8
 2.3.2. 寄生振荡的条件 ... 10
 2.4. 缓解寄生振荡 ... 10
3. 漏极电感导致的电压振铃 ... 11
 3.1. 机理 ... 11
 3.2. 缓解振铃 .. 12
4. 源极引线和线路杂散电感引起的电压 .. 12
 4.1. 缓解振铃 .. 13
5. 模拟和减少 MOSFET 的振荡和振铃 ... 14
 5.1. 振荡器 ... 14
 5.1.1. 振荡现象 .. 14
 5.1.2. 缓解振荡 .. 16
 5.2. 源极杂散电感导致的振铃 .. 17
 5.2.1. 振铃模拟 .. 17
 5.2.2. 缓解振铃 .. 18
 5.3. 源极引线和线路杂散电感引起的振铃 ... 19
 5.3.1. 振铃模拟 .. 19
 5.3.2. 缓解振铃 .. 21
1. 单管 MOSFET 的寄生振荡和振铃

本节讨论了 MOSFET 在开关应用中的寄生振荡和振铃。栅极电压的振荡和振铃会导致发生误开关，增大功率损耗并导致 MOSFET 发生永久损坏。

MOSFET 振荡和振铃的主要原因如下：

(1) 形成振荡电路
电路中形成了振荡网络，并导致 MOSFET 发生寄生振荡。

(2) 漏极和源极中的浪涌电压
关断期间漏极和源极之间的振铃电压会通过栅漏电容 C_{gd} 的正反馈环路回到栅极端子，并导致栅极电压发生振荡。

(3) 源极电感
关断期间由漏源电流的 $\frac{di}{dt}$ 引起的电压和源极引线和线路杂散电感可能导致 MOSFET 的栅源环路发生 LCR 谐振。（由源极电感引发的振铃）

其它因素也可能导致发生振荡和振铃，但杂散电感在使用 MOSFET 时重点关注。

2. 形成振荡网络

2.1. 振荡现象
振荡是电子电路在未从外部源接收振荡能量的情况下使其自身发生电压和电流振动的现象。实际上，由于电路中有电阻，因此振荡会随时间而衰减（除非为电路供应所损失的能量）。

发生振荡的条件包括：

(1) 相位条件
从输出到输入的反馈信号在振荡频率下与输入信号同相。（正反馈环路）

(2) 振幅条件
电路中无源元件导致的损耗低于放大器获得的增益。
电路有正反馈且提供补偿该损耗的增益时，会发生振荡。
2.1.1. 反馈电路（正反馈和负反馈）

图 2.1 显示了反馈电路（其中部分输出被反馈回输入）。

\[v_1 = \text{输入电压} \]
\[v_2 = \text{反馈电压} \]
\[v_0 = \text{输出电压} \]
\[A = \text{环路增益} \]
\[H = \text{反馈系数} \]

必须计算该电路的开环增益 \(G_0 \)，以验证其运行。为此，通常对反馈环路进行切割，如图 2.2 中所示。

\[G_0 = \frac{v_2}{v_1} = AH \]

反馈系统中的环路增益（被称为闭环增益，\(G_C \)）可使用 \(G_0 = AH \) 表示：

\[V_0 = A \cdot v_1 \quad (1) \]
\[v_1 = v_i + H \cdot v_0 \]

从等式(1)和(2)中可以看出，

\[V_0 = A(v_i + H \cdot v_0) \]

\[= A(1 - AH) \]

通过该等式，电路的总增益计算如下：

\[G_C = \frac{v_0}{v_i} = A(1 - AH) \quad (4) \]

等式(4)显示当 \(AH \) 为正时，产生正反馈环路；当 \(AH \) 为负时，产生负反馈环路。

2.1.2. 振荡条件

当增益 \(AH \) 为 1 或更大时，正反馈环路变得不稳定且发生振荡。

因此，放大器中通常不使用正反馈环路：通常在振荡器（如文氏电桥振荡器、科尔皮兹振荡器和哈特利振荡器）中使用。本文只讨论正反馈环路。当等式(4)中的 \(AH = 1 \) 时，\(G_C \) 变得无穷大，导致反馈电路发生振荡。

振荡器中正反馈环路的环路增益 \(AH \) 用一个复数表示。在复数 \(a + bi \) 中，\(a \) 是实部，\(b \) 是虚部。将实部表示为 \(\text{Re}(AH) \)，虚部表示为 \(\text{Im}(AH) \)。那么，振荡条件就是：

\[AH = \text{Re}(AH) + j\text{Im}(AH) \]
\[\text{Re}(AH) \geq 1 \]
2.2. MOSFET 振荡

功率 MOSFET 有很大的跨导 gm 和寄生电容。因此，线路电感和其它杂散电感（栅电路、源电路和漏电路之间的电感以及相关连结中的电感）可能形成正反馈电路，导致发生寄生振荡。

振荡电压可能会在正反馈环路上和栅极上发生电压过冲，对 MOSFET 造成永久损坏。

当功率 MOSFET 处于稳态开通或截至状态时，不会发生寄生振荡，因为其跨导 gm 为 0 或可忽略不计。在以下情况下，功率 MOSFET 易发生寄生振荡：

1) 其负载发生短路；
2) 在 gm 变大的瞬态开关期间。由于 MOSFET 以线性方式运行（即同时施加 V_D 和 I_D），电磁感应、寄生电容和其它因素可形成一个正反馈路径。当环路增益为 1 或更大时，gm 较高的 MOSFET 发生寄生振荡。

2.2.1. MOSFET 反馈环路

无反馈环路时，不发生振荡。下文几段利用图 2.3 中所示的电路说明了发生振荡所需的条件。假设 X_1-X_3 是理想的电抗，其损耗可忽略。这种情况下，认为电流 i 不会从 MOSFET 流向各个电抗。因此，图 2.3 中的电路可模拟为图 2.4 中所示。

根据基尔霍夫电路定律，

$$v_1 + v_2 + v_3 = i(X_1 + X_2 + X_3) = 0$$

其中，$I \neq 0$。

因此，$X_1 + X_2 + X_3 = 0$。

当电路发生振荡时，存在正反馈环路。这意味着 v_3（输入）与图 2.3 和图 2.4 的中 v_1（输出）同相。因此，X_3 和 X_1 是属性相同的电抗，X_2 则不是。

典型的振荡器包括科尔皮兹振荡器（图 2.5）和哈特利振荡器（图 2.6）。

© 2017
东芝电子元件及存储装置株式会社
5 / 21 2017-08-21
2.2.2. 科尔皮兹振荡器

图 2.7 显示了基本型科尔皮兹振荡器。科尔皮兹振荡器的等效电路型号见图 2.8。可通过计算环路增益来确定维持振荡所需的振荡频率和增益（$g_m \cdot r_d$）。由于栅电流为 0，因此可忽略从 v_2 到 v_1 的线路。

通过该等式，振荡频率和增益可计算如下：

振荡频率

$$\text{Im}(AH) = 0$$

在已经沿着电路循环一次的信号相位延迟 0°或 360°时的频率下，科尔皮兹振荡器最易发生振荡。因此，$C_1 + C_3 - \omega^2 L_2 L_3 = 0$（将等式的两边都除以 $j\omega C_1 j\omega C_3$，得出 $1 / j\omega C_1 + 1 / j\omega C_3 + j\omega L_2 = 0$。）

$$\omega^2 = \frac{C_1 + C_3}{L_2 C_1 C_3} \quad (7)$$

$$\omega = \sqrt{\frac{C_1 + C_3}{L_2 C_1 C_3}} \quad (8)$$

增益：代入等式(7)，$\omega^2 = (C_1 + C_2) / L_2 C_1 C_3$，得出 $\text{Re}(AH) \geq 1$：

$$\frac{-g_m \cdot r_d}{1 - \frac{C_1 + C_3}{L_2 C_1 C_3} L_2 C_3} = \frac{g_m \cdot r_d}{C_3} \geq 1 \quad \Rightarrow \quad g_m \cdot r_d \geq \frac{C_3}{C_1} \quad (9)$$

（$g_m \cdot r_d$：电压环路增益）
2.2.3. 哈特利振荡器

图2.9显示了基本型哈特利振荡器。

与科尔皮兹振荡器的情况一样，可通过计算环路增益确定维持振荡所需的哈特利振荡器振荡频率和增益（\(g_m \cdot r_d\)）。哈特利振荡器的等效电路见图2.10。

\[
\omega = \frac{1}{\sqrt{(L_1 + L_2)C_2}} \quad (10)
\]

\[
g_m \cdot r_d \geq \frac{L_1}{L_3} \quad (11)
\]

X：要计算环路增益，需要将该线路移除。

图2.9 基本型哈特利振荡器
图2.10 哈特利振荡器的等效电路

2.3. 用于开关应用的MOSFET（MOSFET独立运行）的寄生振荡

如上所述，当功率MOSFET处于稳态开通或截至状态时，不会发生寄生振荡，因为其跨导\(g_m\)为0或可忽略不计。

当MOSFET转换纯阻性负载时，连接到漏极端子的电路的\(Q\)因数*（品质因数）较低。由于寄生振荡频率的环路增益低，因此不发生典型的寄生振荡。当MOSFET转换感性负载时，可能会形成寄生振荡电路。但当续流二极管关闭时，不会形成寄生振荡所需的正反馈环路。

假设图2.11中所示等效电路中的续流二极管（FWD）关闭。那么，由于电感负载在寄生振荡频率下不会传导电流，因此可忽略MOSFET的负载电感来估计等效电路，如图2.12中所示。请注意，该电路只包括栅极和源极的杂散电感和MOSFET内部寄生电容。由电容器\(C_{gs}\)和电感\(L_1\)组成的LC振荡器变得具有容性或感性，具体取决于图2.13和图2.14中所示的频率，二者均无正反馈环路。因此，它们不容易发生寄生振荡（见第2.2.1节“MOSFET反馈环路”，了解正反馈环路）。

*品质因数：适用于由电感和电容器组成的谐振电路

\[
Q = \frac{1}{R} \sqrt{\frac{L}{C}}
\]
2.3.1. 寄生振荡电路（寄生振荡环路）

满足以下条件时，在漏极端子和源极端子中形成寄生振荡环路（即以振荡频率传导信号的环路），使MOSFET 易发生振荡。

① 寿流二极管处于导通时（即当它处于正向偏置或反向恢复期间）。

当续流二极管处于导通时，漏源电流通过 VDD 和 GND 之间的电容器 C1，绕过电感负载。因此形成寄生振荡环路。

② 负载发生短路。

负载发生短路时，MOSFET 的漏极端子和源极端子通过 VDD 和 GND 之间的电容器 C1 连接，从而形成寄生振荡环路，如图 2.16 中虚线所示。

③ 漏极和源极之间有较大的寄生电容 C2。

如果由于分层印刷电路板中的多层布线导致漏极和源极之间有较大的寄生电容 C2，形成了寄生振荡环路，如图 2.17 中的虚线所示，则说明满足了寄生振荡的所有条件。

图 2.11 FWD 导通电路

图 2.12 等效电路

图 2.13 等效电路 (a)

图 2.14 等效电路 (b)
功率MOSFET的寄生振荡和振铃

由于图2.15和图2.16中的电容器C1和图2.17中的电容器C2较大，可将它们视为处于寄生振荡频率的电流传导路径中。图2.18所示为等效电路。实际上，该电路拥有栅极电路的电阻R1和栅极线路的寄生电感L1。图2.19(a)所示为添加了栅极电路的等效电路。

在图2.19(a)中，如果C3的阻抗（即图2.15和图2.16中的C1和图2.17中的C2）在寄生振荡频率下足够低，则可将C3视为短路。这时，可对等效电路改型，如图2.19(b)中所示。Ls1和Ls2的比率根据连接栅极的源极路径的位置而有所不同。Cgd或Cgs与L1形成并联谐振电路，取决于Ls1/Ls2比率。

Ls1、Ls2：寄生电感Ls1和Ls2分别为VDD与GND之间电容器的等效串联电感（ESL）以及漏源线路的寄生电感。

R2：R2是续流二极管导通电阻和VDD-GND之间电容器的等效串联电阻器（ESR）。

当源极线路电感Ls1大于图2.19(b)中的漏极线路电感Ls2时，栅极连接到寄生振荡频率的漏极而非源极。图2.20显示了该等效电路。

要使图2.20的电路形成谐振电路，由L1和Cgd形成的谐振电路#1必须在寄生振荡频率ωosc下具有感性，而由Cgs和Ls形成的谐振电路#2必须在ωosc下具有容性。

在这种情况下，可对等效电路进行改型，如图2.21中的科尔皮兹振荡器所示。

栅极电阻器R1和漏极电阻器R2已转换为MOSFET的漏源电阻，在图2.21中以R3表示。L2是谐振
2.3.2. 寄生振荡的条件

形成科尔皮兹振荡器时（见第2.2.2节“科尔皮兹振荡器”中的等式(9)。）

当图2.21中所示电路的环路增益为1或更大时，该电路发生振荡。寄生振荡的条件表示如下：

\[G_m \cdot R_3 \cdot C_4 / C_{gs} \geq 1 \]

因此，\(g_m \geq (C_{gs} / C_4) / R_3 \)

其中，\(R_3 \)是等效漏源电阻。

用\(C_{ds} \)代替\(C_4 \)，得出以下等式：

\[G_m \geq (C_{gs} / C_{ds}) / R_3 \quad (12) \]

满足该等式时，则发生寄生振荡。

2.4. 缓解寄生振荡

- 当图2.19(a)中所示的线路电感满足\(L_{s1} < L_{s2} \)条件时，不会形成科尔皮兹振荡器。
 （假设未形成哈特利振荡器。）
- 等式(12)显示，\(C_{gs} / C_{ds} \)比率较大时，MOSFET不太容易发生寄生振荡。
- 图2.20中所示的栅极电阻\(R_1 \)和漏极电阻\(R_2 \)可替换成图2.21中所示的漏极电阻\(R_3 \)。一般来说，增大\(R_1 \)会导致\(R_3 \)减小。因此，因环路增益发生寄生振荡的可能性降低。
3. 漏极电感导致的电压振铃

关断期间漏电流的 $\frac{di}{dt}$ 和漏极端子与连接线路的杂散电感导致漏极和源极中发生电压浪涌。浪涌电压被反馈回 MOSFET 的栅极端子，并可能导致栅极电压发生振铃。栅极电压上叠加的振铃电压较大时，可能导致 MOSFET 重复开通和关断，使得 MOSFET 发生振荡。

3.1. 机理

当图 3.1 所示电路中的 MOSFET 关断时，漏电流的 $\frac{di}{dt}$ 和漏极引线及线路的杂散电感导致漏极和源极中发生电压浪涌。该浪涌电压表示为:

$$V_{\text{surge}} = Ls2 \times \frac{di}{dt}$$ (13)

假设在图 3.2 所示电路中，漏源环路中的二极管处于导通时（即来自 L 的能量正处于再循环中）。由于浪涌电压和 MOSFET 的 C_{ds} 以及杂散电感 $Ls2$ 发生谐振，该电路产生振铃。（由于 C_1 的阻抗对于寄生振荡频率而言足够低，因此可将其视为短路。）

浪涌电压通过 MOSFET 的栅极电容 C_{gd} 叠加在 V_{GS} 电压上。因此，它还可能会影响栅极电感（如图 3.3 中所示），导致栅极电压发生振铃。

图 3.1 电压浪涌的发生

图 3.2 漏源谐振环路
3.2. 缓解振铃

要抑制漏极端子和源极端子中的浪涌电压，最重要的是降低线路电感。也可以通过增大栅极电阻来降低浪涌电压的振幅。此外，还能通过减少栅极杂散电感来抑制栅极电压的振铃。

4. 源极引线和线路杂散电感引起的电压

关断期间由漏电流的 $\frac{di}{dt}$ 引起的电压和源极引线及线路的杂散电感导致 MOSFET 的栅源环路发生 LCR 谐振，最终导致栅极电压发生振铃。

如果栅极电压上叠加的振铃电压较大，可能导致 MOSFET 重复开通和关断，从而促使 MOSFET 发生振荡。关断 MOSFET 的栅极电压 V_{GS} 降低并到达米勒平台（在此期间中 V_{GS} 保持恒定），导致漏源电压 V_{DS} 逐渐增大。同时，漏电流 I_D 开始减小。（负载 L 的能量流过续流二极管。）（图 4.2）

MOSFET 的 V_{DS} 增大时，漏源电容 C_{ds} 会减小。因此，MOSFET 的漏极和源极之间会产生很大的电压变化 dv / dt。最终导致电流急剧减小（即 di / dt 增大）。

当源极引线和线路上有杂散电感 L_{s1} 时，di / dt 在源极电感处产生反电动势：

$$V = L_{s1} \times \frac{di}{dt} \quad (14)$$

反电动势电压可能导致栅源电压发生振铃。
4.1. 缓解振铃

要抑制漏极端子和源极端子中的浪涌电压，最重要的是减少源极引线和线路的杂散电感。也可以通过增大栅极电阻 R_1 来降低浪涌电压的振幅。此外，还可以通过减小 L_1 来抑制振铃。
5. 模拟和减少 MOSFET 的振荡和振铃

我们通过模拟来确定振荡和振铃现象如何发生以及如何减少这些现象。

因为该模拟的目的是研究现象，使用的实际器件参数值会有所不同。

5.1. 振荡器
5.1.1. 振荡现象

使用以下组件值分析图 5.1 中所示电路的振荡。这些均为引发振荡的组件值。为了模拟振荡，有意将栅极杂散电感 L_1 和栅极电阻设为 0。

- 漏极杂散电感：$L_{s2}=20 \mu \text{H}$
- 源极杂散电感：$L_{s1}=20 \mu \text{H}$
- 栅极杂散电感：$L_1=0 \mu \text{H}$
- 栅极电阻：$R_1=0 \Omega$

图 5.2 显示了 MOSFET 的栅极电压、漏极电压和漏电流的波形。
功率 MOSFET 的寄生振荡和振铃

应用说明

图 5.2 振荡波形
5.1.2. 缓解振荡

如第 2.4 节“缓解寄生振荡”中所述，要防止形成科尔皮兹振荡器，最重要的是确保线路电感满足以下关系：Ls1 < Ls2。

作为另一个解决方案，我们的模拟显示，改变栅极电阻和栅极电感也有助于缓解 MOSFET 振荡。

(1) 增大栅极电阻

我们更改了图 5.1 中的栅极电阻器值。图 5.3 显示了模拟结果。与图 5.2 的波形相比，增大栅极电阻器值 R1 有助于缓解振荡。

- 栅极电阻 R1 从 0Ω 改变为 10Ω。
- Ls1=20μH，Ls2=20μH，L1=0μH

(2) 增大栅极杂散电感

我们增大了图 5.1 中的栅极杂散电感。图 5.4 显示了模拟结果。与图 5.2 的波形相比，增大栅极杂散电感 L1 有助于缓解振荡。

- 栅极杂散电感 L1 从 0μH 增大至 20μH。
- 栅极电阻 R1=0Ω

Ls1=20μH，Ls2=20μH。
5.2. 漏极杂散电感导致的振铃

5.2.1. 振铃模拟

我们分析了漏极杂散电感对振铃的影响。如第3节“漏极电感引起的电压振铃”中所述，MOSFET 漏极的杂散电感引起的浪涌电压通过栅极电容 C_{gd} 叠加在栅极电压上，然后它导致栅极电压发生振铃。

使用以下组件值模拟图 5.5 中所示电路的振铃。

- 漏极杂散电感：$L_{s2} = 200 \mu H$
- 栅极杂散电感：$L_1 = 100 \mu H$
- 栅极电阻：$R_1 = 1\Omega$

图 5.6 显示了 MOSFET 的栅极电压、漏极电压和漏电流的波形。

图 5.5 漏极电感导致的栅极电压振铃的测试电路

图 5.6 振铃波形
5.2.2. 缓解振铃

如第 3.2 节“缓解振铃”中所述，最重要的是减少漏极杂散电感。

作为另一个解决方案，我们的模拟显示，改变栅极电阻和栅极电感也有助于缓解漏极杂散电感导致的振铃。

(1) 增大栅极电阻

我们更改了图 5.5 中的栅极电阻器值。图 5.7 显示了模拟结果。与图 5.6 的波形相比，增大栅极电阻器值 R1 有助于缓解振铃。

栅极电阻 R1 从 1Ω 增大至 10Ω。

Ls2 = 200μH，L1 = 100μH

(2) 减小栅极杂散电感

我们减小了图 5.5 中的栅极杂散电感。图 5.8 显示了模拟结果。与图 5.6 的波形相比，减小栅极杂散电感 L1 有助于缓解振铃。

栅极杂散电感 L1 从 100μH 减小至 10μH。

Ls2 = 200μH，R1 = 1Ω

图 5.7 R1 增大后的波形
图 5.8 L1 减小后的波形
5.3. 源极引线和线路杂散电感引起的振铃

5.3.1. 振铃模拟

我们分析了源极电感和周围电感对振铃的影响。

如第 4 节“源极引线和线路杂散电感引起的电压”中所述，由于栅极线路 L_1 和栅源电容 C_g 的杂散电感，源极杂散电感 L_{s1} 引起的电压导致 MOSFET 的栅源环路发生振铃。

通过以下组件值模拟该振铃：

源极杂散电感：$L_{s1} = 20 \mu H$

栅极杂散电感：$L_1 = 50 \mu H$

栅极电阻：$R_1 = 1 \Omega$

图 5.9 源极电感所致栅极电压振铃的测试电路
图 5.10 显示了 MOSFET 的栅极电压、漏极电压和漏电流的波形。
5.3.2. 缓解振铃

如第4.1节“缓解振铃”中所述，最重要的是减少源极杂散电感。

我们的模拟显示，改变栅极电阻和栅极电感也有助于缓解源极杂散电感导致的振铃。

(1) 增大栅极电阻

我们更改了图5.9中的栅极电阻器值。图5.11显示了模拟结果。与图5.10的波形相比，增大栅极电阻值有助于缓解振铃。

栅极电阻 R1 从1Ω增大至10Ω。
Ls1=20μH，L1=50μH

(2) 减小栅极杂散电感

我们减小了图5.9中的栅极杂散电感。图5.12显示了模拟结果。与图5.10的波形相比，减小栅极杂散电感L1有助于缓解振铃。

栅极杂散电感 L1 从50μH减小至10μH。
Ls1=20μH，R1=1Ω

图5.11 栅极电阻 R1 增大后的波形
图5.12 栅极杂散电感 L1 减小后的波形