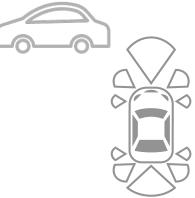
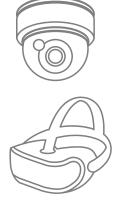
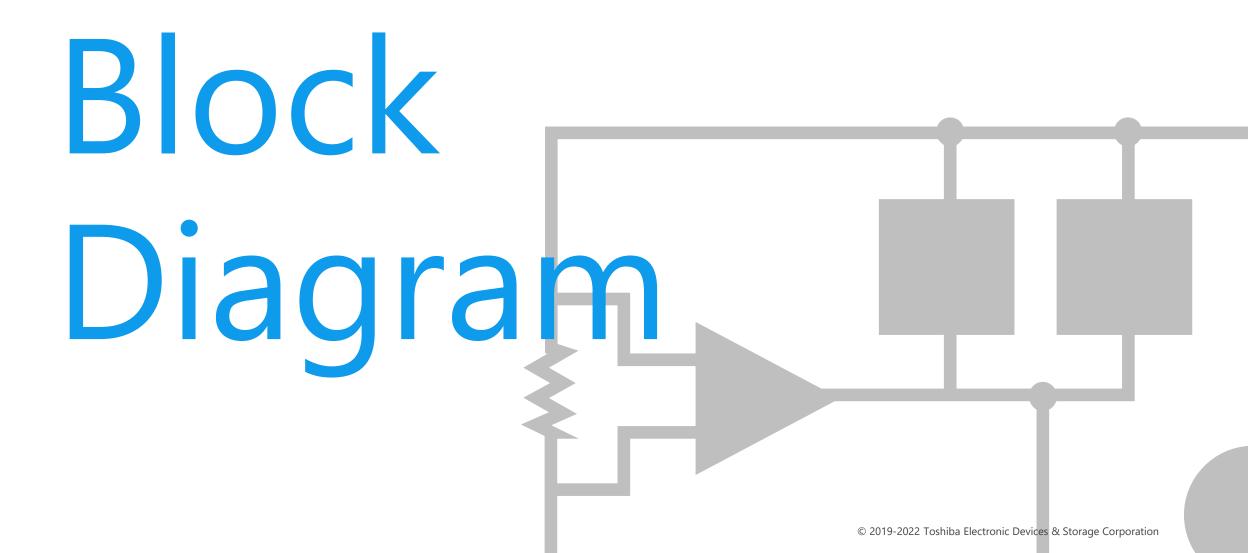
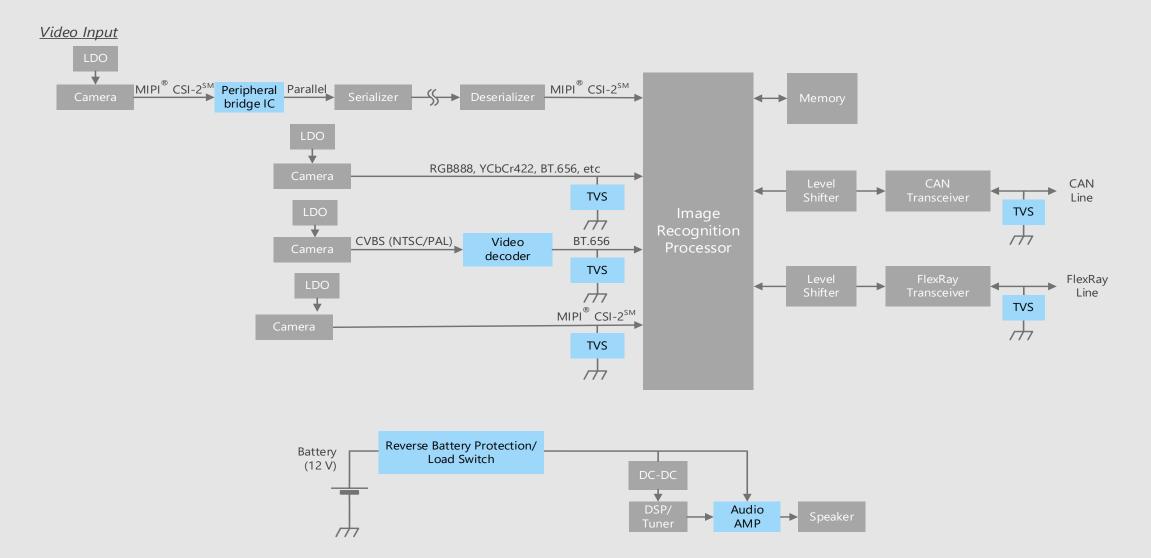


Automotive ADAS

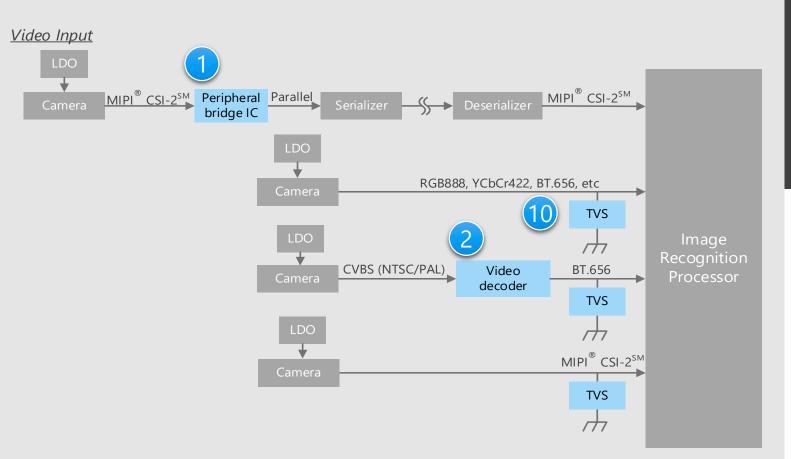

Solution Proposal by Toshiba


R21





Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.



ADAS Overall block diagram

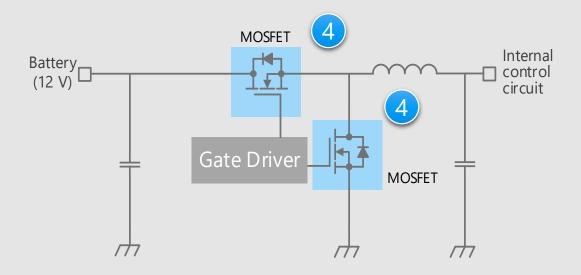
ADAS Detail of sensing input

Image input unit

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

Criteria for device selection

- Employing noise resistant interfaces help to reduce position constraints of camera.
- To use under various environments, video decoders need to have enhanced visual recognition capabilities.


Proposals from Toshiba

- **Resolve differences between interfaces** Peripheral bridge IC
- **Built-in visual enhancement function** Video decoder
- Suitable for ESD protection

TVS diode (for high speed communication)

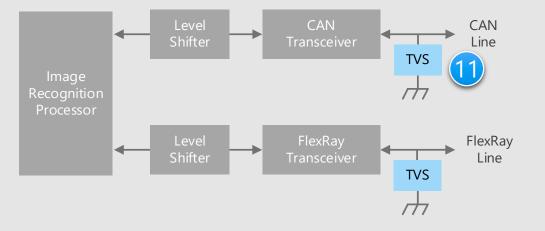
ADAS Detail of power supply circuit

DC-DC converter circuit (non-insulated buck type)

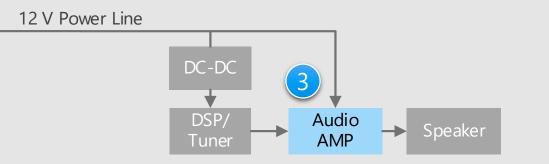
* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

Criteria for device selection

- It is necessary to select the product with the suitable voltage and current ratings for each application.
- A small surface mount package is suitable for realizing miniaturization of the ECU.
- It is necessary to select high speed MOSFETs to prevent short through current.


Proposals from Toshiba

 Low on-resistance contributes low power consumption of the system U-MOS Series 40 V N-ch MOSFET


© 2019-2022 Toshiba Electronic Devices & Storage Corporation 6

ADAS Detail of data transmission / audio output unit

CAN / FlexRay transmission section

Audio output section

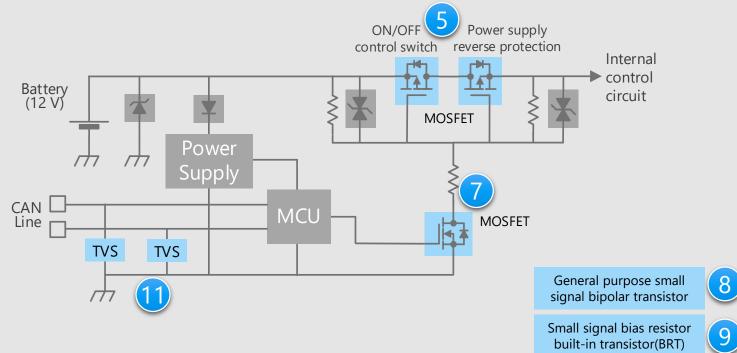
* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

Criteria for device selection

- The TVS diode needs to be selected according to the ESD protection characteristics and capacitance value suitable for transmission speed.

Proposals from Toshiba

- High output power with low heat generation is realized


Audio power amplifier IC

- Suitable for ESD protection

TVS diode (for CAN communication)

Power supply ON/OFF control and reverse connection protection circuit (P-ch type)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

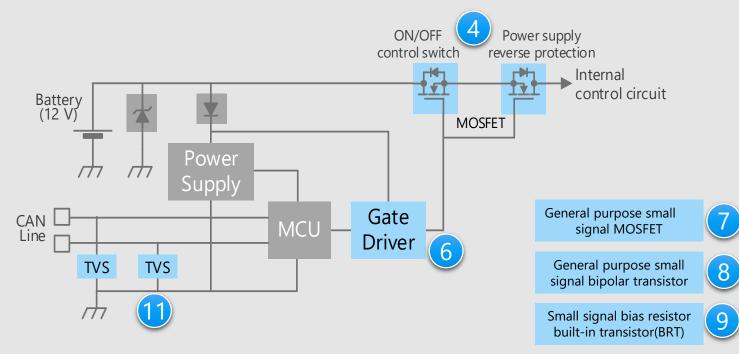
Criteria for device selection

- It is necessary to select the product with the suitable voltage and current ratings for each application.
- It is necessary to select a gate driver according to the characteristics of the switching device to be driven.
- A small surface mount package is suitable for realizing miniaturization of the ECU.

Proposals from Toshiba

- Low on-resistance contributes low power consumption of the system
 - U-MOS Series -40 V / -60 V P-ch MOSFET 5
- Extensive product lineup

General purpose small signal MOSFET General purpose small signal bipolar transistor


Small signal bias resistor built-in transistor (BRT)

8

- Suitable for ESD protection

TVS diode (for CAN communication)

Power supply ON/OFF control and reverse connection protection circuit (N-ch type)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

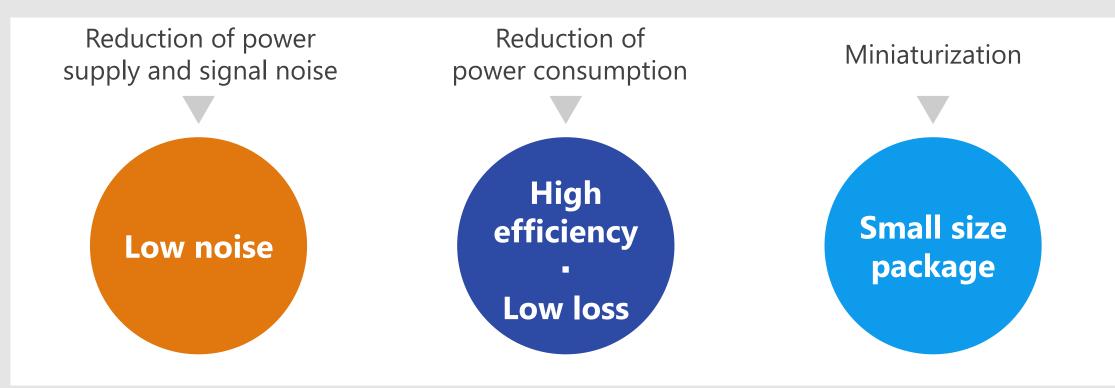
Criteria for device selection

- It is necessary to select the product with the suitable voltage and current ratings for each application.
- It is necessary to select a gate driver according to the characteristics of the switching device to be driven.
- A small surface mount package is suitable for realizing miniaturization of the ECU.

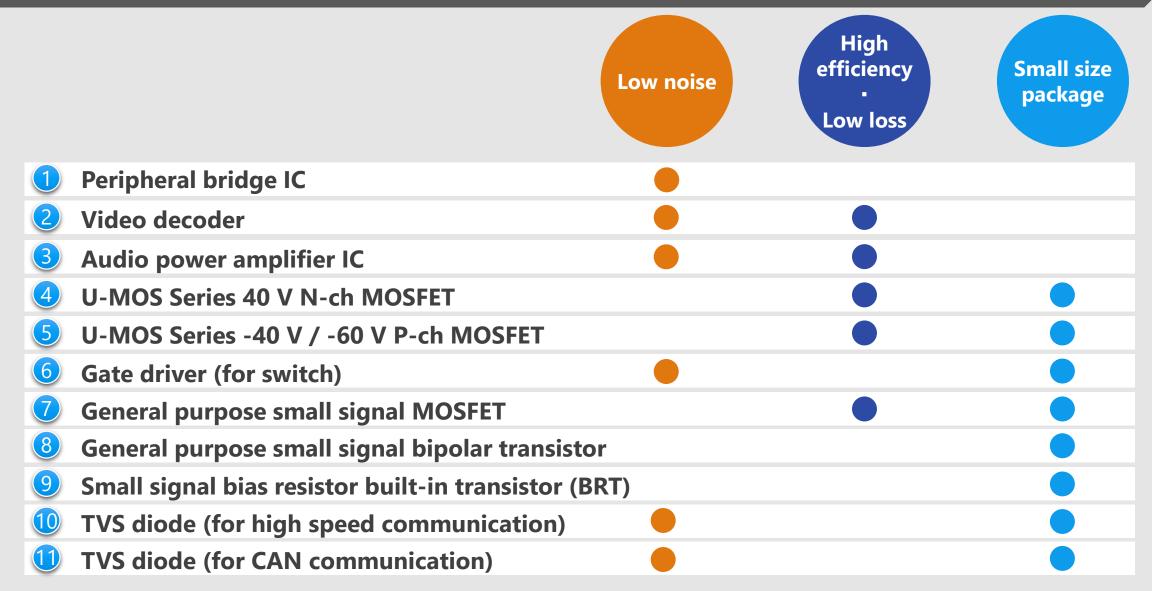
Proposals from Toshiba

- Low on-resistance contributes low power consumption of the system
 - U-MOS Series 40 V N-ch MOSFET
- Gate driver with protection and diagnosis functions

Gate driver (for switch)


- Extensive product lineup
 General purpose small signal MOSFET
 General purpose small signal bipolar transistor
 Small signal bias resistor built-in transistor (BRT)
- Suitable for ESD protection

TVS diode (for CAN communication)


Recommended Devices

Device solutions to address customer needs

As described above, in the design of ADAS, "Reduction of power supply and signal noise", "Reduction of power consumption" and "Miniaturization" are important factors. Toshiba's proposals are based on these three solution perspectives.

Device solutions to address customer needs

Resolve gaps of interface standard between host and peripheral devices.

Increase the choice of parts

By using a peripheral bridge IC, it is possible to connect to various types of peripheral devices.

Converting parallel bus line to serial improves noise immunity. That also suppresses the generation of own noise.

lineun

Reduce disconnection risk

High

efficiency

ow los

Small size

package


Converting parallel bus line to serial reduces the number of wires on a board, and so reduce the risk of disconnection.

Low noise

Display interface

Camera interface bridge

Camera I/F Bridge			Display I/F Bridge			
Part Number	TC9590	TC9591	TC9592	TC9593	TC9594	TC9595
Package	VFBGA80	VFBGA80	VFBGA49	VFBGA64	VFBGA80	VFBGA80
Input	HDMI [™] 1.4a	(1) MIPI® CSI-2 SM (2) Parallel 24bit@166 MHz	MIPI DSI SM 4 Lanes x 1ch		Parallel input 24bit@166 MHz	MIPI DSI 4 Lanes x 1ch. / MIPI DPI (24bit
Output	MIPI CSI-2 4 Lanes x 1ch	(1) Parallel 24bit@100 MHz (2) MIPI CSI-2	LVDS Single Link		MIPI DSI 4 Lanes x 1ch	DisplayPort™ 1.1. x 2 Ports / MIPI DPI (24bit

High efficiency Small size Low noise package Low loss

Value provided

Built-in image enhancement functions designed for automotive cameras.

HDV enhancer

In addition to conventional horizontal and vertical edge emphasis, diagonal emphasis has been added, to enable stronger edge emphasis without increasing discomfort to the eyes.

This function emphasizes a specific selected color (saturation). Emphasizing certain color can improve visibility.

Dynamic YC gamma

Applying optimized Y gamma curves to the images reduces blackout and whiteout, and improves visibility.

Color management OFF (blue-cyan emphasis)

Line up						
Model	TC90105FG	TC90107FG				
Package	LQFP 80 pin	LQFP 64 pin				
ADC	2	1				
New image correction		/				
ITU-R BT.601 output	\checkmark	-				
ITU-R BT.656 output	· · · · · · · · · · · · · · · · · · ·	/				

Low noise High efficiency Low loss Small size package

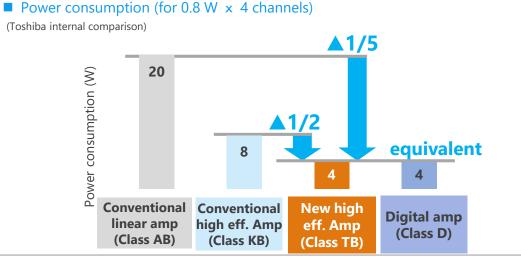
Value provided

These linear amplifier ICs realize same level of power loss and heat generation the class D amplifier.

Proprietary high efficiency amplifier (patent registered)

Realizes equivalent efficiency to the class D amplifiers ^[Note1] at output of 4 W or less. Power consumption of these ICs are about 1/5 of our class AB amplifiers and about 1/2 of our high efficiency linear class KB amplifiers. ^[Note2]

Note:1 Based on Toshiba research (April 2020) . Note:2 Class KB = Toshiba original linear amplifier


Reduction of external components

Since these ICs operate without switching such as the class D amplifier, the external parts such as low pass filter or components for EMI suppression can be reduced.

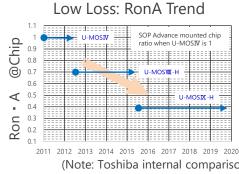
Built-in fulltime output offset detection (patent registered)

Includes a proprietary speaker burnout prevention system that continuously checks for any abnormal output DC offset regardless of input signal presence and informs the microcomputer.

Line up					
Model	TCB701FNG	TCB702FNG			
Package	P-HSSOP36-1116-0.65-001 (36 pin)				
Maximum output power	49 W x 4ch (V _{CC} = 15.2 V, R _L = 4 Ω)	45 W x 4ch (V _{CC} = 15.2 V, R _L = 4 Ω)			
Total harmonic distortion (THD)	0.01 % (at	P _{OUT} =4 W)			
Supply voltage	6 to 18 V				
Output noise voltage	60 μVrms (Filter = DIN AUDIO)				

◆ Return to Block Diagram TOP

© 2019-2022 Toshiba Electronic Devices & Storage Corporation 15



The advanced U-MOSIX-H processes enables low on-resistance and low noise, thereby reducing power consumption.

Low loss (reduced on-resistance)

Using low on-resistance technology to contribute to reduced power consumption systems.

On-resistance of 61 % reduction per unit area. (compared to U-MOSIV)

TO-220SM(W) Cu co

Packa reduced by 64 %, compared to D2PAK+.

Low-poice: Switching waveform

Compact and low loss package

By adopting a Cu connector structure and a double-sided heat dissipation structure, low loss and high heat dissipation are realized. Wettable Frank (WF) package contributes good mountability.

Low V_{DC} peak

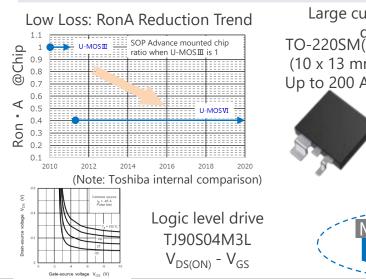
mounted on board

compared to SOP Advance(WF).

Low noise (low EMI)

Improved chip process reduces surge voltage and ringing time.

/ II CIIG	LOW-HOISE. SWITCHII	IQ wavelonn				
Advance mounted chip	U-MOSVIII-H		Line up			
MOSVIII-H	$V_{GS} : 2 V/div$ $V_{DS} : 5 V/div$	V _{cs} : 2 V / div V _{bs} : 5 V / div U-MOSIX-H	Part number	Drain current	On-resistance (Max) @V _{GS} = 10 V	Package
+	t : 400 ns / div	I _{DS} : 2 A / div t : 400 ns / div	XPN3R804NC	40 A	3.8 mΩ	TSON Advance(WF)
U-MOSIX-H	Ringing time : 802 ns	Ringing time : 468 ns	TK1R4S04PB	120 A	1.35 mΩ	DPAK+
	Mo		TPHR7904PB	150 A	0.79 mΩ	SOP Advance(WF)
6 2017 2018 2019 2020 ternal comparison)			TPWR7904PB	150 A	0.79 mΩ	DSOP Advance(WF)L
connector desig	n DSOP Advance(WF)	L double-sided cooling package	TKR74F04PB	250 A	0.74 mΩ	TO-220SM(W)
5		Thermal resistance is reduced	TK1R5R04PB	160 A	1.5 mΩ	D2PAK+
kage resistance is		by 76 % @t = 3 s,		1		



Low on-resistance contributes to reduce system power consumption.

Low loss (reduced on-resistance) and logic level drive

Using low on-resistance technology contributes to reduce system power consumption.

Lineups of logic level drive type are supported.

Plating

2

Wettable Flank (WF) structure

Small surface mount package developed

By adopting a Cu connector structure and a double-sided heat dissipation structure, low loss and high heat dissipation are realized.

Wettable Frank (WF) package contributes good mountability.

Line up				
Part number	Drain-source Voltage	Drain current	On-resistance (Max) @V _{GS} = -10 V	Package
TJ90S04M3L	-40 V	-90 A	4.3 mΩ	DPAK+
TJ60S06M3L	-60 V	-60 A	11.2 mΩ	DPAK+
XPH3R114MC	-40 V	-100 A	3.1 mΩ	SOP Advance(WF)
TJ200F04M3L	-40 V	-200 A	1.8 mΩ	TO-220SM(W)

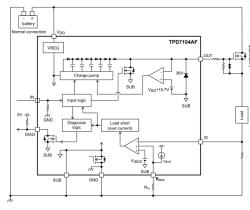
Low noise High efficiency Low loss Small size package

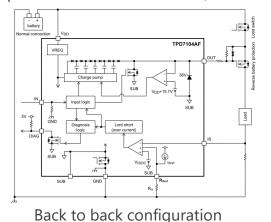
Value provided

A charge pump circuit for the N-ch MOSFET gate drive is built in, allowing for easy semiconductor relay configuration.

Built-in charge pump circuit

Built-in charge pump circuit enables N-ch MOSFET as high side switch. Easy to configure a semiconductor relay.


It is possible that Direct control by output signal of MCUs or CMOS logic ICs.


Small package

The small surface mount packages such as PS-8, SSOP16 and WSON10A contribute to the miniaturization of equipment.

Semiconductor relay (switch) application (TPD7104AF)

Power supply reverse connection protection MOSFET control (TPD7104AF)

Line up

Part number	TPD7104AF	TPD7106F	TPD7107F
Package	PS-8 (2.8 x 2.9 mm)	SSOP16 (5.5 x 6.4 mm)	WSON10A (3 x 3 mm)
Features	 Operating power supply voltage range: 5 to 18 V Built-in power supply reverse connection protection function (Supported for power supply reverse connection protection MOSFET applications) 	 Operating power supply voltage range: 4.5 to 27 V Built-in power supply reverse connection protection function (Supported for power supply reverse connection protection MOSFET applications) 	 Operating power supply voltage range: 5.75 to 26 V Current sense output Protective functions; overcurrent, overtemperature, GND disconnect etc. reverse battery connection Diagnosis output; overcurrent, load open, overtemperature etc.

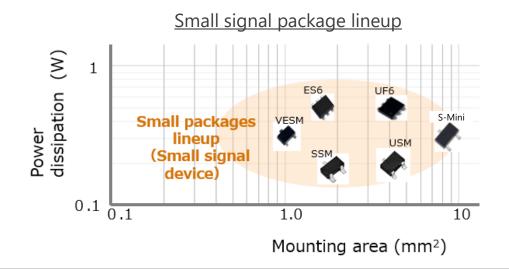
Low noise High efficiency Low loss Small size package

Value provided

Wide lineup of small packages contribute to reduce the size and power consumption of system.

Small package

A lineup of various small packages such as SOT-723 (VESM 1.2 x 1.2 mm package) is available, contributing to reduce mounting area.



SSM3J66MFV can be driven at low gatesource voltage of 1.2 V.

AEC-Q101 qualified

AEC-Q101 qualified and can be used for various automotive applications.

Line up

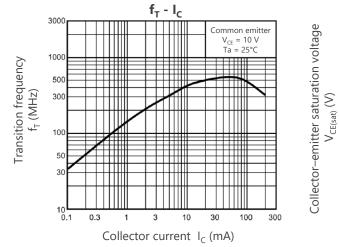
Part number		SSM3K7002KF	SSM3J168F	SSM3J66MFV
Package		S-Mini (SOT-346)	S-Mini (SOT-346)	VESM (SOT-723)
V _{DSS} [V]		60	-60	-20
I _D [A]		0.4	-0.4	-0.8
R _{DS(ON)}	Тур.	1.2	1.4	0.31
@ V _{GS} =4.5 V [Ω]	Max	1.75	1.9	0.39
Drive voltage [V]		4.5	-4.0	-1.2
Polarity		N-ch	P-ch	P-ch

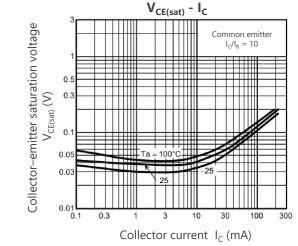
Extensive product lineup to meet customers' needs.

Extensive lineup of packages

Various packages such as 1-in-1, 2-in-1 are provided and suitable products for circuit board design are selectable.

Extensive product lineup

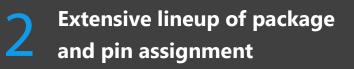

Various product lineups, such as general purpose, low noise, low $V_{CE(sat)}$ and high current types are provided. Products can be selected in accordance to the application.



AEC-Q101 qualified

AEC-Q101 qualified and can be used for various automotive applications.

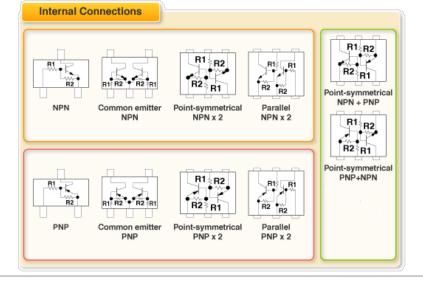
Characteristic examples of 2SC2712


Line up								
Package		SOT-23F		USM (SOT-323) UFM (SOT-323F)*		S-Mini (SOT-346)		
Classification	V _{CEO} [V]	l _c [mA]	NPN	PNP	NPN	PNP	NPN	PNP
Conoral purpose	50	150			2SC4116	2SA1586	2SC2712	2SA1162
General purpose	50	500					2SC3325	2SA1313
Low noise	120	100			2SC4117	2SA1587	2SC2713	2SA1163
	50	1700				2SA2195*		
High current	50	2000		TTA501				
	100	2500	TTC501					

Extensive product lineup to meet customers' needs.

Built-in bias resistor type (BRT : Bias Resistor built-in Transistor)

The BRTs contribute to reduction of the number of components, assembly workload and mounting area of circuit boards.



Various package lineups, such as 1-in-1, 2-in-1 and various pin assignment type are provided and suitable products for circuit board design are selectable.

AEC-Q101 qualified

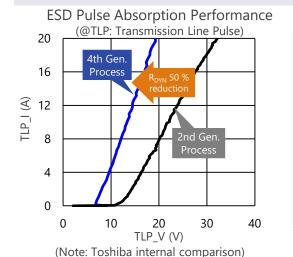
AEC-Q101 qualified and can be used for various automotive applications.

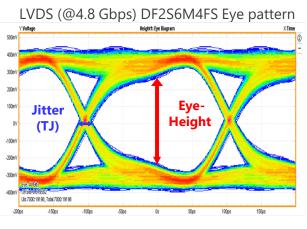
Line up	Line up					
	Part number	NPN (BRT)	PNP (BRT)			
Dackago	ES6 (SOT-563)	RN1907FE	RN2907FE			
Package	US6 (SOT-363)	RN1901	RN2901			
	V _{CEO} (Max) [V]	50	-50			
	I _C [mA]	100	-100			

TVS diodes prevent system damage and malfunction caused by electrostatic discharge (ESD).

Improve ESD pulse absorbability

Toshiba proprietary snapback technology (4th-Gen. process) improves ESD pulse absorption compared to Toshiba previous products. (50 % reduction in R_{DYN})


These are products applicable to high speed communications (Gbps orders) such as Ethernet and LVDS.


(*): Low voltage differential signaling

3

High ESD immunity

 $V_{ESD} > \pm 30 \text{ kV} @$ ISO 10605 $V_{ESD} > \pm 20 \text{ kV}$ (L4) @ IEC61000-4-2

Line up					
Part number	DF2S5M4FS	DF2S6M4FS			
Package	SOD-923				
V _{ESD} [kV] @ISO10605	±30	±30			
V _{RWM} (Max) [V]	3.6	5.5			
C _t (Typ. / Max) [pF]	0.45 / 0.55				
R _{DYN} (Typ.) [Ω]	0.35				

(NOTE) : This product is an ESD protection diode and cannot be used for purposes other than ESD protection.

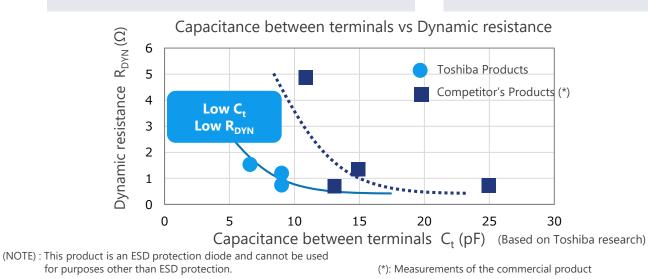
Low noise High efficiency Low loss Small size package

Value provided

TVS diodes prevent system damage and malfunction caused by electrostatic discharge (ESD).

Improve ESD pulse absorbability

Toshiba proprietary Zener process improves the ESD pulse absorption of TVS diodes. (Both low dynamic resistance R_{DYN} and low capacitance between terminals C_t)


2 Supports CAN, CAN FD and FlexRay

These are products applicable to invehicle LAN communication such as CAN, CAN FD and FlexRay.

High ESD immunity

 $V_{ESD} > \pm 30 \text{ kV} @$ ISO 10605 $V_{ESD} > \pm 20 \text{ kV}$ (L4) @ IEC61000-4-2

Line up						
Part number	DF3D18FU	DF3D36FU				
Package	USM (SOT-323)					
V _{ESD} [kV] @ISO10605	±30	±20				
V _{RWM} (Max) [V]	12	24	28			
C _t (Typ. / Max) [pF]	9 / 10 6.5 / 8					
R _{DYN} (Typ.) [Ω]	0.8 1.1 1.5					

If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers, shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.

2. This Reference Design is for customer's own use and not for sale, lease or other transfer.

3.Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.

4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

1.We reserve the right to make changes to this Reference Design without notice.

2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.

- 3.Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
- 4.When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- 5.No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
- 6.THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

This terms of use shall be governed and construed by laws of Japan.

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers, shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.

2. This Reference Design is for customer's own use and not for sale, lease or other transfer.

3.Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.

4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

1.We reserve the right to make changes to this Reference Design without notice.

2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.

- 3.Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
- 4.When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- 5.No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
- 6.THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

This terms of use shall be governed and construed by laws of Japan.

TOSHIBA

* MIPI® is registered service marks of MIPI Alliance, Inc. CSI-2SM and DSISM are service marks of MIPI Alliance, Inc.

- * HDMI is a trademark or registered trademark of HDMI Licensing Administrator, Inc.
- * DisplayPort and the DisplayPort logo are trademarks owned by the Video Electronics Standards Association (VESA®).
- * All other company names, product names, and service names may be trademarks of their respective companies.