Air Conditioner

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Air Conditioner

Details of AC-DC converter unit

Criteria for device selection
- High voltage MOSFETs are suitable for primary switching of AC-DC converters.
- The transistor output photocoupler is for signal isolation.

Proposals from Toshiba
- Suitable for high efficiency voltage switching
 π-MOSⅧ Series MOSFET
- High current transfer ratio and high temperature operation have been achieved
 Transistor output photocoupler
- Supply the power with low noise
 Small surface mount LDO regulator

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
PFC circuit

Active type

```
\[ \text{PFC Circuit} \]
```

- MOSFETs with high speed switching and low on-resistance are suitable for active type PFC circuit.
- IGBTs with low collector-emitter saturation voltage are suitable for partial switching type PFC circuit.

Proposals from Toshiba

- Suitable for high efficiency power supply switching
 - DTMOSVI Series MOSFET
- IGBT which is suitable for high voltage and high current system
 - Discrete IGBT
- Suitable for PFC and motor control
 - MCU M4K Group / M470 Group / M370 Group

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Air Conditioner Details of fan (indoor/outdoor) and compressor unit

Fan section (indoor/outdoor units)

High voltage IPD

MCD (controller) + high voltage IPD

MCU (Three-phase motor controller) + high voltage IPD

Compressor section

Criteria for device selection

- IPDs are suitable for fan motor drive in indoor and outdoor units.
- MOSFET with short reverse recovery time is suitable for motor drive in compressors.
- By using brushless motor drivers, three-phase brushless DC motors can be controlled easily.

Proposals from Toshiba

- Suitable for inverter
 DTMOS IV (HSD) [Note] Series MOSFET
- High voltage motor driver circuit
 High voltage IPD
- Easy motor drive
 Motor driver
- Suitable for PFC and motor control
 MCU M4K Group / M470 Group / M370 Group
- Easy software development using general purpose CPU cores
 MCU M3H Group

[Note] 4th generation DTMOS with high speed diode

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

MCU

Three-phase motor control

MOSFET

Gate Driver

Brushless

Brushless

[1c 5b 5a 6b 6c 6d 7a 7b]
Air Conditioner Details of cleaning, louver and valve control unit

Cleaning section

Motor Control Driver or Transistor Array

Louver section

Transistor Array

Valve control section

Photocoupler

Criteria for device selection
- By using brushless DC motor drivers, three-phase brushless DC motors can be controlled easily.
- Stepping motor driver enables efficient motor control by optimizing real-time current to the motor.
- Brushed DC motor driver allows motor driving with low power consumption.

Proposals from Toshiba
- Easy motor drive
 Motor driver
- Triac driver for high dv/dt
 Triac output photocoupler
- Suitable for PFC and motor control
 MCU M4K Group / M470 Group / M370 Group
- Easy software development using general purpose CPU cores
 MCU M3H Group
- High efficiency and high current driver with built-in low loss DMOS FET
 Transistor array

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Criteria for device selection

- Isolation devices such as transistor output photocouplers are effective when voltage difference exists between outdoor and indoor GNDs.
- MCUs are suitable for system monitoring and control.

Proposals from Toshiba

- High current transfer ratio and high temperature operation have been achieved
 Transistor output photocoupler
- Supply the power with low noise
 Small surface mount LDO regulator
- Suitable for PFC and motor control
 MCU M4K Group / M470 Group / M370 Group
- Easy software development using general purpose CPU cores
 MCU M3H Group

Air Conditioner Details of microcontroller and isolation unit

Microcontroller section
Power control block for outdoor unit

Criteria for device selection

- Isolation devices such as transistor output photocouplers are effective when voltage difference exists between outdoor and indoor GNDs.
- MCUs are suitable for system monitoring and control.

Proposals from Toshiba

- High current transfer ratio and high temperature operation have been achieved
 Transistor output photocoupler
- Supply the power with low noise
 Small surface mount LDO regulator
- Suitable for PFC and motor control
 MCU M4K Group / M470 Group / M370 Group
- Easy software development using general purpose CPU cores
 MCU M3H Group

Isolation circuit
Between outdoor and indoor units

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Air Conditioner Details of sensor input unit (1)

Dust sensor circuit

- Power Supply
- LDO
- Drive Circuit
- Dust Sensor
- Op-amp
- Output (MCU)

Human sensor circuit

- Power Supply
- LDO
- Pyroelectric Infrared Sensor
- Op-amp
- Output (MCU)

Criteria for device selection
- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for sensor modules.
- The operational amplifier should be low current consumption or low noise device.
- Small package products contribute to the reduction of circuit board area.

Proposals from Toshiba
- **Supply the power with low noise**
 Small surface mount LDO regulator
- **Amplification of detected very small signal with low noise**
 Low current consumption op-amp / Low noise op-amp

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Air Conditioner Details of sensor input unit (2)

Temperature sensor circuit

Criteria for device selection
- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for sensor modules.
- The operational amplifier should be low current consumption or low noise device.
- Small package products contribute to the reduction of circuit board area.

Proposals from Toshiba
- Supply the power with low noise
 Small surface mount LDO regulator
- Amplification of detected very small signal with low noise
 Low current consumption op-amp / Low noise op-amp

Humidity sensor circuit

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Ambient light sensor circuit

Power Supply

LDO

Photodiode

Op-amp

Output (MCU)

Criteria for device selection
- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for sensor modules.
- The operational amplifier should be low current consumption or low noise device.
- Small package products contribute to the reduction of circuit board area.

Proposals from Toshiba
- **Supply the power with low noise**
 Small surface mount LDO regulator
- **Amplification of detected very small signal with low noise**
 Low current consumption op-amp / Low noise op-amp

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Air Conditioner Detail of key input unit

Key input circuit

- **Key Input**
 - **Keys** → **TVS** → **MCU**

Criteria for device selection
- TVS diodes are suitable for protection from ESD pulses coming in key input unit.
- Small package products contribute to the reduction of circuit board area.

Proposals from Toshiba
- Easy software development using general purpose CPU cores
 - **MCU M3H Group**
- Absorb static electricity to prevent malfunction of the circuit
 - **TVS diode**

Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Recommended Devices
As described above, in the design of air conditioner, “Quietness/efficiency of motors”, “Low power consumption of set” and “Miniaturization of circuit boards” are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Brushless DC motor drive</th>
<th>High efficiency / low loss</th>
<th>Small size packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>π-MOS VIII / DTMOS VI / DTMOS IV (HSD) Series MOSFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Transistor output photocoupler / Triac output photocoupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Discrete IGBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Small surface mount LDO regulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>High voltage IPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Motor driver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MCU M4K Group / M470 Group / M370 Group / M3H Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TVS diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Low current consumption op-amp / Low noise op-amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Transistor array</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Realizes improvement of power supply efficiency by reduction of RonA by 24 % (comparison of Toshiba’s conventional products) and contributes miniaturization of set.

1. RonA reduced by 24 %
 By using π-MOSⅧ chip design, figure of merit RonA is reduced by 24 % (comparison of Toshiba’s π-MOSⅣ products).

2. Qg reduced by 23 %
 By using π-MOSⅧ chip design, Qg is reduced by 23 % (comparison of Toshiba’s π-MOSⅣ products). Reduction of switching loss is expected.

3. Coss reduced by 18 %
 By using π-MOSⅧ chip design, Coss is reduced by 18 % (comparison of Toshiba’s π-MOSⅣ products). Improvement for light load conditions is expected.

Turn-off waveform

Toshiba’s conventional product

TK9J90E

By using π-MOSⅧ chip design, Qg is reduced by 23 % (comparison of Toshiba’s π-MOSⅣ products).

Reduction of switching loss is expected.

By using π-MOSⅧ chip design, Coss is reduced by 18 % (comparison of Toshiba’s π-MOSⅣ products).

Improvement for light load conditions is expected.
Realizes improvement of power supply efficiency by 40 % reduction of $R_{DS(ON)} \times Q_{gd}$ (comparison of Toshiba’s conventional products).

1. $R_{DS(ON)} \times Q_{gd}$ reduced by 40%

Using a single epitaxial process, the figure of merit $R_{DS(ON)} \times Q_{gd}$ was reduced by 40 % by optimizing the structure (comparison of Toshiba’s DTMOS IV-H 600 V products). By realizing low $R_{DS(ON)} \times Q_{gd}$, device switching loss was reduced contributing to improvement in power supply efficiency of equipment.

2. RonA reduced by 18 %

The figure of merit RonA of the latest generation [Note1] DTMOS VI has been reduced by 18 % compared with the previous generation (Toshiba’s DTMOS IV 650 V products). Achieving low on-resistance while maintaining high voltage contributes to high efficiency of equipment.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TK065U65Z</th>
<th>TK040N65Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TOLL</td>
<td>TO-247</td>
</tr>
<tr>
<td>V_{DS} [V]</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>38</td>
<td>57</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ [Ω] @V_{GS} = 10 V</td>
<td>Typ. 0.051</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>Max 0.065</td>
<td>0.040</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
</tbody>
</table>

[Note 1] As of March 2023

[Notes:

R_{DS(ON)}: I_D = 28.5 A, V_{GS} = 10 V
Q_{gd}: V_DD = 400 V, I_D = 57 A, V_{GS} = 10 V
Polarity: N-ch

Plots the mean of the measured values.

Comparison of $R_{DS(ON)} \times Q_{gd}$ [Note 2]

DTMOS IV
TK62N60W

DTMOS IV-H
TK62N60X

40% decrease from DTMOS IV-H (Toshiba internal comparison)

DTMOS VI
TK040N65Z

TK62N60W (600 V, 40 mΩ)
TK62N60X (600 V, 40 mΩ)
TK040N65Z (650 V, 40 mΩ)

Test Condition
$R_{DS(ON)}$: $I_D = 28.5$ A, $V_{GS} = 10$ V
Q_{gd}: $V_{DD} = 400$ V, $I_D = 57$ A, $V_{GS} = 10$ V
Plots the mean of the measured values.

The figure of merit RonA has been reduced by 30 % (compared with Toshiba conventional products), then contribute to improve efficiency of power supply.

1. **RonA 30 % reduction**
 Adoption of newly developed single epitaxial process to reduce the figure of merit RonA by 30 %.
 (Compared with Toshiba DTMOSⅢ products)

2. **Reduction of on-resistance increase at high temperature**
 The single epitaxial process reduces the on-resistance increase at high temperature.

3. **Optimization of switching speed**
 Optimization of switching speed has been achieved by reduction of C_{OSS} (by 12 %, compared with Toshiba conventional products) and other factors.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TK20A60W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-220SIS</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>600</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>20</td>
</tr>
<tr>
<td>$R_{ON, 1\Omega}$ @ $V_{GS} = 10$ V</td>
<td>Typ. 0.15 Max 0.175</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
</tr>
</tbody>
</table>

(Note) Compared with Toshiba conventional products
Transistor output photocoupler
TLP383 / TLP293 / TLP385

High CTR (Current Transfer Ratio) is realized even in low input current range (I_F = 0.5 mA).

1. High current transfer ratio

The TLP383 and TLP293 is a high isolation photocoupler that optically couples a phototransistor and high output infrared LED. Compared to Toshiba’s conventional products (TLP385), higher CTR (Current Transfer Ratio) in low input current range (@I_F = 0.5 mA) is realized.

2. High temperature operation

The TLP383 and TLP293 are designed to operate even under severe ambient temperature conditions.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP383</th>
<th>TLP293</th>
<th>TLP385</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>4pin SO6L</td>
<td>SO4</td>
<td>4pin SO6L</td>
</tr>
<tr>
<td>BV_{f} [Vrms]</td>
<td>5000</td>
<td>3750</td>
<td>5000</td>
</tr>
<tr>
<td>T_{op} [°C]</td>
<td>-55 to 125</td>
<td>-55 to 125</td>
<td>-55 to 110</td>
</tr>
</tbody>
</table>

(Note) Toshiba internal comparison
Using a triac with high dv/dt pre-driver for solenoid valve control suppresses false turn-on.

1. **Low input and zero crossing input control**

This device optically couples a photo triac and a high power infrared LED, providing high isolation equivalent to an electromagnetic relay. Capable of low input operation, the photo coupler can be directly controlled by a microcontroller.

2. **High dv/dt**

The TLP3083 is a triac having a high dv/dt of 2000 V/μs (Typ.). With a high OFF-state voltage of 800 V, it can work with various AC power supplies.

Example of AC switch using triac output photocoupler

![Diagram of AC switch using triac output photocoupler]

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP3083</th>
<th>TLP3073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>Spin DIP6</td>
<td></td>
</tr>
<tr>
<td>Output type</td>
<td>Zero crossing functionary (ZC)</td>
<td>Non zero crossing functionary (NZC)</td>
</tr>
<tr>
<td>BVs [Vrms]</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>T_{opr} [°C]</td>
<td>-40 to 100</td>
<td></td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation
Switching devices for high voltage (600 V or more) and high current (30 A or more) application. Lineup of low $V_{CE(sat)}$ products are effective in reducing conduction loss.

1 High speed, low saturation voltage

By adopting a thin wafer punch-through structure, high speed turn-off characteristics and low $V_{CE(sat)}$ characteristics are realized.

2 High breakdown tolerance

Toshiba has a lineup of products with high breakdown tolerance (short circuit withstand time t_{sc} and reverse bias safe operating area RBSOA).

3 Enhancement type

Since collector current does not flow when gate voltage is not applied for enhancement devices, handling is easy.

Active type PFC circuit example using discrete IGBT (GT50JR22)

```
IGBT

V_{out} = f_{sw} = 20 to 35 kHz
```

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>GT50JR22</th>
<th>GT30J122A</th>
<th>GT50J123</th>
<th>GT30J65MRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-3P(N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-in FWD</td>
<td>✓ (RC structure)</td>
<td>-</td>
<td>-</td>
<td>✓ (RC structure)</td>
</tr>
<tr>
<td>$V_{CE(sat)}$ [V]</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>650</td>
</tr>
<tr>
<td>I_{c} [A]</td>
<td>50</td>
<td>30</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>Max $V_{CE(sat)}$ [V]</td>
<td>2.20</td>
<td>2.8</td>
<td>2.50</td>
<td>1.80 @ $I_{c} = 30$ A</td>
</tr>
<tr>
<td>Max t_{sc} [μs]</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Max RBSOA</td>
<td>-</td>
<td>-</td>
<td>120 A, 600 V (full square)</td>
<td>-</td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation
Wide lineup from general purpose type to small package type are provided. Contribute to realize a stable power supply not affected by fluctuation of battery.

1. **Low dropout voltage**

 The originally developed latest process significantly improved the dropout voltage characteristics.

2. **High PSRR**
 Low output noise voltage

 Many product series that realize both high PSRR (Power Supply Rejection Ratio) and low output noise voltage characteristics are provided. They are suitable for stable power supply for analog circuit.

3. **Low current consumption**

 0.34 μA of $I_{B(ON)}$ is realized by utilizing CMOS process and unique circuit technology. (TCR3U Series)

![Lineup](image-url)

<table>
<thead>
<tr>
<th>Features</th>
<th>TCR15AG Series</th>
<th>TCR13AG Series</th>
<th>TCR8BM Series</th>
<th>TCR5BM Series</th>
<th>TCR5RG Series</th>
<th>TCR3RM Series</th>
<th>TCR3U Series</th>
<th>TCR2L Series</th>
<th>TAR5 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OUT} (Max) [A]</td>
<td>1.5</td>
<td>1.3</td>
<td>0.8</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>15 V Input voltage</td>
<td>Bipolar type</td>
<td></td>
</tr>
<tr>
<td>PSRR (Typ.) [dB]</td>
<td>95</td>
<td>90</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>I_{B} (Typ.) [μA]</td>
<td>25</td>
<td>56</td>
<td>20</td>
<td>19</td>
<td>7</td>
<td>7</td>
<td>0.34</td>
<td>1</td>
<td>170</td>
</tr>
</tbody>
</table>

(Note) Toshiba internal comparison with TCR3U series.
It is a brushless DC motor driver with built-in MOSFETs or IGBTs and can be driven at a variable speed by control signals from the MCU.

1. Built-in circuit required to drive the motor

It contains a level shifting high side driver, low side driver and MOSFETs or IGBTs.

- **TPD4204F**: MOSFET output
- **TPD4163F/TPD4163K/TPD4164F/TPD4164K**: IGBT output

2. Motor drive terminals and control terminals are separated

High voltage and large current terminals and the control terminals are separated on both sides of the package, thereby eliminating the complexity of wiring.

3. Various protection functions

- Over current and under voltage protection, shutdown and thermal shutdown functions are available.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPD4204F</th>
<th>TPD4163F</th>
<th>TPD4164F</th>
<th>TPD4163K</th>
<th>TPD4164K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>P-SSOP30-1120-1000-001</td>
<td>P-HSOP31-0918-080-002</td>
<td>P-HDIP30-1233-178-001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{BB} [V]</td>
<td>600</td>
<td>13.5 to 16.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{out} [A]</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>V_{CC} [V]</td>
<td>13.5 to 16.5</td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation
This product optimizes for brushless DC motor driving and has the functions required for motor driving into one package.

1. Contributing to low power consumption
The power consumption can be reduced by replacing from the AC motor to a brushless DC motor.

2. Contributing to reducing the number of parts
Built-in functions and protection functions required for inverter operation can reduce the number of parts.

3. Contributing to reduction of circuit board area
The use of small surface mount packages contributes to the reduction of circuit board area.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPD4162F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>P-HSSOP31-0918-0.80-002</td>
</tr>
<tr>
<td>V_{BB} [V]</td>
<td>600</td>
</tr>
<tr>
<td>I_{OUT} [A]</td>
<td>0.7</td>
</tr>
<tr>
<td>V_{CC} (Max) [V]</td>
<td>17.5</td>
</tr>
<tr>
<td>Protective function</td>
<td>Current limitation, overcurrent protection, thermal shutdown, under voltage protection</td>
</tr>
</tbody>
</table>
Support low voltage motor drive (2.5 V (Min)) and contributes to the power saving of set.

1. **Low voltage operation**
 Motor power supply voltage is 2.5 V (Min) for low voltage applications such as battery operation devices.

2. **Low current consumption**
 Standby current is 2 μA or less (IC total) for power saving of devices.

3. **Error detection functions**
 Over current detection (ISD), thermal shutdown (TSD) and under voltage lockout (UVLO) are available.

Part Numbers and Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC78H621FNG</th>
<th>TC78H660FNG</th>
<th>TC78H660FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_out [V]</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>I_out [A]</td>
<td>1.1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Ron (upper and lower sum) (Typ.) [Ω]</td>
<td>0.8</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Control interface</td>
<td>PHASE input</td>
<td>IN/PHASE inputs</td>
<td>IN/PHASE inputs</td>
</tr>
<tr>
<td>Step</td>
<td>2phase/1-2phase excitation</td>
<td>2phase/1-2phase excitation</td>
<td>2phase/1-2phase excitation</td>
</tr>
<tr>
<td>Motor power supply voltage</td>
<td>2.5 V (Min)</td>
<td>2.5 V (Min)</td>
<td>2.5 V (Min)</td>
</tr>
<tr>
<td>Error detection function</td>
<td>ISD, TSD, UVLO</td>
<td>ISD, TSD, UVLO</td>
<td>ISD, TSD, UVLO</td>
</tr>
<tr>
<td>Package</td>
<td>P-TSSOP16-0505-0.65-001</td>
<td>P-VQFN16-0303-0.50-001</td>
<td>P-VQFN16-0303-0.50-001</td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation
Toshiba’s proprietary technology eliminates the need for phase adjustment and achieves high efficiency for a wide range of rotation speeds.

1. **High efficiency in a wide range of rotation speeds**
 Toshiba’s automatic lead angle control technology realizes a high efficiency drive regardless of motor speed, load torque or power supply voltage.

2. **Motor control with low noise and low vibration**
 Sine wave drive system with smooth current waveforms contributes to lower motor noise and vibration compared to conventional square wave drive system [Note].

3. **Small package**
 VQFN32 package is adopted for TC78B042FTG, which requires small space. SSOP30 package is adopted for TC78B041FNG as conventional type.

Lineup

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC78B041FNG</th>
<th>TC78B042FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>TC78B041FNG</td>
<td>TC78B042FTG</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>6 to 16.5 V</td>
<td>6 to 16.5 V</td>
</tr>
<tr>
<td>Drive type</td>
<td>Sine wave</td>
<td>Sine wave</td>
</tr>
<tr>
<td>Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto lead angle control for optimizing voltage and current phases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall element or hall IC input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward/reverse rotation switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor lock detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selectable pulse number of rotation pulse signal output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-in 5 V regulator (VREF pin)</td>
<td>Built-in 5 V</td>
<td>Built-in 5 V</td>
</tr>
<tr>
<td>Built-in 5 V regulators (VREF/VREF2 pin)</td>
<td></td>
<td>regulators</td>
</tr>
<tr>
<td>Error detection positive input</td>
<td>Error detection positive/negative input</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>SSOP30-P-300-0.65</td>
<td>P-VQFN32-0505-0.50-005</td>
</tr>
</tbody>
</table>

[Note] Comparison with Toshiba products

SSOP30-P-300-0.65 Package (10.2 x 7.6 x 1.6 mm)
P-VQFN32-0505-0.50-005 Package (5 x 5 x 1 mm)
High voltage and high current brushless DC motor driving can be implemented by external IPD.

1. **High efficient motor control by automatic phase control**
 Automatic phase controller by current feedback is integrated adding conventional fixed phase voltage input (32 steps).

2. **Motor control with low noise and low vibration**
 Sine wave drive system with smooth current waveforms contributes to lower motor noise and vibration compared to conventional square wave drive system [Note].

3. **Sufficient development support**
 Various supports such as third party evaluation board and PSpice® data for development and design are prepared.

Lineup

<table>
<thead>
<tr>
<th>Feature</th>
<th>TB6584FNG</th>
<th>TB6584AFNG</th>
<th>TB6634FNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>6 to 16.5 V (operating range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>0.002 A (for MOSFET driver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive mode</td>
<td>Sine wave drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>Lead angle control: Auto phase control (current feedback)</td>
<td>Sensor input: Hall device/Hall IC compatible</td>
<td>Internal regulator: 5 V, 30 mA (Max)</td>
</tr>
<tr>
<td></td>
<td>Error detection: overcurrent protection, abnormal position signal protection</td>
<td>undervoltage lockout, motor restrained detection (TB6634FNG)</td>
<td></td>
</tr>
</tbody>
</table>

SSOP30-P-300-0.65 Package (10.2 x 7.6 x 1.6 mm)

[Note] Comparison with Toshiba products
Value provided

A motor control IC and IGBTs are integrated into one package, contributing to the miniaturization of circuit boards.

1 A motor control IC and IGBTs

A motor control IC with sine wave PWM drive function and IGBTs with 600 V and 2 A characteristics are integrated into one package.

2 Motor control with low noise and low vibration

Sine wave drive system with smooth current waveforms contributes to lower motor noise and vibration compared to conventional square wave drive system [Note].

3 High heat dissipation

HDIP30 package is adopted for TB67B000AHG, which has high heat dissipation. HSSOP34 package is adopted for TB67B000AFG, which is smaller than HDIP30.

[Note] Comparison with Toshiba products

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TB67B000AHG</th>
<th>TB67B000AFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage range</td>
<td>Power supply for control: 13.5 to 16.5 V</td>
<td>Power supply for motor drive: 50 to 450 V</td>
</tr>
<tr>
<td>Output current</td>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>Drive type</td>
<td>Sine wave PWM drive / Wide angle commutation</td>
<td></td>
</tr>
<tr>
<td>Lead angle control</td>
<td>0 to 58 degrees 32 steps / 0 to 28 degrees 16 steps</td>
<td></td>
</tr>
<tr>
<td>Speed command input voltage</td>
<td>Motor operation: 2.1 to 5.4 V</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>IGBT three-phase bridge, oscillator circuit, built-in bootstrap diode, overcurrent protection, thermal shutdown, undervoltage lockout, motor lock detection</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>P-HDIP30-1233-1.78-001</td>
<td>P-HSSOP34-0918-0.80-001</td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation 29
System cost reduction, higher efficiency and less development work.

1. **Equipped with motor control co-processor**
 Toshiba’s original co-processor vector engine (VE) for motor control reduces CPU load and allows control of multiple motors and peripherals.

2. **Equipped with motor control circuit**
 A variety of three-phase PWM\(^1\) waveforms and AD converters enable highly efficient, low noise control. The Advanced Encoder (A-ENC) reduces the load of CPU process in detecting the position performed for each PWM.

3. **Provide development support tools**
 Third party evaluation boards and sample programs that can be used to shorten the development time are provided. Toshiba has begun offering a new, simple, versatile motor control software development kit (MCU Motor Studio).\(^2\)

Lineup

<table>
<thead>
<tr>
<th>Series</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXZ+™4A Series</td>
<td>M4K Group</td>
<td>Arm® Cortex®-M4, 160 MHz operation 4.5 to 5.5 V, three motor control (Max), Data Flash</td>
</tr>
<tr>
<td>TX04 Series</td>
<td>M470 Group</td>
<td>Arm® Cortex®-M4, 120 MHz operation 4.5 to 5.5 V, two motor control (Max)</td>
</tr>
<tr>
<td>TX03 Series</td>
<td>M370 Group</td>
<td>Arm® Cortex®-M3, 80 MHz operation 4.5 to 5.5 V, two motor control (Max)</td>
</tr>
</tbody>
</table>

\(^1\) Pulse Width Modulation

\(^2\) For M4K Group and will gradually expand for TXZ+™ Series products

[Return to Block Diagram TOP]
MCU is equipped with many peripheral functions. MCU contributes to higher functionality as a system control MCU.

1 **Built-in Arm® Cortex®-M3 CPU core**

MCU is equipped with Arm Cortex-M3 core. Maximum operation frequency is 120 MHz.

2 **Various lineup of built-in memories and packages**

M3H group integrates both 512 KB (Max) code and 32 KB data flash memories which support 100,000 write cycle endurance, and has a wide lineup of package from 64 to 144 pins.

3 **Equipped with many peripheral functions**

M3H Group have many peripheral functions such as UART, SPI, I2C, 12bit AD converter, 8bit DA converter, three-phase PWM [Note1] output, ENC and digital LCD driver [Note2], etc.

[Note 1] Pulse Width Modulation
[Note 2] 64 pin products aren’t equipped with digital LCD driver.

Lineup

<table>
<thead>
<tr>
<th>Series</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXZ+™3A Series</td>
<td>M3H Group</td>
<td>Arm® Cortex®-M3, 120 MHz, 2.7 to 5.5 V operation</td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation
Absorbs static electricity from external terminals, prevents circuit malfunction and protects devices.

1. High ESD pulse absorption performance
 Improved ESD absorption compared to Toshiba’s conventional products. (50% reduction in operating resistance) For some products, both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality.

2. Suppress ESD energy by low clamp voltage
 Protect the connected circuits and devices using Toshiba own technology.

3. Suitable for high density mounting
 A variety of small packages are available.

TVS diode
DF2B7BSL / DF2B5M4SL / DF2B6M4SL

<table>
<thead>
<tr>
<th>Lineup</th>
<th>DF2B7BSL</th>
<th>DF2B5M4SL</th>
<th>DF2B6M4SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>SL2</td>
<td>SL2</td>
<td>SL2</td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ESD} [kV]</td>
<td>±30</td>
<td>±20</td>
<td>±20</td>
</tr>
<tr>
<td>V_{BWM} (Max) [V]</td>
<td>5.5</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>C_t (Typ.) [pF]</td>
<td>12</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(Note) This product is an ESD protection diode and cannot be used for purposes other than ESD protection.

- Return to Block Diagram TOP
Lineup includes low current consumption type that contributes to low power consumption and a low noise type that maximizes the performance of high performance sensors.

1. Low voltage operation

We have a lineup of low power supply voltage-driven operational amplifiers using CMOS process for low power supply voltage-driven wearable equipment.

2. Low current consumption

(TC75S102F) $I_{DD} = 0.27 \, \mu A$ (Typ.)

CMOS processes have been used to achieve lower current consumption. This contributes to lower power consumption and longer life of wearable equipment.

3. Low noise

(TC75S67TU) $V_{NI} = 6.0 \, [nV/\sqrt{Hz}]$ (Typ.) @$f = 1 \, kHz$

This CMOS operational amplifier can amplify minute signals detected by various sensors [Note] with low noises. By optimizing the process, the equivalent input noise voltage has been reduced.

TC75S102F

Current Consumption Characteristic
(Toshiba internal comparison)

TC75S67TU

Noise Characteristic
(Toshiba internal comparison)

- **Part number**
 - TC75S102F
 - TC75S67TU

- **Package**
 - SMV
 - UFV

- **$V_{DD} - V_{SS}$ [V]**
 - 1.5 to 5.5
 - 2.2 to 5.5

- **V_{IO} (Max) [mV]**
 - 1.3
 - 3

- **CMV$_{IN}$ (Max) [V]**
 - V_{DD}
 - 1.4 (@$V_{DD} = 2.5 \, V$)

- **I_{DD} (Typ. / Max) [μA]**
 - 0.27 / 0.46 (@$V_{DD} = 1.5 \, V$)
 - 430 / 700 (@$V_{DD} = 2.5 \, V$)

- **V_{NI} (Typ.) [nV/\sqrt{Hz}] @$f = 1 \, kHz$**
 - -
 - 6

[Note] Sensor types: vibration, shock, acceleration, pressure, infrared, temperature, etc.
DMOS FET is used for the output of drive circuit and realizes low loss. And CMOS input can control directly from controller’s I/O, etc.

1 Rich product lineup

In addition to the listed products, we have lineup of various packaged products (such as DIP, SOL, SOP, SSOP, etc.) and source output type products.

2 Built-in output clamp diode

Built-in output clamp diode regenerates the back electromotive force generated by switching of an inductive.

3 Higher current drive is possible

The load can be driven with higher current by connecting multiple outputs in parallel.

(Note) Equivalent circuit may be simplified for explanatory purpose.

<table>
<thead>
<tr>
<th>Lineup</th>
<th>TBD62003AFWG</th>
<th>TBD62083AFG</th>
<th>TBD62064AFAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>Package</td>
<td>Package</td>
<td>Package</td>
</tr>
<tr>
<td></td>
<td>P-SOP16-0410-1.27-002</td>
<td>SOP18-P-375-1.27</td>
<td>P-SSOP24-0613-1.00-001</td>
</tr>
<tr>
<td>Package</td>
<td>Sink</td>
<td>Sink</td>
<td>Sink</td>
</tr>
<tr>
<td>Output type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of channels</td>
<td>7ch</td>
<td>8ch</td>
<td>4ch</td>
</tr>
<tr>
<td>Input level</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>I_{OUT} [mA/ch]</td>
<td>500</td>
<td>500</td>
<td>1500</td>
</tr>
<tr>
<td>V_{OUT} [V]</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

© 2019-2023 Toshiba Electronic Devices & Storage Corporation
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and Customer who downloads or uses this Reference Design. Customer shall comply with this terms of use. This Reference Design means all documents and data in order to design electronics applications on which our semiconductor device is embedded.

Section 1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customer shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. Customer shall not use this Reference Design for sale, lease or other transfer.
3. Customer shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any product or system whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

Section 2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. WE ARE NOT RESPONSIBLE FOR ANY INCORRECT OR INCOMPLETE DATA AND INFORMATION.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, Customer is responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customer must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
4. Designing electronics applications by referring to this Reference Design, Customer must evaluate the whole system sufficiently. Customer is solely responsible for applying this Reference Design to Customer's own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMER'S PRODUCT DESIGN OR APPLICATIONS.
5. WE SHALL NOT BE RESPONSIBLE FOR ANY INFRINGEMENT OF PATENTS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM THE USE OF THIS REFERENCE DESIGN. NO LICENSE TO ANY INTELLECTUAL PROPERTY RIGHT IS GRANTED BY THIS TERMS OF USE, WHETHER EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE.
6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF FUNCTION AND WORKING, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

Section 3. Terms and Termination
It is assumed that Customer agrees to any and all this terms of use if Customer downloads or uses this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and without any cause. Upon termination of this terms of use, Customer shall eliminate this Reference Design. Furthermore, upon our request, Customer shall submit to us a written confirmation to prove elimination of this Reference Design.

Section 4. Export Control
Customer shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Act and the U.S. Export Administration Regulations. Export and re-export of this Reference Design is strictly prohibited except in compliance with all applicable export laws and regulations.

Section 5. Governing Laws
This terms of use shall be governed and construed by laws of Japan, without reference to conflict of law principle.

Section 6. Jurisdiction
Unless otherwise specified, Tokyo District Court in Tokyo, Japan shall be exclusively the court of first jurisdiction for all disputes under this terms of use.
Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.

Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.
TOSHIBA

* PSpice® is a registered trademark of Cadence Design Systems, Inc.
* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
* TXZ+™ is a trademark of Toshiba Electronic Devices & Storage Corporation
* All other company names, product names, and service names may be trademarks of their respective companies.