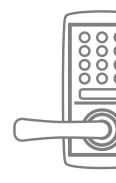
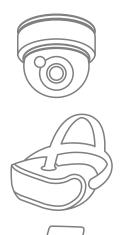
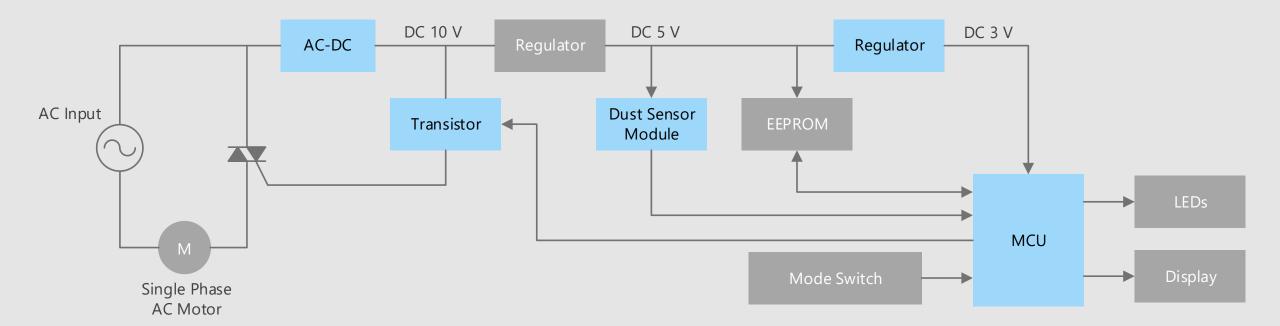

Air Cleaner

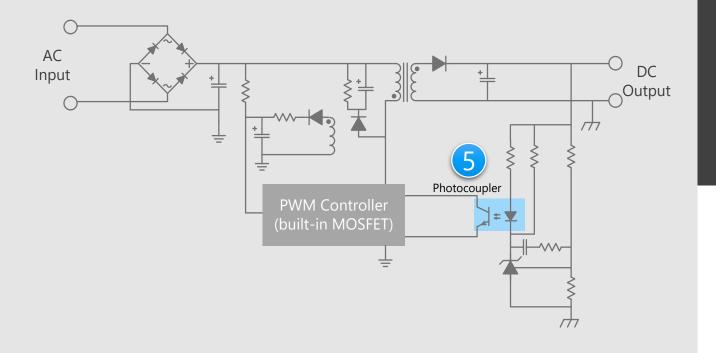
Solution Proposal by Toshiba







Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.


Block Diagram

Air Cleaner Overall block diagram

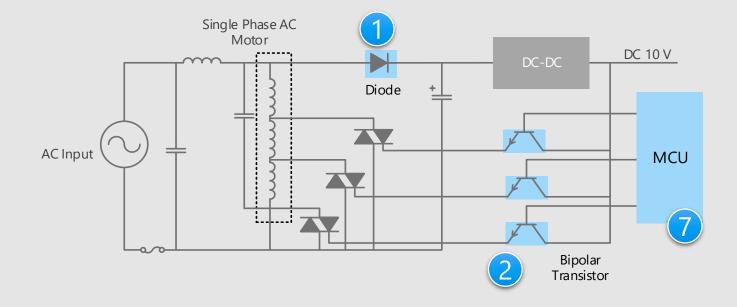
Air Cleaner Detail of power supply unit

Flyback type AC-DC converter circuit

Criteria for device selection

- A photocoupler with high current transfer ratio in the low input current range contributes to high power supply efficiency.
- Small package products contribute to the reduction of circuit board area.

Proposals from Toshiba


 High current transfer ratio and high temperature operation makes easy to design.

Transistor output photocoupler

X Click the number in the circuit diagram to jump to the detailed description page

Air Cleaner Detail of main motor unit (1)

Main motor drive unit (When AC motor is used)

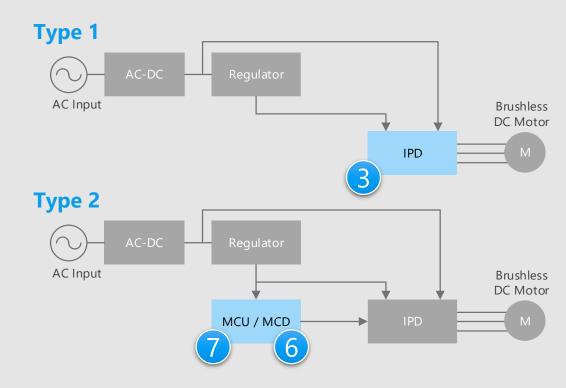
X Click the number in the circuit diagram to jump to the detailed description page

Criteria for device selection

- Small package products contribute to the reduction of circuit board area.
- Stable motor driving can be realized by using bipolar transistors, which have higher ESD tolerance than MOSFET.

Proposals from Toshiba

- Suitable for rectification
 Rectifier diode
- Suitable for use in small current switches
 Bipolar transistor
- System control at low power consumption with analog interfaces MCU M030 Group



Air Cleaner Detail of main motor unit (2)

Main motor drive unit (When using a brushless DC motor)

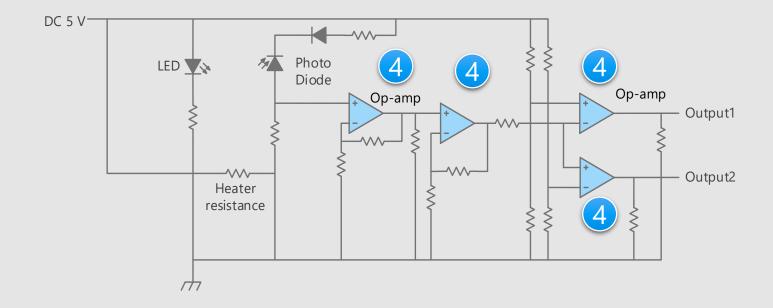
X Click the number in the circuit diagram to jump to the detailed description page

Criteria for device selection

- The use of IPD enables direct variable speed driving of brushless DC motors.
- Brushless DC motor controller allows easy control of 3-phase brushless DC motor using inverter control
- Small package products contribute to the reduction of circuit board area.

Proposals from Toshiba

- High voltage motor can be driven
 High voltage IPD
- Easy motor control
 Brushless DC motor controller IC
- System control at low power consumption with analog interfaces MCU M030 Group



Air Cleaner Detail of dust sensor unit

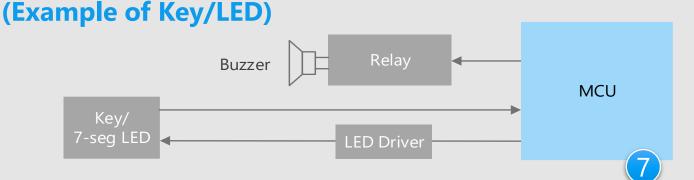
Dust sensor section

X Click the number in the circuit diagram to jump to the detailed description page

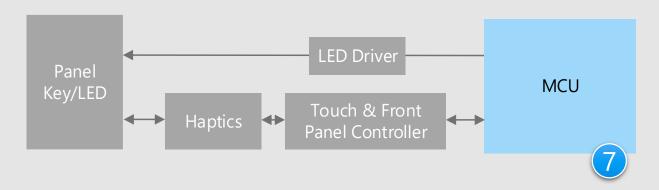
Criteria for device selection

- Small package products contribute to the reduction of circuit board area.
- Low noise operational amplifiers are suitable for high precision sensing.

Proposals from Toshiba


- Amplify the detected very small signal with low noise

Low noise operational amplifier



Air Cleaner Detail of operation unit

Operation unit

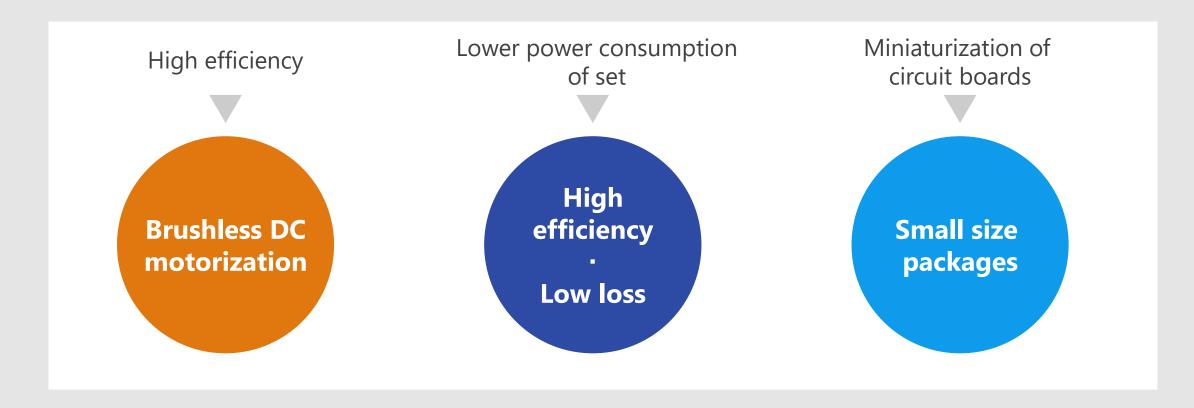
Operation unit (Example of touch panel)

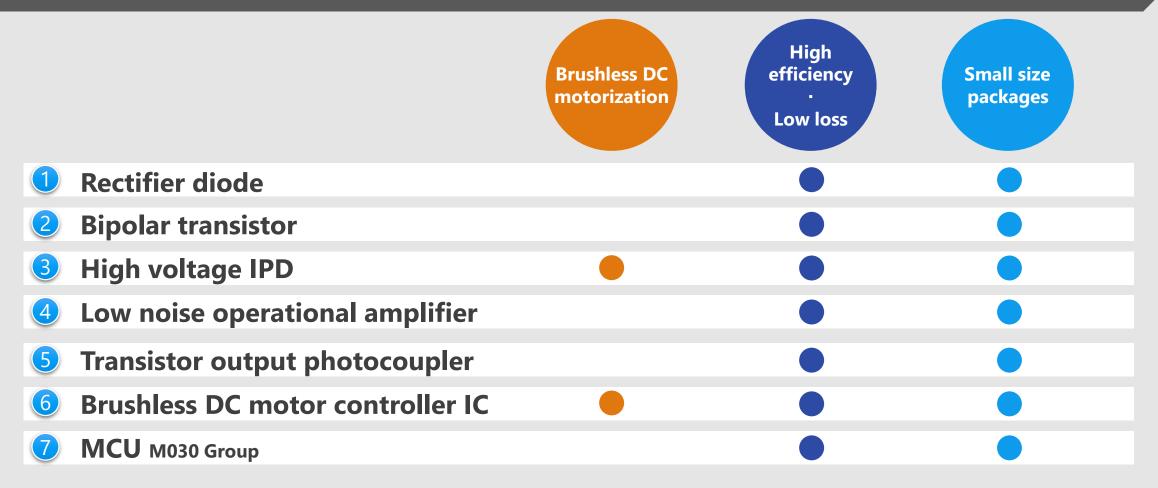
* Click the number in the circuit diagram to jump to the detailed description page.

Criteria for device selection

 An MCU which has analog interfaces with low power consumption is suitable for monitoring of various sensors and system control.

Proposals from Toshiba

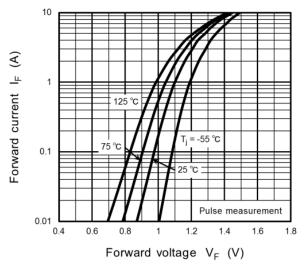

 System control at low power consumption with analog interfaces MCU M030 Group



Device solutions to address customer needs

As described above, in the design of Air Cleaner, "High efficiency", "Low power consumption of set" and "Miniaturization of circuit boards" are important factors. Toshiba's proposals are based on these three solution perspectives.

Device solutions to address customer needs



Wide range of products are provided, mainly small package that is suitable for high density assembly.

Surface mount / small package

The use of M-FLATTM packages contributes to the reduction of height and space saving of equipment compared to previous lead type devices ^[Note].

[Note] Comparison with Toshiba's products

CMG06A forward characteristic

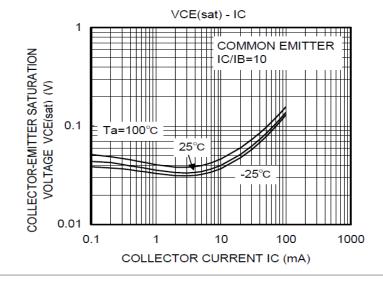
Wide product lineup

A lineup of repetitive peak reverse voltages of 200 to 1000 V and average forward current of 0.5 to 3 A is available, enabling the selection of devices according to requirements.

Lineup		
Part number	CMG06A	
Package	M-FLAT TM	
I _{F(AV)} [A]	1	
V _{RRM} [V]	600	

With wide product lineup, Toshiba provides products that meet the needs of customers.

Wide package lineups


A large number of packages, such as flat lead and leadless, are available, allowing to choose products that suit circuit boards of the set.

2 Low collector-emitter saturation voltage

The low saturation voltage between the collector and emitter realize lower power consumption.

3 High ESD tolerance

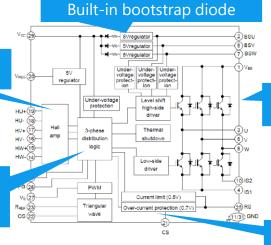
In applications where static electricity is likely to occur, such as air cleaners, bipolar transistors with higher ESD tolerance than MOSFET are needed.

Lineup			
Part number	2SC6026CT		
Туре	NPN		
Package	CST3		
V _{CEO} [V]	50		
I _C [mA]	100		

This product optimizes for brushless DC motor driving and has the functions required for motor driving into one package.

Contributing to low power consumption

The power consumption can be greatly reduced by replacing from the AC motor to a brushless DC motor.


2 Contributing to reducing the number of parts

Built-in functions and protection functions required for inverter operation can reduce the number of parts. **Solution** Contributing to reduction of circuit board area

The use of small surface mount packages contributes to the reduction of circuit board area.

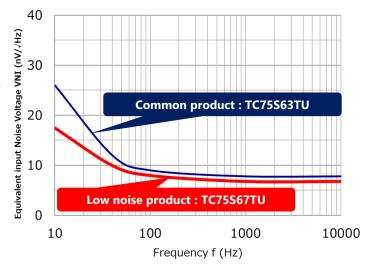
Support Hall devices

Built-in rectangular wave energizing circuit

Built-in three-phase inverter circuit

Built-in protection functions

Lineup	
Part number	TPD4162F
Package	HSSOP31
V _{BB} [V]	600
I _{out} [A]	0.7
V _{CC} (Max) [V]	17.5
Protective function	Current limitation, Overcurrent protection, Thermal shutdown, Under voltage protection


Very small signals detected by various sensors can be amplified with very low noise.

Low noise $V_{NI} = 6.0 [nV/\sqrt{Hz}] (Typ.) @f = 1 kHz$

Very small signals detected by various sensors [Note] can be amplify with low noise using CMOS operational amplifier by optimizing the processing. We achieved low input equivalent noise voltage.

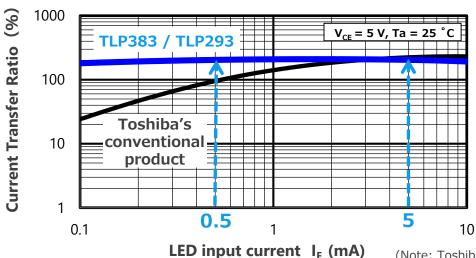
[Note] Sensor types: Vibration detection sensor, shock sensor, accelerometer, pressure sensor, infrared sensor and temperature sensor, etc.

Low noise characteristic (Toshiba internal comparison)

2 Low current consumption $I_{DD} = 430 [\mu A]$ (Typ.)

Low current consumption characteristics are realized by using the CMOS process.

Lineup		
Part number	TC75S67TU	
Package	UFV (2.0 x 2.1 mm)	
V _{DD,SS} (Max) [V]	±2.75	
V _{DD,SS} (Min) [V]	±1.1	
I _{DD} (Typ. / Max) [μΑ]	430 / 700	
V_{NI} (Typ.) [nV/ \sqrt{Hz}] @f = 1 kHz	6	



High CTR (Current Transfer Ratio) is realized even in low input current range ($I_F = 0.5 \text{ mA}$).

High current transfer ratio

The TLP383 / TLP293 are high isolation photocouplers that optically couple a phototransistor and high output infrared LED. Compared to Toshiba's conventional products (TLP785 / TLP385), higher CTR (Current Transfer Ratio) in low input current range (@ $I_F = 0.5$ mA) is realized.

Designed for high temperature operation

The TLP383 / TLP293 are designed to operate even under severe ambient temperature conditions.

Lineup				
Part number	TLP383	TLP293	TLP785	TLP385
Package	SO6L (4pin)	SO4	DIP4	SO6L (4pin)
BV _S [Vrms]	5000	3750	5000	5000
T _{opr} [°C]	-55 to 125	-55 to 125	-55 to 110	-55 to 110

◆ Return to Block Diagram TOP

(Note: Toshiba internal comparison)

By using MOSFETs externally to the controller, high voltage and high current brushless DC motor drive is realized.

Efficient motor control using auto lead angle control

In addition to fixed angle control using voltage input (32 steps), auto lead angle control using current feedback is possible.

2 Low noise, low vibration motor control

A sine wave drive system with a smooth current waveform contributes to low noise and low vibration of the motor compared with conventional square wave drive systems. [Note] (TB6584FNG/ TB6584AFNG)

Full development support

Third party evaluation boards and PSpice® data can be provided to support customer development and design.

TB6584FNG/TB6584AFNG

SSOP30 package (10.2 x 7.6 x 1.6 mm)

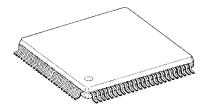
[Note] Comparison with Toshiba products

Lineup				
Part Number	TB6584FNG	TB6584AFNG	TB6586AFG	
V _{CC} [V]	6 to 16.5		6.5 to 16.5	
I _{OUT} [A]	0.002		0.003	
Drive mode	Sine wave drive		Square wave drive	
Other features	Lead angle control: Auto phase control (current feedback) Sensor input: Hall device/ Hall IC compatible Internal regulator: 5 V / 30 mA (max) Error detection: over current protection, position signal error, low voltage		Lead angle control: External Input Sensor input: Hall device/ Hall IC compatible Internal regulator: 5 V / 35 mA (max) Error detection: over current protection, position signal error, low voltage	

It contributes to system cost down, high efficiency system and development efficiency improvement.

Built-in Arm® Cortex®-M0 CPU core

Built-in Arm Cortex-M0 core with Thumb instruction set improves energy efficiency. Various development tool and their partners allow users many options.


Suitable for sensing analog signal

Built-in multichannel AD converter executes sensing data processing efficiently at low cost.

Small package and low power consumption

Cortex-M0 and Toshiba original NANOFLASH™ technology bring to the small package and low power consumption. They contribute to reduce circuit board area and power consumption.

TMPM036FWFG

TMPM037FWUG

LQFP100 LQFP64

Lineup

Part number	TMPM036FWFG	TMPM037FWUG
Maximum operation frequency	20 MHz	20 MHz
Instruction ROM	128 KB	128 KB
RAM	16 KB	16 KB
Timer	14ch	10ch
UART / SIO	6	5
I ² C	2	1
AD converter	8ch (10bit)	8ch (10bit)

If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html

Terms of use

These terms of use are made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with these terms of use. Please note that it is assumed that customers agree to any and all of the terms of use if customers download this Reference Design. We may, at our sole and exclusive discretion, change, alter, modify, add, and/or remove any part of these terms of use at any time without any prior notice. We may terminate these terms of use at any time and for any reason. Upon termination of these terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

- 1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
- 2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
- 3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
- 4. This Reference Design shall not be used for or be incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

- 1.We reserve the right to make changes to this Reference Design without notice.
- 2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
- 3.Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
- 4.When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- 5.No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
- 6.THIS REFERÊNCE DÉSIĞN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOÉVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (weapons of mass destruction). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

These terms of use shall be governed and construed by the laws of Japan.

RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. **TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.**
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. **TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES**OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA

- * Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
- * PSpice is a registered trademark of Cadence Design Systems, Inc.
- * M-FLATTM and NANOFLASHTM are trademarks of Toshiba Electronic Devices & Storage Corporation.
- * All other company names, product names, and service names may be trademarks of their respective companies.